Your data matches 1 statistic following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000349: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> 1
([],2)
=> 1
([(0,1)],2)
=> 1
([],3)
=> 1
([(1,2)],3)
=> 3
([(0,2),(1,2)],3)
=> 3
([(0,1),(0,2),(1,2)],3)
=> 1
([],4)
=> 1
([(2,3)],4)
=> 6
([(1,3),(2,3)],4)
=> 12
([(0,3),(1,3),(2,3)],4)
=> 4
([(0,3),(1,2)],4)
=> 3
([(0,3),(1,2),(2,3)],4)
=> 12
([(1,2),(1,3),(2,3)],4)
=> 4
([(0,3),(1,2),(1,3),(2,3)],4)
=> 12
([(0,2),(0,3),(1,2),(1,3)],4)
=> 3
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([],5)
=> 1
([(3,4)],5)
=> 10
([(2,4),(3,4)],5)
=> 30
([(1,4),(2,4),(3,4)],5)
=> 20
([(0,4),(1,4),(2,4),(3,4)],5)
=> 5
([(1,4),(2,3)],5)
=> 15
([(1,4),(2,3),(3,4)],5)
=> 60
([(0,1),(2,4),(3,4)],5)
=> 30
([(2,3),(2,4),(3,4)],5)
=> 10
([(0,4),(1,4),(2,3),(3,4)],5)
=> 60
([(1,4),(2,3),(2,4),(3,4)],5)
=> 60
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 30
([(1,3),(1,4),(2,3),(2,4)],5)
=> 15
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 60
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 30
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 60
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 60
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 10
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 10
([(0,4),(1,3),(2,3),(2,4)],5)
=> 60
([(0,1),(2,3),(2,4),(3,4)],5)
=> 10
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 60
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 15
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 12
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 60
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 60
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 60
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 20
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 30
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 30
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 15
Description
The number of different adjacency matrices of a graph. This is the number of different labellings of the graph, or $\frac{|G|!}{|\operatorname{Aut}(G)|}$.