Processing math: 100%

Your data matches 2 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000465: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> 0
([],2)
=> 0
([(0,1)],2)
=> 2
([],3)
=> 0
([(1,2)],3)
=> 2
([(0,2),(1,2)],3)
=> 6
([(0,1),(0,2),(1,2)],3)
=> 12
([],4)
=> 0
([(2,3)],4)
=> 2
([(1,3),(2,3)],4)
=> 6
([(0,3),(1,3),(2,3)],4)
=> 12
([(0,3),(1,2)],4)
=> 4
([(0,3),(1,2),(2,3)],4)
=> 10
([(1,2),(1,3),(2,3)],4)
=> 12
([(0,3),(1,2),(1,3),(2,3)],4)
=> 18
([(0,2),(0,3),(1,2),(1,3)],4)
=> 16
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 26
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 36
([],5)
=> 0
([(3,4)],5)
=> 2
([(2,4),(3,4)],5)
=> 6
([(1,4),(2,4),(3,4)],5)
=> 12
([(0,4),(1,4),(2,4),(3,4)],5)
=> 20
([(1,4),(2,3)],5)
=> 4
([(1,4),(2,3),(3,4)],5)
=> 10
([(0,1),(2,4),(3,4)],5)
=> 8
([(2,3),(2,4),(3,4)],5)
=> 12
([(0,4),(1,4),(2,3),(3,4)],5)
=> 16
([(1,4),(2,3),(2,4),(3,4)],5)
=> 18
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 26
([(1,3),(1,4),(2,3),(2,4)],5)
=> 16
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 22
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 26
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 24
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 34
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 30
([(0,4),(1,3),(2,3),(2,4)],5)
=> 14
([(0,1),(2,3),(2,4),(3,4)],5)
=> 14
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 22
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 32
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 20
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 30
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 32
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 36
([],6)
=> 0
([(4,5)],6)
=> 2
([(3,5),(4,5)],6)
=> 6
([(2,5),(3,5),(4,5)],6)
=> 12
([(1,5),(2,5),(3,5),(4,5)],6)
=> 20
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 30
Description
The first Zagreb index of a graph. This is the sum of the squares of the degrees of the vertices, vV(G)d2(v)={u,v}E(G)(d(u)+d(v)) where d(u) is the degree of the vertex u.
Matching statistic: St000350
Mp00156: Graphs line graphGraphs
Mp00203: Graphs coneGraphs
St000350: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],0)
=> ([],1)
=> 0
([],2)
=> ([],0)
=> ([],1)
=> 0
([(0,1)],2)
=> ([],1)
=> ([(0,1)],2)
=> 2
([],3)
=> ([],0)
=> ([],1)
=> 0
([(1,2)],3)
=> ([],1)
=> ([(0,1)],2)
=> 2
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 6
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 12
([],4)
=> ([],0)
=> ([],1)
=> 0
([(2,3)],4)
=> ([],1)
=> ([(0,1)],2)
=> 2
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 6
([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 12
([(0,3),(1,2)],4)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 4
([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 10
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 12
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 18
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 16
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 26
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> 36
([],5)
=> ([],0)
=> ([],1)
=> 0
([(3,4)],5)
=> ([],1)
=> ([(0,1)],2)
=> 2
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 6
([(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 12
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 20
([(1,4),(2,3)],5)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 4
([(1,4),(2,3),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 10
([(0,1),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 8
([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 12
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 16
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 18
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 26
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 16
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 22
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 26
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 24
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 34
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> 30
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 14
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 14
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 22
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 32
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 20
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 30
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 32
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> 36
([],6)
=> ([],0)
=> ([],1)
=> 0
([(4,5)],6)
=> ([],1)
=> ([(0,1)],2)
=> 2
([(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 6
([(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 12
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 20
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 30
Description
The sum of the vertex degrees of a graph. This is clearly equal to twice the number of edges, and, incidentally, also equal to the trace of the Laplacian matrix of a graph. From this it follows that it is also the sum of the squares of the eigenvalues of the adjacency matrix of the graph. The Laplacian matrix is defined as DA where D is the degree matrix (the diagonal matrix with the vertex degrees on the diagonal) and where A is the adjacency matrix. See [1] for detailed definitions.