Loading [MathJax]/jax/output/HTML-CSS/jax.js

Your data matches 58 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
Mp00035: Dyck paths —to alternating sign matrix⟶ Alternating sign matrices
Mp00002: Alternating sign matrices —to left key permutation⟶ Permutations
St000352: Permutations ⟶ ℤResult quality: 100% ā—values known / values provided: 100%ā—distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [[1]]
=> [1] => 0
[1,0,1,0]
=> [1,1,0,0]
=> [[0,1],[1,0]]
=> [2,1] => 1
[1,1,0,0]
=> [1,0,1,0]
=> [[1,0],[0,1]]
=> [1,2] => 0
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [3,1,2] => 1
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [2,1,3] => 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,3,2] => 0
[1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,2,3] => 0
[1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,3,2] => 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [4,1,2,3] => 1
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [3,1,2,4] => 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [2,1,4,3] => 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [2,1,3,4] => 1
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [2,1,4,3] => 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => 0
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => 0
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,2,4,3] => 0
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,2,3,4] => 0
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => 0
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => 0
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => 0
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => 0
[1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [5,1,2,3,4] => 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [4,1,2,3,5] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [3,1,2,5,4] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [3,1,2,4,5] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [3,1,2,5,4] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [2,1,5,3,4] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [2,1,4,3,5] => 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [2,1,3,4,5] => 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [2,1,5,3,4] => 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [2,1,4,3,5] => 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [2,1,5,3,4] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,5,2,3,4] => 0
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,4,2,3,5] => 0
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 0
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => 0
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 0
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => 0
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => 0
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 0
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,2,3,4,5] => 0
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 0
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => 0
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => 0
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 0
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => 0
Description
The Elizalde-Pak rank of a permutation. This is the largest $k$ such that $\pi(i) > k$ for all $i\leq k$. According to [1], the length of the longest increasing subsequence in a $321$-avoiding permutation is equidistributed with the rank of a $132$-avoiding permutation.
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00068: Permutations —Simion-Schmidt map⟶ Permutations
Mp00114: Permutations —connectivity set⟶ Binary words
St000297: Binary words ⟶ ℤResult quality: 100% ā—values known / values provided: 100%ā—distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => => ? = 0
[1,0,1,0]
=> [1,2] => [1,2] => 1 => 1
[1,1,0,0]
=> [2,1] => [2,1] => 0 => 0
[1,0,1,0,1,0]
=> [1,2,3] => [1,3,2] => 10 => 1
[1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => 10 => 1
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => 01 => 0
[1,1,0,1,0,0]
=> [2,3,1] => [2,3,1] => 00 => 0
[1,1,1,0,0,0]
=> [3,1,2] => [3,1,2] => 00 => 0
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,4,3,2] => 100 => 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,4,3,2] => 100 => 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,4,3,2] => 100 => 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,3,2] => 100 => 1
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [1,4,3,2] => 100 => 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,4,3] => 010 => 0
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => 010 => 0
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [2,4,1,3] => 000 => 0
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [2,4,3,1] => 000 => 0
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [2,4,1,3] => 000 => 0
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [3,1,4,2] => 000 => 0
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [3,1,4,2] => 000 => 0
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [3,4,1,2] => 000 => 0
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [4,1,3,2] => 000 => 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,5,4,3,2] => 1000 => 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,5,4,3,2] => 1000 => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,5,4,3,2] => 1000 => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,5,4,3,2] => 1000 => 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [1,5,4,3,2] => 1000 => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,5,4,3,2] => 1000 => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,5,4,3,2] => 1000 => 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,5,4,3,2] => 1000 => 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,4,3,2] => 1000 => 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [1,5,4,3,2] => 1000 => 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [1,5,4,3,2] => 1000 => 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [1,5,4,3,2] => 1000 => 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [1,5,4,3,2] => 1000 => 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [1,5,4,3,2] => 1000 => 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,5,4,3] => 0100 => 0
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,5,4,3] => 0100 => 0
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,5,4,3] => 0100 => 0
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,4,3] => 0100 => 0
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [2,1,5,4,3] => 0100 => 0
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [2,5,1,4,3] => 0000 => 0
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [2,5,1,4,3] => 0000 => 0
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [2,5,4,1,3] => 0000 => 0
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [2,5,4,3,1] => 0000 => 0
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [2,5,4,1,3] => 0000 => 0
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [2,5,1,4,3] => 0000 => 0
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [2,5,1,4,3] => 0000 => 0
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [2,5,4,1,3] => 0000 => 0
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [2,5,1,4,3] => 0000 => 0
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => [3,1,5,4,2] => 0000 => 0
[1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [3,4,5,6,7,8,9,10,1,2] => [3,10,9,8,7,6,5,4,1,2] => ? => ? = 0
[1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [3,4,5,6,7,8,9,10,11,1,2] => [3,11,10,9,8,7,6,5,4,1,2] => ? => ? = 0
Description
The number of leading ones in a binary word.
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00068: Permutations —Simion-Schmidt map⟶ Permutations
Mp00131: Permutations —descent bottoms⟶ Binary words
St000326: Binary words ⟶ ℤResult quality: 99% ā—values known / values provided: 99%ā—distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => => ? = 0 + 1
[1,0,1,0]
=> [1,2] => [1,2] => 0 => 2 = 1 + 1
[1,1,0,0]
=> [2,1] => [2,1] => 1 => 1 = 0 + 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,3,2] => 01 => 2 = 1 + 1
[1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => 01 => 2 = 1 + 1
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => 10 => 1 = 0 + 1
[1,1,0,1,0,0]
=> [2,3,1] => [2,3,1] => 10 => 1 = 0 + 1
[1,1,1,0,0,0]
=> [3,1,2] => [3,1,2] => 10 => 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,4,3,2] => 011 => 2 = 1 + 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,4,3,2] => 011 => 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,4,3,2] => 011 => 2 = 1 + 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,3,2] => 011 => 2 = 1 + 1
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [1,4,3,2] => 011 => 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,4,3] => 101 => 1 = 0 + 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => 101 => 1 = 0 + 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [2,4,1,3] => 100 => 1 = 0 + 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [2,4,3,1] => 101 => 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [2,4,1,3] => 100 => 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [3,1,4,2] => 110 => 1 = 0 + 1
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [3,1,4,2] => 110 => 1 = 0 + 1
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [3,4,1,2] => 100 => 1 = 0 + 1
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [4,1,3,2] => 110 => 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,5,4,3,2] => 0111 => 2 = 1 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,5,4,3,2] => 0111 => 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,5,4,3,2] => 0111 => 2 = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,5,4,3,2] => 0111 => 2 = 1 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [1,5,4,3,2] => 0111 => 2 = 1 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,5,4,3,2] => 0111 => 2 = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,5,4,3,2] => 0111 => 2 = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,5,4,3,2] => 0111 => 2 = 1 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,4,3,2] => 0111 => 2 = 1 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [1,5,4,3,2] => 0111 => 2 = 1 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [1,5,4,3,2] => 0111 => 2 = 1 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [1,5,4,3,2] => 0111 => 2 = 1 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [1,5,4,3,2] => 0111 => 2 = 1 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [1,5,4,3,2] => 0111 => 2 = 1 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,5,4,3] => 1011 => 1 = 0 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,5,4,3] => 1011 => 1 = 0 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,5,4,3] => 1011 => 1 = 0 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,4,3] => 1011 => 1 = 0 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [2,1,5,4,3] => 1011 => 1 = 0 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [2,5,1,4,3] => 1010 => 1 = 0 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [2,5,1,4,3] => 1010 => 1 = 0 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [2,5,4,1,3] => 1001 => 1 = 0 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [2,5,4,3,1] => 1011 => 1 = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [2,5,4,1,3] => 1001 => 1 = 0 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [2,5,1,4,3] => 1010 => 1 = 0 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [2,5,1,4,3] => 1010 => 1 = 0 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [2,5,4,1,3] => 1001 => 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [2,5,1,4,3] => 1010 => 1 = 0 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => [3,1,5,4,2] => 1101 => 1 = 0 + 1
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6,7,8,9,10,11] => [2,1,11,10,9,8,7,6,5,4,3] => 1011111111 => ? = 0 + 1
[1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [3,4,5,6,7,8,9,10,1,2] => [3,10,9,8,7,6,5,4,1,2] => ? => ? = 0 + 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [2,3,4,5,6,7,8,9,11,1,10] => [2,11,10,9,8,7,6,5,4,1,3] => 1001111111 => ? = 0 + 1
[1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [3,4,5,6,7,8,9,10,11,1,2] => [3,11,10,9,8,7,6,5,4,1,2] => ? => ? = 0 + 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [2,3,4,5,6,7,8,9,10,1,11] => [2,11,10,9,8,7,6,5,4,1,3] => 1001111111 => ? = 0 + 1
Description
The position of the first one in a binary word after appending a 1 at the end. Regarding the binary word as a subset of $\{1,\dots,n,n+1\}$ that contains $n+1$, this is the minimal element of the set.
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00070: Permutations —Robinson-Schensted recording tableau⟶ Standard tableaux
St000745: Standard tableaux ⟶ ℤResult quality: 99% ā—values known / values provided: 99%ā—distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1] => [[1]]
=> 1 = 0 + 1
[1,0,1,0]
=> [1,1,0,0]
=> [2,1] => [[1],[2]]
=> 2 = 1 + 1
[1,1,0,0]
=> [1,0,1,0]
=> [1,2] => [[1,2]]
=> 1 = 0 + 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [3,1,2] => [[1,3],[2]]
=> 2 = 1 + 1
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [2,1,3] => [[1,3],[2]]
=> 2 = 1 + 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,3,2] => [[1,2],[3]]
=> 1 = 0 + 1
[1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,2,3] => [[1,2,3]]
=> 1 = 0 + 1
[1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => [[1,2],[3]]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [[1,3,4],[2]]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [[1,3,4],[2]]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [[1,3],[2,4]]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [[1,3,4],[2]]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [[1,3],[2,4]]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [[1,2,4],[3]]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [[1,2,4],[3]]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [[1,2,3],[4]]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [[1,2,3,4]]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [[1,2,3],[4]]
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [[1,2],[3,4]]
=> 1 = 0 + 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [[1,2,4],[3]]
=> 1 = 0 + 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [[1,2,3],[4]]
=> 1 = 0 + 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [[1,2],[3,4]]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,1,2,3,4] => [[1,3,4,5],[2]]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => [[1,3,4,5],[2]]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,1,2,5,4] => [[1,3,4],[2,5]]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => [[1,3,4,5],[2]]
=> 2 = 1 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,5,3] => [[1,3,4],[2,5]]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [[1,3,5],[2,4]]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [[1,3,5],[2,4]]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [[1,3,4],[2,5]]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [[1,3,4,5],[2]]
=> 2 = 1 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [[1,3,4],[2,5]]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => [[1,3,5],[2,4]]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,5] => [[1,3,5],[2,4]]
=> 2 = 1 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,1,4,5,2] => [[1,3,4],[2,5]]
=> 2 = 1 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [4,1,5,2,3] => [[1,3,5],[2,4]]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [[1,2,4,5],[3]]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [[1,2,4,5],[3]]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [[1,2,4],[3,5]]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [[1,2,4,5],[3]]
=> 1 = 0 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [[1,2,4],[3,5]]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [[1,2,3,5],[4]]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [[1,2,3,5],[4]]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [[1,2,3,4],[5]]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [[1,2,3,4,5]]
=> 1 = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [[1,2,3,4],[5]]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [[1,2,3],[4,5]]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [[1,2,3,5],[4]]
=> 1 = 0 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [[1,2,3,4],[5]]
=> 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [[1,2,3],[4,5]]
=> 1 = 0 + 1
[1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0,0]
=> [9,11,1,2,3,4,5,6,7,8,10] => [[1,2,5,6,7,8,9,10,11],[3,4]]
=> ? = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [10,1,2,3,4,5,6,7,8,9,11] => [[1,3,4,5,6,7,8,9,10,11],[2]]
=> ? = 1 + 1
[1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6,7,8,9,10,11] => [[1,3,4,5,6,7,8,9,10,11],[2]]
=> ? = 1 + 1
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,11,2,3,4,5,6,7,8,9,10] => [[1,2,4,5,6,7,8,9,10,11],[3]]
=> ? = 0 + 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,4,5,6,7,8,10,11,9] => [[1,2,3,4,5,6,7,8,9,10],[11]]
=> ? = 0 + 1
[1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,8,9,10,11,1] => [[1,2,3,4,5,6,7,8,9,10],[11]]
=> ? = 0 + 1
[1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0]
=> [10,11,1,2,3,4,5,6,7,8,9] => [[1,2,5,6,7,8,9,10,11],[3,4]]
=> ? = 0 + 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,5,6,7,8,9,11,10] => [[1,2,3,4,5,6,7,8,9,10],[11]]
=> ? = 0 + 1
Description
The index of the last row whose first entry is the row number in a standard Young tableau.
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00114: Permutations —connectivity set⟶ Binary words
St000390: Binary words ⟶ ℤResult quality: 97% ā—values known / values provided: 97%ā—distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1] => => ? = 0
[1,0,1,0]
=> [1,1,0,0]
=> [1,2] => 1 => 1
[1,1,0,0]
=> [1,0,1,0]
=> [2,1] => 0 => 0
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,2,3] => 11 => 1
[1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [2,1,3] => 01 => 1
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [3,1,2] => 00 => 0
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [2,3,1] => 00 => 0
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [3,2,1] => 00 => 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 111 => 1
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 011 => 1
[1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => 001 => 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => 001 => 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => 001 => 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 000 => 0
[1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 000 => 0
[1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => 000 => 0
[1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 000 => 0
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 000 => 0
[1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 000 => 0
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 000 => 0
[1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 000 => 0
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [4,3,2,1] => 000 => 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 1111 => 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [2,1,3,4,5] => 0111 => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [3,1,2,4,5] => 0011 => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [2,3,1,4,5] => 0011 => 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [3,2,1,4,5] => 0011 => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,3,5] => 0001 => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [4,2,1,3,5] => 0001 => 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,4,1,2,5] => 0001 => 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => 0001 => 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => 0001 => 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,2,5] => 0001 => 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => 0001 => 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => 0001 => 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => 0001 => 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => 0000 => 0
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,3,4] => 0000 => 0
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,2,4] => 0000 => 0
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => 0000 => 0
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => 0000 => 0
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => 0000 => 0
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => 0000 => 0
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => 0000 => 0
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 0000 => 0
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 0000 => 0
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => 0000 => 0
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => 0000 => 0
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => 0000 => 0
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => 0000 => 0
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => 0000 => 0
[1,0,1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [3,4,5,2,6,7,1,8] => ? => ? = 1
[1,1,0,1,1,1,0,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,1,1,0,0,0]
=> [6,7,5,2,3,4,8,1] => ? => ? = 0
[1,1,1,0,0,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0,1,0,1,0]
=> [8,7,4,3,1,2,5,6] => ? => ? = 0
[1,1,1,0,1,0,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [4,5,3,6,7,8,2,1] => ? => ? = 0
[1,1,1,1,0,0,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0,1,0,1,0]
=> [8,7,4,5,3,2,6,1] => ? => ? = 0
[1,1,1,1,0,0,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [8,4,5,6,7,2,3,1] => ? => ? = 0
[1,1,1,1,0,1,0,0,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [7,8,5,6,2,3,4,1] => ? => ? = 0
[1,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [3,4,5,2,6,7,8,9,1] => ? => ? = 0
[1,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0]
=> [3,4,5,6,2,7,8,9,1] => ? => ? = 0
[1,1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> [3,4,5,6,7,2,8,9,1] => ? => ? = 0
[1,1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [3,4,5,6,7,8,9,2,10,1] => ? => ? = 0
[1,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,0]
=> [3,4,5,6,2,7,8,9,10,1] => ? => ? = 0
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0]
=> [3,4,2,5,6,7,8,9,10,1] => ? => ? = 0
[1,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0]
=> [3,4,5,2,6,7,8,9,10,1] => ? => ? = 0
[1,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [3,4,5,6,7,2,8,9,10,1] => ? => ? = 0
[1,1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [3,4,5,6,7,8,2,9,10,1] => ? => ? = 0
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0]
=> [3,2,4,5,6,7,8,9,10,11,1] => ? => ? = 0
Description
The number of runs of ones in a binary word.
Matching statistic: St000439
Mp00102: Dyck paths —rise composition⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00229: Dyck paths —Delest-Viennot⟶ Dyck paths
St000439: Dyck paths ⟶ ℤResult quality: 93% ā—values known / values provided: 93%ā—distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1,0]
=> [1,0]
=> 2 = 0 + 2
[1,0,1,0]
=> [1,1] => [1,0,1,0]
=> [1,1,0,0]
=> 3 = 1 + 2
[1,1,0,0]
=> [2] => [1,1,0,0]
=> [1,0,1,0]
=> 2 = 0 + 2
[1,0,1,0,1,0]
=> [1,1,1] => [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> 3 = 1 + 2
[1,0,1,1,0,0]
=> [1,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 3 = 1 + 2
[1,1,0,0,1,0]
=> [2,1] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 2 = 0 + 2
[1,1,0,1,0,0]
=> [2,1] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 2 = 0 + 2
[1,1,1,0,0,0]
=> [3] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2 = 0 + 2
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 3 = 1 + 2
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 3 = 1 + 2
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 3 = 1 + 2
[1,0,1,1,0,1,0,0]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 3 = 1 + 2
[1,0,1,1,1,0,0,0]
=> [1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 3 = 1 + 2
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 2 = 0 + 2
[1,1,0,0,1,1,0,0]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 0 + 2
[1,1,0,1,0,0,1,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 2 = 0 + 2
[1,1,0,1,0,1,0,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 2 = 0 + 2
[1,1,0,1,1,0,0,0]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 0 + 2
[1,1,1,0,0,0,1,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 2 = 0 + 2
[1,1,1,0,0,1,0,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 2 = 0 + 2
[1,1,1,0,1,0,0,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 2 = 0 + 2
[1,1,1,1,0,0,0,0]
=> [4] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 2 = 0 + 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3 = 1 + 2
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 3 = 1 + 2
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 3 = 1 + 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 3 = 1 + 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 3 = 1 + 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 3 = 1 + 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 3 = 1 + 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 3 = 1 + 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 3 = 1 + 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 3 = 1 + 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 3 = 1 + 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 3 = 1 + 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 3 = 1 + 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 3 = 1 + 2
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 2 = 0 + 2
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 2 = 0 + 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2 = 0 + 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2 = 0 + 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 2 = 0 + 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 2 = 0 + 2
[1,1,0,1,0,0,1,1,0,0]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 2 = 0 + 2
[1,1,0,1,0,1,0,0,1,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 2 = 0 + 2
[1,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 2 = 0 + 2
[1,1,0,1,0,1,1,0,0,0]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 2 = 0 + 2
[1,1,0,1,1,0,0,0,1,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2 = 0 + 2
[1,1,0,1,1,0,0,1,0,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2 = 0 + 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2 = 0 + 2
[1,1,0,1,1,1,0,0,0,0]
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 2 = 0 + 2
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,2,1,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> ? = 1 + 2
[1,0,1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,1,2,2] => [1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,1,0,0,1,0]
=> ? = 1 + 2
[1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,2,1,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> ? = 1 + 2
[1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,5] => [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 2
[1,0,1,0,1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,2,1,3] => [1,0,1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> ? = 1 + 2
[1,0,1,0,1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,1,2,3,1] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 1 + 2
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 0 + 2
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [2,1,1,1,1,1,2] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 0 + 2
[1,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [2,1,1,1,1,2,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> ? = 0 + 2
[1,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [2,1,1,1,2,1,1] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> ? = 0 + 2
[1,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> [2,1,1,2,1,1,1] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> ? = 0 + 2
[1,1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [2,1,2,1,1,1,1] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 0 + 2
[1,1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [2,2,1,1,1,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 0 + 2
[1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [3,1,1,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 0 + 2
[1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [9] => [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 2
[1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,2,1,1,1,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1 + 2
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 0 + 2
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 1 + 2
[1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,2,1,1,1,1,1,1,1,1] => ?
=> ?
=> ? = 1 + 2
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,1,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 0 + 2
[1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [3,1,1,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 0 + 2
[1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [4,1,1,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 0 + 2
[1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0,1,0]
=> [5,1,1,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 0 + 2
[1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0,1,0]
=> [6,1,1,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> ? = 0 + 2
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,1,1,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 0 + 2
[1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [3,1,1,1,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 0 + 2
[1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [4,1,1,1,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 0 + 2
[1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [5,1,1,1,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 0 + 2
[1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0,1,0,1,0]
=> [6,1,1,1,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 0 + 2
[1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,1,0,1,0]
=> [7,1,1,1] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> ? = 0 + 2
[1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [10] => [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 2
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [2,1,1,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 0 + 2
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [2,1,1,1,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 0 + 2
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,1,1,1,1,1,1,1,1] => ?
=> ?
=> ? = 0 + 2
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [2,1,1,1,1,1,1,2] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 0 + 2
[1,1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [2,2,1,1,1,1,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 0 + 2
[1,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> [2,1,1,1,2,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> ? = 0 + 2
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [2,1,1,1,1,1,2,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> ? = 0 + 2
[1,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [2,1,1,1,1,2,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> ? = 0 + 2
[1,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [2,1,1,2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ?
=> ? = 0 + 2
[1,1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [2,1,2,1,1,1,1,1] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 0 + 2
[1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [3,1,1,1,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 0 + 2
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [2,1,1,1,1,1,1,1,2] => ?
=> ?
=> ? = 0 + 2
[1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [3,1,1,1,1,1,1,1,1] => ?
=> ?
=> ? = 0 + 2
[1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0]
=> [11] => ?
=> ?
=> ? = 0 + 2
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [2,1,1,1,1,1,1,1,1,1] => ?
=> ?
=> ? = 0 + 2
Description
The position of the first down step of a Dyck path.
Mp00129: Dyck paths —to 321-avoiding permutation (Billey-Jockusch-Stanley)⟶ Permutations
Mp00252: Permutations —restriction⟶ Permutations
Mp00066: Permutations —inverse⟶ Permutations
St000990: Permutations ⟶ ℤResult quality: 79% ā—values known / values provided: 79%ā—distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [] => [] => ? = 0 + 1
[1,0,1,0]
=> [2,1] => [1] => [1] => ? = 1 + 1
[1,1,0,0]
=> [1,2] => [1] => [1] => ? = 0 + 1
[1,0,1,0,1,0]
=> [2,3,1] => [2,1] => [2,1] => 2 = 1 + 1
[1,0,1,1,0,0]
=> [2,1,3] => [2,1] => [2,1] => 2 = 1 + 1
[1,1,0,0,1,0]
=> [1,3,2] => [1,2] => [1,2] => 1 = 0 + 1
[1,1,0,1,0,0]
=> [3,1,2] => [1,2] => [1,2] => 1 = 0 + 1
[1,1,1,0,0,0]
=> [1,2,3] => [1,2] => [1,2] => 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => [2,3,1] => [3,1,2] => 2 = 1 + 1
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => [2,3,1] => [3,1,2] => 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => [2,1,3] => [2,1,3] => 2 = 1 + 1
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => [2,1,3] => [2,1,3] => 2 = 1 + 1
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => [2,1,3] => [2,1,3] => 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => [1,3,2] => [1,3,2] => 1 = 0 + 1
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [1,3,2] => [1,3,2] => 1 = 0 + 1
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => [3,1,2] => [2,3,1] => 1 = 0 + 1
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => [3,1,2] => [2,3,1] => 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => [3,1,2] => [2,3,1] => 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => [1,2,3] => [1,2,3] => 1 = 0 + 1
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [1,2,3] => [1,2,3] => 1 = 0 + 1
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => [1,2,3] => [1,2,3] => 1 = 0 + 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3] => [1,2,3] => 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => [2,3,4,1] => [4,1,2,3] => 2 = 1 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => [2,3,4,1] => [4,1,2,3] => 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => [2,3,1,4] => [3,1,2,4] => 2 = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => [2,3,1,4] => [3,1,2,4] => 2 = 1 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => [2,3,1,4] => [3,1,2,4] => 2 = 1 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => [2,1,4,3] => [2,1,4,3] => 2 = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => [2,1,4,3] => [2,1,4,3] => 2 = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => [2,4,1,3] => [3,1,4,2] => 2 = 1 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => [2,4,1,3] => [3,1,4,2] => 2 = 1 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => [2,4,1,3] => [3,1,4,2] => 2 = 1 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => [2,1,3,4] => [2,1,3,4] => 2 = 1 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => [2,1,3,4] => [2,1,3,4] => 2 = 1 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => [2,1,3,4] => [2,1,3,4] => 2 = 1 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => [2,1,3,4] => [2,1,3,4] => 2 = 1 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => [1,3,4,2] => [1,4,2,3] => 1 = 0 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => [1,3,4,2] => [1,4,2,3] => 1 = 0 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => [1,3,2,4] => [1,3,2,4] => 1 = 0 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => [1,3,2,4] => [1,3,2,4] => 1 = 0 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => [1,3,2,4] => [1,3,2,4] => 1 = 0 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => [3,1,4,2] => [2,4,1,3] => 1 = 0 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => [3,1,4,2] => [2,4,1,3] => 1 = 0 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => [3,4,1,2] => [3,4,1,2] => 1 = 0 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => [3,4,1,2] => [3,4,1,2] => 1 = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => [3,4,1,2] => [3,4,1,2] => 1 = 0 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => [3,1,2,4] => [2,3,1,4] => 1 = 0 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => [3,1,2,4] => [2,3,1,4] => 1 = 0 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => [3,1,2,4] => [2,3,1,4] => 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => [3,1,2,4] => [2,3,1,4] => 1 = 0 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,5,3] => [1,2,4,3] => [1,2,4,3] => 1 = 0 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => [1,2,4,3] => [1,2,4,3] => 1 = 0 + 1
[1,1,1,0,0,1,0,0,1,0]
=> [1,4,2,5,3] => [1,4,2,3] => [1,3,4,2] => 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,6,7,8,1] => [2,3,4,5,6,7,1] => [7,1,2,3,4,5,6] => ? = 1 + 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,5,6,7,1,8] => [2,3,4,5,6,7,1] => [7,1,2,3,4,5,6] => ? = 1 + 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [2,3,4,5,6,1,8,7] => [2,3,4,5,6,1,7] => [6,1,2,3,4,5,7] => ? = 1 + 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [2,3,4,5,6,8,1,7] => [2,3,4,5,6,1,7] => [6,1,2,3,4,5,7] => ? = 1 + 1
[1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [2,3,4,5,6,1,7,8] => [2,3,4,5,6,1,7] => [6,1,2,3,4,5,7] => ? = 1 + 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [2,3,4,5,7,8,1,6] => [2,3,4,5,7,1,6] => [6,1,2,3,4,7,5] => ? = 1 + 1
[1,0,1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [2,3,4,5,7,1,6,8] => ? => ? => ? = 1 + 1
[1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [2,3,4,5,8,1,6,7] => [2,3,4,5,1,6,7] => [5,1,2,3,4,6,7] => ? = 1 + 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [2,3,4,1,6,7,8,5] => [2,3,4,1,6,7,5] => [4,1,2,3,7,5,6] => ? = 1 + 1
[1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,1,5,6,7,8] => [2,3,4,1,5,6,7] => [4,1,2,3,5,6,7] => ? = 1 + 1
[1,0,1,0,1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,3,5,6,1,4,7,8] => ? => ? => ? = 1 + 1
[1,0,1,0,1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,3,5,8,1,4,6,7] => ? => ? => ? = 1 + 1
[1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,8,3] => [2,1,4,5,6,7,3] => [2,1,7,3,4,5,6] => ? = 1 + 1
[1,0,1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [2,1,4,5,6,3,7,8] => ? => ? => ? = 1 + 1
[1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [2,4,1,5,6,7,8,3] => [2,4,1,5,6,7,3] => [3,1,7,2,4,5,6] => ? = 1 + 1
[1,0,1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [2,4,5,6,7,1,8,3] => [2,4,5,6,7,1,3] => [6,1,7,2,3,4,5] => ? = 1 + 1
[1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,4,5,6,7,8,1,3] => [2,4,5,6,7,1,3] => [6,1,7,2,3,4,5] => ? = 1 + 1
[1,0,1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [2,4,5,6,7,1,3,8] => ? => ? => ? = 1 + 1
[1,0,1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [2,4,5,6,8,1,3,7] => ? => ? => ? = 1 + 1
[1,0,1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [2,4,5,7,8,1,3,6] => ? => ? => ? = 1 + 1
[1,0,1,1,0,1,1,0,0,0,1,0,1,0,1,0]
=> [2,4,1,3,6,7,8,5] => [2,4,1,3,6,7,5] => [3,1,4,2,7,5,6] => ? = 1 + 1
[1,0,1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> [2,4,6,7,8,1,3,5] => ? => ? => ? = 1 + 1
[1,0,1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [2,4,1,3,5,6,7,8] => ? => ? => ? = 1 + 1
[1,0,1,1,1,0,0,1,0,0,1,0,1,0,1,0]
=> [2,1,5,3,6,7,8,4] => ? => ? => ? = 1 + 1
[1,0,1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [2,5,6,7,8,1,3,4] => [2,5,6,7,1,3,4] => [5,1,6,7,2,3,4] => ? = 1 + 1
[1,0,1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [2,5,1,3,4,6,7,8] => ? => ? => ? = 1 + 1
[1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [2,6,1,3,4,5,7,8] => [2,6,1,3,4,5,7] => [3,1,4,5,6,2,7] => ? = 1 + 1
[1,0,1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [2,1,3,4,7,5,8,6] => ? => ? => ? = 1 + 1
[1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [2,7,1,3,4,5,6,8] => [2,7,1,3,4,5,6] => [3,1,4,5,6,7,2] => ? = 1 + 1
[1,0,1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [2,1,3,4,8,5,6,7] => [2,1,3,4,5,6,7] => [2,1,3,4,5,6,7] => ? = 1 + 1
[1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [2,1,8,3,4,5,6,7] => [2,1,3,4,5,6,7] => [2,1,3,4,5,6,7] => ? = 1 + 1
[1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [2,8,1,3,4,5,6,7] => [2,1,3,4,5,6,7] => [2,1,3,4,5,6,7] => ? = 1 + 1
[1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7,8] => [2,1,3,4,5,6,7] => [2,1,3,4,5,6,7] => ? = 1 + 1
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,3,4,5,6,7,8,2] => [1,3,4,5,6,7,2] => [1,7,2,3,4,5,6] => ? = 0 + 1
[1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,3,4,5,6,7,2,8] => ? => ? => ? = 0 + 1
[1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,3,4,5,6,8,2,7] => ? => ? => ? = 0 + 1
[1,1,0,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,3,4,6,7,8,2,5] => ? => ? => ? = 0 + 1
[1,1,0,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,3,4,8,2,5,6,7] => ? => ? => ? = 0 + 1
[1,1,0,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,3,7,8,2,4,5,6] => ? => ? => ? = 0 + 1
[1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [3,4,1,5,6,7,8,2] => [3,4,1,5,6,7,2] => [3,7,1,2,4,5,6] => ? = 0 + 1
[1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [3,4,5,6,1,7,8,2] => ? => ? => ? = 0 + 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [3,4,5,6,7,1,8,2] => [3,4,5,6,7,1,2] => [6,7,1,2,3,4,5] => ? = 0 + 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [3,4,5,6,7,8,1,2] => [3,4,5,6,7,1,2] => [6,7,1,2,3,4,5] => ? = 0 + 1
[1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [3,4,5,6,7,1,2,8] => ? => ? => ? = 0 + 1
[1,1,0,1,0,1,0,1,0,1,1,0,0,0,1,0]
=> [3,4,5,6,1,2,8,7] => ? => ? => ? = 0 + 1
[1,1,0,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [3,4,5,6,1,8,2,7] => ? => ? => ? = 0 + 1
[1,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [3,4,5,6,8,1,2,7] => ? => ? => ? = 0 + 1
Description
The first ascent of a permutation. For a permutation $\pi$, this is the smallest index such that $\pi(i) < \pi(i+1)$. For the first descent, see [[St000654]].
Mp00024: Dyck paths —to 321-avoiding permutation⟶ Permutations
Mp00069: Permutations —complement⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St000678: Dyck paths ⟶ ℤResult quality: 77% ā—values known / values provided: 77%ā—distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => [1,0]
=> ? = 0 + 1
[1,0,1,0]
=> [2,1] => [1,2] => [1,0,1,0]
=> 2 = 1 + 1
[1,1,0,0]
=> [1,2] => [2,1] => [1,1,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,0]
=> [2,1,3] => [2,3,1] => [1,1,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,0]
=> [2,3,1] => [2,1,3] => [1,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,0]
=> [3,1,2] => [1,3,2] => [1,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,0]
=> [1,3,2] => [3,1,2] => [1,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,1,0,0,0]
=> [1,2,3] => [3,2,1] => [1,1,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [2,1,4,3] => [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,0]
=> [2,4,1,3] => [3,1,4,2] => [1,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [2,1,3,4] => [3,4,2,1] => [1,1,1,0,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0]
=> [2,3,1,4] => [3,2,4,1] => [1,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [3,1,4,2] => [2,4,1,3] => [1,1,0,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0]
=> [3,1,2,4] => [2,4,3,1] => [1,1,0,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0]
=> [1,3,2,4] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> [1,3,4,2] => [4,2,1,3] => [1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,1,0,1,0,0,0]
=> [1,2,4,3] => [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [2,1,4,3,5] => [4,5,2,3,1] => [1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [2,4,1,3,5] => [4,2,5,3,1] => [1,1,1,1,0,0,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [2,1,4,5,3] => [4,5,2,1,3] => [1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [2,4,1,5,3] => [4,2,5,1,3] => [1,1,1,1,0,0,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [2,4,5,1,3] => [4,2,1,5,3] => [1,1,1,1,0,0,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,5,3,4] => [4,5,1,3,2] => [1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [2,5,1,3,4] => [4,1,5,3,2] => [1,1,1,1,0,0,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [2,1,3,5,4] => [4,5,3,1,2] => [1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [2,3,1,5,4] => [4,3,5,1,2] => [1,1,1,1,0,0,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [4,3,1,5,2] => [1,1,1,1,0,0,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,4,5] => [4,5,3,2,1] => [1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [2,3,1,4,5] => [4,3,5,2,1] => [1,1,1,1,0,0,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [2,3,4,1,5] => [4,3,2,5,1] => [1,1,1,1,0,0,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [4,3,2,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [3,1,4,2,5] => [3,5,2,4,1] => [1,1,1,0,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [3,4,1,2,5] => [3,2,5,4,1] => [1,1,1,0,0,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [3,1,4,5,2] => [3,5,2,1,4] => [1,1,1,0,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [3,4,1,5,2] => [3,2,5,1,4] => [1,1,1,0,0,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [3,2,1,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,5,2,4] => [3,5,1,4,2] => [1,1,1,0,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,5,1,2,4] => [3,1,5,4,2] => [1,1,1,0,0,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [3,1,2,5,4] => [3,5,4,1,2] => [1,1,1,0,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,3,2,5,4] => [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [5,3,1,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,4,5] => [3,5,4,2,1] => [1,1,1,0,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,3,2,4,5] => [5,3,4,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,3,4,2,5] => [5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,3,4,5,2] => [5,3,2,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [4,1,5,2,3] => [2,5,1,4,3] => [1,1,0,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,4,3,6,5,8,7] => [7,8,5,6,3,4,1,2] => [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> ? = 1 + 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [2,4,1,3,6,5,8,7] => [7,5,8,6,3,4,1,2] => [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> ? = 1 + 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [2,1,4,6,3,5,8,7] => [7,8,5,3,6,4,1,2] => [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> ? = 1 + 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [2,4,1,6,3,5,8,7] => [7,5,8,3,6,4,1,2] => [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> ? = 1 + 1
[1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [2,4,6,1,3,5,8,7] => [7,5,3,8,6,4,1,2] => [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> ? = 1 + 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [2,4,1,6,3,8,5,7] => [7,5,8,3,6,1,4,2] => [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> ? = 1 + 1
[1,0,1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [2,4,6,1,3,8,5,7] => [7,5,3,8,6,1,4,2] => [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> ? = 1 + 1
[1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [2,4,6,1,8,3,5,7] => [7,5,3,8,1,6,4,2] => [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> ? = 1 + 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [2,1,4,3,6,5,7,8] => [7,8,5,6,3,4,2,1] => [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> ? = 1 + 1
[1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,4,6,7,8,1,3,5] => [7,5,3,2,1,8,6,4] => [1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0]
=> ? = 1 + 1
[1,0,1,0,1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,4,5,7,1,3,6,8] => [7,5,4,2,8,6,3,1] => ?
=> ? = 1 + 1
[1,0,1,0,1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,4,5,7,1,8,3,6] => [7,5,4,2,8,1,6,3] => [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> ? = 1 + 1
[1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,5,3,6,4,8,7] => [7,8,4,6,3,5,1,2] => [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> ? = 1 + 1
[1,0,1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [2,5,6,1,3,4,8,7] => [7,4,3,8,6,5,1,2] => ?
=> ? = 1 + 1
[1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,5,3,7,4,8,6] => [7,8,4,6,2,5,1,3] => [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> ? = 1 + 1
[1,0,1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [2,1,3,5,4,7,6,8] => [7,8,6,4,5,2,3,1] => ?
=> ? = 1 + 1
[1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,1,5,4,7,6,8] => [7,6,8,4,5,2,3,1] => [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> ? = 1 + 1
[1,0,1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4,7,6,8] => [7,6,4,8,5,2,3,1] => [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> ? = 1 + 1
[1,0,1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [2,3,5,1,7,4,6,8] => [7,6,4,8,2,5,3,1] => ?
=> ? = 1 + 1
[1,0,1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [2,3,5,1,7,4,8,6] => [7,6,4,8,2,5,1,3] => [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> ? = 1 + 1
[1,0,1,1,0,1,1,0,0,0,1,0,1,0,1,0]
=> [2,1,5,3,8,4,6,7] => [7,8,4,6,1,5,3,2] => ?
=> ? = 1 + 1
[1,0,1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> [2,3,5,1,6,4,8,7] => [7,6,4,8,3,5,1,2] => ?
=> ? = 1 + 1
[1,0,1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,5,6,7,8,1,4] => [7,6,4,3,2,1,8,5] => [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> ? = 1 + 1
[1,0,1,1,1,0,0,1,0,0,1,0,1,0,1,0]
=> [2,1,6,3,7,4,5,8] => [7,8,3,6,2,5,4,1] => [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> ? = 1 + 1
[1,0,1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [2,3,4,1,6,5,8,7] => [7,6,5,8,3,4,1,2] => [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> ? = 1 + 1
[1,0,1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [2,3,4,6,7,8,1,5] => [7,6,5,3,2,1,8,4] => [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> ? = 1 + 1
[1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [2,3,4,5,7,8,1,6] => [7,6,5,4,2,1,8,3] => [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> ? = 1 + 1
[1,0,1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [2,1,3,8,4,5,6,7] => [7,8,6,1,5,4,3,2] => [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> ? = 1 + 1
[1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [2,3,4,5,6,8,1,7] => [7,6,5,4,3,1,8,2] => [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> ? = 1 + 1
[1,0,1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [2,3,4,1,5,6,7,8] => [7,6,5,8,4,3,2,1] => [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> ? = 1 + 1
[1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [2,3,4,5,6,1,7,8] => [7,6,5,4,3,8,2,1] => [1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0]
=> ? = 1 + 1
[1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [2,3,4,5,6,7,1,8] => [7,6,5,4,3,2,8,1] => [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> ? = 1 + 1
[1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,8,1] => [7,6,5,4,3,2,1,8] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 1 + 1
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [3,1,4,2,6,5,8,7] => [6,8,5,7,3,4,1,2] => [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> ? = 0 + 1
[1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [3,4,1,2,6,5,8,7] => [6,5,8,7,3,4,1,2] => [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> ? = 0 + 1
[1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [3,4,1,6,2,5,8,7] => [6,5,8,3,7,4,1,2] => [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> ? = 0 + 1
[1,1,0,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [3,4,1,6,2,7,5,8] => [6,5,8,3,7,2,4,1] => [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> ? = 0 + 1
[1,1,0,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [3,4,6,7,1,8,2,5] => [6,5,3,2,8,1,7,4] => [1,1,1,1,1,1,0,0,0,0,1,1,0,0,0,0]
=> ? = 0 + 1
[1,1,0,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [3,4,5,6,1,7,2,8] => [6,5,4,3,8,2,7,1] => [1,1,1,1,1,1,0,0,0,0,1,1,0,0,0,0]
=> ? = 0 + 1
[1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [3,4,5,6,7,8,1,2] => [6,5,4,3,2,1,8,7] => [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 0 + 1
[1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [3,1,5,2,7,4,8,6] => [6,8,4,7,2,5,1,3] => [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> ? = 0 + 1
[1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [3,1,5,2,4,7,6,8] => [6,8,4,7,5,2,3,1] => [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> ? = 0 + 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [3,1,2,5,4,7,6,8] => [6,8,7,4,5,2,3,1] => [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> ? = 0 + 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,3,2,5,4,7,6,8] => [8,6,7,4,5,2,3,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 0 + 1
[1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,3,5,2,4,7,6,8] => [8,6,4,7,5,2,3,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 0 + 1
[1,1,0,1,0,1,0,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,7,4,6,8] => [6,8,7,4,2,5,3,1] => [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> ? = 0 + 1
[1,1,0,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [1,3,2,5,7,4,6,8] => [8,6,7,4,2,5,3,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 0 + 1
[1,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [1,3,5,2,7,4,6,8] => [8,6,4,7,2,5,3,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 0 + 1
[1,1,0,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [1,3,5,7,2,4,6,8] => [8,6,4,2,7,5,3,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 0 + 1
Description
The number of up steps after the last double rise of a Dyck path.
Mp00028: Dyck paths —reverse⟶ Dyck paths
Mp00100: Dyck paths —touch composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001271: Graphs ⟶ ℤResult quality: 77% ā—values known / values provided: 77%ā—distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1] => ([],1)
=> 0
[1,0,1,0]
=> [1,0,1,0]
=> [1,1] => ([(0,1)],2)
=> 1
[1,1,0,0]
=> [1,1,0,0]
=> [2] => ([],2)
=> 0
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [2,1] => ([(0,2),(1,2)],3)
=> 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,2] => ([(1,2)],3)
=> 0
[1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [3] => ([],3)
=> 0
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [3] => ([],3)
=> 0
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 0
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,2] => ([(1,3),(2,3)],4)
=> 0
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [1,3] => ([(2,3)],4)
=> 0
[1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [4] => ([],4)
=> 0
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [4] => ([],4)
=> 0
[1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,3] => ([(2,3)],4)
=> 0
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [4] => ([],4)
=> 0
[1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [4] => ([],4)
=> 0
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4] => ([],4)
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,3] => ([(2,4),(3,4)],5)
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,4] => ([(3,4)],5)
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [5] => ([],5)
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [5] => ([],5)
=> 0
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4] => ([(3,4)],5)
=> 0
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [5] => ([],5)
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [5] => ([],5)
=> 0
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [5] => ([],5)
=> 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [3,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [3,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [4,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,0,1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,0,1,0]
=> [4,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0,1,0,1,0]
=> [4,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,2,1,1,1] => ([(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> [5,1,1,1] => ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,0,1,0,1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0,1,0,1,0]
=> [6,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,0,1,0,1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0,1,0,1,0]
=> [6,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,2,1] => ([(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,0,1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,0,0,1,0]
=> [3,1,1,2,1] => ([(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,0,1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [1,6,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 1
[1,0,1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0,1,0]
=> [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 1
[1,0,1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,0,1,0]
=> [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 1
[1,0,1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,1,0,0,1,0]
=> [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 1
[1,0,1,1,0,1,1,0,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,4,1] => ([(0,7),(1,7),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,0,1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,1,0,0,1,0]
=> [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 1
[1,0,1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0,1,0]
=> [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 1
[1,0,1,1,1,0,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,4,1] => ([(0,7),(1,7),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,0,1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0,1,0]
=> [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 1
[1,0,1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0,1,0]
=> [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 1
[1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0]
=> [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 1
[1,0,1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0]
=> [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 1
[1,0,1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0,1,0]
=> [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 1
[1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 1
[1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 1
[1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 1
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
[1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [2,1,1,1,1,2] => ([(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
[1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [3,1,1,1,2] => ([(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
[1,1,0,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,1,0,0]
=> [5,1,2] => ([(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
[1,1,0,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0,1,1,0,0]
=> [5,1,2] => ([(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
[1,1,0,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,1,0,0]
=> [6,2] => ([(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 0
[1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [6,2] => ([(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 0
[1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,4] => ([(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
[1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,6] => ([(5,6),(5,7),(6,7)],8)
=> ? = 0
[1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,7] => ([(6,7)],8)
=> ? = 0
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [8] => ([],8)
=> ? = 0
[1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> [8] => ([],8)
=> ? = 0
[1,1,0,1,0,1,0,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,7] => ([(6,7)],8)
=> ? = 0
[1,1,0,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [8] => ([],8)
=> ? = 0
[1,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,1,0,0]
=> [8] => ([],8)
=> ? = 0
[1,1,0,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,1,0,0]
=> [8] => ([],8)
=> ? = 0
[1,1,0,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,1,0,1,0,0]
=> [8] => ([],8)
=> ? = 0
Description
The competition number of a graph. The competition graph of a digraph $D$ is a (simple undirected) graph which has the same vertex set as $D$ and has an edge between $x$ and $y$ if and only if there exists a vertex $v$ in $D$ such that $(x, v)$ and $(y, v)$ are arcs of $D$. For any graph, $G$ together with sufficiently many isolated vertices is the competition graph of some acyclic digraph. The competition number $k(G)$ is the smallest number of such isolated vertices.
Matching statistic: St000025
Mp00102: Dyck paths —rise composition⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00229: Dyck paths —Delest-Viennot⟶ Dyck paths
St000025: Dyck paths ⟶ ℤResult quality: 77% ā—values known / values provided: 77%ā—distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1,0]
=> [1,0]
=> 1 = 0 + 1
[1,0,1,0]
=> [1,1] => [1,0,1,0]
=> [1,1,0,0]
=> 2 = 1 + 1
[1,1,0,0]
=> [2] => [1,1,0,0]
=> [1,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,0]
=> [1,1,1] => [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,0]
=> [1,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,0]
=> [2,1] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,0]
=> [2,1] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,1,0,0,0]
=> [3] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,0]
=> [1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,1,0,0,1,0,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,1,0,1,0,0,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,1,1,0,0,0,0]
=> [4] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1 + 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 1 + 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> ? = 1 + 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> ? = 1 + 1
[1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 1 + 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,2,1,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> ? = 1 + 1
[1,0,1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,1,2,2] => [1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,1,0,0,1,0]
=> ? = 1 + 1
[1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,3,1] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,1,0,0]
=> ? = 1 + 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,2,1,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> ? = 1 + 1
[1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,5] => [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 1
[1,0,1,0,1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,2,1,3] => [1,0,1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> ? = 1 + 1
[1,0,1,0,1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,1,2,3,1] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 1 + 1
[1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,1,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1 + 1
[1,0,1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,1,1,3] => [1,0,1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 1 + 1
[1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,2,1,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1 + 1
[1,0,1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [1,2,1,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1 + 1
[1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,2,1,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1 + 1
[1,0,1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,2,1,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 1 + 1
[1,0,1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [1,2,1,1,2,1] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> ? = 1 + 1
[1,0,1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [1,2,1,2,1,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> ? = 1 + 1
[1,0,1,1,0,1,1,0,0,0,1,0,1,0,1,0]
=> [1,2,2,1,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> ? = 1 + 1
[1,0,1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> [1,2,2,1,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> ? = 1 + 1
[1,0,1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,5] => [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 1
[1,0,1,1,1,0,0,1,0,0,1,0,1,0,1,0]
=> [1,3,1,1,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 1 + 1
[1,0,1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,3,1,1,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 1 + 1
[1,0,1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,3,4] => [1,0,1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 1 + 1
[1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,4,3] => [1,0,1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 1 + 1
[1,0,1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [1,5,1,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 1 + 1
[1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,5,2] => [1,0,1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 1 + 1
[1,0,1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [1,6,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1 + 1
[1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,6,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1 + 1
[1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,6,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1 + 1
[1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,7] => [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 1
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 0 + 1
[1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [2,1,1,1,1,2] => [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 0 + 1
[1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [2,1,1,1,2,1] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> ? = 0 + 1
[1,1,0,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [2,1,2,1,1,1] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> ? = 0 + 1
[1,1,0,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [2,1,4,1] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> ? = 0 + 1
[1,1,0,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [2,4,1,1] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 0 + 1
[1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,6] => [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 1
[1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 0 + 1
[1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [2,1,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 0 + 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [2,1,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 0 + 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 0 + 1
[1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [2,1,1,1,1,2] => [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 0 + 1
[1,1,0,1,0,1,0,1,0,1,1,0,0,0,1,0]
=> [2,1,1,1,2,1] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> ? = 0 + 1
[1,1,0,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [2,1,1,1,2,1] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> ? = 0 + 1
[1,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [2,1,1,1,2,1] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> ? = 0 + 1
[1,1,0,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [2,1,1,1,3] => [1,1,0,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 0 + 1
[1,1,0,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [2,1,1,2,1,1] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> ? = 0 + 1
Description
The number of initial rises of a Dyck path. In other words, this is the height of the first peak of $D$.
The following 48 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001135The projective dimension of the first simple module in the Nakayama algebra corresponding to the Dyck path. St001204Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{nāˆ’1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001498The normalised height of a Nakayama algebra with magnitude 1. St000864The number of circled entries of the shifted recording tableau of a permutation. St000542The number of left-to-right-minima of a permutation. St000541The number of indices greater than or equal to 2 of a permutation such that all smaller indices appear to its right. St000237The number of small exceedances. St000234The number of global ascents of a permutation. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001217The projective dimension of the indecomposable injective module I[n-2] in the corresponding Nakayama algebra with simples enumerated from 0 to n-1. St000007The number of saliances of the permutation. St000264The girth of a graph, which is not a tree. St001640The number of ascent tops in the permutation such that all smaller elements appear before. St000989The number of final rises of a permutation. St001185The number of indecomposable injective modules of grade at least 2 in the corresponding Nakayama algebra. St001233The number of indecomposable 2-dimensional modules with projective dimension one. St000056The decomposition (or block) number of a permutation. St001184Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra. St001201The grade of the simple module $S_0$ in the special CNakayama algebra corresponding to the Dyck path. St001210Gives the maximal vector space dimension of the first Ext-group between an indecomposable module X and the regular module A, when A is the Nakayama algebra corresponding to the Dyck path. St001257The dominant dimension of the double dual of A/J when A is the corresponding Nakayama algebra with Jacobson radical J. St001390The number of bumps occurring when Schensted-inserting the letter 1 of a permutation. St000654The first descent of a permutation. St000456The monochromatic index of a connected graph. St000392The length of the longest run of ones in a binary word. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St001545The second Elser number of a connected graph. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001877Number of indecomposable injective modules with projective dimension 2. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000260The radius of a connected graph. St001552The number of inversions between excedances and fixed points of a permutation. St001372The length of a longest cyclic run of ones of a binary word. St000546The number of global descents of a permutation. St001052The length of the exterior of a permutation. St001096The size of the overlap set of a permutation. St000221The number of strong fixed points of a permutation. St000461The rix statistic of a permutation. St000873The aix statistic of a permutation. St000054The first entry of the permutation. St001948The number of augmented double ascents of a permutation. St001195The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$. St000455The second largest eigenvalue of a graph if it is integral. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St000954Number of times the corresponding LNakayama algebra has $Ext^i(D(A),A)=0$ for $i>0$. St001937The size of the center of a parking function.