searching the database
Your data matches 39 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000366
(load all 38 compositions to match this statistic)
(load all 38 compositions to match this statistic)
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
Mp00137: Dyck paths —to symmetric ASM⟶ Alternating sign matrices
Mp00002: Alternating sign matrices —to left key permutation⟶ Permutations
St000366: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00137: Dyck paths —to symmetric ASM⟶ Alternating sign matrices
Mp00002: Alternating sign matrices —to left key permutation⟶ Permutations
St000366: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [[1]]
=> [1] => 0
[1,0,1,0]
=> [1,1,0,0]
=> [[0,1],[1,0]]
=> [2,1] => 0
[1,1,0,0]
=> [1,0,1,0]
=> [[1,0],[0,1]]
=> [1,2] => 0
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> [3,2,1] => 1
[1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,3,2] => 0
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [2,1,3] => 0
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,3,2] => 0
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [4,3,2,1] => 2
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,4,3,2] => 1
[1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [2,1,4,3] => 0
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,4,3,2] => 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => 0
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [3,2,1,4] => 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => 0
[1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [2,1,4,3] => 0
[1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,4,3,2] => 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => 0
[1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [2,1,3,4] => 0
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => 0
[1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,2,4,3] => 0
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,2,3,4] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0]]
=> [5,4,3,2,1] => 3
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [[0,0,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [1,5,4,3,2] => 2
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [[0,0,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[1,0,-1,1,0],[0,0,1,0,0]]
=> [2,1,5,4,3] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [[0,0,1,0,0],[0,1,-1,0,1],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,5,4,3,2] => 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,-1,1],[0,0,0,1,0]]
=> [3,2,1,5,4] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [2,1,5,4,3] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,5,4,3,2] => 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => 0
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 0
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 0
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [4,3,2,1,5] => 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,4,3,2,5] => 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [2,1,4,3,5] => 0
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,4,3,2,5] => 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => 0
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [3,2,1,5,4] => 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 0
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [2,1,5,4,3] => 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,5,4,3,2] => 2
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => 0
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 0
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 0
Description
The number of double descents of a permutation.
A double descent of a permutation $\pi$ is a position $i$ such that $\pi(i) > \pi(i+1) > \pi(i+2)$.
Matching statistic: St000371
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
Mp00137: Dyck paths —to symmetric ASM⟶ Alternating sign matrices
Mp00002: Alternating sign matrices —to left key permutation⟶ Permutations
St000371: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00137: Dyck paths —to symmetric ASM⟶ Alternating sign matrices
Mp00002: Alternating sign matrices —to left key permutation⟶ Permutations
St000371: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [[1]]
=> [1] => 0
[1,0,1,0]
=> [1,1,0,0]
=> [[0,1],[1,0]]
=> [2,1] => 0
[1,1,0,0]
=> [1,0,1,0]
=> [[1,0],[0,1]]
=> [1,2] => 0
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> [3,2,1] => 1
[1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,3,2] => 0
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [2,1,3] => 0
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,3,2] => 0
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [4,3,2,1] => 2
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,4,3,2] => 1
[1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [2,1,4,3] => 0
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,4,3,2] => 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => 0
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [3,2,1,4] => 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => 0
[1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [2,1,4,3] => 0
[1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,4,3,2] => 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => 0
[1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [2,1,3,4] => 0
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => 0
[1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,2,4,3] => 0
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,2,3,4] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0]]
=> [5,4,3,2,1] => 3
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [[0,0,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [1,5,4,3,2] => 2
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [[0,0,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[1,0,-1,1,0],[0,0,1,0,0]]
=> [2,1,5,4,3] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [[0,0,1,0,0],[0,1,-1,0,1],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,5,4,3,2] => 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,-1,1],[0,0,0,1,0]]
=> [3,2,1,5,4] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [2,1,5,4,3] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,5,4,3,2] => 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => 0
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 0
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 0
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [4,3,2,1,5] => 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,4,3,2,5] => 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [2,1,4,3,5] => 0
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,4,3,2,5] => 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => 0
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [3,2,1,5,4] => 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 0
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [2,1,5,4,3] => 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,5,4,3,2] => 2
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => 0
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 0
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 0
Description
The number of mid points of decreasing subsequences of length 3 in a permutation.
For a permutation $\pi$ of $\{1,\ldots,n\}$, this is the number of indices $j$ such that there exist indices $i,k$ with $i < j < k$ and $\pi(i) > \pi(j) > \pi(k)$. In other words, this is the number of indices that are neither left-to-right maxima nor right-to-left minima.
This statistic can also be expressed as the number of occurrences of the mesh pattern ([3,2,1], {(0,2),(0,3),(2,0),(3,0)}): the shading fixes the first and the last element of the decreasing subsequence.
See also [[St000119]].
Matching statistic: St000052
Mp00129: Dyck paths —to 321-avoiding permutation (Billey-Jockusch-Stanley)⟶ Permutations
Mp00061: Permutations —to increasing tree⟶ Binary trees
Mp00012: Binary trees —to Dyck path: up step, left tree, down step, right tree⟶ Dyck paths
St000052: Dyck paths ⟶ ℤResult quality: 90% ●values known / values provided: 90%●distinct values known / distinct values provided: 100%
Mp00061: Permutations —to increasing tree⟶ Binary trees
Mp00012: Binary trees —to Dyck path: up step, left tree, down step, right tree⟶ Dyck paths
St000052: Dyck paths ⟶ ℤResult quality: 90% ●values known / values provided: 90%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [.,.]
=> [1,0]
=> 0
[1,0,1,0]
=> [2,1] => [[.,.],.]
=> [1,1,0,0]
=> 0
[1,1,0,0]
=> [1,2] => [.,[.,.]]
=> [1,0,1,0]
=> 0
[1,0,1,0,1,0]
=> [2,3,1] => [[.,[.,.]],.]
=> [1,1,0,1,0,0]
=> 1
[1,0,1,1,0,0]
=> [2,1,3] => [[.,.],[.,.]]
=> [1,1,0,0,1,0]
=> 0
[1,1,0,0,1,0]
=> [1,3,2] => [.,[[.,.],.]]
=> [1,0,1,1,0,0]
=> 0
[1,1,0,1,0,0]
=> [3,1,2] => [[.,.],[.,.]]
=> [1,1,0,0,1,0]
=> 0
[1,1,1,0,0,0]
=> [1,2,3] => [.,[.,[.,.]]]
=> [1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => [[.,[.,[.,.]]],.]
=> [1,1,0,1,0,1,0,0]
=> 2
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => [[.,[.,.]],[.,.]]
=> [1,1,0,1,0,0,1,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => [[.,.],[[.,.],.]]
=> [1,1,0,0,1,1,0,0]
=> 0
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => [[.,[.,.]],[.,.]]
=> [1,1,0,1,0,0,1,0]
=> 1
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => [[.,.],[.,[.,.]]]
=> [1,1,0,0,1,0,1,0]
=> 0
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => [.,[[.,[.,.]],.]]
=> [1,0,1,1,0,1,0,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [.,[[.,.],[.,.]]]
=> [1,0,1,1,0,0,1,0]
=> 0
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => [[.,.],[[.,.],.]]
=> [1,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => [[.,[.,.]],[.,.]]
=> [1,1,0,1,0,0,1,0]
=> 1
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => [[.,.],[.,[.,.]]]
=> [1,1,0,0,1,0,1,0]
=> 0
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => [.,[.,[[.,.],.]]]
=> [1,0,1,0,1,1,0,0]
=> 0
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [.,[[.,.],[.,.]]]
=> [1,0,1,1,0,0,1,0]
=> 0
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => [[.,.],[.,[.,.]]]
=> [1,1,0,0,1,0,1,0]
=> 0
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => [[.,[.,[.,[.,.]]]],.]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3
[1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => [[.,[.,[.,.]]],[.,.]]
=> [1,1,0,1,0,1,0,0,1,0]
=> 2
[1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => [[.,[.,.]],[[.,.],.]]
=> [1,1,0,1,0,0,1,1,0,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => [[.,[.,[.,.]]],[.,.]]
=> [1,1,0,1,0,1,0,0,1,0]
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => [[.,[.,.]],[.,[.,.]]]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => [[.,.],[[.,[.,.]],.]]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => [[.,.],[[.,.],[.,.]]]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => [[.,[.,.]],[[.,.],.]]
=> [1,1,0,1,0,0,1,1,0,0]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => [[.,[.,[.,.]]],[.,.]]
=> [1,1,0,1,0,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => [[.,[.,.]],[.,[.,.]]]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => [[.,.],[.,[[.,.],.]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => [[.,.],[[.,.],[.,.]]]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => [[.,[.,.]],[.,[.,.]]]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => [[.,.],[.,[.,[.,.]]]]
=> [1,1,0,0,1,0,1,0,1,0]
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => [.,[[.,[.,[.,.]]],.]]
=> [1,0,1,1,0,1,0,1,0,0]
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => [.,[[.,[.,.]],[.,.]]]
=> [1,0,1,1,0,1,0,0,1,0]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => [.,[[.,.],[[.,.],.]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => [.,[[.,[.,.]],[.,.]]]
=> [1,0,1,1,0,1,0,0,1,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => [.,[[.,.],[.,[.,.]]]]
=> [1,0,1,1,0,0,1,0,1,0]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => [[.,.],[[.,[.,.]],.]]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => [[.,.],[[.,.],[.,.]]]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => [[.,[.,.]],[[.,.],.]]
=> [1,1,0,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => [[.,[.,[.,.]]],[.,.]]
=> [1,1,0,1,0,1,0,0,1,0]
=> 2
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => [[.,[.,.]],[.,[.,.]]]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => [[.,.],[.,[[.,.],.]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> 0
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => [[.,.],[[.,.],[.,.]]]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => [[.,[.,.]],[.,[.,.]]]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => [[.,.],[.,[.,[.,.]]]]
=> [1,1,0,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [2,3,4,5,1,7,8,6] => [[.,[.,[.,[.,.]]]],[[.,[.,.]],.]]
=> [1,1,0,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> ? = 4
[1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [2,3,4,1,6,7,8,5] => [[.,[.,[.,.]]],[[.,[.,[.,.]]],.]]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> ? = 4
[1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [2,3,4,1,6,5,8,7] => [[.,[.,[.,.]]],[[.,.],[[.,.],.]]]
=> [1,1,0,1,0,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2
[1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,3,1,5,6,7,8,4] => [[.,[.,.]],[[.,[.,[.,[.,.]]]],.]]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 4
[1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [2,1,4,5,6,3,8,7] => [[.,.],[[.,[.,[.,.]]],[[.,.],.]]]
=> [1,1,0,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> ? = 2
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,3,4,5,6,7,8,2] => [.,[[.,[.,[.,[.,[.,[.,.]]]]]],.]]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 5
[1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,3,2,4,5,7,6,8] => [.,[[.,.],[.,[.,[[.,.],[.,.]]]]]]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 0
[1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,3,2,4,5,6,7,8] => [.,[[.,.],[.,[.,[.,[.,[.,.]]]]]]]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[1,1,0,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [3,1,4,5,6,2,8,7] => [[.,.],[[.,[.,[.,.]]],[[.,.],.]]]
=> [1,1,0,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> ? = 2
[1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [3,4,1,5,6,7,8,2] => [[.,[.,.]],[[.,[.,[.,[.,.]]]],.]]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 4
[1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [3,4,5,1,6,7,8,2] => [[.,[.,[.,.]]],[[.,[.,[.,.]]],.]]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> ? = 4
[1,1,0,1,0,1,0,1,0,0,1,1,0,0,1,0]
=> [3,4,5,1,6,2,8,7] => [[.,[.,[.,.]]],[[.,.],[[.,.],.]]]
=> [1,1,0,1,0,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2
[1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [3,4,5,6,1,7,8,2] => [[.,[.,[.,[.,.]]]],[[.,[.,.]],.]]
=> [1,1,0,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> ? = 4
[1,1,0,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> [3,1,5,6,7,2,8,4] => [[.,.],[[.,[.,[.,.]]],[[.,.],.]]]
=> [1,1,0,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> ? = 2
[1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,4,5,6,7,8,3] => [.,[.,[[.,[.,[.,[.,[.,.]]]]],.]]]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 4
[1,1,1,0,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,2,4,3,6,5,7,8] => [.,[.,[[.,.],[[.,.],[.,[.,.]]]]]]
=> [1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> ? = 0
[1,1,1,0,1,0,1,1,0,0,0,0,1,0,1,0]
=> [4,5,1,2,3,7,8,6] => ?
=> ?
=> ? = 2
[1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> [1,2,3,5,6,7,8,4] => [.,[.,[.,[[.,[.,[.,[.,.]]]],.]]]]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 3
[1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> [1,2,3,5,4,6,7,8] => [.,[.,[.,[[.,.],[.,[.,[.,.]]]]]]]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 0
[1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,2,3,4,5,7,6,8] => [.,[.,[.,[.,[.,[[.,.],[.,.]]]]]]]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 0
[1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> [1,7,2,3,4,5,6,8] => [.,[[.,.],[.,[.,[.,[.,[.,.]]]]]]]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,7,8] => [.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7,8,9,10,11] => [[.,.],[.,[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]]]
=> ?
=> ? = 0
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0,1,0]
=> [1,2,3,4,5,6,7,9,10,8] => [.,[.,[.,[.,[.,[.,[.,[[.,[.,.]],.]]]]]]]]
=> ?
=> ? = 1
[1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,7,8,9] => [.,[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,5,6,7,8,9,1,10] => [[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]],[.,.]]
=> ?
=> ? = 7
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [2,3,4,5,6,7,8,10,1,9] => [[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]],[.,.]]
=> ?
=> ? = 7
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,9,10,1,8] => [[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]],[.,.]]
=> ?
=> ? = 7
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,8,9,10,1,7] => [[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]],[.,.]]
=> ?
=> ? = 7
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,7,8,9,10,1,6] => [[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]],[.,.]]
=> ?
=> ? = 7
[1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,6,7,8,9,10,1,5] => [[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]],[.,.]]
=> ?
=> ? = 7
[1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,5,6,7,8,9,10,1,4] => [[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]],[.,.]]
=> ?
=> ? = 7
[1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,4,5,6,7,8,9,10,1,3] => [[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]],[.,.]]
=> ?
=> ? = 7
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [3,4,5,6,7,8,9,10,1,2] => [[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]],[.,.]]
=> ?
=> ? = 7
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,5,6,7,8,9,10,1,11] => [[.,[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]],[.,.]]
=> ?
=> ? = 8
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [2,3,4,5,6,7,8,9,11,1,10] => [[.,[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]],[.,.]]
=> ?
=> ? = 8
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [3,4,5,6,7,8,9,10,11,1,2] => [[.,[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]],[.,.]]
=> ?
=> ? = 8
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,3,4,5,6,7,8,9,2] => [.,[[.,[.,[.,[.,[.,[.,[.,.]]]]]]],.]]
=> ?
=> ? = 6
[1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,4,5,6,7,8,9,3] => [.,[.,[[.,[.,[.,[.,[.,[.,.]]]]]],.]]]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 5
[1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,5,6,7,8,9,4] => [.,[.,[.,[[.,[.,[.,[.,[.,.]]]]],.]]]]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 4
[1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,6,7,8,9,5] => [.,[.,[.,[.,[[.,[.,[.,[.,.]]]],.]]]]]
=> ?
=> ? = 3
[1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0,1,0]
=> [1,2,3,4,5,7,8,9,6] => [.,[.,[.,[.,[.,[[.,[.,[.,.]]],.]]]]]]
=> ?
=> ? = 2
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [2,3,4,5,6,7,8,1,10,9] => [[.,[.,[.,[.,[.,[.,[.,.]]]]]]],[[.,.],.]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> ? = 6
[1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [2,3,4,5,6,1,8,9,10,7] => [[.,[.,[.,[.,[.,.]]]]],[[.,[.,[.,.]]],.]]
=> ?
=> ? = 6
[1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,1,6,7,8,9,10,5] => [[.,[.,[.,.]]],[[.,[.,[.,[.,[.,.]]]]],.]]
=> ?
=> ? = 6
[1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,8,9,10,3] => [[.,.],[[.,[.,[.,[.,[.,[.,[.,.]]]]]]],.]]
=> ?
=> ? = 6
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,3,4,5,6,7,8,9,10,2] => [.,[[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]],.]]
=> ?
=> ? = 7
[1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,4,5,6,7,8,9,10,3] => [.,[.,[[.,[.,[.,[.,[.,[.,[.,.]]]]]]],.]]]
=> ?
=> ? = 6
[1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,5,6,7,8,9,10,4] => [.,[.,[.,[[.,[.,[.,[.,[.,[.,.]]]]]],.]]]]
=> ?
=> ? = 5
[1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,6,7,8,9,10,5] => [.,[.,[.,[.,[[.,[.,[.,[.,[.,.]]]]],.]]]]]
=> ?
=> ? = 4
Description
The number of valleys of a Dyck path not on the x-axis.
That is, the number of valleys of nonminimal height. This corresponds to the number of -1's in an inclusion of Dyck paths into alternating sign matrices.
Matching statistic: St001172
Mp00129: Dyck paths —to 321-avoiding permutation (Billey-Jockusch-Stanley)⟶ Permutations
Mp00061: Permutations —to increasing tree⟶ Binary trees
Mp00012: Binary trees —to Dyck path: up step, left tree, down step, right tree⟶ Dyck paths
St001172: Dyck paths ⟶ ℤResult quality: 67% ●values known / values provided: 86%●distinct values known / distinct values provided: 67%
Mp00061: Permutations —to increasing tree⟶ Binary trees
Mp00012: Binary trees —to Dyck path: up step, left tree, down step, right tree⟶ Dyck paths
St001172: Dyck paths ⟶ ℤResult quality: 67% ●values known / values provided: 86%●distinct values known / distinct values provided: 67%
Values
[1,0]
=> [1] => [.,.]
=> [1,0]
=> 0
[1,0,1,0]
=> [2,1] => [[.,.],.]
=> [1,1,0,0]
=> 0
[1,1,0,0]
=> [1,2] => [.,[.,.]]
=> [1,0,1,0]
=> 0
[1,0,1,0,1,0]
=> [2,3,1] => [[.,[.,.]],.]
=> [1,1,0,1,0,0]
=> 1
[1,0,1,1,0,0]
=> [2,1,3] => [[.,.],[.,.]]
=> [1,1,0,0,1,0]
=> 0
[1,1,0,0,1,0]
=> [1,3,2] => [.,[[.,.],.]]
=> [1,0,1,1,0,0]
=> 0
[1,1,0,1,0,0]
=> [3,1,2] => [[.,.],[.,.]]
=> [1,1,0,0,1,0]
=> 0
[1,1,1,0,0,0]
=> [1,2,3] => [.,[.,[.,.]]]
=> [1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => [[.,[.,[.,.]]],.]
=> [1,1,0,1,0,1,0,0]
=> 2
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => [[.,[.,.]],[.,.]]
=> [1,1,0,1,0,0,1,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => [[.,.],[[.,.],.]]
=> [1,1,0,0,1,1,0,0]
=> 0
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => [[.,[.,.]],[.,.]]
=> [1,1,0,1,0,0,1,0]
=> 1
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => [[.,.],[.,[.,.]]]
=> [1,1,0,0,1,0,1,0]
=> 0
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => [.,[[.,[.,.]],.]]
=> [1,0,1,1,0,1,0,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [.,[[.,.],[.,.]]]
=> [1,0,1,1,0,0,1,0]
=> 0
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => [[.,.],[[.,.],.]]
=> [1,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => [[.,[.,.]],[.,.]]
=> [1,1,0,1,0,0,1,0]
=> 1
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => [[.,.],[.,[.,.]]]
=> [1,1,0,0,1,0,1,0]
=> 0
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => [.,[.,[[.,.],.]]]
=> [1,0,1,0,1,1,0,0]
=> 0
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [.,[[.,.],[.,.]]]
=> [1,0,1,1,0,0,1,0]
=> 0
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => [[.,.],[.,[.,.]]]
=> [1,1,0,0,1,0,1,0]
=> 0
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => [[.,[.,[.,[.,.]]]],.]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3
[1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => [[.,[.,[.,.]]],[.,.]]
=> [1,1,0,1,0,1,0,0,1,0]
=> 2
[1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => [[.,[.,.]],[[.,.],.]]
=> [1,1,0,1,0,0,1,1,0,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => [[.,[.,[.,.]]],[.,.]]
=> [1,1,0,1,0,1,0,0,1,0]
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => [[.,[.,.]],[.,[.,.]]]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => [[.,.],[[.,[.,.]],.]]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => [[.,.],[[.,.],[.,.]]]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => [[.,[.,.]],[[.,.],.]]
=> [1,1,0,1,0,0,1,1,0,0]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => [[.,[.,[.,.]]],[.,.]]
=> [1,1,0,1,0,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => [[.,[.,.]],[.,[.,.]]]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => [[.,.],[.,[[.,.],.]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => [[.,.],[[.,.],[.,.]]]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => [[.,[.,.]],[.,[.,.]]]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => [[.,.],[.,[.,[.,.]]]]
=> [1,1,0,0,1,0,1,0,1,0]
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => [.,[[.,[.,[.,.]]],.]]
=> [1,0,1,1,0,1,0,1,0,0]
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => [.,[[.,[.,.]],[.,.]]]
=> [1,0,1,1,0,1,0,0,1,0]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => [.,[[.,.],[[.,.],.]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => [.,[[.,[.,.]],[.,.]]]
=> [1,0,1,1,0,1,0,0,1,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => [.,[[.,.],[.,[.,.]]]]
=> [1,0,1,1,0,0,1,0,1,0]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => [[.,.],[[.,[.,.]],.]]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => [[.,.],[[.,.],[.,.]]]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => [[.,[.,.]],[[.,.],.]]
=> [1,1,0,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => [[.,[.,[.,.]]],[.,.]]
=> [1,1,0,1,0,1,0,0,1,0]
=> 2
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => [[.,[.,.]],[.,[.,.]]]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => [[.,.],[.,[[.,.],.]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> 0
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => [[.,.],[[.,.],[.,.]]]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => [[.,[.,.]],[.,[.,.]]]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => [[.,.],[.,[.,[.,.]]]]
=> [1,1,0,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,6,7,8,1] => [[.,[.,[.,[.,[.,[.,[.,.]]]]]]],.]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 6
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,5,6,7,1,8] => [[.,[.,[.,[.,[.,[.,.]]]]]],[.,.]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 5
[1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [2,3,4,5,6,1,8,7] => [[.,[.,[.,[.,[.,.]]]]],[[.,.],.]]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> ? = 4
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [2,3,4,5,6,8,1,7] => [[.,[.,[.,[.,[.,[.,.]]]]]],[.,.]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 5
[1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [2,3,4,5,1,7,8,6] => [[.,[.,[.,[.,.]]]],[[.,[.,.]],.]]
=> [1,1,0,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> ? = 4
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [2,3,4,5,7,8,1,6] => [[.,[.,[.,[.,[.,[.,.]]]]]],[.,.]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 5
[1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [2,3,4,1,6,7,8,5] => [[.,[.,[.,.]]],[[.,[.,[.,.]]],.]]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> ? = 4
[1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [2,3,4,1,6,5,8,7] => [[.,[.,[.,.]]],[[.,.],[[.,.],.]]]
=> [1,1,0,1,0,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2
[1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,6,7,8,1,5] => [[.,[.,[.,[.,[.,[.,.]]]]]],[.,.]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 5
[1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,3,1,5,6,7,8,4] => [[.,[.,.]],[[.,[.,[.,[.,.]]]],.]]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 4
[1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,5,6,7,8,1,4] => [[.,[.,[.,[.,[.,[.,.]]]]]],[.,.]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 5
[1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,4,5,6,7,8,1,3] => [[.,[.,[.,[.,[.,[.,.]]]]]],[.,.]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 5
[1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [3,4,1,5,6,7,8,2] => [[.,[.,.]],[[.,[.,[.,[.,.]]]],.]]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 4
[1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [3,4,5,1,6,7,8,2] => [[.,[.,[.,.]]],[[.,[.,[.,.]]],.]]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> ? = 4
[1,1,0,1,0,1,0,1,0,0,1,1,0,0,1,0]
=> [3,4,5,1,6,2,8,7] => [[.,[.,[.,.]]],[[.,.],[[.,.],.]]]
=> [1,1,0,1,0,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2
[1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [3,4,5,6,1,7,8,2] => [[.,[.,[.,[.,.]]]],[[.,[.,.]],.]]
=> [1,1,0,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> ? = 4
[1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [3,4,5,6,7,1,8,2] => [[.,[.,[.,[.,[.,.]]]]],[[.,.],.]]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> ? = 4
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [3,4,5,6,7,8,1,2] => [[.,[.,[.,[.,[.,[.,.]]]]]],[.,.]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 5
[1,1,1,0,1,0,1,1,0,0,0,0,1,0,1,0]
=> [4,5,1,2,3,7,8,6] => ?
=> ?
=> ? = 2
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,2,3,4,5,6,7,9,8] => [.,[.,[.,[.,[.,[.,[.,[[.,.],.]]]]]]]]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0
[1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7,8,9] => [[.,.],[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,2,3,4,5,6,7,8,10,9] => [.,[.,[.,[.,[.,[.,[.,[.,[[.,.],.]]]]]]]]]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0
[1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7,8,9,10] => [[.,.],[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,2,3,4,5,6,7,8,9,11,10] => [.,[.,[.,[.,[.,[.,[.,[.,[.,[[.,.],.]]]]]]]]]]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0
[1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7,8,9,10,11] => [[.,.],[.,[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]]]
=> ?
=> ? = 0
[1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,1,0]
=> [1,2,3,4,5,6,8,9,7] => [.,[.,[.,[.,[.,[.,[[.,[.,.]],.]]]]]]]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 1
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0,1,0]
=> [1,2,3,4,5,6,7,9,10,8] => [.,[.,[.,[.,[.,[.,[.,[[.,[.,.]],.]]]]]]]]
=> ?
=> ? = 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [3,4,5,6,7,8,9,1,2] => [[.,[.,[.,[.,[.,[.,[.,.]]]]]]],[.,.]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 6
[1,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [3,1,2,4,5,6,7,8,9] => [[.,.],[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[1,1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [4,1,2,3,5,6,7,8,9] => [[.,.],[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[1,1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [5,1,2,3,4,6,7,8,9] => [[.,.],[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[1,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,0]
=> [6,1,2,3,4,5,7,8,9] => [[.,.],[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[1,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0]
=> [7,1,2,3,4,5,6,8,9] => [[.,.],[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0]
=> [8,1,2,3,4,5,6,7,9] => [[.,.],[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [9,1,2,3,4,5,6,7,8] => [[.,.],[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,7,8,9] => [.,[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,6,7,8,9,1] => [[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]],.]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 7
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,5,6,7,8,1,9] => [[.,[.,[.,[.,[.,[.,[.,.]]]]]]],[.,.]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 6
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [2,3,4,5,6,7,9,1,8] => [[.,[.,[.,[.,[.,[.,[.,.]]]]]]],[.,.]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 6
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [2,3,4,5,6,8,9,1,7] => [[.,[.,[.,[.,[.,[.,[.,.]]]]]]],[.,.]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 6
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,7,8,9,1,6] => [[.,[.,[.,[.,[.,[.,[.,.]]]]]]],[.,.]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 6
[1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,6,7,8,9,1,5] => [[.,[.,[.,[.,[.,[.,[.,.]]]]]]],[.,.]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 6
[1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,5,6,7,8,9,1,4] => [[.,[.,[.,[.,[.,[.,[.,.]]]]]]],[.,.]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 6
[1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,4,5,6,7,8,9,1,3] => [[.,[.,[.,[.,[.,[.,[.,.]]]]]]],[.,.]]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 6
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,6,7,8,9,10,1] => [[.,[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]],.]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 8
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,5,6,7,8,9,1,10] => [[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]],[.,.]]
=> ?
=> ? = 7
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [2,3,4,5,6,7,8,10,1,9] => [[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]],[.,.]]
=> ?
=> ? = 7
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,9,10,1,8] => [[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]],[.,.]]
=> ?
=> ? = 7
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,8,9,10,1,7] => [[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]],[.,.]]
=> ?
=> ? = 7
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,7,8,9,10,1,6] => [[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]],[.,.]]
=> ?
=> ? = 7
Description
The number of 1-rises at odd height of a Dyck path.
Matching statistic: St000931
(load all 29 compositions to match this statistic)
(load all 29 compositions to match this statistic)
Mp00027: Dyck paths —to partition⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
St000931: Dyck paths ⟶ ℤResult quality: 67% ●values known / values provided: 85%●distinct values known / distinct values provided: 67%
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
St000931: Dyck paths ⟶ ℤResult quality: 67% ●values known / values provided: 85%●distinct values known / distinct values provided: 67%
Values
[1,0]
=> []
=> []
=> []
=> ? = 0
[1,0,1,0]
=> [1]
=> [1,0,1,0]
=> [1,1,0,0]
=> 0
[1,1,0,0]
=> []
=> []
=> []
=> ? = 0
[1,0,1,0,1,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 1
[1,0,1,1,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 0
[1,1,0,0,1,0]
=> [2]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 0
[1,1,0,1,0,0]
=> [1]
=> [1,0,1,0]
=> [1,1,0,0]
=> 0
[1,1,1,0,0,0]
=> []
=> []
=> []
=> ? = 0
[1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 2
[1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 0
[1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 0
[1,1,0,0,1,0,1,0]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 0
[1,1,0,1,0,0,1,0]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 0
[1,1,0,1,0,1,0,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 1
[1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 0
[1,1,1,0,0,0,1,0]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 0
[1,1,1,0,0,1,0,0]
=> [2]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 0
[1,1,1,0,1,0,0,0]
=> [1]
=> [1,0,1,0]
=> [1,1,0,0]
=> 0
[1,1,1,1,0,0,0,0]
=> []
=> []
=> []
=> ? = 0
[1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 3
[1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 2
[1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 2
[1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 0
[1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 0
[1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 0
[1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> []
=> ? = 0
[1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> []
=> []
=> ? = 0
[1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> []
=> []
=> []
=> ? = 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 6
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,6,5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 5
[1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [7,5,5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 4
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [6,5,5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> ? = 5
[1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [7,6,4,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0]
=> ? = 4
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [6,5,4,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0]
=> ? = 5
[1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [7,6,5,3,3,2,1]
=> ?
=> ?
=> ? = 4
[1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [7,5,5,3,3,2,1]
=> ?
=> ?
=> ? = 2
[1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [6,5,4,3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> ? = 5
[1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,2,2,1]
=> ?
=> ?
=> ? = 4
[1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [6,5,4,3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> ? = 5
[1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [7,5,5,4,3,1,1]
=> ?
=> ?
=> ? = 2
[1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [6,5,4,3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> ? = 5
[1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,3,1]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 4
[1,1,0,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [7,5,5,4,3,1]
=> ?
=> ?
=> ? = 2
[1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,2,1]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 4
[1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [7,6,5,3,2,1]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 4
[1,1,0,1,0,1,0,1,0,0,1,1,0,0,1,0]
=> [7,5,5,3,2,1]
=> ?
=> ?
=> ? = 2
[1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [7,6,4,3,2,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> ? = 4
[1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [7,5,4,3,2,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> ? = 4
[1,1,0,1,0,1,1,1,0,0,0,0,1,0,1,0]
=> [7,6,2,2,2,1]
=> ?
=> ?
=> ? = 2
[1,1,0,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> [7,5,4,3,1,1]
=> ?
=> ?
=> ? = 2
[1,1,1,0,0,0,1,1,0,0,1,1,1,0,0,0]
=> [5,5,5,3,3]
=> ?
=> ?
=> ? = 0
[1,1,1,0,1,0,1,1,0,0,0,0,1,0,1,0]
=> [7,6,2,2,1]
=> ?
=> ?
=> ? = 2
[1,1,1,0,1,1,1,1,0,0,0,0,0,0,1,0]
=> [7,1,1,1,1]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> ? = 0
[1,1,1,1,0,1,1,1,0,0,0,0,0,0,1,0]
=> [7,1,1,1]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,1,0,0]
=> ? = 0
[1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> [7,1,1]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> ? = 0
[1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> ? = 0
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> []
=> []
=> []
=> ? = 0
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0
[1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0
[1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0
[1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,1,0]
=> [8,7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0,1,0]
=> [9,8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [7,6,5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 6
[1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> []
=> []
=> []
=> ? = 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [8,7,6,5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> ? = 7
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [7,7,6,5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 6
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [7,6,6,5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,0]
=> ? = 6
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [7,6,5,5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0,0]
=> ? = 6
Description
The number of occurrences of the pattern UUU in a Dyck path.
The number of Dyck paths with statistic value 0 are counted by the Motzkin numbers [1].
Matching statistic: St001066
(load all 48 compositions to match this statistic)
(load all 48 compositions to match this statistic)
Mp00124: Dyck paths —Adin-Bagno-Roichman transformation⟶ Dyck paths
Mp00027: Dyck paths —to partition⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St001066: Dyck paths ⟶ ℤResult quality: 67% ●values known / values provided: 84%●distinct values known / distinct values provided: 67%
Mp00027: Dyck paths —to partition⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St001066: Dyck paths ⟶ ℤResult quality: 67% ●values known / values provided: 84%●distinct values known / distinct values provided: 67%
Values
[1,0]
=> [1,0]
=> []
=> []
=> ? = 0 + 1
[1,0,1,0]
=> [1,0,1,0]
=> [1]
=> [1,0,1,0]
=> 1 = 0 + 1
[1,1,0,0]
=> [1,1,0,0]
=> []
=> []
=> ? = 0 + 1
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [1]
=> [1,0,1,0]
=> 1 = 0 + 1
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [2]
=> [1,1,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> []
=> []
=> ? = 0 + 1
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> 3 = 2 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> [1,0,1,0]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> [1,1,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4 = 3 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> 3 = 2 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 3 = 2 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> [1,0,1,0]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [1,1,0,0,1,0,1,0,1,0]
=> 3 = 2 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> [1,1,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [1,0,1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> [1,0,1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 3 = 2 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 0 + 1
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> []
=> ? = 0 + 1
[1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> []
=> []
=> ? = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 6 + 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [7,5,4,3,2,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 4 + 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [6,5,4,3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 5 + 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [7,6,4,3,2,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 4 + 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [6,5,4,3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 5 + 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [7,6,5,3,2,1]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 4 + 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,1,0,0,1,0]
=> [7,5,3,2,1]
=> ?
=> ? = 2 + 1
[1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [6,5,4,3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 5 + 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,2,1]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 4 + 1
[1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [6,5,4,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> ? = 5 + 1
[1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,3,1]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 4 + 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,0,1,0]
=> [7,5,4,3,1]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,0,1,0]
=> ? = 2 + 1
[1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [6,5,5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 5 + 1
[1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> ? = 0 + 1
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,3,2]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 5 + 1
[1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,3,1,1]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 4 + 1
[1,1,0,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> [7,5,4,3,1,1,1]
=> ?
=> ? = 2 + 1
[1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,2,2,1]
=> ?
=> ? = 4 + 1
[1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [7,6,5,3,3,2,1]
=> ?
=> ? = 4 + 1
[1,1,0,1,0,1,0,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [7,5,3,3,3,2,1]
=> ?
=> ? = 2 + 1
[1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [7,6,4,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 4 + 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [7,5,5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 4 + 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,6,5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 5 + 1
[1,1,0,1,0,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [7,6,2,2,2,2,1]
=> ?
=> ? = 2 + 1
[1,1,0,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [7,5,5,4,3,1,1]
=> ?
=> ? = 2 + 1
[1,1,0,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [7,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 0 + 1
[1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 0 + 1
[1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,3]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 4 + 1
[1,1,1,0,1,0,1,1,0,0,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0,1,0,1,0]
=> [7,6,2,2,2,1]
=> ?
=> ? = 2 + 1
[1,1,1,0,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [7,1,1,1,1,1]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 0 + 1
[1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 3 + 1
[1,1,1,1,0,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0,1,0]
=> [7,1,1,1,1]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 0 + 1
[1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> [7,6,5]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 2 + 1
[1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0,1,0]
=> [7,1,1,1]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 0 + 1
[1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> [7,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 1 + 1
[1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> [7,1,1]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> ? = 0 + 1
[1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 0 + 1
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> []
=> []
=> ? = 0 + 1
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 0 + 1
[1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 0 + 1
[1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 0 + 1
[1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,1,0]
=> [8,7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,1,0]
=> ? = 1 + 1
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0,1,0]
=> [9,8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0,1,0]
=> ? = 1 + 1
Description
The number of simple reflexive modules in the corresponding Nakayama algebra.
Matching statistic: St000118
(load all 10 compositions to match this statistic)
(load all 10 compositions to match this statistic)
Mp00034: Dyck paths —to binary tree: up step, left tree, down step, right tree⟶ Binary trees
Mp00018: Binary trees —left border symmetry⟶ Binary trees
St000118: Binary trees ⟶ ℤResult quality: 67% ●values known / values provided: 80%●distinct values known / distinct values provided: 67%
Mp00018: Binary trees —left border symmetry⟶ Binary trees
St000118: Binary trees ⟶ ℤResult quality: 67% ●values known / values provided: 80%●distinct values known / distinct values provided: 67%
Values
[1,0]
=> [.,.]
=> [.,.]
=> 0
[1,0,1,0]
=> [.,[.,.]]
=> [.,[.,.]]
=> 0
[1,1,0,0]
=> [[.,.],.]
=> [[.,.],.]
=> 0
[1,0,1,0,1,0]
=> [.,[.,[.,.]]]
=> [.,[.,[.,.]]]
=> 1
[1,0,1,1,0,0]
=> [.,[[.,.],.]]
=> [.,[[.,.],.]]
=> 0
[1,1,0,0,1,0]
=> [[.,.],[.,.]]
=> [[.,[.,.]],.]
=> 0
[1,1,0,1,0,0]
=> [[.,[.,.]],.]
=> [[.,.],[.,.]]
=> 0
[1,1,1,0,0,0]
=> [[[.,.],.],.]
=> [[[.,.],.],.]
=> 0
[1,0,1,0,1,0,1,0]
=> [.,[.,[.,[.,.]]]]
=> [.,[.,[.,[.,.]]]]
=> 2
[1,0,1,0,1,1,0,0]
=> [.,[.,[[.,.],.]]]
=> [.,[.,[[.,.],.]]]
=> 1
[1,0,1,1,0,0,1,0]
=> [.,[[.,.],[.,.]]]
=> [.,[[.,[.,.]],.]]
=> 0
[1,0,1,1,0,1,0,0]
=> [.,[[.,[.,.]],.]]
=> [.,[[.,.],[.,.]]]
=> 1
[1,0,1,1,1,0,0,0]
=> [.,[[[.,.],.],.]]
=> [.,[[[.,.],.],.]]
=> 0
[1,1,0,0,1,0,1,0]
=> [[.,.],[.,[.,.]]]
=> [[.,[.,[.,.]]],.]
=> 1
[1,1,0,0,1,1,0,0]
=> [[.,.],[[.,.],.]]
=> [[.,[[.,.],.]],.]
=> 0
[1,1,0,1,0,0,1,0]
=> [[.,[.,.]],[.,.]]
=> [[.,[.,.]],[.,.]]
=> 0
[1,1,0,1,0,1,0,0]
=> [[.,[.,[.,.]]],.]
=> [[.,.],[.,[.,.]]]
=> 1
[1,1,0,1,1,0,0,0]
=> [[.,[[.,.],.]],.]
=> [[.,.],[[.,.],.]]
=> 0
[1,1,1,0,0,0,1,0]
=> [[[.,.],.],[.,.]]
=> [[[.,[.,.]],.],.]
=> 0
[1,1,1,0,0,1,0,0]
=> [[[.,.],[.,.]],.]
=> [[[.,.],[.,.]],.]
=> 0
[1,1,1,0,1,0,0,0]
=> [[[.,[.,.]],.],.]
=> [[[.,.],.],[.,.]]
=> 0
[1,1,1,1,0,0,0,0]
=> [[[[.,.],.],.],.]
=> [[[[.,.],.],.],.]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> [.,[.,[.,[.,[.,.]]]]]
=> 3
[1,0,1,0,1,0,1,1,0,0]
=> [.,[.,[.,[[.,.],.]]]]
=> [.,[.,[.,[[.,.],.]]]]
=> 2
[1,0,1,0,1,1,0,0,1,0]
=> [.,[.,[[.,.],[.,.]]]]
=> [.,[.,[[.,[.,.]],.]]]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [.,[.,[[.,[.,.]],.]]]
=> [.,[.,[[.,.],[.,.]]]]
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> [.,[.,[[[.,.],.],.]]]
=> [.,[.,[[[.,.],.],.]]]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [.,[[.,.],[.,[.,.]]]]
=> [.,[[.,[.,[.,.]]],.]]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [.,[[.,.],[[.,.],.]]]
=> [.,[[.,[[.,.],.]],.]]
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [.,[[.,[.,.]],[.,.]]]
=> [.,[[.,[.,.]],[.,.]]]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [.,[[.,[.,[.,.]]],.]]
=> [.,[[.,.],[.,[.,.]]]]
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> [.,[[.,[[.,.],.]],.]]
=> [.,[[.,.],[[.,.],.]]]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [.,[[[.,.],.],[.,.]]]
=> [.,[[[.,[.,.]],.],.]]
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [.,[[[.,.],[.,.]],.]]
=> [.,[[[.,.],[.,.]],.]]
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> [.,[[[.,[.,.]],.],.]]
=> [.,[[[.,.],.],[.,.]]]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [.,[[[[.,.],.],.],.]]
=> [.,[[[[.,.],.],.],.]]
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [[.,.],[.,[.,[.,.]]]]
=> [[.,[.,[.,[.,.]]]],.]
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [[.,.],[.,[[.,.],.]]]
=> [[.,[.,[[.,.],.]]],.]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [[.,.],[[.,.],[.,.]]]
=> [[.,[[.,[.,.]],.]],.]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [[.,.],[[.,[.,.]],.]]
=> [[.,[[.,.],[.,.]]],.]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [[.,.],[[[.,.],.],.]]
=> [[.,[[[.,.],.],.]],.]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [[.,[.,.]],[.,[.,.]]]
=> [[.,[.,[.,.]]],[.,.]]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [[.,[.,.]],[[.,.],.]]
=> [[.,[[.,.],.]],[.,.]]
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [[.,[.,[.,.]]],[.,.]]
=> [[.,[.,.]],[.,[.,.]]]
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [[.,[.,[.,[.,.]]]],.]
=> [[.,.],[.,[.,[.,.]]]]
=> 2
[1,1,0,1,0,1,1,0,0,0]
=> [[.,[.,[[.,.],.]]],.]
=> [[.,.],[.,[[.,.],.]]]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [[.,[[.,.],.]],[.,.]]
=> [[.,[.,.]],[[.,.],.]]
=> 0
[1,1,0,1,1,0,0,1,0,0]
=> [[.,[[.,.],[.,.]]],.]
=> [[.,.],[[.,[.,.]],.]]
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> [[.,[[.,[.,.]],.]],.]
=> [[.,.],[[.,.],[.,.]]]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [[.,[[[.,.],.],.]],.]
=> [[.,.],[[[.,.],.],.]]
=> 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]
=> [.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]
=> ? = 6
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [.,[.,[.,[.,[.,[.,[[.,.],.]]]]]]]
=> [.,[.,[.,[.,[.,[.,[[.,.],.]]]]]]]
=> ? = 5
[1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [.,[.,[.,[.,[.,[[.,.],[.,.]]]]]]]
=> [.,[.,[.,[.,[.,[[.,[.,.]],.]]]]]]
=> ? = 4
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [.,[.,[.,[.,[.,[[.,[.,.]],.]]]]]]
=> [.,[.,[.,[.,[.,[[.,.],[.,.]]]]]]]
=> ? = 5
[1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [.,[.,[.,[.,[[.,.],[.,[.,.]]]]]]]
=> [.,[.,[.,[.,[[.,[.,[.,.]]],.]]]]]
=> ? = 4
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [.,[.,[.,[.,[[.,[.,[.,.]]],.]]]]]
=> [.,[.,[.,[.,[[.,.],[.,[.,.]]]]]]]
=> ? = 5
[1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [.,[.,[.,[[.,.],[.,[.,[.,.]]]]]]]
=> [.,[.,[.,[[.,[.,[.,[.,.]]]],.]]]]
=> ? = 4
[1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [.,[.,[.,[[.,.],[[.,.],[.,.]]]]]]
=> [.,[.,[.,[[.,[[.,[.,.]],.]],.]]]]
=> ? = 2
[1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [.,[.,[.,[[.,[.,[.,[.,.]]]],.]]]]
=> [.,[.,[.,[[.,.],[.,[.,[.,.]]]]]]]
=> ? = 5
[1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [.,[.,[[.,.],[.,[.,[.,[.,.]]]]]]]
=> [.,[.,[[.,[.,[.,[.,[.,.]]]]],.]]]
=> ? = 4
[1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [.,[.,[[.,[.,[.,[.,[.,.]]]]],.]]]
=> [.,[.,[[.,.],[.,[.,[.,[.,.]]]]]]]
=> ? = 5
[1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [.,[[.,.],[.,[.,[.,[.,[.,.]]]]]]]
=> [.,[[.,[.,[.,[.,[.,[.,.]]]]]],.]]
=> ? = 4
[1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [.,[[.,.],[.,[.,[[.,.],[.,.]]]]]]
=> [.,[[.,[.,[.,[[.,[.,.]],.]]]],.]]
=> ? = 2
[1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [.,[[.,[.,[.,[.,[.,[.,.]]]]]],.]]
=> [.,[[.,.],[.,[.,[.,[.,[.,.]]]]]]]
=> ? = 5
[1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [.,[[[[[[.,.],.],.],.],.],[.,.]]]
=> [.,[[[[[[.,[.,.]],.],.],.],.],.]]
=> ? = 0
[1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [.,[[[[[[[.,.],.],.],.],.],.],.]]
=> [.,[[[[[[[.,.],.],.],.],.],.],.]]
=> ? = 0
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [[.,.],[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [[.,[.,[.,[.,[.,[.,[.,.]]]]]]],.]
=> ? = 5
[1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [[.,.],[[[[.,.],.],.],[[.,.],.]]]
=> [[.,[[[[.,[[.,.],.]],.],.],.]],.]
=> ? = 0
[1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [[.,.],[[[[[[.,.],.],.],.],.],.]]
=> [[.,[[[[[[.,.],.],.],.],.],.]],.]
=> ? = 0
[1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [[.,[.,.]],[.,[.,[.,[.,[.,.]]]]]]
=> [[.,[.,[.,[.,[.,[.,.]]]]]],[.,.]]
=> ? = 4
[1,1,0,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [[.,[.,.]],[.,[.,[[.,.],[.,.]]]]]
=> [[.,[.,[.,[[.,[.,.]],.]]]],[.,.]]
=> ? = 2
[1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [[.,[.,[.,.]]],[.,[.,[.,[.,.]]]]]
=> [[.,[.,[.,[.,[.,.]]]]],[.,[.,.]]]
=> ? = 4
[1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [[.,[.,[.,[.,.]]]],[.,[.,[.,.]]]]
=> [[.,[.,[.,[.,.]]]],[.,[.,[.,.]]]]
=> ? = 4
[1,1,0,1,0,1,0,1,0,0,1,1,0,0,1,0]
=> [[.,[.,[.,[.,.]]]],[[.,.],[.,.]]]
=> [[.,[[.,[.,.]],.]],[.,[.,[.,.]]]]
=> ? = 2
[1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [[.,[.,[.,[.,[.,.]]]]],[.,[.,.]]]
=> [[.,[.,[.,.]]],[.,[.,[.,[.,.]]]]]
=> ? = 4
[1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [[.,[.,[.,[.,[.,[.,.]]]]]],[.,.]]
=> [[.,[.,.]],[.,[.,[.,[.,[.,.]]]]]]
=> ? = 4
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [[.,[.,[.,[.,[.,[.,[.,.]]]]]]],.]
=> [[.,.],[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ? = 5
[1,1,0,1,0,1,1,1,0,0,0,0,1,0,1,0]
=> [[.,[.,[[[.,.],.],.]]],[.,[.,.]]]
=> [[.,[.,[.,.]]],[.,[[[.,.],.],.]]]
=> ? = 2
[1,1,0,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> [[.,[[.,.],[.,[.,[.,.]]]]],[.,.]]
=> [[.,[.,.]],[[.,[.,[.,[.,.]]]],.]]
=> ? = 2
[1,1,0,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [[.,[[[[[.,.],.],.],.],.]],[.,.]]
=> [[.,[.,.]],[[[[[.,.],.],.],.],.]]
=> ? = 0
[1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [[.,[[[[[[.,.],.],.],.],.],.]],.]
=> [[.,.],[[[[[[.,.],.],.],.],.],.]]
=> ? = 0
[1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [[[.,.],.],[.,[.,[.,[.,[.,.]]]]]]
=> [[[.,[.,[.,[.,[.,[.,.]]]]]],.],.]
=> ? = 4
[1,1,1,0,0,0,1,1,0,0,1,1,1,0,0,0]
=> [[[.,.],.],[[.,.],[[[.,.],.],.]]]
=> [[[.,[[.,[[[.,.],.],.]],.]],.],.]
=> ? = 0
[1,1,1,0,1,0,1,1,0,0,0,0,1,0,1,0]
=> [[[.,[.,[[.,.],.]]],.],[.,[.,.]]]
=> [[[.,[.,[.,.]]],.],[.,[[.,.],.]]]
=> ? = 2
[1,1,1,0,1,1,1,1,0,0,0,0,0,0,1,0]
=> [[[.,[[[[.,.],.],.],.]],.],[.,.]]
=> [[[.,[.,.]],.],[[[[.,.],.],.],.]]
=> ? = 0
[1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> [[[.,[[[[[.,.],.],.],.],.]],.],.]
=> [[[.,.],.],[[[[[.,.],.],.],.],.]]
=> ? = 0
[1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> [[[[.,.],.],.],[.,[.,[.,[.,.]]]]]
=> [[[[.,[.,[.,[.,[.,.]]]]],.],.],.]
=> ? = 3
[1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> [[[[.,.],.],.],[[[[.,.],.],.],.]]
=> [[[[.,[[[[.,.],.],.],.]],.],.],.]
=> ? = 0
[1,1,1,1,0,1,1,1,0,0,0,0,0,0,1,0]
=> [[[[.,[[[.,.],.],.]],.],.],[.,.]]
=> [[[[.,[.,.]],.],.],[[[.,.],.],.]]
=> ? = 0
[1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0]
=> [[[[.,[[[[.,.],.],.],.]],.],.],.]
=> [[[[.,.],.],.],[[[[.,.],.],.],.]]
=> ? = 0
[1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> [[[[[.,.],.],.],.],[.,[.,[.,.]]]]
=> [[[[[.,[.,[.,[.,.]]]],.],.],.],.]
=> ? = 2
[1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> [[[[[.,[[.,.],.]],.],.],.],[.,.]]
=> [[[[[.,[.,.]],.],.],.],[[.,.],.]]
=> ? = 0
[1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [[[[[.,[[[.,.],.],.]],.],.],.],.]
=> [[[[[.,.],.],.],.],[[[.,.],.],.]]
=> ? = 0
[1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> [[[[[[.,.],.],.],.],.],[.,[.,.]]]
=> [[[[[[.,[.,[.,.]]],.],.],.],.],.]
=> ? = 1
[1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [[[[[[.,.],.],.],.],.],[[.,.],.]]
=> [[[[[[.,[[.,.],.]],.],.],.],.],.]
=> ? = 0
[1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> [[[[[[.,.],[[.,.],.]],.],.],.],.]
=> [[[[[[.,.],.],.],.],[[.,.],.]],.]
=> ? = 0
[1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [[[[[[.,[.,.]],.],.],.],.],[.,.]]
=> [[[[[[.,[.,.]],.],.],.],.],[.,.]]
=> ? = 0
[1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [[[[[[.,[[.,.],.]],.],.],.],.],.]
=> [[[[[[.,.],.],.],.],.],[[.,.],.]]
=> ? = 0
[1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [[[[[[[.,.],.],.],.],.],.],[.,.]]
=> [[[[[[[.,[.,.]],.],.],.],.],.],.]
=> ? = 0
[1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [[[[[[[.,[.,.]],.],.],.],.],.],.]
=> [[[[[[[.,.],.],.],.],.],.],[.,.]]
=> ? = 0
Description
The number of occurrences of the contiguous pattern {{{[.,[.,[.,.]]]}}} in a binary tree.
[[oeis:A001006]] counts binary trees avoiding this pattern.
Matching statistic: St001483
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
Mp00030: Dyck paths —zeta map⟶ Dyck paths
St001483: Dyck paths ⟶ ℤResult quality: 67% ●values known / values provided: 80%●distinct values known / distinct values provided: 67%
Mp00030: Dyck paths —zeta map⟶ Dyck paths
St001483: Dyck paths ⟶ ℤResult quality: 67% ●values known / values provided: 80%●distinct values known / distinct values provided: 67%
Values
[1,0]
=> [1,0]
=> [1,0]
=> 1 = 0 + 1
[1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1 = 0 + 1
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> 1 = 0 + 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3 = 2 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4 = 3 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 3 = 2 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 3 = 2 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 3 = 2 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1 = 0 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 3 = 2 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 3 = 2 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 6 + 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 5 + 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 4 + 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> ? = 5 + 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 4 + 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> ? = 5 + 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 4 + 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> ? = 2 + 1
[1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 5 + 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 4 + 1
[1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 5 + 1
[1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> ? = 4 + 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> ? = 2 + 1
[1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 5 + 1
[1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ? = 0 + 1
[1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> ? = 0 + 1
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 5 + 1
[1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,1,1,0,1,1,0,0,0,0,0,0]
=> ? = 0 + 1
[1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> ? = 0 + 1
[1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 4 + 1
[1,1,0,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,1,1,0,1,0,0,1,0,0]
=> ? = 2 + 1
[1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 4 + 1
[1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 4 + 1
[1,1,0,1,0,1,0,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 2 + 1
[1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 4 + 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 4 + 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 5 + 1
[1,1,0,1,0,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,1,1,0,1,0,0,0]
=> ? = 2 + 1
[1,1,0,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,1,0,0,1,0]
=> ? = 2 + 1
[1,1,0,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,1,1,1,0,0,1,0,0,0,0,0]
=> ? = 0 + 1
[1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> ? = 0 + 1
[1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 4 + 1
[1,1,1,0,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,0,1,1,1,0,0,0,0,0,0]
=> ? = 0 + 1
[1,1,1,0,1,0,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,1,0,1,0,0]
=> ? = 2 + 1
[1,1,1,0,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,1,1,0,0,0,1,0,0,0,0]
=> ? = 0 + 1
[1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> ? = 0 + 1
[1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 3 + 1
[1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 0 + 1
[1,1,1,1,0,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,1,0,0,0]
=> ? = 0 + 1
[1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> ? = 0 + 1
[1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 2 + 1
[1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,1,0,0]
=> ? = 0 + 1
[1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0]
=> ? = 0 + 1
[1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 1
[1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 0 + 1
[1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,1,0,0,0]
=> ? = 0 + 1
[1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 0 + 1
[1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> ? = 0 + 1
[1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 0 + 1
[1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 0 + 1
Description
The number of simple module modules that appear in the socle of the regular module but have no nontrivial selfextensions with the regular module.
Matching statistic: St001167
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00072: Permutations —binary search tree: left to right⟶ Binary trees
Mp00020: Binary trees —to Tamari-corresponding Dyck path⟶ Dyck paths
St001167: Dyck paths ⟶ ℤResult quality: 67% ●values known / values provided: 80%●distinct values known / distinct values provided: 67%
Mp00072: Permutations —binary search tree: left to right⟶ Binary trees
Mp00020: Binary trees —to Tamari-corresponding Dyck path⟶ Dyck paths
St001167: Dyck paths ⟶ ℤResult quality: 67% ●values known / values provided: 80%●distinct values known / distinct values provided: 67%
Values
[1,0]
=> [1] => [.,.]
=> [1,0]
=> 0
[1,0,1,0]
=> [2,1] => [[.,.],.]
=> [1,0,1,0]
=> 0
[1,1,0,0]
=> [1,2] => [.,[.,.]]
=> [1,1,0,0]
=> 0
[1,0,1,0,1,0]
=> [3,2,1] => [[[.,.],.],.]
=> [1,0,1,0,1,0]
=> 1
[1,0,1,1,0,0]
=> [2,3,1] => [[.,.],[.,.]]
=> [1,0,1,1,0,0]
=> 0
[1,1,0,0,1,0]
=> [3,1,2] => [[.,[.,.]],.]
=> [1,1,0,0,1,0]
=> 0
[1,1,0,1,0,0]
=> [2,1,3] => [[.,.],[.,.]]
=> [1,0,1,1,0,0]
=> 0
[1,1,1,0,0,0]
=> [1,2,3] => [.,[.,[.,.]]]
=> [1,1,1,0,0,0]
=> 0
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [[[[.,.],.],.],.]
=> [1,0,1,0,1,0,1,0]
=> 2
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [[[.,.],.],[.,.]]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [[[.,.],[.,.]],.]
=> [1,0,1,1,0,0,1,0]
=> 0
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [[[.,.],.],[.,.]]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [[.,.],[.,[.,.]]]
=> [1,0,1,1,1,0,0,0]
=> 0
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [[[.,[.,.]],.],.]
=> [1,1,0,0,1,0,1,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [[.,[.,.]],[.,.]]
=> [1,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [[[.,.],[.,.]],.]
=> [1,0,1,1,0,0,1,0]
=> 0
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [[[.,.],.],[.,.]]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [[.,.],[.,[.,.]]]
=> [1,0,1,1,1,0,0,0]
=> 0
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [[.,[.,[.,.]]],.]
=> [1,1,1,0,0,0,1,0]
=> 0
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [[.,[.,.]],[.,.]]
=> [1,1,0,0,1,1,0,0]
=> 0
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [[.,.],[.,[.,.]]]
=> [1,0,1,1,1,0,0,0]
=> 0
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [[[[[.,.],.],.],.],.]
=> [1,0,1,0,1,0,1,0,1,0]
=> 3
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [[[[.,.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,1,0,0]
=> 2
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [[[[.,.],.],[.,.]],.]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => [[[[.,.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,1,0,0]
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [[[.,.],.],[.,[.,.]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [[[[.,.],[.,.]],.],.]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [[[.,.],[.,.]],[.,.]]
=> [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => [[[[.,.],.],[.,.]],.]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => [[[[.,.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,1,0,0]
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [[[.,.],.],[.,[.,.]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [[[.,.],[.,[.,.]]],.]
=> [1,0,1,1,1,0,0,0,1,0]
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [[[.,.],[.,.]],[.,.]]
=> [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [[[.,.],.],[.,[.,.]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [[.,.],[.,[.,[.,.]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [[[[.,[.,.]],.],.],.]
=> [1,1,0,0,1,0,1,0,1,0]
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => [[[.,[.,.]],.],[.,.]]
=> [1,1,0,0,1,0,1,1,0,0]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [[[.,[.,.]],[.,.]],.]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [[[.,[.,.]],.],[.,.]]
=> [1,1,0,0,1,0,1,1,0,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [[.,[.,.]],[.,[.,.]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => [[[[.,.],[.,.]],.],.]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [[[.,.],[.,.]],[.,.]]
=> [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => [[[[.,.],.],[.,.]],.]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => [[[[.,.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,1,0,0]
=> 2
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => [[[.,.],.],[.,[.,.]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [[[.,.],[.,[.,.]]],.]
=> [1,0,1,1,1,0,0,0,1,0]
=> 0
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => [[[.,.],[.,.]],[.,.]]
=> [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => [[[.,.],.],[.,[.,.]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => [[.,.],[.,[.,[.,.]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [8,7,6,5,4,3,2,1] => [[[[[[[[.,.],.],.],.],.],.],.],.]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 6
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [7,8,6,5,4,3,2,1] => [[[[[[[.,.],.],.],.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 5
[1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [8,6,7,5,4,3,2,1] => [[[[[[[.,.],.],.],.],.],[.,.]],.]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 4
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [7,6,8,5,4,3,2,1] => [[[[[[[.,.],.],.],.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 5
[1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [8,7,5,6,4,3,2,1] => [[[[[[[.,.],.],.],.],[.,.]],.],.]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 4
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [7,6,5,8,4,3,2,1] => [[[[[[[.,.],.],.],.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 5
[1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [8,7,6,4,5,3,2,1] => [[[[[[[.,.],.],.],[.,.]],.],.],.]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 4
[1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [8,6,7,4,5,3,2,1] => [[[[[[.,.],.],.],[.,.]],[.,.]],.]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 2
[1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [7,6,5,4,8,3,2,1] => [[[[[[[.,.],.],.],.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 5
[1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [8,7,6,5,3,4,2,1] => [[[[[[[.,.],.],[.,.]],.],.],.],.]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 4
[1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [7,6,5,4,3,8,2,1] => [[[[[[[.,.],.],.],.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 5
[1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [8,7,6,5,4,2,3,1] => [[[[[[[.,.],[.,.]],.],.],.],.],.]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 4
[1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [8,6,7,5,4,2,3,1] => [[[[[[.,.],[.,.]],.],.],[.,.]],.]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 2
[1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [7,6,5,4,3,2,8,1] => [[[[[[[.,.],.],.],.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 5
[1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [8,2,3,4,5,6,7,1] => [[[.,.],[.,[.,[.,[.,[.,.]]]]]],.]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 0
[1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,8,1] => [[.,.],[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 0
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [8,7,6,5,4,3,1,2] => [[[[[[[.,[.,.]],.],.],.],.],.],.]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 5
[1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [7,8,3,4,5,6,1,2] => [[[.,[.,.]],[.,[.,[.,.]]]],[.,.]]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> ? = 0
[1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [3,4,5,6,7,8,1,2] => [[.,[.,.]],[.,[.,[.,[.,[.,.]]]]]]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 0
[1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [8,7,6,5,4,2,1,3] => [[[[[[[.,.],[.,.]],.],.],.],.],.]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 4
[1,1,0,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [8,6,7,5,4,2,1,3] => [[[[[[.,.],[.,.]],.],.],[.,.]],.]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 2
[1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [8,7,6,5,3,2,1,4] => [[[[[[[.,.],.],[.,.]],.],.],.],.]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 4
[1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [8,7,6,4,3,2,1,5] => [[[[[[[.,.],.],.],[.,.]],.],.],.]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 4
[1,1,0,1,0,1,0,1,0,0,1,1,0,0,1,0]
=> [8,6,7,4,3,2,1,5] => [[[[[[.,.],.],.],[.,.]],[.,.]],.]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 2
[1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [8,7,5,4,3,2,1,6] => [[[[[[[.,.],.],.],.],[.,.]],.],.]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 4
[1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [8,6,5,4,3,2,1,7] => [[[[[[[.,.],.],.],.],.],[.,.]],.]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 4
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [7,6,5,4,3,2,1,8] => [[[[[[[.,.],.],.],.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 5
[1,1,0,1,0,1,1,1,0,0,0,0,1,0,1,0]
=> [8,7,3,4,5,2,1,6] => [[[[[.,.],.],[.,[.,[.,.]]]],.],.]
=> [1,0,1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 2
[1,1,0,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> [8,6,5,4,2,3,1,7] => [[[[[[.,.],[.,.]],.],.],[.,.]],.]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 2
[1,1,0,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [8,2,3,4,5,6,1,7] => [[[.,.],[.,[.,[.,[.,[.,.]]]]]],.]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 0
[1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,1,8] => [[.,.],[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 0
[1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [8,7,6,5,4,1,2,3] => [[[[[[.,[.,[.,.]]],.],.],.],.],.]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 4
[1,1,1,0,0,0,1,1,0,0,1,1,1,0,0,0]
=> [6,7,8,4,5,1,2,3] => [[[.,[.,[.,.]]],[.,.]],[.,[.,.]]]
=> [1,1,1,0,0,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 0
[1,1,1,0,1,0,1,1,0,0,0,0,1,0,1,0]
=> [8,7,3,4,2,1,5,6] => [[[[[.,.],.],[.,[.,[.,.]]]],.],.]
=> [1,0,1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 2
[1,1,1,0,1,1,1,1,0,0,0,0,0,0,1,0]
=> [8,2,3,4,5,1,6,7] => [[[.,.],[.,[.,[.,[.,[.,.]]]]]],.]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 0
[1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,3,4,5,6,1,7,8] => [[.,.],[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 0
[1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> [8,7,6,5,1,2,3,4] => [[[[[.,[.,[.,[.,.]]]],.],.],.],.]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 3
[1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> [5,6,7,8,1,2,3,4] => [[.,[.,[.,[.,.]]]],[.,[.,[.,.]]]]
=> [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 0
[1,1,1,1,0,1,1,1,0,0,0,0,0,0,1,0]
=> [8,2,3,4,1,5,6,7] => [[[.,.],[.,[.,[.,[.,[.,.]]]]]],.]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 0
[1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0]
=> [2,3,4,5,1,6,7,8] => [[.,.],[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 0
[1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> [8,7,6,1,2,3,4,5] => [[[[.,[.,[.,[.,[.,.]]]]],.],.],.]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 2
[1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> [8,2,3,1,4,5,6,7] => [[[.,.],[.,[.,[.,[.,[.,.]]]]]],.]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 0
[1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [2,3,4,1,5,6,7,8] => [[.,.],[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 0
[1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> [8,7,1,2,3,4,5,6] => [[[.,[.,[.,[.,[.,[.,.]]]]]],.],.]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 1
[1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [7,8,1,2,3,4,5,6] => [[.,[.,[.,[.,[.,[.,.]]]]]],[.,.]]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 0
[1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> [3,4,1,2,5,6,7,8] => [[.,[.,.]],[.,[.,[.,[.,[.,.]]]]]]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 0
[1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [8,2,1,3,4,5,6,7] => [[[.,.],[.,[.,[.,[.,[.,.]]]]]],.]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 0
[1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [2,3,1,4,5,6,7,8] => [[.,.],[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 0
[1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [8,1,2,3,4,5,6,7] => [[.,[.,[.,[.,[.,[.,[.,.]]]]]]],.]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 0
[1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7,8] => [[.,.],[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 0
Description
The number of simple modules that appear as the top of an indecomposable non-projective modules that is reflexive in the corresponding Nakayama algebra.
The top of a module is the cokernel of the inclusion of the radical of the module into the module.
For Nakayama algebras with at most 8 simple modules, the statistic also coincides with the number of simple modules with projective dimension at least 3 in the corresponding Nakayama algebra.
Matching statistic: St001253
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00072: Permutations —binary search tree: left to right⟶ Binary trees
Mp00020: Binary trees —to Tamari-corresponding Dyck path⟶ Dyck paths
St001253: Dyck paths ⟶ ℤResult quality: 67% ●values known / values provided: 80%●distinct values known / distinct values provided: 67%
Mp00072: Permutations —binary search tree: left to right⟶ Binary trees
Mp00020: Binary trees —to Tamari-corresponding Dyck path⟶ Dyck paths
St001253: Dyck paths ⟶ ℤResult quality: 67% ●values known / values provided: 80%●distinct values known / distinct values provided: 67%
Values
[1,0]
=> [1] => [.,.]
=> [1,0]
=> 0
[1,0,1,0]
=> [2,1] => [[.,.],.]
=> [1,0,1,0]
=> 0
[1,1,0,0]
=> [1,2] => [.,[.,.]]
=> [1,1,0,0]
=> 0
[1,0,1,0,1,0]
=> [3,2,1] => [[[.,.],.],.]
=> [1,0,1,0,1,0]
=> 1
[1,0,1,1,0,0]
=> [2,3,1] => [[.,.],[.,.]]
=> [1,0,1,1,0,0]
=> 0
[1,1,0,0,1,0]
=> [3,1,2] => [[.,[.,.]],.]
=> [1,1,0,0,1,0]
=> 0
[1,1,0,1,0,0]
=> [2,1,3] => [[.,.],[.,.]]
=> [1,0,1,1,0,0]
=> 0
[1,1,1,0,0,0]
=> [1,2,3] => [.,[.,[.,.]]]
=> [1,1,1,0,0,0]
=> 0
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [[[[.,.],.],.],.]
=> [1,0,1,0,1,0,1,0]
=> 2
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [[[.,.],.],[.,.]]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [[[.,.],[.,.]],.]
=> [1,0,1,1,0,0,1,0]
=> 0
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [[[.,.],.],[.,.]]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [[.,.],[.,[.,.]]]
=> [1,0,1,1,1,0,0,0]
=> 0
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [[[.,[.,.]],.],.]
=> [1,1,0,0,1,0,1,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [[.,[.,.]],[.,.]]
=> [1,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [[[.,.],[.,.]],.]
=> [1,0,1,1,0,0,1,0]
=> 0
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [[[.,.],.],[.,.]]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [[.,.],[.,[.,.]]]
=> [1,0,1,1,1,0,0,0]
=> 0
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [[.,[.,[.,.]]],.]
=> [1,1,1,0,0,0,1,0]
=> 0
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [[.,[.,.]],[.,.]]
=> [1,1,0,0,1,1,0,0]
=> 0
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [[.,.],[.,[.,.]]]
=> [1,0,1,1,1,0,0,0]
=> 0
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [[[[[.,.],.],.],.],.]
=> [1,0,1,0,1,0,1,0,1,0]
=> 3
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [[[[.,.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,1,0,0]
=> 2
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [[[[.,.],.],[.,.]],.]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => [[[[.,.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,1,0,0]
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [[[.,.],.],[.,[.,.]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [[[[.,.],[.,.]],.],.]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [[[.,.],[.,.]],[.,.]]
=> [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => [[[[.,.],.],[.,.]],.]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => [[[[.,.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,1,0,0]
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [[[.,.],.],[.,[.,.]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [[[.,.],[.,[.,.]]],.]
=> [1,0,1,1,1,0,0,0,1,0]
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [[[.,.],[.,.]],[.,.]]
=> [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [[[.,.],.],[.,[.,.]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [[.,.],[.,[.,[.,.]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [[[[.,[.,.]],.],.],.]
=> [1,1,0,0,1,0,1,0,1,0]
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => [[[.,[.,.]],.],[.,.]]
=> [1,1,0,0,1,0,1,1,0,0]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [[[.,[.,.]],[.,.]],.]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [[[.,[.,.]],.],[.,.]]
=> [1,1,0,0,1,0,1,1,0,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [[.,[.,.]],[.,[.,.]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => [[[[.,.],[.,.]],.],.]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [[[.,.],[.,.]],[.,.]]
=> [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => [[[[.,.],.],[.,.]],.]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => [[[[.,.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,1,0,0]
=> 2
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => [[[.,.],.],[.,[.,.]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [[[.,.],[.,[.,.]]],.]
=> [1,0,1,1,1,0,0,0,1,0]
=> 0
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => [[[.,.],[.,.]],[.,.]]
=> [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => [[[.,.],.],[.,[.,.]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => [[.,.],[.,[.,[.,.]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [8,7,6,5,4,3,2,1] => [[[[[[[[.,.],.],.],.],.],.],.],.]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 6
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [7,8,6,5,4,3,2,1] => [[[[[[[.,.],.],.],.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 5
[1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [8,6,7,5,4,3,2,1] => [[[[[[[.,.],.],.],.],.],[.,.]],.]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 4
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [7,6,8,5,4,3,2,1] => [[[[[[[.,.],.],.],.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 5
[1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [8,7,5,6,4,3,2,1] => [[[[[[[.,.],.],.],.],[.,.]],.],.]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 4
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [7,6,5,8,4,3,2,1] => [[[[[[[.,.],.],.],.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 5
[1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [8,7,6,4,5,3,2,1] => [[[[[[[.,.],.],.],[.,.]],.],.],.]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 4
[1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [8,6,7,4,5,3,2,1] => [[[[[[.,.],.],.],[.,.]],[.,.]],.]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 2
[1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [7,6,5,4,8,3,2,1] => [[[[[[[.,.],.],.],.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 5
[1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [8,7,6,5,3,4,2,1] => [[[[[[[.,.],.],[.,.]],.],.],.],.]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 4
[1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [7,6,5,4,3,8,2,1] => [[[[[[[.,.],.],.],.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 5
[1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [8,7,6,5,4,2,3,1] => [[[[[[[.,.],[.,.]],.],.],.],.],.]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 4
[1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [8,6,7,5,4,2,3,1] => [[[[[[.,.],[.,.]],.],.],[.,.]],.]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 2
[1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [7,6,5,4,3,2,8,1] => [[[[[[[.,.],.],.],.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 5
[1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [8,2,3,4,5,6,7,1] => [[[.,.],[.,[.,[.,[.,[.,.]]]]]],.]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 0
[1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,8,1] => [[.,.],[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 0
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [8,7,6,5,4,3,1,2] => [[[[[[[.,[.,.]],.],.],.],.],.],.]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 5
[1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [7,8,3,4,5,6,1,2] => [[[.,[.,.]],[.,[.,[.,.]]]],[.,.]]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> ? = 0
[1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [3,4,5,6,7,8,1,2] => [[.,[.,.]],[.,[.,[.,[.,[.,.]]]]]]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 0
[1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [8,7,6,5,4,2,1,3] => [[[[[[[.,.],[.,.]],.],.],.],.],.]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 4
[1,1,0,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [8,6,7,5,4,2,1,3] => [[[[[[.,.],[.,.]],.],.],[.,.]],.]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 2
[1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [8,7,6,5,3,2,1,4] => [[[[[[[.,.],.],[.,.]],.],.],.],.]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 4
[1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [8,7,6,4,3,2,1,5] => [[[[[[[.,.],.],.],[.,.]],.],.],.]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 4
[1,1,0,1,0,1,0,1,0,0,1,1,0,0,1,0]
=> [8,6,7,4,3,2,1,5] => [[[[[[.,.],.],.],[.,.]],[.,.]],.]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 2
[1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [8,7,5,4,3,2,1,6] => [[[[[[[.,.],.],.],.],[.,.]],.],.]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 4
[1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [8,6,5,4,3,2,1,7] => [[[[[[[.,.],.],.],.],.],[.,.]],.]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 4
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [7,6,5,4,3,2,1,8] => [[[[[[[.,.],.],.],.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 5
[1,1,0,1,0,1,1,1,0,0,0,0,1,0,1,0]
=> [8,7,3,4,5,2,1,6] => [[[[[.,.],.],[.,[.,[.,.]]]],.],.]
=> [1,0,1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 2
[1,1,0,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> [8,6,5,4,2,3,1,7] => [[[[[[.,.],[.,.]],.],.],[.,.]],.]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 2
[1,1,0,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [8,2,3,4,5,6,1,7] => [[[.,.],[.,[.,[.,[.,[.,.]]]]]],.]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 0
[1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,1,8] => [[.,.],[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 0
[1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [8,7,6,5,4,1,2,3] => [[[[[[.,[.,[.,.]]],.],.],.],.],.]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 4
[1,1,1,0,0,0,1,1,0,0,1,1,1,0,0,0]
=> [6,7,8,4,5,1,2,3] => [[[.,[.,[.,.]]],[.,.]],[.,[.,.]]]
=> [1,1,1,0,0,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 0
[1,1,1,0,1,0,1,1,0,0,0,0,1,0,1,0]
=> [8,7,3,4,2,1,5,6] => [[[[[.,.],.],[.,[.,[.,.]]]],.],.]
=> [1,0,1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 2
[1,1,1,0,1,1,1,1,0,0,0,0,0,0,1,0]
=> [8,2,3,4,5,1,6,7] => [[[.,.],[.,[.,[.,[.,[.,.]]]]]],.]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 0
[1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,3,4,5,6,1,7,8] => [[.,.],[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 0
[1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> [8,7,6,5,1,2,3,4] => [[[[[.,[.,[.,[.,.]]]],.],.],.],.]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 3
[1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> [5,6,7,8,1,2,3,4] => [[.,[.,[.,[.,.]]]],[.,[.,[.,.]]]]
=> [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 0
[1,1,1,1,0,1,1,1,0,0,0,0,0,0,1,0]
=> [8,2,3,4,1,5,6,7] => [[[.,.],[.,[.,[.,[.,[.,.]]]]]],.]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 0
[1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0]
=> [2,3,4,5,1,6,7,8] => [[.,.],[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 0
[1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> [8,7,6,1,2,3,4,5] => [[[[.,[.,[.,[.,[.,.]]]]],.],.],.]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 2
[1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> [8,2,3,1,4,5,6,7] => [[[.,.],[.,[.,[.,[.,[.,.]]]]]],.]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 0
[1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [2,3,4,1,5,6,7,8] => [[.,.],[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 0
[1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> [8,7,1,2,3,4,5,6] => [[[.,[.,[.,[.,[.,[.,.]]]]]],.],.]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 1
[1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [7,8,1,2,3,4,5,6] => [[.,[.,[.,[.,[.,[.,.]]]]]],[.,.]]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 0
[1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> [3,4,1,2,5,6,7,8] => [[.,[.,.]],[.,[.,[.,[.,[.,.]]]]]]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 0
[1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [8,2,1,3,4,5,6,7] => [[[.,.],[.,[.,[.,[.,[.,.]]]]]],.]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 0
[1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [2,3,1,4,5,6,7,8] => [[.,.],[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 0
[1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [8,1,2,3,4,5,6,7] => [[.,[.,[.,[.,[.,[.,[.,.]]]]]]],.]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 0
[1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7,8] => [[.,.],[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 0
Description
The number of non-projective indecomposable reflexive modules in the corresponding Nakayama algebra.
For the first 196 values the statistic coincides also with the number of fixed points of $\tau \Omega^2$ composed with its inverse, see theorem 5.8. in the reference for more details.
The number of Dyck paths of length n where the statistics returns zero seems to be 2^(n-1).
The following 29 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000358The number of occurrences of the pattern 31-2. St001727The number of invisible inversions of a permutation. St001744The number of occurrences of the arrow pattern 1-2 with an arrow from 1 to 2 in a permutation. St000732The number of double deficiencies of a permutation. St000836The number of descents of distance 2 of a permutation. St000365The number of double ascents of a permutation. St000731The number of double exceedences of a permutation. St001238The number of simple modules S such that the Auslander-Reiten translate of S is isomorphic to the Nakayama functor applied to the second syzygy of S. St000373The number of weak exceedences of a permutation that are also mid-points of a decreasing subsequence of length $3$. St001087The number of occurrences of the vincular pattern |12-3 in a permutation. St001687The number of distinct positions of the pattern letter 2 in occurrences of 213 in a permutation. St000866The number of admissible inversions of a permutation in the sense of Shareshian-Wachs. St000039The number of crossings of a permutation. St000317The cycle descent number of a permutation. St000355The number of occurrences of the pattern 21-3. St001229The vector space dimension of the first extension group between the Jacobson radical J and J^2. St001640The number of ascent tops in the permutation such that all smaller elements appear before. St001233The number of indecomposable 2-dimensional modules with projective dimension one. St001314The number of tilting modules of arbitrary projective dimension that have no simple modules as a direct summand in the corresponding Nakayama algebra. St001192The maximal dimension of $Ext_A^2(S,A)$ for a simple module $S$ over the corresponding Nakayama algebra $A$. St001210Gives the maximal vector space dimension of the first Ext-group between an indecomposable module X and the regular module A, when A is the Nakayama algebra corresponding to the Dyck path. St001866The nesting alignments of a signed permutation. St001964The interval resolution global dimension of a poset. St001095The number of non-isomorphic posets with precisely one further covering relation. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St000982The length of the longest constant subword. St001186Number of simple modules with grade at least 3 in the corresponding Nakayama algebra. St001948The number of augmented double ascents of a permutation. St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!