Processing math: 100%

Your data matches 54 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00152: Graphs Laplacian multiplicitiesInteger compositions
St000381: Integer compositions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> [1] => 1
([],2)
=> [2] => 2
([(0,1)],2)
=> [1,1] => 1
([],3)
=> [3] => 3
([(1,2)],3)
=> [1,2] => 2
([(0,2),(1,2)],3)
=> [1,1,1] => 1
([(0,1),(0,2),(1,2)],3)
=> [2,1] => 2
([],4)
=> [4] => 4
([(2,3)],4)
=> [1,3] => 3
([(1,3),(2,3)],4)
=> [1,1,2] => 2
([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => 2
([(0,3),(1,2)],4)
=> [2,2] => 2
([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => 1
([(1,2),(1,3),(2,3)],4)
=> [2,2] => 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => 3
([],5)
=> [5] => 5
([(3,4)],5)
=> [1,4] => 4
([(2,4),(3,4)],5)
=> [1,1,3] => 3
([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => 3
([(1,4),(2,3)],5)
=> [2,3] => 3
([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => 2
([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => 2
([(2,3),(2,4),(3,4)],5)
=> [2,3] => 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> [1,2,2] => 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => 3
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,1,1,1] => 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => 2
Description
The largest part of an integer composition.
Mp00152: Graphs Laplacian multiplicitiesInteger compositions
Mp00040: Integer compositions to partitionInteger partitions
St000147: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> [1] => [1]
=> 1
([],2)
=> [2] => [2]
=> 2
([(0,1)],2)
=> [1,1] => [1,1]
=> 1
([],3)
=> [3] => [3]
=> 3
([(1,2)],3)
=> [1,2] => [2,1]
=> 2
([(0,2),(1,2)],3)
=> [1,1,1] => [1,1,1]
=> 1
([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1]
=> 2
([],4)
=> [4] => [4]
=> 4
([(2,3)],4)
=> [1,3] => [3,1]
=> 3
([(1,3),(2,3)],4)
=> [1,1,2] => [2,1,1]
=> 2
([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [2,1,1]
=> 2
([(0,3),(1,2)],4)
=> [2,2] => [2,2]
=> 2
([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => [1,1,1,1]
=> 1
([(1,2),(1,3),(2,3)],4)
=> [2,2] => [2,2]
=> 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => [1,1,1,1]
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => [2,1,1]
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [2,1,1]
=> 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [3,1]
=> 3
([],5)
=> [5] => [5]
=> 5
([(3,4)],5)
=> [1,4] => [4,1]
=> 4
([(2,4),(3,4)],5)
=> [1,1,3] => [3,1,1]
=> 3
([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => [2,2,1]
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [3,1,1]
=> 3
([(1,4),(2,3)],5)
=> [2,3] => [3,2]
=> 3
([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => [2,1,1,1]
=> 2
([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => [2,1,1,1]
=> 2
([(2,3),(2,4),(3,4)],5)
=> [2,3] => [3,2]
=> 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => [2,1,1,1]
=> 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => [2,1,1,1]
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> [1,2,2] => [2,2,1]
=> 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [2,2,1]
=> 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => [2,1,1,1]
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [2,2,1]
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [2,2,1]
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => [2,1,1,1]
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [2,2,1]
=> 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => [3,2]
=> 3
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => [2,1,1,1]
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [2,1,1,1]
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [2,2,1]
=> 2
Description
The largest part of an integer partition.
Matching statistic: St000010
Mp00152: Graphs Laplacian multiplicitiesInteger compositions
Mp00040: Integer compositions to partitionInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
St000010: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> [1] => [1]
=> [1]
=> 1
([],2)
=> [2] => [2]
=> [1,1]
=> 2
([(0,1)],2)
=> [1,1] => [1,1]
=> [2]
=> 1
([],3)
=> [3] => [3]
=> [1,1,1]
=> 3
([(1,2)],3)
=> [1,2] => [2,1]
=> [2,1]
=> 2
([(0,2),(1,2)],3)
=> [1,1,1] => [1,1,1]
=> [3]
=> 1
([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1]
=> [2,1]
=> 2
([],4)
=> [4] => [4]
=> [1,1,1,1]
=> 4
([(2,3)],4)
=> [1,3] => [3,1]
=> [2,1,1]
=> 3
([(1,3),(2,3)],4)
=> [1,1,2] => [2,1,1]
=> [3,1]
=> 2
([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [2,1,1]
=> [3,1]
=> 2
([(0,3),(1,2)],4)
=> [2,2] => [2,2]
=> [2,2]
=> 2
([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => [1,1,1,1]
=> [4]
=> 1
([(1,2),(1,3),(2,3)],4)
=> [2,2] => [2,2]
=> [2,2]
=> 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => [1,1,1,1]
=> [4]
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => [2,1,1]
=> [3,1]
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [2,1,1]
=> [3,1]
=> 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [3,1]
=> [2,1,1]
=> 3
([],5)
=> [5] => [5]
=> [1,1,1,1,1]
=> 5
([(3,4)],5)
=> [1,4] => [4,1]
=> [2,1,1,1]
=> 4
([(2,4),(3,4)],5)
=> [1,1,3] => [3,1,1]
=> [3,1,1]
=> 3
([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => [2,2,1]
=> [3,2]
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [3,1,1]
=> [3,1,1]
=> 3
([(1,4),(2,3)],5)
=> [2,3] => [3,2]
=> [2,2,1]
=> 3
([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => [2,1,1,1]
=> [4,1]
=> 2
([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => [2,1,1,1]
=> [4,1]
=> 2
([(2,3),(2,4),(3,4)],5)
=> [2,3] => [3,2]
=> [2,2,1]
=> 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> [5]
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => [2,1,1,1]
=> [4,1]
=> 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => [2,1,1,1]
=> [4,1]
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> [1,2,2] => [2,2,1]
=> [3,2]
=> 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> [5]
=> 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [2,2,1]
=> [3,2]
=> 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> [5]
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> [5]
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => [2,1,1,1]
=> [4,1]
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [2,2,1]
=> [3,2]
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> [5]
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [2,2,1]
=> [3,2]
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> [5]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => [2,1,1,1]
=> [4,1]
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [2,2,1]
=> [3,2]
=> 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> [5]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> [5]
=> 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> [5]
=> 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => [3,2]
=> [2,2,1]
=> 3
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => [2,1,1,1]
=> [4,1]
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [2,1,1,1]
=> [4,1]
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> [5]
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [2,2,1]
=> [3,2]
=> 2
Description
The length of the partition.
Matching statistic: St000734
Mp00152: Graphs Laplacian multiplicitiesInteger compositions
Mp00040: Integer compositions to partitionInteger partitions
Mp00042: Integer partitions initial tableauStandard tableaux
St000734: Standard tableaux ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> [1] => [1]
=> [[1]]
=> 1
([],2)
=> [2] => [2]
=> [[1,2]]
=> 2
([(0,1)],2)
=> [1,1] => [1,1]
=> [[1],[2]]
=> 1
([],3)
=> [3] => [3]
=> [[1,2,3]]
=> 3
([(1,2)],3)
=> [1,2] => [2,1]
=> [[1,2],[3]]
=> 2
([(0,2),(1,2)],3)
=> [1,1,1] => [1,1,1]
=> [[1],[2],[3]]
=> 1
([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1]
=> [[1,2],[3]]
=> 2
([],4)
=> [4] => [4]
=> [[1,2,3,4]]
=> 4
([(2,3)],4)
=> [1,3] => [3,1]
=> [[1,2,3],[4]]
=> 3
([(1,3),(2,3)],4)
=> [1,1,2] => [2,1,1]
=> [[1,2],[3],[4]]
=> 2
([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [2,1,1]
=> [[1,2],[3],[4]]
=> 2
([(0,3),(1,2)],4)
=> [2,2] => [2,2]
=> [[1,2],[3,4]]
=> 2
([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 1
([(1,2),(1,3),(2,3)],4)
=> [2,2] => [2,2]
=> [[1,2],[3,4]]
=> 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => [2,1,1]
=> [[1,2],[3],[4]]
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [2,1,1]
=> [[1,2],[3],[4]]
=> 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [3,1]
=> [[1,2,3],[4]]
=> 3
([],5)
=> [5] => [5]
=> [[1,2,3,4,5]]
=> 5
([(3,4)],5)
=> [1,4] => [4,1]
=> [[1,2,3,4],[5]]
=> 4
([(2,4),(3,4)],5)
=> [1,1,3] => [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3
([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => [2,2,1]
=> [[1,2],[3,4],[5]]
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3
([(1,4),(2,3)],5)
=> [2,3] => [3,2]
=> [[1,2,3],[4,5]]
=> 3
([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 2
([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 2
([(2,3),(2,4),(3,4)],5)
=> [2,3] => [3,2]
=> [[1,2,3],[4,5]]
=> 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> [1,2,2] => [2,2,1]
=> [[1,2],[3,4],[5]]
=> 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [2,2,1]
=> [[1,2],[3,4],[5]]
=> 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [2,2,1]
=> [[1,2],[3,4],[5]]
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [2,2,1]
=> [[1,2],[3,4],[5]]
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [2,2,1]
=> [[1,2],[3,4],[5]]
=> 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => [3,2]
=> [[1,2,3],[4,5]]
=> 3
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [2,2,1]
=> [[1,2],[3,4],[5]]
=> 2
([(0,9),(1,7),(1,8),(2,7),(2,11),(3,6),(3,8),(4,9),(4,11),(5,6),(5,9),(5,11),(6,10),(7,10),(8,10),(10,11)],12)
=> [1,1,1,1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 1
Description
The last entry in the first row of a standard tableau.
Mp00152: Graphs Laplacian multiplicitiesInteger compositions
Mp00094: Integer compositions to binary wordBinary words
Mp00105: Binary words complementBinary words
St000392: Binary words ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> [1] => 1 => 0 => 0 = 1 - 1
([],2)
=> [2] => 10 => 01 => 1 = 2 - 1
([(0,1)],2)
=> [1,1] => 11 => 00 => 0 = 1 - 1
([],3)
=> [3] => 100 => 011 => 2 = 3 - 1
([(1,2)],3)
=> [1,2] => 110 => 001 => 1 = 2 - 1
([(0,2),(1,2)],3)
=> [1,1,1] => 111 => 000 => 0 = 1 - 1
([(0,1),(0,2),(1,2)],3)
=> [2,1] => 101 => 010 => 1 = 2 - 1
([],4)
=> [4] => 1000 => 0111 => 3 = 4 - 1
([(2,3)],4)
=> [1,3] => 1100 => 0011 => 2 = 3 - 1
([(1,3),(2,3)],4)
=> [1,1,2] => 1110 => 0001 => 1 = 2 - 1
([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => 1101 => 0010 => 1 = 2 - 1
([(0,3),(1,2)],4)
=> [2,2] => 1010 => 0101 => 1 = 2 - 1
([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => 1111 => 0000 => 0 = 1 - 1
([(1,2),(1,3),(2,3)],4)
=> [2,2] => 1010 => 0101 => 1 = 2 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => 1111 => 0000 => 0 = 1 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => 1101 => 0010 => 1 = 2 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => 1011 => 0100 => 1 = 2 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => 1001 => 0110 => 2 = 3 - 1
([],5)
=> [5] => 10000 => 01111 => 4 = 5 - 1
([(3,4)],5)
=> [1,4] => 11000 => 00111 => 3 = 4 - 1
([(2,4),(3,4)],5)
=> [1,1,3] => 11100 => 00011 => 2 = 3 - 1
([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => 11010 => 00101 => 1 = 2 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => 11001 => 00110 => 2 = 3 - 1
([(1,4),(2,3)],5)
=> [2,3] => 10100 => 01011 => 2 = 3 - 1
([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => 11110 => 00001 => 1 = 2 - 1
([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => 11110 => 00001 => 1 = 2 - 1
([(2,3),(2,4),(3,4)],5)
=> [2,3] => 10100 => 01011 => 2 = 3 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => 11111 => 00000 => 0 = 1 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => 11110 => 00001 => 1 = 2 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => 11101 => 00010 => 1 = 2 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [1,2,2] => 11010 => 00101 => 1 = 2 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => 11111 => 00000 => 0 = 1 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => 10110 => 01001 => 1 = 2 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => 11111 => 00000 => 0 = 1 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => 11111 => 00000 => 0 = 1 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => 11101 => 00010 => 1 = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => 10101 => 01010 => 1 = 2 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => 11111 => 00000 => 0 = 1 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => 10110 => 01001 => 1 = 2 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => 11111 => 00000 => 0 = 1 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => 11011 => 00100 => 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => 10101 => 01010 => 1 = 2 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => 11111 => 00000 => 0 = 1 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => 11111 => 00000 => 0 = 1 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => 11111 => 00000 => 0 = 1 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => 10010 => 01101 => 2 = 3 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => 11011 => 00100 => 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => 10111 => 01000 => 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,1,1,1] => 11111 => 00000 => 0 = 1 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => 10101 => 01010 => 1 = 2 - 1
([(0,9),(1,7),(1,8),(2,7),(2,11),(3,6),(3,8),(4,9),(4,11),(5,6),(5,9),(5,11),(6,10),(7,10),(8,10),(10,11)],12)
=> [1,1,1,1,1,1,1,1,1,1,1,1] => 111111111111 => 000000000000 => ? = 1 - 1
Description
The length of the longest run of ones in a binary word.
Matching statistic: St000983
Mp00152: Graphs Laplacian multiplicitiesInteger compositions
Mp00094: Integer compositions to binary wordBinary words
Mp00268: Binary words zeros to flag zerosBinary words
St000983: Binary words ⟶ ℤResult quality: 99% values known / values provided: 99%distinct values known / distinct values provided: 100%
Values
([],1)
=> [1] => 1 => 1 => 1
([],2)
=> [2] => 10 => 01 => 2
([(0,1)],2)
=> [1,1] => 11 => 11 => 1
([],3)
=> [3] => 100 => 101 => 3
([(1,2)],3)
=> [1,2] => 110 => 011 => 2
([(0,2),(1,2)],3)
=> [1,1,1] => 111 => 111 => 1
([(0,1),(0,2),(1,2)],3)
=> [2,1] => 101 => 001 => 2
([],4)
=> [4] => 1000 => 0101 => 4
([(2,3)],4)
=> [1,3] => 1100 => 1011 => 3
([(1,3),(2,3)],4)
=> [1,1,2] => 1110 => 0111 => 2
([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => 1101 => 0011 => 2
([(0,3),(1,2)],4)
=> [2,2] => 1010 => 1001 => 2
([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => 1111 => 1111 => 1
([(1,2),(1,3),(2,3)],4)
=> [2,2] => 1010 => 1001 => 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => 1111 => 1111 => 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => 1101 => 0011 => 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => 1011 => 0001 => 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => 1001 => 1101 => 3
([],5)
=> [5] => 10000 => 10101 => 5
([(3,4)],5)
=> [1,4] => 11000 => 01011 => 4
([(2,4),(3,4)],5)
=> [1,1,3] => 11100 => 10111 => 3
([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => 11010 => 10011 => 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => 11001 => 11011 => 3
([(1,4),(2,3)],5)
=> [2,3] => 10100 => 01001 => 3
([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => 11110 => 01111 => 2
([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => 11110 => 01111 => 2
([(2,3),(2,4),(3,4)],5)
=> [2,3] => 10100 => 01001 => 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => 11111 => 11111 => 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => 11110 => 01111 => 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => 11101 => 00111 => 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> [1,2,2] => 11010 => 10011 => 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => 11111 => 11111 => 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => 10110 => 10001 => 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => 11111 => 11111 => 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => 11111 => 11111 => 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => 11101 => 00111 => 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => 10101 => 11001 => 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => 11111 => 11111 => 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => 10110 => 10001 => 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => 11111 => 11111 => 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => 11011 => 00011 => 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => 10101 => 11001 => 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => 11111 => 11111 => 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => 11111 => 11111 => 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => 11111 => 11111 => 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => 10010 => 01101 => 3
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => 11011 => 00011 => 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => 10111 => 00001 => 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,1,1,1] => 11111 => 11111 => 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => 10101 => 11001 => 2
([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,9),(3,5),(3,6),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(6,7),(6,9),(7,8),(7,9),(8,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => 1111111111 => 1111111111 => ? = 1
([(0,1),(0,5),(0,6),(0,8),(1,4),(1,6),(1,7),(2,3),(2,4),(2,5),(2,9),(3,6),(3,7),(3,8),(3,9),(4,5),(4,7),(4,9),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => 1111111111 => 1111111111 => ? = 1
([(0,6),(0,7),(0,8),(0,9),(1,2),(1,4),(1,5),(1,7),(1,9),(2,3),(2,5),(2,7),(2,8),(3,4),(3,5),(3,6),(3,8),(4,5),(4,6),(4,9),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => 1111111111 => 1111111111 => ? = 1
([(0,3),(0,5),(0,7),(0,9),(1,2),(1,4),(1,7),(1,8),(2,3),(2,6),(2,7),(2,8),(3,6),(3,7),(3,9),(4,5),(4,6),(4,8),(4,9),(5,6),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => 1111111111 => 1111111111 => ? = 1
([(0,4),(0,5),(0,8),(1,2),(1,3),(1,6),(1,7),(2,3),(2,4),(2,7),(2,9),(3,4),(3,6),(3,9),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => 1111111111 => 1111111111 => ? = 1
([(0,2),(0,5),(0,6),(0,8),(1,2),(1,3),(1,4),(1,7),(2,7),(2,8),(3,4),(3,5),(3,7),(3,9),(4,6),(4,8),(4,9),(5,6),(5,7),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => 1111111111 => 1111111111 => ? = 1
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,6),(1,8),(1,9),(2,5),(2,7),(2,9),(3,4),(3,5),(3,7),(3,8),(4,6),(4,7),(4,8),(5,7),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => 1111111111 => 1111111111 => ? = 1
([(0,1),(0,5),(0,6),(1,4),(1,8),(1,9),(2,3),(2,4),(2,6),(2,7),(2,9),(3,4),(3,5),(3,7),(3,8),(4,8),(4,9),(5,6),(5,7),(5,8),(6,7),(6,9),(7,8),(7,9),(8,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => 1111111111 => 1111111111 => ? = 1
([(0,8),(1,7),(2,5),(2,6),(3,7),(3,9),(4,8),(4,9),(5,7),(5,9),(6,8),(6,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => 1111111111 => 1111111111 => ? = 1
([(0,9),(1,7),(1,8),(2,7),(2,11),(3,6),(3,8),(4,9),(4,11),(5,6),(5,9),(5,11),(6,10),(7,10),(8,10),(10,11)],12)
=> [1,1,1,1,1,1,1,1,1,1,1,1] => 111111111111 => 111111111111 => ? = 1
([(0,8),(1,5),(1,7),(2,4),(2,6),(3,6),(3,7),(4,8),(4,9),(5,8),(5,9),(6,9),(7,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => 1111111111 => 1111111111 => ? = 1
([(0,1),(0,3),(1,2),(2,4),(3,5),(4,8),(5,9),(6,7),(6,8),(7,9),(8,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => 1111111111 => 1111111111 => ? = 1
([(0,5),(1,2),(1,9),(2,6),(3,7),(3,9),(4,6),(4,8),(5,7),(6,9),(7,8),(8,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => 1111111111 => 1111111111 => ? = 1
([(0,9),(1,3),(1,8),(2,8),(2,9),(3,5),(4,7),(4,9),(5,7),(5,8),(6,7),(6,8),(6,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => 1111111111 => 1111111111 => ? = 1
([(0,9),(1,4),(1,7),(1,8),(2,3),(2,5),(2,6),(3,7),(3,8),(4,5),(4,6),(5,8),(5,9),(6,7),(6,9),(7,9),(8,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => 1111111111 => 1111111111 => ? = 1
([(0,8),(0,9),(1,5),(1,7),(1,9),(2,4),(2,7),(2,8),(3,4),(3,5),(3,7),(4,6),(4,9),(5,6),(5,8),(6,8),(6,9),(7,8),(7,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => 1111111111 => 1111111111 => ? = 1
([(0,7),(0,8),(1,5),(1,6),(2,4),(2,6),(2,8),(3,4),(3,5),(3,7),(4,9),(5,8),(5,9),(6,7),(6,9),(7,9),(8,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => 1111111111 => 1111111111 => ? = 1
([(0,7),(0,9),(1,6),(1,8),(2,3),(2,4),(2,5),(3,8),(3,9),(4,6),(4,7),(4,8),(5,6),(5,7),(5,9),(6,9),(7,8),(8,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => 1111111111 => 1111111111 => ? = 1
([(0,8),(0,9),(1,6),(1,7),(1,9),(2,5),(2,7),(2,9),(3,5),(3,6),(3,8),(4,5),(4,6),(4,7),(4,8),(5,9),(6,9),(7,8),(8,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => 1111111111 => 1111111111 => ? = 1
([(0,7),(0,8),(0,9),(1,2),(1,5),(1,6),(1,9),(2,3),(2,4),(2,8),(3,6),(3,7),(3,8),(4,5),(4,7),(4,9),(5,7),(5,8),(6,7),(6,9),(8,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => 1111111111 => 1111111111 => ? = 1
([(0,5),(0,6),(0,9),(1,4),(1,8),(1,9),(2,3),(2,7),(2,9),(3,4),(3,5),(3,8),(4,6),(4,7),(5,7),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => 1111111111 => 1111111111 => ? = 1
([(0,5),(0,7),(0,9),(1,4),(1,6),(1,9),(2,3),(2,8),(2,9),(3,4),(3,5),(3,9),(4,7),(4,8),(5,6),(5,8),(6,8),(6,9),(7,8),(7,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => 1111111111 => 1111111111 => ? = 1
([(0,3),(0,4),(0,7),(0,8),(0,9),(1,2),(1,4),(1,5),(1,6),(1,8),(1,9),(2,3),(2,5),(2,6),(2,8),(2,9),(3,4),(3,5),(3,7),(3,8),(4,6),(4,7),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => 1111111111 => 1111111111 => ? = 1
([(0,3),(0,8),(0,9),(1,2),(1,7),(1,9),(2,5),(2,7),(2,9),(3,6),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,9),(8,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => 1111111111 => 1111111111 => ? = 1
Description
The length of the longest alternating subword. This is the length of the longest consecutive subword of the form 010... or of the form 101....
Mp00152: Graphs Laplacian multiplicitiesInteger compositions
Mp00038: Integer compositions reverseInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
St000444: Dyck paths ⟶ ℤResult quality: 88% values known / values provided: 95%distinct values known / distinct values provided: 88%
Values
([],1)
=> [1] => [1] => [1,0]
=> ? = 1
([],2)
=> [2] => [2] => [1,1,0,0]
=> 2
([(0,1)],2)
=> [1,1] => [1,1] => [1,0,1,0]
=> 1
([],3)
=> [3] => [3] => [1,1,1,0,0,0]
=> 3
([(1,2)],3)
=> [1,2] => [2,1] => [1,1,0,0,1,0]
=> 2
([(0,2),(1,2)],3)
=> [1,1,1] => [1,1,1] => [1,0,1,0,1,0]
=> 1
([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,2] => [1,0,1,1,0,0]
=> 2
([],4)
=> [4] => [4] => [1,1,1,1,0,0,0,0]
=> 4
([(2,3)],4)
=> [1,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> 3
([(1,3),(2,3)],4)
=> [1,1,2] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 2
([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2
([(0,3),(1,2)],4)
=> [2,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 1
([(1,2),(1,3),(2,3)],4)
=> [2,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> 3
([],5)
=> [5] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 5
([(3,4)],5)
=> [1,4] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 4
([(2,4),(3,4)],5)
=> [1,1,3] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 3
([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 3
([(1,4),(2,3)],5)
=> [2,3] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3
([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 2
([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 2
([(2,3),(2,4),(3,4)],5)
=> [2,3] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> [1,2,2] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 3
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 3
([(0,8),(1,6),(2,6),(3,7),(4,5),(5,8),(6,7),(7,8)],9)
=> [1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1
([(0,6),(1,6),(2,7),(3,7),(4,8),(5,7),(5,8),(6,8)],9)
=> [1,1,1,1,2,1,1,1] => [1,1,1,2,1,1,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 2
([(0,7),(1,7),(2,6),(3,6),(4,5),(5,8),(6,8),(7,8)],9)
=> [1,1,1,1,2,1,1,1] => [1,1,1,2,1,1,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 2
([(0,8),(1,7),(2,3),(2,4),(3,5),(4,6),(5,7),(6,8)],9)
=> [1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1
([(0,1),(0,4),(0,5),(0,7),(0,8),(1,2),(1,3),(1,7),(1,8),(2,3),(2,5),(2,6),(2,8),(3,4),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> [2,2,1,2,1,1] => [1,1,2,1,2,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 2
([(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,6),(1,7),(1,8),(2,3),(2,5),(2,7),(2,8),(3,4),(3,7),(3,8),(4,5),(4,6),(4,8),(5,6),(5,8),(6,8),(7,8)],9)
=> [1,3,3,1,1] => [1,1,3,3,1] => [1,0,1,0,1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> ? = 3
([(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,8),(2,3),(2,6),(2,8),(3,4),(3,5),(3,7),(3,8),(4,5),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1
([(0,3),(0,6),(0,7),(0,8),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,8),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1
([(0,2),(0,3),(0,7),(0,8),(1,2),(1,3),(1,5),(1,6),(2,5),(2,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,8),(6,7),(7,8)],9)
=> [1,1,2,1,1,1,1,1] => [1,1,1,1,1,2,1,1] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 2
([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,9),(3,5),(3,6),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(6,7),(6,9),(7,8),(7,9),(8,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1
([(0,2),(0,3),(0,7),(0,8),(1,2),(1,3),(1,5),(1,6),(2,6),(2,8),(3,5),(3,7),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [2,1,2,2,1,1] => [1,1,2,2,1,2] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 2
([(0,3),(0,5),(0,8),(1,2),(1,4),(1,7),(2,3),(2,6),(2,7),(3,6),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,7),(1,8),(2,3),(2,6),(2,8),(3,4),(3,6),(4,7),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,1,2,1,1,1,1,1] => [1,1,1,1,1,2,1,1] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 2
([(0,1),(0,6),(0,7),(1,4),(1,5),(2,3),(2,5),(2,7),(2,8),(3,4),(3,6),(3,8),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1
([(0,1),(0,5),(0,6),(0,8),(1,4),(1,6),(1,7),(2,3),(2,4),(2,5),(2,9),(3,6),(3,7),(3,8),(3,9),(4,5),(4,7),(4,9),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1
([(0,6),(0,7),(0,8),(1,2),(1,4),(1,5),(1,7),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(3,8),(4,5),(4,7),(4,8),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1
([(0,5),(0,7),(0,8),(1,2),(1,4),(1,6),(1,8),(2,3),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,1,1,2,1,1,1,1] => [1,1,1,1,2,1,1,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 2
([(0,6),(0,7),(0,8),(0,9),(1,2),(1,4),(1,5),(1,7),(1,9),(2,3),(2,5),(2,7),(2,8),(3,4),(3,5),(3,6),(3,8),(4,5),(4,6),(4,9),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1
([(0,3),(0,4),(0,7),(1,2),(1,5),(1,7),(1,8),(2,3),(2,6),(2,8),(3,6),(3,8),(4,5),(4,6),(4,7),(5,6),(5,7),(5,8),(6,8),(7,8)],9)
=> [1,1,2,1,1,1,1,1] => [1,1,1,1,1,2,1,1] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 2
([(0,1),(0,5),(0,7),(0,8),(1,4),(1,7),(1,8),(2,3),(2,4),(2,6),(2,7),(3,5),(3,6),(3,8),(4,6),(4,7),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> [2,2,2,2,1] => [1,2,2,2,2] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2
([(0,3),(0,5),(0,7),(0,9),(1,2),(1,4),(1,7),(1,8),(2,3),(2,6),(2,7),(2,8),(3,6),(3,7),(3,9),(4,5),(4,6),(4,8),(4,9),(5,6),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1
([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(3,6),(3,8),(4,5),(4,7),(5,8),(6,7)],9)
=> [4,4,1] => [1,4,4] => [1,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 4
([(0,4),(0,5),(1,2),(1,3),(1,7),(1,8),(2,3),(2,6),(2,8),(3,6),(3,7),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [2,1,1,2,1,1,1] => [1,1,1,2,1,1,2] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ? = 2
([(0,4),(0,5),(0,8),(1,2),(1,3),(1,4),(1,7),(2,3),(2,4),(2,6),(3,6),(3,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1
([(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(2,3),(2,5),(2,7),(2,8),(3,4),(3,7),(3,8),(4,5),(4,6),(4,8),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,2,1,1,2,1,1] => [1,1,2,1,1,2,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 2
([(0,3),(0,6),(0,7),(1,2),(1,4),(1,5),(2,4),(2,6),(2,8),(3,5),(3,7),(3,8),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1
([(0,2),(0,3),(1,4),(1,5),(1,6),(1,7),(2,6),(2,7),(2,8),(3,4),(3,5),(3,8),(4,5),(4,7),(4,8),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,1,2,1,1,1,1,1] => [1,1,1,1,1,2,1,1] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 2
([(0,4),(0,5),(0,8),(1,2),(1,3),(1,6),(1,7),(2,3),(2,4),(2,7),(2,9),(3,4),(3,6),(3,9),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1
([(0,1),(0,4),(0,8),(1,3),(1,7),(2,3),(2,4),(2,5),(2,6),(3,5),(3,7),(4,6),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1
([(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,7),(4,8),(5,7),(6,8),(7,8)],9)
=> [3,2,2,1,1] => [1,1,2,2,3] => [1,0,1,0,1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 3
([(0,2),(0,5),(0,6),(0,8),(1,2),(1,3),(1,4),(1,7),(2,7),(2,8),(3,4),(3,5),(3,7),(3,9),(4,6),(4,8),(4,9),(5,6),(5,7),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,6),(1,8),(1,9),(2,5),(2,7),(2,9),(3,4),(3,5),(3,7),(3,8),(4,6),(4,7),(4,8),(5,7),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1
([(0,1),(0,5),(0,6),(1,4),(1,8),(1,9),(2,3),(2,4),(2,6),(2,7),(2,9),(3,4),(3,5),(3,7),(3,8),(4,8),(4,9),(5,6),(5,7),(5,8),(6,7),(6,9),(7,8),(7,9),(8,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1
([(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [3,5] => [5,3] => [1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0]
=> ? = 5
([(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,2,2,3] => [3,2,2,1] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 3
([(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,1,1,1,1,3] => [3,1,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 3
([(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [2,1,2,3] => [3,2,1,2] => [1,1,1,0,0,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 3
([(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,1,3,3] => [3,3,1,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 3
([(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,2,1,1,3] => [3,1,1,2,1] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 3
([(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [2,1,1,1,3] => [3,1,1,1,2] => [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 3
([(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,1,1,2,3] => [3,2,1,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 3
([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [3,2,3] => [3,2,3] => [1,1,1,0,0,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 3
([(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,1,2,1,3] => [3,1,2,1,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 3
([(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [2,3,3] => [3,3,2] => [1,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 3
([(3,7),(4,7),(5,7),(6,7)],8)
=> [1,3,4] => [4,3,1] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0,1,0]
=> ? = 4
([],8)
=> [8] => [8] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 8
([(4,7),(5,6)],8)
=> [2,6] => [6,2] => [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 6
([(4,7),(5,6),(6,7)],8)
=> [1,1,1,5] => [5,1,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 5
([(4,6),(4,7),(5,6),(5,7)],8)
=> [1,2,5] => [5,2,1] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0,1,0]
=> ? = 5
Description
The length of the maximal rise of a Dyck path.
Mp00152: Graphs Laplacian multiplicitiesInteger compositions
Mp00038: Integer compositions reverseInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
St000442: Dyck paths ⟶ ℤResult quality: 88% values known / values provided: 95%distinct values known / distinct values provided: 88%
Values
([],1)
=> [1] => [1] => [1,0]
=> ? = 1 - 1
([],2)
=> [2] => [2] => [1,1,0,0]
=> 1 = 2 - 1
([(0,1)],2)
=> [1,1] => [1,1] => [1,0,1,0]
=> 0 = 1 - 1
([],3)
=> [3] => [3] => [1,1,1,0,0,0]
=> 2 = 3 - 1
([(1,2)],3)
=> [1,2] => [2,1] => [1,1,0,0,1,0]
=> 1 = 2 - 1
([(0,2),(1,2)],3)
=> [1,1,1] => [1,1,1] => [1,0,1,0,1,0]
=> 0 = 1 - 1
([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,2] => [1,0,1,1,0,0]
=> 1 = 2 - 1
([],4)
=> [4] => [4] => [1,1,1,1,0,0,0,0]
=> 3 = 4 - 1
([(2,3)],4)
=> [1,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> 2 = 3 - 1
([(1,3),(2,3)],4)
=> [1,1,2] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 1 = 2 - 1
([(0,3),(1,2)],4)
=> [2,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> 1 = 2 - 1
([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
([(1,2),(1,3),(2,3)],4)
=> [2,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> 1 = 2 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 1 = 2 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> 2 = 3 - 1
([],5)
=> [5] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 4 = 5 - 1
([(3,4)],5)
=> [1,4] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 3 = 4 - 1
([(2,4),(3,4)],5)
=> [1,1,3] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 2 = 3 - 1
([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 1 = 2 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 2 = 3 - 1
([(1,4),(2,3)],5)
=> [2,3] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 2 = 3 - 1
([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 1 = 2 - 1
([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 1 = 2 - 1
([(2,3),(2,4),(3,4)],5)
=> [2,3] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 2 = 3 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 1 = 2 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [1,2,2] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 1 = 2 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 1 = 2 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 1 = 2 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 1 = 2 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 1 = 2 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2 = 3 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 2 = 3 - 1
([(0,8),(1,6),(2,6),(3,7),(4,5),(5,8),(6,7),(7,8)],9)
=> [1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
([(0,6),(1,6),(2,7),(3,7),(4,8),(5,7),(5,8),(6,8)],9)
=> [1,1,1,1,2,1,1,1] => [1,1,1,2,1,1,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 2 - 1
([(0,7),(1,7),(2,6),(3,6),(4,5),(5,8),(6,8),(7,8)],9)
=> [1,1,1,1,2,1,1,1] => [1,1,1,2,1,1,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 2 - 1
([(0,8),(1,7),(2,3),(2,4),(3,5),(4,6),(5,7),(6,8)],9)
=> [1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
([(0,1),(0,4),(0,5),(0,7),(0,8),(1,2),(1,3),(1,7),(1,8),(2,3),(2,5),(2,6),(2,8),(3,4),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> [2,2,1,2,1,1] => [1,1,2,1,2,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 2 - 1
([(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,6),(1,7),(1,8),(2,3),(2,5),(2,7),(2,8),(3,4),(3,7),(3,8),(4,5),(4,6),(4,8),(5,6),(5,8),(6,8),(7,8)],9)
=> [1,3,3,1,1] => [1,1,3,3,1] => [1,0,1,0,1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> ? = 3 - 1
([(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,8),(2,3),(2,6),(2,8),(3,4),(3,5),(3,7),(3,8),(4,5),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
([(0,3),(0,6),(0,7),(0,8),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,8),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
([(0,2),(0,3),(0,7),(0,8),(1,2),(1,3),(1,5),(1,6),(2,5),(2,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,8),(6,7),(7,8)],9)
=> [1,1,2,1,1,1,1,1] => [1,1,1,1,1,2,1,1] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 2 - 1
([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,9),(3,5),(3,6),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(6,7),(6,9),(7,8),(7,9),(8,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
([(0,2),(0,3),(0,7),(0,8),(1,2),(1,3),(1,5),(1,6),(2,6),(2,8),(3,5),(3,7),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [2,1,2,2,1,1] => [1,1,2,2,1,2] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 2 - 1
([(0,3),(0,5),(0,8),(1,2),(1,4),(1,7),(2,3),(2,6),(2,7),(3,6),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,7),(1,8),(2,3),(2,6),(2,8),(3,4),(3,6),(4,7),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,1,2,1,1,1,1,1] => [1,1,1,1,1,2,1,1] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 2 - 1
([(0,1),(0,6),(0,7),(1,4),(1,5),(2,3),(2,5),(2,7),(2,8),(3,4),(3,6),(3,8),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
([(0,1),(0,5),(0,6),(0,8),(1,4),(1,6),(1,7),(2,3),(2,4),(2,5),(2,9),(3,6),(3,7),(3,8),(3,9),(4,5),(4,7),(4,9),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
([(0,6),(0,7),(0,8),(1,2),(1,4),(1,5),(1,7),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(3,8),(4,5),(4,7),(4,8),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
([(0,5),(0,7),(0,8),(1,2),(1,4),(1,6),(1,8),(2,3),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,1,1,2,1,1,1,1] => [1,1,1,1,2,1,1,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 2 - 1
([(0,6),(0,7),(0,8),(0,9),(1,2),(1,4),(1,5),(1,7),(1,9),(2,3),(2,5),(2,7),(2,8),(3,4),(3,5),(3,6),(3,8),(4,5),(4,6),(4,9),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
([(0,3),(0,4),(0,7),(1,2),(1,5),(1,7),(1,8),(2,3),(2,6),(2,8),(3,6),(3,8),(4,5),(4,6),(4,7),(5,6),(5,7),(5,8),(6,8),(7,8)],9)
=> [1,1,2,1,1,1,1,1] => [1,1,1,1,1,2,1,1] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 2 - 1
([(0,1),(0,5),(0,7),(0,8),(1,4),(1,7),(1,8),(2,3),(2,4),(2,6),(2,7),(3,5),(3,6),(3,8),(4,6),(4,7),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> [2,2,2,2,1] => [1,2,2,2,2] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2 - 1
([(0,3),(0,5),(0,7),(0,9),(1,2),(1,4),(1,7),(1,8),(2,3),(2,6),(2,7),(2,8),(3,6),(3,7),(3,9),(4,5),(4,6),(4,8),(4,9),(5,6),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(3,6),(3,8),(4,5),(4,7),(5,8),(6,7)],9)
=> [4,4,1] => [1,4,4] => [1,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 4 - 1
([(0,4),(0,5),(1,2),(1,3),(1,7),(1,8),(2,3),(2,6),(2,8),(3,6),(3,7),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [2,1,1,2,1,1,1] => [1,1,1,2,1,1,2] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ? = 2 - 1
([(0,4),(0,5),(0,8),(1,2),(1,3),(1,4),(1,7),(2,3),(2,4),(2,6),(3,6),(3,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
([(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(2,3),(2,5),(2,7),(2,8),(3,4),(3,7),(3,8),(4,5),(4,6),(4,8),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,2,1,1,2,1,1] => [1,1,2,1,1,2,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 2 - 1
([(0,3),(0,6),(0,7),(1,2),(1,4),(1,5),(2,4),(2,6),(2,8),(3,5),(3,7),(3,8),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
([(0,2),(0,3),(1,4),(1,5),(1,6),(1,7),(2,6),(2,7),(2,8),(3,4),(3,5),(3,8),(4,5),(4,7),(4,8),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,1,2,1,1,1,1,1] => [1,1,1,1,1,2,1,1] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 2 - 1
([(0,4),(0,5),(0,8),(1,2),(1,3),(1,6),(1,7),(2,3),(2,4),(2,7),(2,9),(3,4),(3,6),(3,9),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
([(0,1),(0,4),(0,8),(1,3),(1,7),(2,3),(2,4),(2,5),(2,6),(3,5),(3,7),(4,6),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
([(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,7),(4,8),(5,7),(6,8),(7,8)],9)
=> [3,2,2,1,1] => [1,1,2,2,3] => [1,0,1,0,1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 3 - 1
([(0,2),(0,5),(0,6),(0,8),(1,2),(1,3),(1,4),(1,7),(2,7),(2,8),(3,4),(3,5),(3,7),(3,9),(4,6),(4,8),(4,9),(5,6),(5,7),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,6),(1,8),(1,9),(2,5),(2,7),(2,9),(3,4),(3,5),(3,7),(3,8),(4,6),(4,7),(4,8),(5,7),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
([(0,1),(0,5),(0,6),(1,4),(1,8),(1,9),(2,3),(2,4),(2,6),(2,7),(2,9),(3,4),(3,5),(3,7),(3,8),(4,8),(4,9),(5,6),(5,7),(5,8),(6,7),(6,9),(7,8),(7,9),(8,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 - 1
([(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [3,5] => [5,3] => [1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0]
=> ? = 5 - 1
([(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,2,2,3] => [3,2,2,1] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 3 - 1
([(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,1,1,1,1,3] => [3,1,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 3 - 1
([(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [2,1,2,3] => [3,2,1,2] => [1,1,1,0,0,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 3 - 1
([(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,1,3,3] => [3,3,1,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 3 - 1
([(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,2,1,1,3] => [3,1,1,2,1] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 3 - 1
([(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [2,1,1,1,3] => [3,1,1,1,2] => [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 3 - 1
([(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,1,1,2,3] => [3,2,1,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 3 - 1
([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [3,2,3] => [3,2,3] => [1,1,1,0,0,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 3 - 1
([(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,1,2,1,3] => [3,1,2,1,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 3 - 1
([(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [2,3,3] => [3,3,2] => [1,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 3 - 1
([(3,7),(4,7),(5,7),(6,7)],8)
=> [1,3,4] => [4,3,1] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0,1,0]
=> ? = 4 - 1
([],8)
=> [8] => [8] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 8 - 1
([(4,7),(5,6)],8)
=> [2,6] => [6,2] => [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 6 - 1
([(4,7),(5,6),(6,7)],8)
=> [1,1,1,5] => [5,1,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 5 - 1
([(4,6),(4,7),(5,6),(5,7)],8)
=> [1,2,5] => [5,2,1] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0,1,0]
=> ? = 5 - 1
Description
The maximal area to the right of an up step of a Dyck path.
Matching statistic: St000521
Mp00152: Graphs Laplacian multiplicitiesInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00026: Dyck paths to ordered treeOrdered trees
St000521: Ordered trees ⟶ ℤResult quality: 88% values known / values provided: 94%distinct values known / distinct values provided: 88%
Values
([],1)
=> [1] => [1,0]
=> [[]]
=> 2 = 1 + 1
([],2)
=> [2] => [1,1,0,0]
=> [[[]]]
=> 3 = 2 + 1
([(0,1)],2)
=> [1,1] => [1,0,1,0]
=> [[],[]]
=> 2 = 1 + 1
([],3)
=> [3] => [1,1,1,0,0,0]
=> [[[[]]]]
=> 4 = 3 + 1
([(1,2)],3)
=> [1,2] => [1,0,1,1,0,0]
=> [[],[[]]]
=> 3 = 2 + 1
([(0,2),(1,2)],3)
=> [1,1,1] => [1,0,1,0,1,0]
=> [[],[],[]]
=> 2 = 1 + 1
([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,1,0,0,1,0]
=> [[[]],[]]
=> 3 = 2 + 1
([],4)
=> [4] => [1,1,1,1,0,0,0,0]
=> [[[[[]]]]]
=> 5 = 4 + 1
([(2,3)],4)
=> [1,3] => [1,0,1,1,1,0,0,0]
=> [[],[[[]]]]
=> 4 = 3 + 1
([(1,3),(2,3)],4)
=> [1,1,2] => [1,0,1,0,1,1,0,0]
=> [[],[],[[]]]
=> 3 = 2 + 1
([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> [[],[[]],[]]
=> 3 = 2 + 1
([(0,3),(1,2)],4)
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [[[]],[[]]]
=> 3 = 2 + 1
([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [[],[],[],[]]
=> 2 = 1 + 1
([(1,2),(1,3),(2,3)],4)
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [[[]],[[]]]
=> 3 = 2 + 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [[],[],[],[]]
=> 2 = 1 + 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> [[],[[]],[]]
=> 3 = 2 + 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [[[]],[],[]]
=> 3 = 2 + 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [[[[]]],[]]
=> 4 = 3 + 1
([],5)
=> [5] => [1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> 6 = 5 + 1
([(3,4)],5)
=> [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [[],[[[[]]]]]
=> 5 = 4 + 1
([(2,4),(3,4)],5)
=> [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [[],[],[[[]]]]
=> 4 = 3 + 1
([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [[],[[]],[[]]]
=> 3 = 2 + 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [[],[[[]]],[]]
=> 4 = 3 + 1
([(1,4),(2,3)],5)
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [[[]],[[[]]]]
=> 4 = 3 + 1
([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [[],[],[],[[]]]
=> 3 = 2 + 1
([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [[],[],[],[[]]]
=> 3 = 2 + 1
([(2,3),(2,4),(3,4)],5)
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [[[]],[[[]]]]
=> 4 = 3 + 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [[],[],[],[],[]]
=> 2 = 1 + 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [[],[],[],[[]]]
=> 3 = 2 + 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [[],[],[[]],[]]
=> 3 = 2 + 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [[],[[]],[[]]]
=> 3 = 2 + 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [[],[],[],[],[]]
=> 2 = 1 + 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [[[]],[],[[]]]
=> 3 = 2 + 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [[],[],[],[],[]]
=> 2 = 1 + 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [[],[],[],[],[]]
=> 2 = 1 + 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [[],[],[[]],[]]
=> 3 = 2 + 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [[[]],[[]],[]]
=> 3 = 2 + 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [[],[],[],[],[]]
=> 2 = 1 + 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [[[]],[],[[]]]
=> 3 = 2 + 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [[],[],[],[],[]]
=> 2 = 1 + 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [[],[[]],[],[]]
=> 3 = 2 + 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [[[]],[[]],[]]
=> 3 = 2 + 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [[],[],[],[],[]]
=> 2 = 1 + 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [[],[],[],[],[]]
=> 2 = 1 + 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [[],[],[],[],[]]
=> 2 = 1 + 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [[[[]]],[[]]]
=> 4 = 3 + 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [[],[[]],[],[]]
=> 3 = 2 + 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [[[]],[],[],[]]
=> 3 = 2 + 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [[],[],[],[],[]]
=> 2 = 1 + 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [[[]],[[]],[]]
=> 3 = 2 + 1
([(0,8),(1,6),(2,6),(3,7),(4,5),(5,8),(6,7),(7,8)],9)
=> [1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [[],[],[],[],[],[],[],[],[]]
=> ? = 1 + 1
([(0,6),(1,6),(2,7),(3,7),(4,8),(5,7),(5,8),(6,8)],9)
=> [1,1,1,1,2,1,1,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [[],[],[],[],[[]],[],[],[]]
=> ? = 2 + 1
([(0,7),(1,7),(2,6),(3,6),(4,5),(5,8),(6,8),(7,8)],9)
=> [1,1,1,1,2,1,1,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [[],[],[],[],[[]],[],[],[]]
=> ? = 2 + 1
([(0,8),(1,7),(2,3),(2,4),(3,5),(4,6),(5,7),(6,8)],9)
=> [1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [[],[],[],[],[],[],[],[],[]]
=> ? = 1 + 1
([(0,1),(0,4),(0,5),(0,7),(0,8),(1,2),(1,3),(1,7),(1,8),(2,3),(2,5),(2,6),(2,8),(3,4),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> [2,2,1,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> ?
=> ? = 2 + 1
([(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,6),(1,7),(2,3),(2,5),(2,7),(3,4),(3,7),(4,5),(4,6),(5,6)],8)
=> [3,3,1,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0,1,0]
=> [[[[]]],[[[]]],[],[]]
=> ? = 3 + 1
([(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,6),(1,7),(1,8),(2,3),(2,5),(2,7),(2,8),(3,4),(3,7),(3,8),(4,5),(4,6),(4,8),(5,6),(5,8),(6,8),(7,8)],9)
=> [1,3,3,1,1] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0,1,0,1,0]
=> [[],[[[]]],[[[]]],[],[]]
=> ? = 3 + 1
([(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,8),(2,3),(2,6),(2,8),(3,4),(3,5),(3,7),(3,8),(4,5),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [[],[],[],[],[],[],[],[],[]]
=> ? = 1 + 1
([(0,3),(0,6),(0,7),(0,8),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,8),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [[],[],[],[],[],[],[],[],[]]
=> ? = 1 + 1
([(0,2),(0,3),(0,7),(0,8),(1,2),(1,3),(1,5),(1,6),(2,5),(2,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,8),(6,7),(7,8)],9)
=> [1,1,2,1,1,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [[],[],[[]],[],[],[],[],[]]
=> ? = 2 + 1
([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,9),(3,5),(3,6),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(6,7),(6,9),(7,8),(7,9),(8,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [[],[],[],[],[],[],[],[],[],[]]
=> ? = 1 + 1
([(0,2),(0,3),(0,7),(0,8),(1,2),(1,3),(1,5),(1,6),(2,6),(2,8),(3,5),(3,7),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [2,1,2,2,1,1] => [1,1,0,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> ?
=> ? = 2 + 1
([(0,3),(0,5),(0,8),(1,2),(1,4),(1,7),(2,3),(2,6),(2,7),(3,6),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [[],[],[],[],[],[],[],[],[]]
=> ? = 1 + 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,7),(1,8),(2,3),(2,6),(2,8),(3,4),(3,6),(4,7),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,1,2,1,1,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [[],[],[[]],[],[],[],[],[]]
=> ? = 2 + 1
([(0,1),(0,6),(0,7),(1,4),(1,5),(2,3),(2,5),(2,7),(2,8),(3,4),(3,6),(3,8),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [[],[],[],[],[],[],[],[],[]]
=> ? = 1 + 1
([(0,1),(0,5),(0,6),(0,8),(1,4),(1,6),(1,7),(2,3),(2,4),(2,5),(2,9),(3,6),(3,7),(3,8),(3,9),(4,5),(4,7),(4,9),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [[],[],[],[],[],[],[],[],[],[]]
=> ? = 1 + 1
([(0,6),(0,7),(0,8),(1,2),(1,4),(1,5),(1,7),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(3,8),(4,5),(4,7),(4,8),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [[],[],[],[],[],[],[],[],[]]
=> ? = 1 + 1
([(0,5),(0,7),(0,8),(1,2),(1,4),(1,6),(1,8),(2,3),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,1,1,2,1,1,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [[],[],[],[[]],[],[],[],[]]
=> ? = 2 + 1
([(0,6),(0,7),(0,8),(0,9),(1,2),(1,4),(1,5),(1,7),(1,9),(2,3),(2,5),(2,7),(2,8),(3,4),(3,5),(3,6),(3,8),(4,5),(4,6),(4,9),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [[],[],[],[],[],[],[],[],[],[]]
=> ? = 1 + 1
([(0,3),(0,4),(0,7),(1,2),(1,5),(1,7),(1,8),(2,3),(2,6),(2,8),(3,6),(3,8),(4,5),(4,6),(4,7),(5,6),(5,7),(5,8),(6,8),(7,8)],9)
=> [1,1,2,1,1,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [[],[],[[]],[],[],[],[],[]]
=> ? = 2 + 1
([(0,1),(0,5),(0,7),(0,8),(1,4),(1,7),(1,8),(2,3),(2,4),(2,6),(2,7),(3,5),(3,6),(3,8),(4,6),(4,7),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> [2,2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [[[]],[[]],[[]],[[]],[]]
=> ? = 2 + 1
([(0,3),(0,5),(0,7),(0,9),(1,2),(1,4),(1,7),(1,8),(2,3),(2,6),(2,7),(2,8),(3,6),(3,7),(3,9),(4,5),(4,6),(4,8),(4,9),(5,6),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [[],[],[],[],[],[],[],[],[],[]]
=> ? = 1 + 1
([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(3,6),(3,8),(4,5),(4,7),(5,8),(6,7)],9)
=> [4,4,1] => [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> [[[[[]]]],[[[[]]]],[]]
=> ? = 4 + 1
([(0,4),(0,5),(1,2),(1,3),(1,7),(1,8),(2,3),(2,6),(2,8),(3,6),(3,7),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [2,1,1,2,1,1,1] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [[[]],[],[],[[]],[],[],[]]
=> ? = 2 + 1
([(0,4),(0,5),(0,8),(1,2),(1,3),(1,4),(1,7),(2,3),(2,4),(2,6),(3,6),(3,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [[],[],[],[],[],[],[],[],[]]
=> ? = 1 + 1
([(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(2,3),(2,5),(2,7),(2,8),(3,4),(3,7),(3,8),(4,5),(4,6),(4,8),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,2,1,1,2,1,1] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [[],[[]],[],[],[[]],[],[]]
=> ? = 2 + 1
([(0,3),(0,6),(0,7),(1,2),(1,4),(1,5),(2,4),(2,6),(2,8),(3,5),(3,7),(3,8),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [[],[],[],[],[],[],[],[],[]]
=> ? = 1 + 1
([(0,2),(0,3),(1,4),(1,5),(1,6),(1,7),(2,6),(2,7),(2,8),(3,4),(3,5),(3,8),(4,5),(4,7),(4,8),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,1,2,1,1,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [[],[],[[]],[],[],[],[],[]]
=> ? = 2 + 1
([(0,4),(0,5),(0,8),(1,2),(1,3),(1,6),(1,7),(2,3),(2,4),(2,7),(2,9),(3,4),(3,6),(3,9),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [[],[],[],[],[],[],[],[],[],[]]
=> ? = 1 + 1
([(0,1),(0,4),(0,8),(1,3),(1,7),(2,3),(2,4),(2,5),(2,6),(3,5),(3,7),(4,6),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [[],[],[],[],[],[],[],[],[]]
=> ? = 1 + 1
([(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,7),(4,8),(5,7),(6,8),(7,8)],9)
=> [3,2,2,1,1] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> ?
=> ? = 3 + 1
([(0,2),(0,5),(0,6),(0,8),(1,2),(1,3),(1,4),(1,7),(2,7),(2,8),(3,4),(3,5),(3,7),(3,9),(4,6),(4,8),(4,9),(5,6),(5,7),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [[],[],[],[],[],[],[],[],[],[]]
=> ? = 1 + 1
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,6),(1,8),(1,9),(2,5),(2,7),(2,9),(3,4),(3,5),(3,7),(3,8),(4,6),(4,7),(4,8),(5,7),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [[],[],[],[],[],[],[],[],[],[]]
=> ? = 1 + 1
([(0,1),(0,5),(0,6),(1,4),(1,8),(1,9),(2,3),(2,4),(2,6),(2,7),(2,9),(3,4),(3,5),(3,7),(3,8),(4,8),(4,9),(5,6),(5,7),(5,8),(6,7),(6,9),(7,8),(7,9),(8,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [[],[],[],[],[],[],[],[],[],[]]
=> ? = 1 + 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [7,1] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [[[[[[[[]]]]]]],[]]
=> ? = 7 + 1
([(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,2] => [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [[[[[[[]]]]]],[[]]]
=> ? = 6 + 1
([(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [3,3,1,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0,1,0]
=> [[[[]]],[[[]]],[],[]]
=> ? = 3 + 1
([(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [3,5] => [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> [[[[]]],[[[[[]]]]]]
=> ? = 5 + 1
([(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [4,2,1,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0,1,0]
=> [[[[[]]]],[[]],[],[]]
=> ? = 4 + 1
([(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [3,2,1,2] => [1,1,1,0,0,0,1,1,0,0,1,0,1,1,0,0]
=> [[[[]]],[[]],[],[[]]]
=> ? = 3 + 1
([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [3,2,2,1] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0,1,0]
=> [[[[]]],[[]],[[]],[]]
=> ? = 3 + 1
([(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [5,1,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> [[[[[[]]]]],[],[],[]]
=> ? = 5 + 1
([(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [4,1,1,2] => [1,1,1,1,0,0,0,0,1,0,1,0,1,1,0,0]
=> [[[[[]]]],[],[],[[]]]
=> ? = 4 + 1
([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [4,1,2,1] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0,1,0]
=> [[[[[]]]],[],[[]],[]]
=> ? = 4 + 1
([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [3,1,3,1] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0,1,0]
=> [[[[]]],[],[[[]]],[]]
=> ? = 3 + 1
([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> [[[[[[[]]]]]],[],[]]
=> ? = 6 + 1
([(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [5,1,2] => [1,1,1,1,1,0,0,0,0,0,1,0,1,1,0,0]
=> [[[[[[]]]]],[],[[]]]
=> ? = 5 + 1
([(0,5),(0,6),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [3,2,1,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0,1,0]
=> [[[[]]],[[]],[],[],[]]
=> ? = 3 + 1
([(0,4),(0,5),(0,6),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [4,1,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> [[[[[]]]],[],[],[],[]]
=> ? = 4 + 1
([(0,3),(0,4),(0,5),(0,6),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [5,2,1] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0,1,0]
=> [[[[[[]]]]],[[]],[]]
=> ? = 5 + 1
Description
The number of distinct subtrees of an ordered tree. A subtree is specified by a node of the tree. Thus, the tree consisting of a single path has as many subtrees as nodes, whereas the tree of height two, having all leaves attached to the root, has only two distinct subtrees. Because we consider ordered trees, the tree [[[[]],[]],[[],[[]]]] on nine nodes has five distinct subtrees.
Mp00152: Graphs Laplacian multiplicitiesInteger compositions
Mp00315: Integer compositions inverse Foata bijectionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
St000013: Dyck paths ⟶ ℤResult quality: 93% values known / values provided: 93%distinct values known / distinct values provided: 100%
Values
([],1)
=> [1] => [1] => [1,0]
=> 1
([],2)
=> [2] => [2] => [1,1,0,0]
=> 2
([(0,1)],2)
=> [1,1] => [1,1] => [1,0,1,0]
=> 1
([],3)
=> [3] => [3] => [1,1,1,0,0,0]
=> 3
([(1,2)],3)
=> [1,2] => [1,2] => [1,0,1,1,0,0]
=> 2
([(0,2),(1,2)],3)
=> [1,1,1] => [1,1,1] => [1,0,1,0,1,0]
=> 1
([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1] => [1,1,0,0,1,0]
=> 2
([],4)
=> [4] => [4] => [1,1,1,1,0,0,0,0]
=> 4
([(2,3)],4)
=> [1,3] => [1,3] => [1,0,1,1,1,0,0,0]
=> 3
([(1,3),(2,3)],4)
=> [1,1,2] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 2
([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 2
([(0,3),(1,2)],4)
=> [2,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 1
([(1,2),(1,3),(2,3)],4)
=> [2,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> 3
([],5)
=> [5] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 5
([(3,4)],5)
=> [1,4] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 4
([(2,4),(3,4)],5)
=> [1,1,3] => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 3
([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 3
([(1,4),(2,3)],5)
=> [2,3] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 3
([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 2
([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 2
([(2,3),(2,4),(3,4)],5)
=> [2,3] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> [1,2,2] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
([(0,2),(0,3),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(2,5),(2,7),(3,4),(3,6),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [2,2,1,2,1] => [2,1,2,2,1] => [1,1,0,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 2
([(0,1),(0,4),(0,5),(0,7),(0,8),(1,2),(1,3),(1,7),(1,8),(2,3),(2,5),(2,6),(2,8),(3,4),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> [2,2,1,2,1,1] => [1,2,2,1,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> ? = 2
([(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,6),(1,7),(1,8),(2,3),(2,5),(2,7),(2,8),(3,4),(3,7),(3,8),(4,5),(4,6),(4,8),(5,6),(5,8),(6,8),(7,8)],9)
=> [1,3,3,1,1] => [3,1,3,1,1] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 3
([(0,2),(0,3),(0,7),(0,8),(1,2),(1,3),(1,5),(1,6),(2,5),(2,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,8),(6,7),(7,8)],9)
=> [1,1,2,1,1,1,1,1] => [1,1,1,1,2,1,1,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 2
([(0,2),(0,3),(0,7),(0,8),(1,2),(1,3),(1,5),(1,6),(2,6),(2,8),(3,5),(3,7),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [2,1,2,2,1,1] => [2,2,1,1,2,1] => [1,1,0,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 2
([(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(2,3),(2,5),(2,7),(3,4),(3,7),(4,5),(4,6),(5,6),(6,7)],8)
=> [2,1,2,1,1,1] => [1,2,1,1,2,1] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 2
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,7),(1,8),(2,3),(2,6),(2,8),(3,4),(3,6),(4,7),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,1,2,1,1,1,1,1] => [1,1,1,1,2,1,1,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 2
([(0,3),(0,4),(0,7),(1,2),(1,5),(1,7),(1,8),(2,3),(2,6),(2,8),(3,6),(3,8),(4,5),(4,6),(4,7),(5,6),(5,7),(5,8),(6,8),(7,8)],9)
=> [1,1,2,1,1,1,1,1] => [1,1,1,1,2,1,1,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 2
([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(3,6),(3,8),(4,5),(4,7),(5,8),(6,7)],9)
=> [4,4,1] => [4,4,1] => [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 4
([(0,4),(1,2),(1,3),(1,6),(1,7),(2,3),(2,5),(2,7),(3,5),(3,6),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [2,1,2,1,1,1] => [1,2,1,1,2,1] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 2
([(0,4),(0,5),(1,2),(1,3),(1,7),(1,8),(2,3),(2,6),(2,8),(3,6),(3,7),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [2,1,1,2,1,1,1] => [1,2,1,1,1,2,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 2
([(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(2,3),(2,5),(2,7),(2,8),(3,4),(3,7),(3,8),(4,5),(4,6),(4,8),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,2,1,1,2,1,1] => [2,1,1,1,2,1,1] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 2
([(0,2),(0,3),(1,4),(1,5),(1,6),(1,7),(2,6),(2,7),(2,8),(3,4),(3,5),(3,8),(4,5),(4,7),(4,8),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,1,2,1,1,1,1,1] => [1,1,1,1,2,1,1,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 2
([(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,7),(4,8),(5,7),(6,8),(7,8)],9)
=> [3,2,2,1,1] => [2,1,3,2,1] => [1,1,0,0,1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> ? = 3
([(0,7),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,2,2,1,1,1] => [1,2,1,2,1,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 2
([(0,6),(0,7),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [2,1,2,1,1,1] => [1,2,1,1,2,1] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 2
([(0,7),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,1,2,1,2,1] => [1,2,2,1,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 2
([(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,1,2,2,1,1] => [2,1,2,1,1,1] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 2
([(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,3,1,1,1,1] => [1,1,1,3,1,1] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 3
([(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [2,2,1,1,1,1] => [1,1,2,1,2,1] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> ? = 2
([(0,7),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,2,1,1,2,1] => [1,1,2,2,1,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> ? = 2
([(0,6),(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [2,1,1,1,2,1] => [1,1,1,2,2,1] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 2
([(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,4,1,1,1] => [1,1,4,1,1] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 4
([(0,6),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [2,3,1,1,1] => [1,2,1,3,1] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 3
([(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,3,1,1,2] => [1,1,3,1,2] => [1,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> ? = 3
([(0,7),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,3,1,2,1] => [3,1,2,1,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 3
([(0,5),(0,6),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [3,2,1,1,1] => [1,1,3,2,1] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> ? = 3
([(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [2,2,1,1,2] => [2,1,2,1,2] => [1,1,0,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 2
([(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,2,1,1,3] => [1,2,1,1,3] => [1,0,1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 3
([(0,6),(0,7),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [2,2,1,2,1] => [2,1,2,2,1] => [1,1,0,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 2
([(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,2,1,2,2] => [2,1,1,2,2] => [1,1,0,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 2
([(0,7),(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,2,1,3,1] => [1,2,3,1,1] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 3
([(0,4),(0,5),(0,6),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [4,1,1,1,1] => [1,1,1,4,1] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 4
([(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [2,1,1,1,3] => [1,1,2,1,3] => [1,0,1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> ? = 3
([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [3,1,1,2,1] => [3,1,1,2,1] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 3
([(1,6),(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [2,1,1,2,2] => [1,2,1,2,2] => [1,0,1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 2
([(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,1,1,2,3] => [1,1,1,2,3] => [1,0,1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 3
([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [2,1,1,3,1] => [1,1,2,3,1] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> ? = 3
([(0,3),(0,4),(0,5),(0,6),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [5,2,1] => [5,2,1] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0,1,0]
=> ? = 5
([(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,3,2,1,1] => [1,3,2,1,1] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> ? = 3
([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [3,2,3] => [3,2,3] => [1,1,1,0,0,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 3
([(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [2,2,2,1,1] => [2,2,1,2,1] => [1,1,0,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> ? = 2
([(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,2,2,1,2] => [2,2,1,1,2] => [1,1,0,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ? = 2
([(0,7),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,2,2,2,1] => [2,2,2,1,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> ? = 2
([(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [3,1,2,1,1] => [1,3,1,2,1] => [1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> ? = 3
([(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [2,1,2,1,2] => [1,2,2,1,2] => [1,0,1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 2
([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [4,3,1] => [4,3,1] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0,1,0]
=> ? = 4
([(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [3,3,2] => [3,3,2] => [1,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 3
([(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,2,3,1,1] => [2,1,3,1,1] => [1,1,0,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 3
([(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [2,3,3] => [2,3,3] => [1,1,0,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> ? = 3
Description
The height of a Dyck path. The height of a Dyck path D of semilength n is defined as the maximal height of a peak of D. The height of D at position i is the number of up-steps minus the number of down-steps before position i.
The following 44 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000306The bounce count of a Dyck path. St000439The position of the first down step of a Dyck path. St000451The length of the longest pattern of the form k 1 2. St001090The number of pop-stack-sorts needed to sort a permutation. St000676The number of odd rises of a Dyck path. St001039The maximal height of a column in the parallelogram polyomino associated with a Dyck path. St000662The staircase size of the code of a permutation. St001809The index of the step at the first peak of maximal height in a Dyck path. St000141The maximum drop size of a permutation. St000028The number of stack-sorts needed to sort a permutation. St000684The global dimension of the LNakayama algebra associated to a Dyck path. St001062The maximal size of a block of a set partition. St000503The maximal difference between two elements in a common block. St000025The number of initial rises of a Dyck path. St000686The finitistic dominant dimension of a Dyck path. St001203We associate to a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series L=[c0,c1,...,cn1] such that n=c0<ci for all i>0 a Dyck path as follows: St000774The maximal multiplicity of a Laplacian eigenvalue in a graph. St000209Maximum difference of elements in cycles. St000485The length of the longest cycle of a permutation. St000844The size of the largest block in the direct sum decomposition of a permutation. St000956The maximal displacement of a permutation. St001291The number of indecomposable summands of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St000308The height of the tree associated to a permutation. St001330The hat guessing number of a graph. St000628The balance of a binary word. St000720The size of the largest partition in the oscillating tableau corresponding to the perfect matching. St000982The length of the longest constant subword. St001372The length of a longest cyclic run of ones of a binary word. St001046The maximal number of arcs nesting a given arc of a perfect matching. St001652The length of a longest interval of consecutive numbers. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St001235The global dimension of the corresponding Comp-Nakayama algebra. St000062The length of the longest increasing subsequence of the permutation. St000166The depth minus 1 of an ordered tree. St000887The maximal number of nonzero entries on a diagonal of a permutation matrix. St000930The k-Gorenstein degree of the corresponding Nakayama algebra with linear quiver. St001210Gives the maximal vector space dimension of the first Ext-group between an indecomposable module X and the regular module A, when A is the Nakayama algebra corresponding to the Dyck path. St001239The largest vector space dimension of the double dual of a simple module in the corresponding Nakayama algebra. St001530The depth of a Dyck path. St000094The depth of an ordered tree. St001192The maximal dimension of Ext2A(S,A) for a simple module S over the corresponding Nakayama algebra A. St001294The maximal torsionfree index of a simple non-projective module in the corresponding Nakayama algebra. St001296The maximal torsionfree index of an indecomposable non-projective module in the corresponding Nakayama algebra. St001589The nesting number of a perfect matching.