Processing math: 27%

Your data matches 5 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00142: Dyck paths promotionDyck paths
St001032: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 2 = 1 + 1
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 3 = 2 + 1
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,0,1,1,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4 = 3 + 1
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5 = 4 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 3 = 2 + 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 3 = 2 + 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 3 = 2 + 1
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 3 = 2 + 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 3 = 2 + 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 3 = 2 + 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 6 = 5 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 4 = 3 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 4 = 3 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 4 = 3 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> 4 = 3 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 4 = 3 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> 4 = 3 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> 4 = 3 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> 4 = 3 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> 4 = 3 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> 4 = 3 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> 4 = 3 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 4 = 3 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> 4 = 3 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> 4 = 3 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> 4 = 3 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> 4 = 3 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> 4 = 3 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> 4 = 3 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> 4 = 3 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> 2 = 1 + 1
Description
The number of horizontal steps in the bicoloured Motzkin path associated with the Dyck path. In other words, this is the number of valleys and peaks whose first step is in odd position, the initial position equal to 1. The generating function is given in [1].
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00140: Dyck paths logarithmic height to pruning numberBinary trees
Mp00016: Binary trees left-right symmetryBinary trees
St000385: Binary trees ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,1,0,0]
=> [[.,.],.]
=> [.,[.,.]]
=> 1
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [[[.,.],.],.]
=> [.,[.,[.,.]]]
=> 2
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [[.,.],[.,.]]
=> [[.,.],[.,.]]
=> 0
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [[[[.,.],.],.],.]
=> [.,[.,[.,[.,.]]]]
=> 3
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [[[.,.],[.,.]],.]
=> [.,[[.,.],[.,.]]]
=> 1
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [[.,.],[[.,.],.]]
=> [[.,[.,.]],[.,.]]
=> 1
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [[.,[.,.]],[.,.]]
=> [[.,.],[[.,.],.]]
=> 1
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [[[.,.],.],[.,.]]
=> [[.,.],[.,[.,.]]]
=> 1
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[[[[.,.],.],.],.],.]
=> [.,[.,[.,[.,[.,.]]]]]
=> 4
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [[[[.,.],[.,.]],.],.]
=> [.,[.,[[.,.],[.,.]]]]
=> 2
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [[[.,.],[[.,.],.]],.]
=> [.,[[.,[.,.]],[.,.]]]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [[[.,[.,.]],[.,.]],.]
=> [.,[[.,.],[[.,.],.]]]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [[[[.,.],.],[.,.]],.]
=> [.,[[.,.],[.,[.,.]]]]
=> 2
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [[.,.],[[[.,.],.],.]]
=> [[.,[.,[.,.]]],[.,.]]
=> 2
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [[.,.],[[.,.],[.,.]]]
=> [[[.,.],[.,.]],[.,.]]
=> 0
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [[.,[.,.]],[[.,.],.]]
=> [[.,[.,.]],[[.,.],.]]
=> 2
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [[.,[.,[.,.]]],[.,.]]
=> [[.,.],[[[.,.],.],.]]
=> 2
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [[.,[[.,.],.]],[.,.]]
=> [[.,.],[[.,[.,.]],.]]
=> 2
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [[[.,.],.],[[.,.],.]]
=> [[.,[.,.]],[.,[.,.]]]
=> 2
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [[[.,[.,.]],.],[.,.]]
=> [[.,.],[.,[[.,.],.]]]
=> 2
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [[[[.,.],.],.],[.,.]]
=> [[.,.],[.,[.,[.,.]]]]
=> 2
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [[[.,.],[.,.]],[.,.]]
=> [[.,.],[[.,.],[.,.]]]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [[[[[[.,.],.],.],.],.],.]
=> [.,[.,[.,[.,[.,[.,.]]]]]]
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [[[[[.,.],[.,.]],.],.],.]
=> [.,[.,[.,[[.,.],[.,.]]]]]
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [[[[.,.],[[.,.],.]],.],.]
=> [.,[.,[[.,[.,.]],[.,.]]]]
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [[[[.,[.,.]],[.,.]],.],.]
=> [.,[.,[[.,.],[[.,.],.]]]]
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [[[[[.,.],.],[.,.]],.],.]
=> [.,[.,[[.,.],[.,[.,.]]]]]
=> 3
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [[[.,.],[[[.,.],.],.]],.]
=> [.,[[.,[.,[.,.]]],[.,.]]]
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [[[.,.],[[.,.],[.,.]]],.]
=> [.,[[[.,.],[.,.]],[.,.]]]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [[[.,[.,.]],[[.,.],.]],.]
=> [.,[[.,[.,.]],[[.,.],.]]]
=> 3
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [[[.,[.,[.,.]]],[.,.]],.]
=> [.,[[.,.],[[[.,.],.],.]]]
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [[[.,[[.,.],.]],[.,.]],.]
=> [.,[[.,.],[[.,[.,.]],.]]]
=> 3
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [[[[.,.],.],[[.,.],.]],.]
=> [.,[[.,[.,.]],[.,[.,.]]]]
=> 3
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [[[[.,[.,.]],.],[.,.]],.]
=> [.,[[.,.],[.,[[.,.],.]]]]
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [[[[[.,.],.],.],[.,.]],.]
=> [.,[[.,.],[.,[.,[.,.]]]]]
=> 3
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [[[[.,.],[.,.]],[.,.]],.]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [[.,.],[[[[.,.],.],.],.]]
=> [[.,[.,[.,[.,.]]]],[.,.]]
=> 3
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[.,.],[[[.,.],[.,.]],.]]
=> [[.,[[.,.],[.,.]]],[.,.]]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [[.,.],[[.,.],[[.,.],.]]]
=> [[[.,[.,.]],[.,.]],[.,.]]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [[.,.],[[.,[.,.]],[.,.]]]
=> [[[.,.],[[.,.],.]],[.,.]]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [[.,.],[[[.,.],.],[.,.]]]
=> [[[.,.],[.,[.,.]]],[.,.]]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [[.,[.,.]],[[[.,.],.],.]]
=> [[.,[.,[.,.]]],[[.,.],.]]
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [[.,[.,.]],[[.,.],[.,.]]]
=> [[[.,.],[.,.]],[[.,.],.]]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [[.,[.,[.,.]]],[[.,.],.]]
=> [[.,[.,.]],[[[.,.],.],.]]
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [[.,[.,[.,[.,.]]]],[.,.]]
=> [[.,.],[[[[.,.],.],.],.]]
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [[.,[.,[[.,.],.]]],[.,.]]
=> [[.,.],[[[.,[.,.]],.],.]]
=> 3
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [[.,[[.,.],.]],[[.,.],.]]
=> [[.,[.,.]],[[.,[.,.]],.]]
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [[.,[[.,[.,.]],.]],[.,.]]
=> [[.,.],[[.,[[.,.],.]],.]]
=> 3
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [[.,[[[.,.],.],.]],[.,.]]
=> [[.,.],[[.,[.,[.,.]]],.]]
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [[.,[[.,.],[.,.]]],[.,.]]
=> [[.,.],[[[.,.],[.,.]],.]]
=> 1
Description
The number of vertices with out-degree 1 in a binary tree. See the references for several connections of this statistic. In particular, the number T(n,k) of binary trees with n vertices and k out-degree 1 vertices is given by T(n,k)=0 for nk odd and T(n,k)=\frac{2^k}{n+1}\binom{n+1}{k}\binom{n+1-k}{(n-k)/2} for n-k is even.
Matching statistic: St000247
Mp00023: Dyck paths to non-crossing permutationPermutations
Mp00066: Permutations inversePermutations
Mp00240: Permutations weak exceedance partitionSet partitions
St000247: Set partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => {{1}}
=> ? = 1
[1,0,1,0]
=> [1,2] => [1,2] => {{1},{2}}
=> 2
[1,1,0,0]
=> [2,1] => [2,1] => {{1,2}}
=> 0
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => {{1},{2},{3}}
=> 3
[1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => {{1},{2,3}}
=> 1
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => {{1,2},{3}}
=> 1
[1,1,0,1,0,0]
=> [2,3,1] => [3,1,2] => {{1,3},{2}}
=> 1
[1,1,1,0,0,0]
=> [3,2,1] => [3,2,1] => {{1,3},{2}}
=> 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => {{1},{2},{3},{4}}
=> 4
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,4,3] => {{1},{2},{3,4}}
=> 2
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2,4] => {{1},{2,3},{4}}
=> 2
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,2,3] => {{1},{2,4},{3}}
=> 2
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,4,3,2] => {{1},{2,4},{3}}
=> 2
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => {{1,2},{3},{4}}
=> 2
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => {{1,2},{3,4}}
=> 0
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,1,2,4] => {{1,3},{2},{4}}
=> 2
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4,1,2,3] => {{1,4},{2},{3}}
=> 2
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [4,1,3,2] => {{1,4},{2},{3}}
=> 2
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [3,2,1,4] => {{1,3},{2},{4}}
=> 2
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [4,2,1,3] => {{1,4},{2},{3}}
=> 2
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => [4,2,3,1] => {{1,4},{2},{3}}
=> 2
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [4,3,2,1] => {{1,4},{2,3}}
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => {{1},{2},{3},{4},{5}}
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,5,4] => {{1},{2},{3},{4,5}}
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,4,3,5] => {{1},{2},{3,4},{5}}
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,5,3,4] => {{1},{2},{3,5},{4}}
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [1,2,5,4,3] => {{1},{2},{3,5},{4}}
=> 3
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => {{1},{2,3},{4},{5}}
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => {{1},{2,3},{4,5}}
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,4,2,3,5] => {{1},{2,4},{3},{5}}
=> 3
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,2,3,4] => {{1},{2,5},{3},{4}}
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,5,2,4,3] => {{1},{2,5},{3},{4}}
=> 3
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [1,4,3,2,5] => {{1},{2,4},{3},{5}}
=> 3
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [1,5,3,2,4] => {{1},{2,5},{3},{4}}
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => [1,5,3,4,2] => {{1},{2,5},{3},{4}}
=> 3
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [1,5,4,3,2] => {{1},{2,5},{3,4}}
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => {{1,2},{3},{4},{5}}
=> 3
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => {{1,2},{3},{4,5}}
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => {{1,2},{3,4},{5}}
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,3,4] => {{1,2},{3,5},{4}}
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [2,1,5,4,3] => {{1,2},{3,5},{4}}
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [3,1,2,4,5] => {{1,3},{2},{4},{5}}
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,1,2,5,4] => {{1,3},{2},{4,5}}
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,1,2,3,5] => {{1,4},{2},{3},{5}}
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5,1,2,3,4] => {{1,5},{2},{3},{4}}
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [5,1,2,4,3] => {{1,5},{2},{3},{4}}
=> 3
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [4,1,3,2,5] => {{1,4},{2},{3},{5}}
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [5,1,3,2,4] => {{1,5},{2},{3},{4}}
=> 3
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => [5,1,3,4,2] => {{1,5},{2},{3},{4}}
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [5,1,4,3,2] => {{1,5},{2},{3,4}}
=> 1
[1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [3,2,1,4,5] => {{1,3},{2},{4},{5}}
=> 3
Description
The number of singleton blocks of a set partition.
Matching statistic: St000696
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00023: Dyck paths to non-crossing permutationPermutations
Mp00090: Permutations cycle-as-one-line notationPermutations
St000696: Permutations ⟶ ℤResult quality: 47% values known / values provided: 47%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,1,0,0]
=> [2,1] => [1,2] => 3 = 1 + 2
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => [1,2,3] => 4 = 2 + 2
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => [1,3,2] => 2 = 0 + 2
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [1,2,3,4] => 5 = 3 + 2
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [1,2,4,3] => 3 = 1 + 2
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [1,3,4,2] => 3 = 1 + 2
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => [1,4,2,3] => 3 = 1 + 2
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [1,4,2,3] => 3 = 1 + 2
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [1,2,3,4,5] => 6 = 4 + 2
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [1,2,3,5,4] => 4 = 2 + 2
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [1,2,4,5,3] => 4 = 2 + 2
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => [1,2,5,3,4] => 4 = 2 + 2
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [1,2,5,3,4] => 4 = 2 + 2
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => [1,3,4,5,2] => 4 = 2 + 2
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => [1,3,5,2,4] => 2 = 0 + 2
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [4,2,3,5,1] => [1,4,5,2,3] => 4 = 2 + 2
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [5,2,3,4,1] => [1,5,2,3,4] => 4 = 2 + 2
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [5,2,4,3,1] => [1,5,2,3,4] => 4 = 2 + 2
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => [1,4,5,2,3] => 4 = 2 + 2
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [5,3,2,4,1] => [1,5,2,3,4] => 4 = 2 + 2
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [5,3,4,2,1] => [1,5,2,3,4] => 4 = 2 + 2
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => [1,5,2,4,3] => 2 = 0 + 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,1] => [1,2,3,4,5,6] => 7 = 5 + 2
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [2,3,4,6,5,1] => [1,2,3,4,6,5] => 5 = 3 + 2
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [2,3,5,4,6,1] => [1,2,3,5,6,4] => 5 = 3 + 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [2,3,6,4,5,1] => [1,2,3,6,4,5] => 5 = 3 + 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,3,6,5,4,1] => [1,2,3,6,4,5] => 5 = 3 + 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [2,4,3,5,6,1] => [1,2,4,5,6,3] => 5 = 3 + 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [2,4,3,6,5,1] => [1,2,4,6,3,5] => 3 = 1 + 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [2,5,3,4,6,1] => [1,2,5,6,3,4] => 5 = 3 + 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [2,6,3,4,5,1] => [1,2,6,3,4,5] => 5 = 3 + 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [2,6,3,5,4,1] => [1,2,6,3,4,5] => 5 = 3 + 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [2,5,4,3,6,1] => [1,2,5,6,3,4] => 5 = 3 + 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [2,6,4,3,5,1] => [1,2,6,3,4,5] => 5 = 3 + 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,6,4,5,3,1] => [1,2,6,3,4,5] => 5 = 3 + 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,6,5,4,3,1] => [1,2,6,3,5,4] => 3 = 1 + 2
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [3,2,4,5,6,1] => [1,3,4,5,6,2] => 5 = 3 + 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [3,2,4,6,5,1] => [1,3,4,6,2,5] => 3 = 1 + 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [3,2,5,4,6,1] => [1,3,5,6,2,4] => 3 = 1 + 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [3,2,6,4,5,1] => [1,3,6,2,4,5] => 3 = 1 + 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [3,2,6,5,4,1] => [1,3,6,2,4,5] => 3 = 1 + 2
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [4,2,3,5,6,1] => [1,4,5,6,2,3] => 5 = 3 + 2
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [4,2,3,6,5,1] => [1,4,6,2,3,5] => 3 = 1 + 2
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [5,2,3,4,6,1] => [1,5,6,2,3,4] => 5 = 3 + 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [6,2,3,4,5,1] => [1,6,2,3,4,5] => 5 = 3 + 2
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [6,2,3,5,4,1] => [1,6,2,3,4,5] => 5 = 3 + 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [5,2,4,3,6,1] => [1,5,6,2,3,4] => 5 = 3 + 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [6,2,4,3,5,1] => [1,6,2,3,4,5] => 5 = 3 + 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [6,2,4,5,3,1] => [1,6,2,3,4,5] => 5 = 3 + 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [6,2,5,4,3,1] => [1,6,2,3,5,4] => 3 = 1 + 2
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [7,2,3,6,5,4,1] => [1,7,2,3,4,6,5] => ? = 2 + 2
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> [7,2,4,6,5,3,1] => [1,7,2,3,4,6,5] => ? = 2 + 2
[1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,1,0,0]
=> [6,2,5,4,3,7,1] => [1,6,7,2,3,5,4] => ? = 2 + 2
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> [7,2,5,4,3,6,1] => [1,7,2,3,5,4,6] => ? = 2 + 2
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,0]
=> [7,2,5,4,6,3,1] => [1,7,2,3,5,6,4] => ? = 2 + 2
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,1,0,0,0,0,0]
=> [7,2,6,4,5,3,1] => [1,7,2,3,6,4,5] => ? = 2 + 2
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [7,2,6,5,4,3,1] => [1,7,2,3,6,4,5] => ? = 2 + 2
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> [7,3,2,6,5,4,1] => [1,7,2,3,4,6,5] => ? = 2 + 2
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> [7,3,4,6,5,2,1] => [1,7,2,3,4,6,5] => ? = 2 + 2
[1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> [6,3,5,4,2,7,1] => [1,6,7,2,3,5,4] => ? = 2 + 2
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,0,1,0,0,0]
=> [7,3,5,4,2,6,1] => [1,7,2,3,5,4,6] => ? = 2 + 2
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,1,1,0,1,1,0,0,1,0,0,0,0]
=> [7,3,5,4,6,2,1] => [1,7,2,3,5,6,4] => ? = 2 + 2
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [7,3,6,4,5,2,1] => [1,7,2,3,6,4,5] => ? = 2 + 2
[1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [7,3,6,5,4,2,1] => [1,7,2,3,6,4,5] => ? = 2 + 2
[1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [5,4,3,2,6,7,1] => [1,5,6,7,2,4,3] => ? = 2 + 2
[1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> [5,4,3,2,7,6,1] => [1,5,7,2,4,3,6] => ? = 0 + 2
[1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,0]
=> [6,4,3,2,5,7,1] => [1,6,7,2,4,3,5] => ? = 2 + 2
[1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [7,4,3,2,5,6,1] => [1,7,2,4,3,5,6] => ? = 2 + 2
[1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [7,4,3,2,6,5,1] => [1,7,2,4,3,5,6] => ? = 2 + 2
[1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> [6,4,3,5,2,7,1] => [1,6,7,2,4,5,3] => ? = 2 + 2
[1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,0]
=> [7,4,3,5,2,6,1] => [1,7,2,4,5,3,6] => ? = 2 + 2
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [7,4,3,5,6,2,1] => [1,7,2,4,5,6,3] => ? = 2 + 2
[1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [7,4,3,6,5,2,1] => [1,7,2,4,6,3,5] => ? = 0 + 2
[1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,1,0,0]
=> [6,5,3,4,2,7,1] => [1,6,7,2,5,3,4] => ? = 2 + 2
[1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,1,0,0,0]
=> [7,5,3,4,2,6,1] => [1,7,2,5,3,4,6] => ? = 2 + 2
[1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,1,1,1,1,0,1,0,0,1,0,0,0,0]
=> [7,5,3,4,6,2,1] => [1,7,2,5,6,3,4] => ? = 2 + 2
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [7,6,3,4,5,2,1] => [1,7,2,6,3,4,5] => ? = 2 + 2
[1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [7,6,3,5,4,2,1] => [1,7,2,6,3,4,5] => ? = 2 + 2
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [6,5,4,3,2,7,1] => [1,6,7,2,5,3,4] => ? = 2 + 2
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [7,5,4,3,2,6,1] => [1,7,2,5,3,4,6] => ? = 2 + 2
[1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [7,5,4,3,6,2,1] => [1,7,2,5,6,3,4] => ? = 2 + 2
[1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [7,6,4,3,5,2,1] => [1,7,2,6,3,4,5] => ? = 2 + 2
[1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [7,6,4,5,3,2,1] => [1,7,2,6,3,4,5] => ? = 2 + 2
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [7,6,5,4,3,2,1] => [1,7,2,6,3,5,4] => ? = 0 + 2
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [2,3,4,5,7,6,8,1] => [1,2,3,4,5,7,8,6] => ? = 5 + 2
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [2,3,4,6,5,7,8,1] => [1,2,3,4,6,7,8,5] => ? = 5 + 2
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> [2,3,4,6,5,8,7,1] => [1,2,3,4,6,8,5,7] => ? = 3 + 2
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> [2,3,4,7,5,6,8,1] => [1,2,3,4,7,8,5,6] => ? = 5 + 2
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [2,3,4,8,5,6,7,1] => [1,2,3,4,8,5,6,7] => ? = 5 + 2
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [2,3,4,8,5,7,6,1] => [1,2,3,4,8,5,6,7] => ? = 5 + 2
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [2,3,4,7,6,5,8,1] => [1,2,3,4,7,8,5,6] => ? = 5 + 2
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> [2,3,4,8,6,5,7,1] => [1,2,3,4,8,5,6,7] => ? = 5 + 2
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> [2,3,4,8,6,7,5,1] => [1,2,3,4,8,5,6,7] => ? = 5 + 2
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [2,3,4,8,7,6,5,1] => [1,2,3,4,8,5,7,6] => ? = 3 + 2
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> [2,3,5,4,6,8,7,1] => ? => ? = 3 + 2
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [2,3,5,4,7,6,8,1] => [1,2,3,5,7,8,4,6] => ? = 3 + 2
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,1,0,0,0]
=> [2,3,5,4,8,6,7,1] => [1,2,3,5,8,4,6,7] => ? = 3 + 2
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> [2,3,5,4,8,7,6,1] => [1,2,3,5,8,4,6,7] => ? = 3 + 2
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [2,3,6,4,5,7,8,1] => [1,2,3,6,7,8,4,5] => ? = 5 + 2
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,1,0,0,0]
=> [2,3,6,4,5,8,7,1] => [1,2,3,6,8,4,5,7] => ? = 3 + 2
Description
The number of cycles in the breakpoint graph of a permutation. The breakpoint graph of a permutation \pi_1,\dots,\pi_n is the directed, bicoloured graph with vertices 0,\dots,n, a grey edge from i to i+1 and a black edge from \pi_i to \pi_{i-1} for 0\leq i\leq n, all indices taken modulo n+1. This graph decomposes into alternating cycles, which this statistic counts. The distribution of this statistic on permutations of n-1 is, according to [cor.1, 5] and [eq.6, 6], given by \frac{1}{n(n+1)}((q+n)_{n+1}-(q)_{n+1}), where (x)_n=x(x-1)\dots(x-n+1).
Matching statistic: St001631
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00140: Dyck paths logarithmic height to pruning numberBinary trees
Mp00013: Binary trees to posetPosets
St001631: Posets ⟶ ℤResult quality: 15% values known / values provided: 15%distinct values known / distinct values provided: 88%
Values
[1,0]
=> [1,1,0,0]
=> [[.,.],.]
=> ([(0,1)],2)
=> 1
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> 2
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> 0
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> 1
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> 2
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [[[.,.],[[.,.],.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 2
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 2
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [[[[.,.],.],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 2
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> 0
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 2
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 2
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [[[[[[.,.],.],.],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [[[[[.,.],[.,.]],.],.],.]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [[[[.,.],[[.,.],.]],.],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [[[[.,[.,.]],[.,.]],.],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [[[[[.,.],.],[.,.]],.],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> 3
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [[[.,.],[[[.,.],.],.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [[[.,.],[[.,.],[.,.]]],.]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [[[.,[.,.]],[[.,.],.]],.]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> 3
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [[[.,[.,[.,.]]],[.,.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [[[.,[[.,.],.]],[.,.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> 3
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [[[[.,.],.],[[.,.],.]],.]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> 3
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [[[[.,[.,.]],.],[.,.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [[[[[.,.],.],.],[.,.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> 3
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [[[[.,.],[.,.]],[.,.]],.]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [[.,.],[[[[.,.],.],.],.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> 3
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[.,.],[[[.,.],[.,.]],.]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [[.,.],[[.,.],[[.,.],.]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [[.,.],[[.,[.,.]],[.,.]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [[.,.],[[[.,.],.],[.,.]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [[.,[.,.]],[[[.,.],.],.]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [[.,[.,.]],[[.,.],[.,.]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [[.,[.,[.,.]]],[[.,.],.]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [[.,[.,[.,[.,.]]]],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [[.,[.,[[.,.],.]]],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> 3
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [[.,[[.,.],.]],[[.,.],.]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [[.,[[.,[.,.]],.]],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> 3
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [[.,[[[.,.],.],.]],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [[.,[[.,.],[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [[[[[[.,.],[.,.]],.],.],.],.]
=> ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7)
=> ? = 4
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [[[[[.,.],[[.,.],.]],.],.],.]
=> ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7)
=> ? = 4
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [[[[[.,[.,.]],[.,.]],.],.],.]
=> ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7)
=> ? = 4
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [[[[[[.,.],.],[.,.]],.],.],.]
=> ([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7)
=> ? = 4
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [[[[.,.],[[[.,.],.],.]],.],.]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ? = 4
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> [[[[.,.],[[.,.],[.,.]]],.],.]
=> ([(0,6),(1,5),(2,5),(3,4),(5,6),(6,3)],7)
=> ? = 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> [[[[.,[.,.]],[[.,.],.]],.],.]
=> ([(0,4),(1,3),(3,6),(4,6),(5,2),(6,5)],7)
=> ? = 4
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [[[[.,[.,[.,.]]],[.,.]],.],.]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ? = 4
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [[[[.,[[.,.],.]],[.,.]],.],.]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ? = 4
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [[[[[.,.],.],[[.,.],.]],.],.]
=> ([(0,4),(1,3),(3,6),(4,6),(5,2),(6,5)],7)
=> ? = 4
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> [[[[[.,[.,.]],.],[.,.]],.],.]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ? = 4
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> [[[[[[.,.],.],.],[.,.]],.],.]
=> ([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> ? = 4
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [[[[[.,.],[.,.]],[.,.]],.],.]
=> ([(0,6),(1,5),(2,5),(3,4),(5,6),(6,3)],7)
=> ? = 2
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [[[.,.],[[[[.,.],.],.],.]],.]
=> ([(0,6),(1,5),(2,6),(4,2),(5,4),(6,3)],7)
=> ? = 4
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> [[[.,.],[[[.,.],[.,.]],.]],.]
=> ([(0,6),(1,5),(2,5),(4,6),(5,4),(6,3)],7)
=> ? = 2
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [[[.,.],[[.,.],[[.,.],.]]],.]
=> ([(0,6),(1,5),(2,3),(3,6),(5,4),(6,5)],7)
=> ? = 2
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,1,0,0,0]
=> [[[.,.],[[.,[.,.]],[.,.]]],.]
=> ([(0,6),(1,5),(2,3),(3,6),(5,4),(6,5)],7)
=> ? = 2
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> [[[.,.],[[[.,.],.],[.,.]]],.]
=> ([(0,6),(1,5),(2,3),(3,6),(5,4),(6,5)],7)
=> ? = 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [[[.,[.,.]],[[[.,.],.],.]],.]
=> ([(0,4),(1,5),(2,6),(4,6),(5,2),(6,3)],7)
=> ? = 4
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,1,0,0,0]
=> [[[.,[.,.]],[[.,.],[.,.]]],.]
=> ([(0,5),(1,5),(2,3),(3,6),(5,6),(6,4)],7)
=> ? = 2
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> [[[.,[.,[.,.]]],[[.,.],.]],.]
=> ([(0,4),(1,5),(2,6),(4,6),(5,2),(6,3)],7)
=> ? = 4
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> [[[.,[.,[.,[.,.]]]],[.,.]],.]
=> ([(0,6),(1,5),(2,6),(4,2),(5,4),(6,3)],7)
=> ? = 4
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> [[[.,[.,[[.,.],.]]],[.,.]],.]
=> ([(0,6),(1,5),(2,6),(4,2),(5,4),(6,3)],7)
=> ? = 4
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,1,0,0]
=> [[[.,[[.,.],.]],[[.,.],.]],.]
=> ([(0,4),(1,5),(2,6),(4,6),(5,2),(6,3)],7)
=> ? = 4
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,1,0,0,1,0,0,0]
=> [[[.,[[.,[.,.]],.]],[.,.]],.]
=> ([(0,6),(1,5),(2,6),(4,2),(5,4),(6,3)],7)
=> ? = 4
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [[[.,[[[.,.],.],.]],[.,.]],.]
=> ([(0,6),(1,5),(2,6),(4,2),(5,4),(6,3)],7)
=> ? = 4
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> [[[.,[[.,.],[.,.]]],[.,.]],.]
=> ([(0,6),(1,5),(2,5),(4,6),(5,4),(6,3)],7)
=> ? = 2
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> [[[[.,.],.],[[[.,.],.],.]],.]
=> ([(0,4),(1,5),(2,6),(4,6),(5,2),(6,3)],7)
=> ? = 4
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> [[[[.,.],.],[[.,.],[.,.]]],.]
=> ([(0,5),(1,5),(2,3),(3,6),(5,6),(6,4)],7)
=> ? = 2
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,0,1,0,0]
=> [[[[.,[.,.]],.],[[.,.],.]],.]
=> ([(0,4),(1,5),(2,6),(4,6),(5,2),(6,3)],7)
=> ? = 4
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> [[[[.,[.,[.,.]]],.],[.,.]],.]
=> ([(0,6),(1,5),(2,6),(4,2),(5,4),(6,3)],7)
=> ? = 4
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> [[[[.,[[.,.],.]],.],[.,.]],.]
=> ([(0,6),(1,5),(2,6),(4,2),(5,4),(6,3)],7)
=> ? = 4
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,0,0,1,0,0]
=> [[[[[.,.],.],.],[[.,.],.]],.]
=> ([(0,4),(1,5),(2,6),(4,6),(5,2),(6,3)],7)
=> ? = 4
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,1,0,0,1,0,0,0]
=> [[[[[.,[.,.]],.],.],[.,.]],.]
=> ([(0,6),(1,5),(2,6),(4,2),(5,4),(6,3)],7)
=> ? = 4
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,1,0,0,0,0]
=> [[[[[[.,.],.],.],.],[.,.]],.]
=> ([(0,6),(1,5),(2,6),(4,2),(5,4),(6,3)],7)
=> ? = 4
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> [[[[[.,.],[.,.]],.],[.,.]],.]
=> ([(0,6),(1,5),(2,5),(4,6),(5,4),(6,3)],7)
=> ? = 2
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> [[[[.,.],[[.,.],.]],[.,.]],.]
=> ([(0,6),(1,5),(2,3),(3,6),(5,4),(6,5)],7)
=> ? = 2
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,1,0,0,0]
=> [[[[.,[.,.]],[.,.]],[.,.]],.]
=> ([(0,6),(1,5),(2,3),(3,6),(5,4),(6,5)],7)
=> ? = 2
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> [[[[[.,.],.],[.,.]],[.,.]],.]
=> ([(0,6),(1,5),(2,3),(3,6),(5,4),(6,5)],7)
=> ? = 2
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [[[[.,.],[.,.]],[.,[.,.]]],.]
=> ([(0,5),(1,5),(2,3),(3,6),(5,6),(6,4)],7)
=> ? = 2
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [[[[.,.],[.,.]],[[.,.],.]],.]
=> ([(0,5),(1,5),(2,3),(3,6),(5,6),(6,4)],7)
=> ? = 2
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [[.,.],[[[[[.,.],.],.],.],.]]
=> ([(0,6),(1,5),(2,6),(3,4),(4,2),(5,3)],7)
=> ? = 4
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> [[.,.],[[[[.,.],[.,.]],.],.]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,5),(6,3)],7)
=> ? = 2
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,1,0,0]
=> [[.,.],[[[.,.],[[.,.],.]],.]]
=> ([(0,6),(1,5),(2,3),(3,6),(4,5),(6,4)],7)
=> ? = 2
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,1,0,0,0]
=> [[.,.],[[[.,[.,.]],[.,.]],.]]
=> ([(0,6),(1,5),(2,3),(3,6),(4,5),(6,4)],7)
=> ? = 2
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,1,1,0,0,0,0]
=> [[.,.],[[[[.,.],.],[.,.]],.]]
=> ([(0,6),(1,5),(2,3),(3,6),(4,5),(6,4)],7)
=> ? = 2
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,1,0,0]
=> [[.,.],[[.,.],[[[.,.],.],.]]]
=> ([(0,6),(1,5),(2,3),(3,4),(4,5),(5,6)],7)
=> ? = 2
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [[.,.],[[.,.],[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,5),(3,6),(4,6),(6,5)],7)
=> ? = 0
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,1,0,0,1,0,0]
=> [[.,.],[[.,[.,.]],[[.,.],.]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(6,5)],7)
=> ? = 2
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,1,0,0,0]
=> [[.,.],[[.,[.,[.,.]]],[.,.]]]
=> ([(0,6),(1,5),(2,3),(3,4),(4,5),(5,6)],7)
=> ? = 2
Description
The number of simple modules S with dim Ext^1(S,A)=1 in the incidence algebra A of the poset.