Your data matches 81 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00020: Binary trees to Tamari-corresponding Dyck pathDyck paths
St000386: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[.,.]
=> [1,0]
=> 0
[.,[.,.]]
=> [1,1,0,0]
=> 0
[[.,.],.]
=> [1,0,1,0]
=> 0
[.,[.,[.,.]]]
=> [1,1,1,0,0,0]
=> 0
[.,[[.,.],.]]
=> [1,1,0,1,0,0]
=> 0
[[.,.],[.,.]]
=> [1,0,1,1,0,0]
=> 0
[[.,[.,.]],.]
=> [1,1,0,0,1,0]
=> 1
[[[.,.],.],.]
=> [1,0,1,0,1,0]
=> 0
[.,[.,[.,[.,.]]]]
=> [1,1,1,1,0,0,0,0]
=> 0
[.,[.,[[.,.],.]]]
=> [1,1,1,0,1,0,0,0]
=> 0
[.,[[.,.],[.,.]]]
=> [1,1,0,1,1,0,0,0]
=> 0
[.,[[.,[.,.]],.]]
=> [1,1,1,0,0,1,0,0]
=> 1
[.,[[[.,.],.],.]]
=> [1,1,0,1,0,1,0,0]
=> 0
[[.,.],[.,[.,.]]]
=> [1,0,1,1,1,0,0,0]
=> 0
[[.,.],[[.,.],.]]
=> [1,0,1,1,0,1,0,0]
=> 0
[[.,[.,.]],[.,.]]
=> [1,1,0,0,1,1,0,0]
=> 1
[[[.,.],.],[.,.]]
=> [1,0,1,0,1,1,0,0]
=> 0
[[.,[.,[.,.]]],.]
=> [1,1,1,0,0,0,1,0]
=> 1
[[.,[[.,.],.]],.]
=> [1,1,0,1,0,0,1,0]
=> 1
[[[.,.],[.,.]],.]
=> [1,0,1,1,0,0,1,0]
=> 1
[[[.,[.,.]],.],.]
=> [1,1,0,0,1,0,1,0]
=> 1
[[[[.,.],.],.],.]
=> [1,0,1,0,1,0,1,0]
=> 0
[.,[.,[.,[.,[.,.]]]]]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[.,[.,[.,[[.,.],.]]]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 0
[.,[.,[[.,.],[.,.]]]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 0
[.,[.,[[.,[.,.]],.]]]
=> [1,1,1,1,0,0,1,0,0,0]
=> 1
[.,[.,[[[.,.],.],.]]]
=> [1,1,1,0,1,0,1,0,0,0]
=> 0
[.,[[.,.],[.,[.,.]]]]
=> [1,1,0,1,1,1,0,0,0,0]
=> 0
[.,[[.,.],[[.,.],.]]]
=> [1,1,0,1,1,0,1,0,0,0]
=> 0
[.,[[.,[.,.]],[.,.]]]
=> [1,1,1,0,0,1,1,0,0,0]
=> 1
[.,[[[.,.],.],[.,.]]]
=> [1,1,0,1,0,1,1,0,0,0]
=> 0
[.,[[.,[.,[.,.]]],.]]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1
[.,[[.,[[.,.],.]],.]]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1
[.,[[[.,.],[.,.]],.]]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1
[.,[[[.,[.,.]],.],.]]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1
[.,[[[[.,.],.],.],.]]
=> [1,1,0,1,0,1,0,1,0,0]
=> 0
[[.,.],[.,[.,[.,.]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> 0
[[.,.],[.,[[.,.],.]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> 0
[[.,.],[[.,.],[.,.]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> 0
[[.,.],[[.,[.,.]],.]]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1
[[.,.],[[[.,.],.],.]]
=> [1,0,1,1,0,1,0,1,0,0]
=> 0
[[.,[.,.]],[.,[.,.]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> 1
[[.,[.,.]],[[.,.],.]]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1
[[[.,.],.],[.,[.,.]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> 0
[[[.,.],.],[[.,.],.]]
=> [1,0,1,0,1,1,0,1,0,0]
=> 0
[[.,[.,[.,.]]],[.,.]]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1
[[.,[[.,.],.]],[.,.]]
=> [1,1,0,1,0,0,1,1,0,0]
=> 1
[[[.,.],[.,.]],[.,.]]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[[[.,[.,.]],.],[.,.]]
=> [1,1,0,0,1,0,1,1,0,0]
=> 1
[[[[.,.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,1,0,0]
=> 0
Description
The number of factors DDU in a Dyck path.
Mp00017: Binary trees to 312-avoiding permutationPermutations
Mp00109: Permutations descent wordBinary words
St000291: Binary words ⟶ ℤResult quality: 89% values known / values provided: 89%distinct values known / distinct values provided: 100%
Values
[.,.]
=> [1] => => ? = 0
[.,[.,.]]
=> [2,1] => 1 => 0
[[.,.],.]
=> [1,2] => 0 => 0
[.,[.,[.,.]]]
=> [3,2,1] => 11 => 0
[.,[[.,.],.]]
=> [2,3,1] => 01 => 0
[[.,.],[.,.]]
=> [1,3,2] => 01 => 0
[[.,[.,.]],.]
=> [2,1,3] => 10 => 1
[[[.,.],.],.]
=> [1,2,3] => 00 => 0
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => 111 => 0
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => 011 => 0
[.,[[.,.],[.,.]]]
=> [2,4,3,1] => 011 => 0
[.,[[.,[.,.]],.]]
=> [3,2,4,1] => 101 => 1
[.,[[[.,.],.],.]]
=> [2,3,4,1] => 001 => 0
[[.,.],[.,[.,.]]]
=> [1,4,3,2] => 011 => 0
[[.,.],[[.,.],.]]
=> [1,3,4,2] => 001 => 0
[[.,[.,.]],[.,.]]
=> [2,1,4,3] => 101 => 1
[[[.,.],.],[.,.]]
=> [1,2,4,3] => 001 => 0
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => 110 => 1
[[.,[[.,.],.]],.]
=> [2,3,1,4] => 010 => 1
[[[.,.],[.,.]],.]
=> [1,3,2,4] => 010 => 1
[[[.,[.,.]],.],.]
=> [2,1,3,4] => 100 => 1
[[[[.,.],.],.],.]
=> [1,2,3,4] => 000 => 0
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => 1111 => 0
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => 0111 => 0
[.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => 0111 => 0
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => 1011 => 1
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => 0011 => 0
[.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => 0111 => 0
[.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => 0011 => 0
[.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => 1011 => 1
[.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => 0011 => 0
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => 1101 => 1
[.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => 0101 => 1
[.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => 0101 => 1
[.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => 1001 => 1
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => 0001 => 0
[[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => 0111 => 0
[[.,.],[.,[[.,.],.]]]
=> [1,4,5,3,2] => 0011 => 0
[[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => 0011 => 0
[[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => 0101 => 1
[[.,.],[[[.,.],.],.]]
=> [1,3,4,5,2] => 0001 => 0
[[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => 1011 => 1
[[.,[.,.]],[[.,.],.]]
=> [2,1,4,5,3] => 1001 => 1
[[[.,.],.],[.,[.,.]]]
=> [1,2,5,4,3] => 0011 => 0
[[[.,.],.],[[.,.],.]]
=> [1,2,4,5,3] => 0001 => 0
[[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => 1101 => 1
[[.,[[.,.],.]],[.,.]]
=> [2,3,1,5,4] => 0101 => 1
[[[.,.],[.,.]],[.,.]]
=> [1,3,2,5,4] => 0101 => 1
[[[.,[.,.]],.],[.,.]]
=> [2,1,3,5,4] => 1001 => 1
[[[[.,.],.],.],[.,.]]
=> [1,2,3,5,4] => 0001 => 0
[[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => 1110 => 1
[.,[.,[.,[[.,[.,.]],[.,[.,.]]]]]]
=> [5,4,8,7,6,3,2,1] => ? => ? = 1
[.,[.,[[.,.],[[.,[.,.]],[.,.]]]]]
=> [3,6,5,8,7,4,2,1] => ? => ? = 1
[.,[.,[[.,.],[[[.,[.,.]],.],.]]]]
=> [3,6,5,7,8,4,2,1] => ? => ? = 1
[.,[.,[[[.,.],[.,.]],[.,[.,.]]]]]
=> [3,5,4,8,7,6,2,1] => ? => ? = 1
[.,[.,[[.,[[[.,.],.],[.,.]]],.]]]
=> [4,5,7,6,3,8,2,1] => ? => ? = 1
[.,[.,[[[.,[.,[.,.]]],[.,.]],.]]]
=> [5,4,3,7,6,8,2,1] => ? => ? = 2
[[.,.],[.,[.,[[.,.],[[.,.],.]]]]]
=> [1,5,7,8,6,4,3,2] => ? => ? = 0
[[.,.],[.,[.,[[[.,.],.],[.,.]]]]]
=> [1,5,6,8,7,4,3,2] => ? => ? = 0
[[.,.],[.,[[.,.],[[.,[.,.]],.]]]]
=> [1,4,7,6,8,5,3,2] => ? => ? = 1
[[.,.],[.,[[.,[.,.]],[.,[.,.]]]]]
=> [1,5,4,8,7,6,3,2] => ? => ? = 1
[[.,.],[.,[[.,[[.,.],.]],[.,.]]]]
=> [1,5,6,4,8,7,3,2] => ? => ? = 1
[[.,.],[.,[[[.,[.,.]],.],[.,.]]]]
=> [1,5,4,6,8,7,3,2] => ? => ? = 1
[[.,.],[.,[[[[.,.],.],.],[.,.]]]]
=> [1,4,5,6,8,7,3,2] => ? => ? = 0
[[.,.],[.,[[.,[.,[[.,.],.]]],.]]]
=> [1,6,7,5,4,8,3,2] => ? => ? = 1
[[.,.],[.,[[.,[[.,.],[.,.]]],.]]]
=> [1,5,7,6,4,8,3,2] => ? => ? = 1
[[.,.],[.,[[.,[[.,[.,.]],.]],.]]]
=> [1,6,5,7,4,8,3,2] => ? => ? = 2
[[.,.],[.,[[.,[[[.,.],.],.]],.]]]
=> [1,5,6,7,4,8,3,2] => ? => ? = 1
[[.,.],[.,[[[.,[.,.]],[.,.]],.]]]
=> [1,5,4,7,6,8,3,2] => ? => ? = 2
[[.,.],[.,[[[[.,.],.],[.,.]],.]]]
=> [1,4,5,7,6,8,3,2] => ? => ? = 1
[[.,.],[.,[[[[.,.],[.,.]],.],.]]]
=> [1,4,6,5,7,8,3,2] => ? => ? = 1
[[.,.],[[.,.],[.,[[.,[.,.]],.]]]]
=> [1,3,7,6,8,5,4,2] => ? => ? = 1
[[.,.],[[.,.],[[.,[.,.]],[.,.]]]]
=> [1,3,6,5,8,7,4,2] => ? => ? = 1
[[.,.],[[.,.],[[.,[.,[.,.]]],.]]]
=> [1,3,7,6,5,8,4,2] => ? => ? = 1
[[.,.],[[[.,.],.],[.,[[.,.],.]]]]
=> [1,3,4,7,8,6,5,2] => ? => ? = 0
[[.,.],[[[.,.],.],[[.,.],[.,.]]]]
=> [1,3,4,6,8,7,5,2] => ? => ? = 0
[[.,.],[[.,[.,[.,.]]],[[.,.],.]]]
=> [1,5,4,3,7,8,6,2] => ? => ? = 1
[[.,.],[[.,[[.,[.,.]],.]],[.,.]]]
=> [1,5,4,6,3,8,7,2] => ? => ? = 2
[[.,.],[[[.,.],[[.,.],.]],[.,.]]]
=> [1,3,5,6,4,8,7,2] => ? => ? = 1
[[.,.],[[[[.,.],.],[.,.]],[.,.]]]
=> [1,3,4,6,5,8,7,2] => ? => ? = 1
[[.,.],[[[[.,.],[.,.]],.],[.,.]]]
=> [1,3,5,4,6,8,7,2] => ? => ? = 1
[[.,.],[[[[.,[.,.]],.],.],[.,.]]]
=> [1,4,3,5,6,8,7,2] => ? => ? = 1
[[.,.],[[.,[.,[[.,.],[.,.]]]],.]]
=> [1,5,7,6,4,3,8,2] => ? => ? = 1
[[.,.],[[.,[.,[[[.,.],.],.]]],.]]
=> [1,5,6,7,4,3,8,2] => ? => ? = 1
[[.,.],[[.,[[.,.],[.,[.,.]]]],.]]
=> [1,4,7,6,5,3,8,2] => ? => ? = 1
[[.,.],[[.,[[.,[.,.]],[.,.]]],.]]
=> [1,5,4,7,6,3,8,2] => ? => ? = 2
[[.,.],[[.,[[[.,.],.],[.,.]]],.]]
=> [1,4,5,7,6,3,8,2] => ? => ? = 1
[[.,.],[[.,[[.,[.,[.,.]]],.]],.]]
=> [1,6,5,4,7,3,8,2] => ? => ? = 2
[[.,.],[[[.,.],[.,[.,[.,.]]]],.]]
=> [1,3,7,6,5,4,8,2] => ? => ? = 1
[[.,.],[[[.,.],[.,[[.,.],.]]],.]]
=> [1,3,6,7,5,4,8,2] => ? => ? = 1
[[.,.],[[[.,[.,.]],[.,[.,.]]],.]]
=> [1,4,3,7,6,5,8,2] => ? => ? = 2
[[.,.],[[[.,[.,[.,.]]],[.,.]],.]]
=> [1,5,4,3,7,6,8,2] => ? => ? = 2
[[.,.],[[[.,[[.,.],.]],[.,.]],.]]
=> [1,4,5,3,7,6,8,2] => ? => ? = 2
[[.,.],[[[[.,[.,.]],.],[.,.]],.]]
=> [1,4,3,5,7,6,8,2] => ? => ? = 2
[[.,.],[[[.,[.,[[.,.],.]]],.],.]]
=> [1,5,6,4,3,7,8,2] => ? => ? = 1
[[.,.],[[[.,[[.,.],[.,.]]],.],.]]
=> [1,4,6,5,3,7,8,2] => ? => ? = 1
[[.,.],[[[.,[[[.,.],.],.]],.],.]]
=> [1,4,5,6,3,7,8,2] => ? => ? = 1
[[.,.],[[[[.,.],[.,[.,.]]],.],.]]
=> [1,3,6,5,4,7,8,2] => ? => ? = 1
[[.,[.,.]],[[[[.,.],.],[.,.]],.]]
=> [2,1,4,5,7,6,8,3] => ? => ? = 2
[[.,[.,.]],[[[.,[.,[.,.]]],.],.]]
=> [2,1,6,5,4,7,8,3] => ? => ? = 2
Description
The number of descents of a binary word.
Mp00017: Binary trees to 312-avoiding permutationPermutations
Mp00109: Permutations descent wordBinary words
Mp00104: Binary words reverseBinary words
St000292: Binary words ⟶ ℤResult quality: 89% values known / values provided: 89%distinct values known / distinct values provided: 100%
Values
[.,.]
=> [1] => => => ? = 0
[.,[.,.]]
=> [2,1] => 1 => 1 => 0
[[.,.],.]
=> [1,2] => 0 => 0 => 0
[.,[.,[.,.]]]
=> [3,2,1] => 11 => 11 => 0
[.,[[.,.],.]]
=> [2,3,1] => 01 => 10 => 0
[[.,.],[.,.]]
=> [1,3,2] => 01 => 10 => 0
[[.,[.,.]],.]
=> [2,1,3] => 10 => 01 => 1
[[[.,.],.],.]
=> [1,2,3] => 00 => 00 => 0
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => 111 => 111 => 0
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => 011 => 110 => 0
[.,[[.,.],[.,.]]]
=> [2,4,3,1] => 011 => 110 => 0
[.,[[.,[.,.]],.]]
=> [3,2,4,1] => 101 => 101 => 1
[.,[[[.,.],.],.]]
=> [2,3,4,1] => 001 => 100 => 0
[[.,.],[.,[.,.]]]
=> [1,4,3,2] => 011 => 110 => 0
[[.,.],[[.,.],.]]
=> [1,3,4,2] => 001 => 100 => 0
[[.,[.,.]],[.,.]]
=> [2,1,4,3] => 101 => 101 => 1
[[[.,.],.],[.,.]]
=> [1,2,4,3] => 001 => 100 => 0
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => 110 => 011 => 1
[[.,[[.,.],.]],.]
=> [2,3,1,4] => 010 => 010 => 1
[[[.,.],[.,.]],.]
=> [1,3,2,4] => 010 => 010 => 1
[[[.,[.,.]],.],.]
=> [2,1,3,4] => 100 => 001 => 1
[[[[.,.],.],.],.]
=> [1,2,3,4] => 000 => 000 => 0
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => 1111 => 1111 => 0
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => 0111 => 1110 => 0
[.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => 0111 => 1110 => 0
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => 1011 => 1101 => 1
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => 0011 => 1100 => 0
[.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => 0111 => 1110 => 0
[.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => 0011 => 1100 => 0
[.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => 1011 => 1101 => 1
[.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => 0011 => 1100 => 0
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => 1101 => 1011 => 1
[.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => 0101 => 1010 => 1
[.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => 0101 => 1010 => 1
[.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => 1001 => 1001 => 1
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => 0001 => 1000 => 0
[[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => 0111 => 1110 => 0
[[.,.],[.,[[.,.],.]]]
=> [1,4,5,3,2] => 0011 => 1100 => 0
[[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => 0011 => 1100 => 0
[[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => 0101 => 1010 => 1
[[.,.],[[[.,.],.],.]]
=> [1,3,4,5,2] => 0001 => 1000 => 0
[[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => 1011 => 1101 => 1
[[.,[.,.]],[[.,.],.]]
=> [2,1,4,5,3] => 1001 => 1001 => 1
[[[.,.],.],[.,[.,.]]]
=> [1,2,5,4,3] => 0011 => 1100 => 0
[[[.,.],.],[[.,.],.]]
=> [1,2,4,5,3] => 0001 => 1000 => 0
[[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => 1101 => 1011 => 1
[[.,[[.,.],.]],[.,.]]
=> [2,3,1,5,4] => 0101 => 1010 => 1
[[[.,.],[.,.]],[.,.]]
=> [1,3,2,5,4] => 0101 => 1010 => 1
[[[.,[.,.]],.],[.,.]]
=> [2,1,3,5,4] => 1001 => 1001 => 1
[[[[.,.],.],.],[.,.]]
=> [1,2,3,5,4] => 0001 => 1000 => 0
[[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => 1110 => 0111 => 1
[.,[.,[.,[[.,[.,.]],[.,[.,.]]]]]]
=> [5,4,8,7,6,3,2,1] => ? => ? => ? = 1
[.,[.,[[.,.],[[.,[.,.]],[.,.]]]]]
=> [3,6,5,8,7,4,2,1] => ? => ? => ? = 1
[.,[.,[[.,.],[[[.,[.,.]],.],.]]]]
=> [3,6,5,7,8,4,2,1] => ? => ? => ? = 1
[.,[.,[[[.,.],[.,.]],[.,[.,.]]]]]
=> [3,5,4,8,7,6,2,1] => ? => ? => ? = 1
[.,[.,[[.,[[[.,.],.],[.,.]]],.]]]
=> [4,5,7,6,3,8,2,1] => ? => ? => ? = 1
[.,[.,[[[.,[.,[.,.]]],[.,.]],.]]]
=> [5,4,3,7,6,8,2,1] => ? => ? => ? = 2
[[.,.],[.,[.,[[.,.],[[.,.],.]]]]]
=> [1,5,7,8,6,4,3,2] => ? => ? => ? = 0
[[.,.],[.,[.,[[[.,.],.],[.,.]]]]]
=> [1,5,6,8,7,4,3,2] => ? => ? => ? = 0
[[.,.],[.,[[.,.],[[.,[.,.]],.]]]]
=> [1,4,7,6,8,5,3,2] => ? => ? => ? = 1
[[.,.],[.,[[.,[.,.]],[.,[.,.]]]]]
=> [1,5,4,8,7,6,3,2] => ? => ? => ? = 1
[[.,.],[.,[[.,[[.,.],.]],[.,.]]]]
=> [1,5,6,4,8,7,3,2] => ? => ? => ? = 1
[[.,.],[.,[[[.,[.,.]],.],[.,.]]]]
=> [1,5,4,6,8,7,3,2] => ? => ? => ? = 1
[[.,.],[.,[[[[.,.],.],.],[.,.]]]]
=> [1,4,5,6,8,7,3,2] => ? => ? => ? = 0
[[.,.],[.,[[.,[.,[[.,.],.]]],.]]]
=> [1,6,7,5,4,8,3,2] => ? => ? => ? = 1
[[.,.],[.,[[.,[[.,.],[.,.]]],.]]]
=> [1,5,7,6,4,8,3,2] => ? => ? => ? = 1
[[.,.],[.,[[.,[[.,[.,.]],.]],.]]]
=> [1,6,5,7,4,8,3,2] => ? => ? => ? = 2
[[.,.],[.,[[.,[[[.,.],.],.]],.]]]
=> [1,5,6,7,4,8,3,2] => ? => ? => ? = 1
[[.,.],[.,[[[.,[.,.]],[.,.]],.]]]
=> [1,5,4,7,6,8,3,2] => ? => ? => ? = 2
[[.,.],[.,[[[[.,.],.],[.,.]],.]]]
=> [1,4,5,7,6,8,3,2] => ? => ? => ? = 1
[[.,.],[.,[[[[.,.],[.,.]],.],.]]]
=> [1,4,6,5,7,8,3,2] => ? => ? => ? = 1
[[.,.],[[.,.],[.,[[.,[.,.]],.]]]]
=> [1,3,7,6,8,5,4,2] => ? => ? => ? = 1
[[.,.],[[.,.],[[.,[.,.]],[.,.]]]]
=> [1,3,6,5,8,7,4,2] => ? => ? => ? = 1
[[.,.],[[.,.],[[.,[.,[.,.]]],.]]]
=> [1,3,7,6,5,8,4,2] => ? => ? => ? = 1
[[.,.],[[[.,.],.],[.,[[.,.],.]]]]
=> [1,3,4,7,8,6,5,2] => ? => ? => ? = 0
[[.,.],[[[.,.],.],[[.,.],[.,.]]]]
=> [1,3,4,6,8,7,5,2] => ? => ? => ? = 0
[[.,.],[[.,[.,[.,.]]],[[.,.],.]]]
=> [1,5,4,3,7,8,6,2] => ? => ? => ? = 1
[[.,.],[[.,[[.,[.,.]],.]],[.,.]]]
=> [1,5,4,6,3,8,7,2] => ? => ? => ? = 2
[[.,.],[[[.,.],[[.,.],.]],[.,.]]]
=> [1,3,5,6,4,8,7,2] => ? => ? => ? = 1
[[.,.],[[[[.,.],.],[.,.]],[.,.]]]
=> [1,3,4,6,5,8,7,2] => ? => ? => ? = 1
[[.,.],[[[[.,.],[.,.]],.],[.,.]]]
=> [1,3,5,4,6,8,7,2] => ? => ? => ? = 1
[[.,.],[[[[.,[.,.]],.],.],[.,.]]]
=> [1,4,3,5,6,8,7,2] => ? => ? => ? = 1
[[.,.],[[.,[.,[[.,.],[.,.]]]],.]]
=> [1,5,7,6,4,3,8,2] => ? => ? => ? = 1
[[.,.],[[.,[.,[[[.,.],.],.]]],.]]
=> [1,5,6,7,4,3,8,2] => ? => ? => ? = 1
[[.,.],[[.,[[.,.],[.,[.,.]]]],.]]
=> [1,4,7,6,5,3,8,2] => ? => ? => ? = 1
[[.,.],[[.,[[.,[.,.]],[.,.]]],.]]
=> [1,5,4,7,6,3,8,2] => ? => ? => ? = 2
[[.,.],[[.,[[[.,.],.],[.,.]]],.]]
=> [1,4,5,7,6,3,8,2] => ? => ? => ? = 1
[[.,.],[[.,[[.,[.,[.,.]]],.]],.]]
=> [1,6,5,4,7,3,8,2] => ? => ? => ? = 2
[[.,.],[[[.,.],[.,[.,[.,.]]]],.]]
=> [1,3,7,6,5,4,8,2] => ? => ? => ? = 1
[[.,.],[[[.,.],[.,[[.,.],.]]],.]]
=> [1,3,6,7,5,4,8,2] => ? => ? => ? = 1
[[.,.],[[[.,[.,.]],[.,[.,.]]],.]]
=> [1,4,3,7,6,5,8,2] => ? => ? => ? = 2
[[.,.],[[[.,[.,[.,.]]],[.,.]],.]]
=> [1,5,4,3,7,6,8,2] => ? => ? => ? = 2
[[.,.],[[[.,[[.,.],.]],[.,.]],.]]
=> [1,4,5,3,7,6,8,2] => ? => ? => ? = 2
[[.,.],[[[[.,[.,.]],.],[.,.]],.]]
=> [1,4,3,5,7,6,8,2] => ? => ? => ? = 2
[[.,.],[[[.,[.,[[.,.],.]]],.],.]]
=> [1,5,6,4,3,7,8,2] => ? => ? => ? = 1
[[.,.],[[[.,[[.,.],[.,.]]],.],.]]
=> [1,4,6,5,3,7,8,2] => ? => ? => ? = 1
[[.,.],[[[.,[[[.,.],.],.]],.],.]]
=> [1,4,5,6,3,7,8,2] => ? => ? => ? = 1
[[.,.],[[[[.,.],[.,[.,.]]],.],.]]
=> [1,3,6,5,4,7,8,2] => ? => ? => ? = 1
[[.,[.,.]],[[[[.,.],.],[.,.]],.]]
=> [2,1,4,5,7,6,8,3] => ? => ? => ? = 2
[[.,[.,.]],[[[.,[.,[.,.]]],.],.]]
=> [2,1,6,5,4,7,8,3] => ? => ? => ? = 2
Description
The number of ascents of a binary word.
Matching statistic: St001712
Mp00017: Binary trees to 312-avoiding permutationPermutations
Mp00070: Permutations Robinson-Schensted recording tableauStandard tableaux
St001712: Standard tableaux ⟶ ℤResult quality: 83% values known / values provided: 83%distinct values known / distinct values provided: 100%
Values
[.,.]
=> [1] => [[1]]
=> 0
[.,[.,.]]
=> [2,1] => [[1],[2]]
=> 0
[[.,.],.]
=> [1,2] => [[1,2]]
=> 0
[.,[.,[.,.]]]
=> [3,2,1] => [[1],[2],[3]]
=> 0
[.,[[.,.],.]]
=> [2,3,1] => [[1,2],[3]]
=> 0
[[.,.],[.,.]]
=> [1,3,2] => [[1,2],[3]]
=> 0
[[.,[.,.]],.]
=> [2,1,3] => [[1,3],[2]]
=> 1
[[[.,.],.],.]
=> [1,2,3] => [[1,2,3]]
=> 0
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [[1],[2],[3],[4]]
=> 0
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => [[1,2],[3],[4]]
=> 0
[.,[[.,.],[.,.]]]
=> [2,4,3,1] => [[1,2],[3],[4]]
=> 0
[.,[[.,[.,.]],.]]
=> [3,2,4,1] => [[1,3],[2],[4]]
=> 1
[.,[[[.,.],.],.]]
=> [2,3,4,1] => [[1,2,3],[4]]
=> 0
[[.,.],[.,[.,.]]]
=> [1,4,3,2] => [[1,2],[3],[4]]
=> 0
[[.,.],[[.,.],.]]
=> [1,3,4,2] => [[1,2,3],[4]]
=> 0
[[.,[.,.]],[.,.]]
=> [2,1,4,3] => [[1,3],[2,4]]
=> 1
[[[.,.],.],[.,.]]
=> [1,2,4,3] => [[1,2,3],[4]]
=> 0
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => [[1,4],[2],[3]]
=> 1
[[.,[[.,.],.]],.]
=> [2,3,1,4] => [[1,2,4],[3]]
=> 1
[[[.,.],[.,.]],.]
=> [1,3,2,4] => [[1,2,4],[3]]
=> 1
[[[.,[.,.]],.],.]
=> [2,1,3,4] => [[1,3,4],[2]]
=> 1
[[[[.,.],.],.],.]
=> [1,2,3,4] => [[1,2,3,4]]
=> 0
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [[1],[2],[3],[4],[5]]
=> 0
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [[1,2],[3],[4],[5]]
=> 0
[.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => [[1,2],[3],[4],[5]]
=> 0
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => [[1,3],[2],[4],[5]]
=> 1
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [[1,2,3],[4],[5]]
=> 0
[.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => [[1,2],[3],[4],[5]]
=> 0
[.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => [[1,2,3],[4],[5]]
=> 0
[.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => [[1,3],[2,4],[5]]
=> 1
[.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => [[1,2,3],[4],[5]]
=> 0
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [[1,4],[2],[3],[5]]
=> 1
[.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => [[1,2,4],[3],[5]]
=> 1
[.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => [[1,2,4],[3],[5]]
=> 1
[.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => [[1,3,4],[2],[5]]
=> 1
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [[1,2,3,4],[5]]
=> 0
[[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => [[1,2],[3],[4],[5]]
=> 0
[[.,.],[.,[[.,.],.]]]
=> [1,4,5,3,2] => [[1,2,3],[4],[5]]
=> 0
[[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => [[1,2,3],[4],[5]]
=> 0
[[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => [[1,2,4],[3],[5]]
=> 1
[[.,.],[[[.,.],.],.]]
=> [1,3,4,5,2] => [[1,2,3,4],[5]]
=> 0
[[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => [[1,3],[2,4],[5]]
=> 1
[[.,[.,.]],[[.,.],.]]
=> [2,1,4,5,3] => [[1,3,4],[2,5]]
=> 1
[[[.,.],.],[.,[.,.]]]
=> [1,2,5,4,3] => [[1,2,3],[4],[5]]
=> 0
[[[.,.],.],[[.,.],.]]
=> [1,2,4,5,3] => [[1,2,3,4],[5]]
=> 0
[[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => [[1,4],[2,5],[3]]
=> 1
[[.,[[.,.],.]],[.,.]]
=> [2,3,1,5,4] => [[1,2,4],[3,5]]
=> 1
[[[.,.],[.,.]],[.,.]]
=> [1,3,2,5,4] => [[1,2,4],[3,5]]
=> 1
[[[.,[.,.]],.],[.,.]]
=> [2,1,3,5,4] => [[1,3,4],[2,5]]
=> 1
[[[[.,.],.],.],[.,.]]
=> [1,2,3,5,4] => [[1,2,3,4],[5]]
=> 0
[.,[.,[.,[[.,[.,.]],[.,[.,.]]]]]]
=> [5,4,8,7,6,3,2,1] => ?
=> ? = 1
[.,[.,[.,[[.,[.,[.,.]]],[.,.]]]]]
=> [6,5,4,8,7,3,2,1] => ?
=> ? = 1
[.,[.,[[.,.],[[.,[.,.]],[.,.]]]]]
=> [3,6,5,8,7,4,2,1] => ?
=> ? = 1
[.,[.,[[.,.],[[[.,[.,.]],.],.]]]]
=> [3,6,5,7,8,4,2,1] => ?
=> ? = 1
[.,[.,[[[.,.],[.,.]],[.,[.,.]]]]]
=> [3,5,4,8,7,6,2,1] => ?
=> ? = 1
[.,[.,[[.,[[[.,.],.],[.,.]]],.]]]
=> [4,5,7,6,3,8,2,1] => ?
=> ? = 1
[.,[.,[[[.,[.,[.,.]]],[.,.]],.]]]
=> [5,4,3,7,6,8,2,1] => ?
=> ? = 2
[[.,.],[.,[.,[[.,.],[[.,.],.]]]]]
=> [1,5,7,8,6,4,3,2] => ?
=> ? = 0
[[.,.],[.,[.,[[[.,.],.],[.,.]]]]]
=> [1,5,6,8,7,4,3,2] => ?
=> ? = 0
[[.,.],[.,[[.,.],[[.,[.,.]],.]]]]
=> [1,4,7,6,8,5,3,2] => ?
=> ? = 1
[[.,.],[.,[[.,[.,.]],[.,[.,.]]]]]
=> [1,5,4,8,7,6,3,2] => ?
=> ? = 1
[[.,.],[.,[[[.,.],.],[[.,.],.]]]]
=> [1,4,5,7,8,6,3,2] => ?
=> ? = 0
[[.,.],[.,[[.,[.,[.,.]]],[.,.]]]]
=> [1,6,5,4,8,7,3,2] => ?
=> ? = 1
[[.,.],[.,[[.,[[.,.],.]],[.,.]]]]
=> [1,5,6,4,8,7,3,2] => ?
=> ? = 1
[[.,.],[.,[[[.,[.,.]],.],[.,.]]]]
=> [1,5,4,6,8,7,3,2] => ?
=> ? = 1
[[.,.],[.,[[[[.,.],.],.],[.,.]]]]
=> [1,4,5,6,8,7,3,2] => ?
=> ? = 0
[[.,.],[.,[[.,[.,[[.,.],.]]],.]]]
=> [1,6,7,5,4,8,3,2] => ?
=> ? = 1
[[.,.],[.,[[.,[[.,.],[.,.]]],.]]]
=> [1,5,7,6,4,8,3,2] => ?
=> ? = 1
[[.,.],[.,[[.,[[.,[.,.]],.]],.]]]
=> [1,6,5,7,4,8,3,2] => ?
=> ? = 2
[[.,.],[.,[[.,[[[.,.],.],.]],.]]]
=> [1,5,6,7,4,8,3,2] => ?
=> ? = 1
[[.,.],[.,[[[.,[.,.]],[.,.]],.]]]
=> [1,5,4,7,6,8,3,2] => ?
=> ? = 2
[[.,.],[.,[[[[.,.],.],[.,.]],.]]]
=> [1,4,5,7,6,8,3,2] => ?
=> ? = 1
[[.,.],[.,[[[[.,.],[.,.]],.],.]]]
=> [1,4,6,5,7,8,3,2] => ?
=> ? = 1
[[.,.],[[.,.],[.,[[.,[.,.]],.]]]]
=> [1,3,7,6,8,5,4,2] => ?
=> ? = 1
[[.,.],[[.,.],[[.,[.,.]],[.,.]]]]
=> [1,3,6,5,8,7,4,2] => ?
=> ? = 1
[[.,.],[[.,.],[[.,[.,[.,.]]],.]]]
=> [1,3,7,6,5,8,4,2] => ?
=> ? = 1
[[.,.],[[.,.],[[[.,.],[.,.]],.]]]
=> [1,3,5,7,6,8,4,2] => ?
=> ? = 1
[[.,.],[[[.,.],.],[.,[[.,.],.]]]]
=> [1,3,4,7,8,6,5,2] => ?
=> ? = 0
[[.,.],[[[.,.],.],[[.,.],[.,.]]]]
=> [1,3,4,6,8,7,5,2] => ?
=> ? = 0
[[.,.],[[.,[.,[.,.]]],[[.,.],.]]]
=> [1,5,4,3,7,8,6,2] => ?
=> ? = 1
[[.,.],[[[.,.],[.,.]],[[.,.],.]]]
=> [1,3,5,4,7,8,6,2] => ?
=> ? = 1
[[.,.],[[.,[[.,[.,.]],.]],[.,.]]]
=> [1,5,4,6,3,8,7,2] => ?
=> ? = 2
[[.,.],[[[.,.],[[.,.],.]],[.,.]]]
=> [1,3,5,6,4,8,7,2] => ?
=> ? = 1
[[.,.],[[[[.,.],.],[.,.]],[.,.]]]
=> [1,3,4,6,5,8,7,2] => ?
=> ? = 1
[[.,.],[[[[.,.],[.,.]],.],[.,.]]]
=> [1,3,5,4,6,8,7,2] => ?
=> ? = 1
[[.,.],[[[[.,[.,.]],.],.],[.,.]]]
=> [1,4,3,5,6,8,7,2] => ?
=> ? = 1
[[.,.],[[.,[.,[[.,.],[.,.]]]],.]]
=> [1,5,7,6,4,3,8,2] => ?
=> ? = 1
[[.,.],[[.,[[.,.],[.,[.,.]]]],.]]
=> [1,4,7,6,5,3,8,2] => ?
=> ? = 1
[[.,.],[[.,[[.,[.,.]],[.,.]]],.]]
=> [1,5,4,7,6,3,8,2] => ?
=> ? = 2
[[.,.],[[.,[[[.,.],.],[.,.]]],.]]
=> [1,4,5,7,6,3,8,2] => ?
=> ? = 1
[[.,.],[[.,[[.,[.,[.,.]]],.]],.]]
=> [1,6,5,4,7,3,8,2] => ?
=> ? = 2
[[.,.],[[[.,.],[.,[.,[.,.]]]],.]]
=> [1,3,7,6,5,4,8,2] => ?
=> ? = 1
[[.,.],[[[.,.],[.,[[.,.],.]]],.]]
=> [1,3,6,7,5,4,8,2] => ?
=> ? = 1
[[.,.],[[[.,.],[[.,.],[.,.]]],.]]
=> [1,3,5,7,6,4,8,2] => ?
=> ? = 1
[[.,.],[[[.,[.,.]],[.,[.,.]]],.]]
=> [1,4,3,7,6,5,8,2] => ?
=> ? = 2
[[.,.],[[[.,[.,.]],[[.,.],.]],.]]
=> [1,4,3,6,7,5,8,2] => ?
=> ? = 2
[[.,.],[[[.,[.,[.,.]]],[.,.]],.]]
=> [1,5,4,3,7,6,8,2] => ?
=> ? = 2
[[.,.],[[[.,[[.,.],.]],[.,.]],.]]
=> [1,4,5,3,7,6,8,2] => ?
=> ? = 2
[[.,.],[[[[.,[.,.]],.],[.,.]],.]]
=> [1,4,3,5,7,6,8,2] => ?
=> ? = 2
[[.,.],[[[.,[.,[.,[.,.]]]],.],.]]
=> [1,6,5,4,3,7,8,2] => ?
=> ? = 1
Description
The number of natural descents of a standard Young tableau. A natural descent of a standard tableau $T$ is an entry $i$ such that $i+1$ appears in a higher row than $i$ in English notation.
Mp00017: Binary trees to 312-avoiding permutationPermutations
Mp00071: Permutations descent compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
St001037: Dyck paths ⟶ ℤResult quality: 70% values known / values provided: 70%distinct values known / distinct values provided: 100%
Values
[.,.]
=> [1] => [1] => [1,0]
=> 0
[.,[.,.]]
=> [2,1] => [1,1] => [1,0,1,0]
=> 0
[[.,.],.]
=> [1,2] => [2] => [1,1,0,0]
=> 0
[.,[.,[.,.]]]
=> [3,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> 0
[.,[[.,.],.]]
=> [2,3,1] => [2,1] => [1,1,0,0,1,0]
=> 0
[[.,.],[.,.]]
=> [1,3,2] => [2,1] => [1,1,0,0,1,0]
=> 0
[[.,[.,.]],.]
=> [2,1,3] => [1,2] => [1,0,1,1,0,0]
=> 1
[[[.,.],.],.]
=> [1,2,3] => [3] => [1,1,1,0,0,0]
=> 0
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 0
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 0
[.,[[.,.],[.,.]]]
=> [2,4,3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 0
[.,[[.,[.,.]],.]]
=> [3,2,4,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 1
[.,[[[.,.],.],.]]
=> [2,3,4,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> 0
[[.,.],[.,[.,.]]]
=> [1,4,3,2] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 0
[[.,.],[[.,.],.]]
=> [1,3,4,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> 0
[[.,[.,.]],[.,.]]
=> [2,1,4,3] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 1
[[[.,.],.],[.,.]]
=> [1,2,4,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> 0
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 1
[[.,[[.,.],.]],.]
=> [2,3,1,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> 1
[[[.,.],[.,.]],.]
=> [1,3,2,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> 1
[[[.,[.,.]],.],.]
=> [2,1,3,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[[[[.,.],.],.],.]
=> [1,2,3,4] => [4] => [1,1,1,1,0,0,0,0]
=> 0
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 0
[.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 0
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 1
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 0
[.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 0
[.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 0
[.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 1
[.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 0
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 1
[.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 1
[.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 1
[.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 1
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 0
[[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 0
[[.,.],[.,[[.,.],.]]]
=> [1,4,5,3,2] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 0
[[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 0
[[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 1
[[.,.],[[[.,.],.],.]]
=> [1,3,4,5,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 0
[[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 1
[[.,[.,.]],[[.,.],.]]
=> [2,1,4,5,3] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 1
[[[.,.],.],[.,[.,.]]]
=> [1,2,5,4,3] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 0
[[[.,.],.],[[.,.],.]]
=> [1,2,4,5,3] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 0
[[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 1
[[.,[[.,.],.]],[.,.]]
=> [2,3,1,5,4] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 1
[[[.,.],[.,.]],[.,.]]
=> [1,3,2,5,4] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 1
[[[.,[.,.]],.],[.,.]]
=> [2,1,3,5,4] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 1
[[[[.,.],.],.],[.,.]]
=> [1,2,3,5,4] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 0
[.,[.,[.,[.,[.,[[[.,.],.],.]]]]]]
=> [6,7,8,5,4,3,2,1] => [3,1,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[.,[.,[.,[.,[[.,.],[[.,.],.]]]]]]
=> [5,7,8,6,4,3,2,1] => [3,1,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[.,[.,[.,[.,[[[.,.],.],[.,.]]]]]]
=> [5,6,8,7,4,3,2,1] => [3,1,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[.,[.,[.,[.,[[[[.,.],.],.],.]]]]]
=> [5,6,7,8,4,3,2,1] => [4,1,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 0
[.,[.,[.,[[.,.],[.,[[.,.],.]]]]]]
=> [4,7,8,6,5,3,2,1] => [3,1,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[.,[.,[.,[[.,.],[[.,.],[.,.]]]]]]
=> [4,6,8,7,5,3,2,1] => [3,1,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[.,[.,[.,[[[.,.],.],[.,[.,.]]]]]]
=> [4,5,8,7,6,3,2,1] => [3,1,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[.,[.,[.,[[[.,.],.],[[.,.],.]]]]]
=> [4,5,7,8,6,3,2,1] => [4,1,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 0
[.,[.,[.,[[[.,.],[[.,.],.]],.]]]]
=> [4,6,7,5,8,3,2,1] => [3,2,1,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 1
[.,[.,[[.,.],[.,[.,[[.,.],.]]]]]]
=> [3,7,8,6,5,4,2,1] => [3,1,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[.,[.,[[[[[.,.],.],.],.],[.,.]]]]
=> [3,4,5,6,8,7,2,1] => [5,1,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 0
[.,[.,[[.,[[[.,.],.],[.,.]]],.]]]
=> [4,5,7,6,3,8,2,1] => [3,1,2,1,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 1
[.,[.,[[[[[[.,.],.],.],.],.],.]]]
=> [3,4,5,6,7,8,2,1] => [6,1,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 0
[.,[[.,.],[.,[.,[.,[[.,.],.]]]]]]
=> [2,7,8,6,5,4,3,1] => [3,1,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[.,[[[[.,.],.],.],[[[.,.],.],.]]]
=> [2,3,4,6,7,8,5,1] => [6,1,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 0
[.,[[[[[.,.],.],.],.],[.,[.,.]]]]
=> [2,3,4,5,8,7,6,1] => [5,1,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 0
[.,[[[[[.,.],.],.],.],[[.,.],.]]]
=> [2,3,4,5,7,8,6,1] => [6,1,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 0
[.,[[[[[[.,.],.],.],.],.],[.,.]]]
=> [2,3,4,5,6,8,7,1] => [6,1,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 0
[.,[[.,[.,[.,[[[.,.],.],.]]]],.]]
=> [5,6,7,4,3,2,8,1] => [3,1,1,2,1] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 1
[.,[[.,[[[[[.,.],.],.],.],.]],.]]
=> [3,4,5,6,7,2,8,1] => [5,2,1] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0,1,0]
=> ? = 1
[.,[[[[[[.,.],.],.],.],[.,.]],.]]
=> [2,3,4,5,7,6,8,1] => [5,2,1] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0,1,0]
=> ? = 1
[.,[[[[[[.,.],.],.],[.,.]],.],.]]
=> [2,3,4,6,5,7,8,1] => [4,3,1] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0,1,0]
=> ? = 1
[.,[[[[.,[[[.,.],.],.]],.],.],.]]
=> [3,4,5,2,6,7,8,1] => [3,4,1] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 1
[.,[[[[[[.,.],.],[.,.]],.],.],.]]
=> [2,3,5,4,6,7,8,1] => [3,4,1] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 1
[.,[[[[[[[.,.],.],.],.],.],.],.]]
=> [2,3,4,5,6,7,8,1] => [7,1] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 0
[[.,.],[.,[.,[.,[.,[[.,.],.]]]]]]
=> [1,7,8,6,5,4,3,2] => [3,1,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[[.,.],[.,[.,[.,[[.,.],[.,.]]]]]]
=> [1,6,8,7,5,4,3,2] => [3,1,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[[.,.],[.,[.,[.,[[[.,.],.],.]]]]]
=> [1,6,7,8,5,4,3,2] => [4,1,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 0
[[.,.],[.,[.,[[.,.],[.,[.,.]]]]]]
=> [1,5,8,7,6,4,3,2] => [3,1,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[[.,.],[.,[.,[[.,.],[[.,.],.]]]]]
=> [1,5,7,8,6,4,3,2] => [4,1,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 0
[[.,.],[.,[.,[[[.,.],.],[.,.]]]]]
=> [1,5,6,8,7,4,3,2] => [4,1,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 0
[[.,.],[.,[.,[[.,[[.,.],.]],.]]]]
=> [1,6,7,5,8,4,3,2] => [3,2,1,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 1
[[.,.],[.,[.,[[[.,.],[.,.]],.]]]]
=> [1,5,7,6,8,4,3,2] => [3,2,1,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 1
[[.,.],[.,[.,[[[[.,.],.],.],.]]]]
=> [1,5,6,7,8,4,3,2] => [5,1,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 0
[[.,.],[.,[[.,.],[.,[.,[.,.]]]]]]
=> [1,4,8,7,6,5,3,2] => [3,1,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[[.,.],[.,[[.,.],[.,[[.,.],.]]]]]
=> [1,4,7,8,6,5,3,2] => [4,1,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 0
[[.,.],[.,[[.,.],[[.,.],[.,.]]]]]
=> [1,4,6,8,7,5,3,2] => [4,1,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 0
[[.,.],[.,[[.,.],[[.,[.,.]],.]]]]
=> [1,4,7,6,8,5,3,2] => [3,2,1,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 1
[[.,.],[.,[[.,.],[[[.,.],.],.]]]]
=> [1,4,6,7,8,5,3,2] => [5,1,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 0
[[.,.],[.,[[[.,.],.],[.,[.,.]]]]]
=> [1,4,5,8,7,6,3,2] => [4,1,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 0
[[.,.],[.,[[[.,.],.],[[.,.],.]]]]
=> [1,4,5,7,8,6,3,2] => [5,1,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 0
[[.,.],[.,[[.,[[.,.],.]],[.,.]]]]
=> [1,5,6,4,8,7,3,2] => ? => ?
=> ? = 1
[[.,.],[.,[[[.,.],[.,.]],[.,.]]]]
=> [1,4,6,5,8,7,3,2] => [3,2,1,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 1
[[.,.],[.,[[[.,[.,.]],.],[.,.]]]]
=> [1,5,4,6,8,7,3,2] => ? => ?
=> ? = 1
[[.,.],[.,[[[[.,.],.],.],[.,.]]]]
=> [1,4,5,6,8,7,3,2] => ? => ?
=> ? = 0
[[.,.],[.,[[.,[.,[[.,.],.]]],.]]]
=> [1,6,7,5,4,8,3,2] => ? => ?
=> ? = 1
[[.,.],[.,[[.,[[.,.],[.,.]]],.]]]
=> [1,5,7,6,4,8,3,2] => ? => ?
=> ? = 1
[[.,.],[.,[[.,[[[.,.],.],.]],.]]]
=> [1,5,6,7,4,8,3,2] => [4,2,1,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0,1,0]
=> ? = 1
[[.,.],[.,[[[.,.],[.,[.,.]]],.]]]
=> [1,4,7,6,5,8,3,2] => [3,1,2,1,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 1
[[.,.],[.,[[[.,.],[[.,.],.]],.]]]
=> [1,4,6,7,5,8,3,2] => [4,2,1,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0,1,0]
=> ? = 1
Description
The number of inner corners of the upper path of the parallelogram polyomino associated with the Dyck path.
Mp00018: Binary trees left border symmetryBinary trees
Mp00017: Binary trees to 312-avoiding permutationPermutations
Mp00072: Permutations binary search tree: left to rightBinary trees
St000568: Binary trees ⟶ ℤResult quality: 68% values known / values provided: 68%distinct values known / distinct values provided: 100%
Values
[.,.]
=> [.,.]
=> [1] => [.,.]
=> ? = 0 + 1
[.,[.,.]]
=> [.,[.,.]]
=> [2,1] => [[.,.],.]
=> 1 = 0 + 1
[[.,.],.]
=> [[.,.],.]
=> [1,2] => [.,[.,.]]
=> 1 = 0 + 1
[.,[.,[.,.]]]
=> [.,[.,[.,.]]]
=> [3,2,1] => [[[.,.],.],.]
=> 1 = 0 + 1
[.,[[.,.],.]]
=> [.,[[.,.],.]]
=> [2,3,1] => [[.,.],[.,.]]
=> 1 = 0 + 1
[[.,.],[.,.]]
=> [[.,[.,.]],.]
=> [2,1,3] => [[.,.],[.,.]]
=> 1 = 0 + 1
[[.,[.,.]],.]
=> [[.,.],[.,.]]
=> [1,3,2] => [.,[[.,.],.]]
=> 2 = 1 + 1
[[[.,.],.],.]
=> [[[.,.],.],.]
=> [1,2,3] => [.,[.,[.,.]]]
=> 1 = 0 + 1
[.,[.,[.,[.,.]]]]
=> [.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [[[[.,.],.],.],.]
=> 1 = 0 + 1
[.,[.,[[.,.],.]]]
=> [.,[.,[[.,.],.]]]
=> [3,4,2,1] => [[[.,.],.],[.,.]]
=> 1 = 0 + 1
[.,[[.,.],[.,.]]]
=> [.,[[.,[.,.]],.]]
=> [3,2,4,1] => [[[.,.],.],[.,.]]
=> 1 = 0 + 1
[.,[[.,[.,.]],.]]
=> [.,[[.,.],[.,.]]]
=> [2,4,3,1] => [[.,.],[[.,.],.]]
=> 2 = 1 + 1
[.,[[[.,.],.],.]]
=> [.,[[[.,.],.],.]]
=> [2,3,4,1] => [[.,.],[.,[.,.]]]
=> 1 = 0 + 1
[[.,.],[.,[.,.]]]
=> [[.,[.,[.,.]]],.]
=> [3,2,1,4] => [[[.,.],.],[.,.]]
=> 1 = 0 + 1
[[.,.],[[.,.],.]]
=> [[.,[[.,.],.]],.]
=> [2,3,1,4] => [[.,.],[.,[.,.]]]
=> 1 = 0 + 1
[[.,[.,.]],[.,.]]
=> [[.,[.,.]],[.,.]]
=> [2,1,4,3] => [[.,.],[[.,.],.]]
=> 2 = 1 + 1
[[[.,.],.],[.,.]]
=> [[[.,[.,.]],.],.]
=> [2,1,3,4] => [[.,.],[.,[.,.]]]
=> 1 = 0 + 1
[[.,[.,[.,.]]],.]
=> [[.,.],[.,[.,.]]]
=> [1,4,3,2] => [.,[[[.,.],.],.]]
=> 2 = 1 + 1
[[.,[[.,.],.]],.]
=> [[.,.],[[.,.],.]]
=> [1,3,4,2] => [.,[[.,.],[.,.]]]
=> 2 = 1 + 1
[[[.,.],[.,.]],.]
=> [[[.,.],[.,.]],.]
=> [1,3,2,4] => [.,[[.,.],[.,.]]]
=> 2 = 1 + 1
[[[.,[.,.]],.],.]
=> [[[.,.],.],[.,.]]
=> [1,2,4,3] => [.,[.,[[.,.],.]]]
=> 2 = 1 + 1
[[[[.,.],.],.],.]
=> [[[[.,.],.],.],.]
=> [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> 1 = 0 + 1
[.,[.,[.,[.,[.,.]]]]]
=> [.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [[[[[.,.],.],.],.],.]
=> 1 = 0 + 1
[.,[.,[.,[[.,.],.]]]]
=> [.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [[[[.,.],.],.],[.,.]]
=> 1 = 0 + 1
[.,[.,[[.,.],[.,.]]]]
=> [.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => [[[[.,.],.],.],[.,.]]
=> 1 = 0 + 1
[.,[.,[[.,[.,.]],.]]]
=> [.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => [[[.,.],.],[[.,.],.]]
=> 2 = 1 + 1
[.,[.,[[[.,.],.],.]]]
=> [.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [[[.,.],.],[.,[.,.]]]
=> 1 = 0 + 1
[.,[[.,.],[.,[.,.]]]]
=> [.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [[[[.,.],.],.],[.,.]]
=> 1 = 0 + 1
[.,[[.,.],[[.,.],.]]]
=> [.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => [[[.,.],.],[.,[.,.]]]
=> 1 = 0 + 1
[.,[[.,[.,.]],[.,.]]]
=> [.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => [[[.,.],.],[[.,.],.]]
=> 2 = 1 + 1
[.,[[[.,.],.],[.,.]]]
=> [.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => [[[.,.],.],[.,[.,.]]]
=> 1 = 0 + 1
[.,[[.,[.,[.,.]]],.]]
=> [.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => [[.,.],[[[.,.],.],.]]
=> 2 = 1 + 1
[.,[[.,[[.,.],.]],.]]
=> [.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => [[.,.],[[.,.],[.,.]]]
=> 2 = 1 + 1
[.,[[[.,.],[.,.]],.]]
=> [.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => [[.,.],[[.,.],[.,.]]]
=> 2 = 1 + 1
[.,[[[.,[.,.]],.],.]]
=> [.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => [[.,.],[.,[[.,.],.]]]
=> 2 = 1 + 1
[.,[[[[.,.],.],.],.]]
=> [.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [[.,.],[.,[.,[.,.]]]]
=> 1 = 0 + 1
[[.,.],[.,[.,[.,.]]]]
=> [[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => [[[[.,.],.],.],[.,.]]
=> 1 = 0 + 1
[[.,.],[.,[[.,.],.]]]
=> [[.,[.,[[.,.],.]]],.]
=> [3,4,2,1,5] => [[[.,.],.],[.,[.,.]]]
=> 1 = 0 + 1
[[.,.],[[.,.],[.,.]]]
=> [[.,[[.,[.,.]],.]],.]
=> [3,2,4,1,5] => [[[.,.],.],[.,[.,.]]]
=> 1 = 0 + 1
[[.,.],[[.,[.,.]],.]]
=> [[.,[[.,.],[.,.]]],.]
=> [2,4,3,1,5] => [[.,.],[[.,.],[.,.]]]
=> 2 = 1 + 1
[[.,.],[[[.,.],.],.]]
=> [[.,[[[.,.],.],.]],.]
=> [2,3,4,1,5] => [[.,.],[.,[.,[.,.]]]]
=> 1 = 0 + 1
[[.,[.,.]],[.,[.,.]]]
=> [[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => [[[.,.],.],[[.,.],.]]
=> 2 = 1 + 1
[[.,[.,.]],[[.,.],.]]
=> [[.,[[.,.],.]],[.,.]]
=> [2,3,1,5,4] => [[.,.],[.,[[.,.],.]]]
=> 2 = 1 + 1
[[[.,.],.],[.,[.,.]]]
=> [[[.,[.,[.,.]]],.],.]
=> [3,2,1,4,5] => [[[.,.],.],[.,[.,.]]]
=> 1 = 0 + 1
[[[.,.],.],[[.,.],.]]
=> [[[.,[[.,.],.]],.],.]
=> [2,3,1,4,5] => [[.,.],[.,[.,[.,.]]]]
=> 1 = 0 + 1
[[.,[.,[.,.]]],[.,.]]
=> [[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => [[.,.],[[[.,.],.],.]]
=> 2 = 1 + 1
[[.,[[.,.],.]],[.,.]]
=> [[.,[.,.]],[[.,.],.]]
=> [2,1,4,5,3] => [[.,.],[[.,.],[.,.]]]
=> 2 = 1 + 1
[[[.,.],[.,.]],[.,.]]
=> [[[.,[.,.]],[.,.]],.]
=> [2,1,4,3,5] => [[.,.],[[.,.],[.,.]]]
=> 2 = 1 + 1
[[[.,[.,.]],.],[.,.]]
=> [[[.,[.,.]],.],[.,.]]
=> [2,1,3,5,4] => [[.,.],[.,[[.,.],.]]]
=> 2 = 1 + 1
[[[[.,.],.],.],[.,.]]
=> [[[[.,[.,.]],.],.],.]
=> [2,1,3,4,5] => [[.,.],[.,[.,[.,.]]]]
=> 1 = 0 + 1
[[.,[.,[.,[.,.]]]],.]
=> [[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> 2 = 1 + 1
[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]
=> [.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]
=> [8,7,6,5,4,3,2,1] => [[[[[[[[.,.],.],.],.],.],.],.],.]
=> ? = 0 + 1
[.,[.,[.,[.,[.,[.,[[.,.],.]]]]]]]
=> [.,[.,[.,[.,[.,[.,[[.,.],.]]]]]]]
=> [7,8,6,5,4,3,2,1] => [[[[[[[.,.],.],.],.],.],.],[.,.]]
=> ? = 0 + 1
[.,[.,[.,[.,[.,[[.,.],[.,.]]]]]]]
=> [.,[.,[.,[.,[.,[[.,[.,.]],.]]]]]]
=> [7,6,8,5,4,3,2,1] => [[[[[[[.,.],.],.],.],.],.],[.,.]]
=> ? = 0 + 1
[.,[.,[.,[.,[.,[[.,[.,.]],.]]]]]]
=> [.,[.,[.,[.,[.,[[.,.],[.,.]]]]]]]
=> [6,8,7,5,4,3,2,1] => [[[[[[.,.],.],.],.],.],[[.,.],.]]
=> ? = 1 + 1
[.,[.,[.,[.,[.,[[[.,.],.],.]]]]]]
=> [.,[.,[.,[.,[.,[[[.,.],.],.]]]]]]
=> [6,7,8,5,4,3,2,1] => [[[[[[.,.],.],.],.],.],[.,[.,.]]]
=> ? = 0 + 1
[.,[.,[.,[.,[[.,.],[.,[.,.]]]]]]]
=> [.,[.,[.,[.,[[.,[.,[.,.]]],.]]]]]
=> [7,6,5,8,4,3,2,1] => [[[[[[[.,.],.],.],.],.],.],[.,.]]
=> ? = 0 + 1
[.,[.,[.,[.,[[.,.],[[.,.],.]]]]]]
=> [.,[.,[.,[.,[[.,[[.,.],.]],.]]]]]
=> [6,7,5,8,4,3,2,1] => [[[[[[.,.],.],.],.],.],[.,[.,.]]]
=> ? = 0 + 1
[.,[.,[.,[.,[[.,[.,.]],[.,.]]]]]]
=> [.,[.,[.,[.,[[.,[.,.]],[.,.]]]]]]
=> [6,5,8,7,4,3,2,1] => [[[[[[.,.],.],.],.],.],[[.,.],.]]
=> ? = 1 + 1
[.,[.,[.,[.,[[[.,.],.],[.,.]]]]]]
=> [.,[.,[.,[.,[[[.,[.,.]],.],.]]]]]
=> [6,5,7,8,4,3,2,1] => [[[[[[.,.],.],.],.],.],[.,[.,.]]]
=> ? = 0 + 1
[.,[.,[.,[.,[[.,[.,[.,.]]],.]]]]]
=> [.,[.,[.,[.,[[.,.],[.,[.,.]]]]]]]
=> [5,8,7,6,4,3,2,1] => [[[[[.,.],.],.],.],[[[.,.],.],.]]
=> ? = 1 + 1
[.,[.,[.,[.,[[.,[[.,.],.]],.]]]]]
=> [.,[.,[.,[.,[[.,.],[[.,.],.]]]]]]
=> [5,7,8,6,4,3,2,1] => [[[[[.,.],.],.],.],[[.,.],[.,.]]]
=> ? = 1 + 1
[.,[.,[.,[.,[[[.,.],[.,.]],.]]]]]
=> [.,[.,[.,[.,[[[.,.],[.,.]],.]]]]]
=> [5,7,6,8,4,3,2,1] => [[[[[.,.],.],.],.],[[.,.],[.,.]]]
=> ? = 1 + 1
[.,[.,[.,[.,[[[.,[.,.]],.],.]]]]]
=> [.,[.,[.,[.,[[[.,.],.],[.,.]]]]]]
=> [5,6,8,7,4,3,2,1] => [[[[[.,.],.],.],.],[.,[[.,.],.]]]
=> ? = 1 + 1
[.,[.,[.,[.,[[[[.,.],.],.],.]]]]]
=> [.,[.,[.,[.,[[[[.,.],.],.],.]]]]]
=> [5,6,7,8,4,3,2,1] => [[[[[.,.],.],.],.],[.,[.,[.,.]]]]
=> ? = 0 + 1
[.,[.,[.,[[.,.],[.,[.,[.,.]]]]]]]
=> [.,[.,[.,[[.,[.,[.,[.,.]]]],.]]]]
=> [7,6,5,4,8,3,2,1] => [[[[[[[.,.],.],.],.],.],.],[.,.]]
=> ? = 0 + 1
[.,[.,[.,[[.,.],[.,[[.,.],.]]]]]]
=> [.,[.,[.,[[.,[.,[[.,.],.]]],.]]]]
=> [6,7,5,4,8,3,2,1] => [[[[[[.,.],.],.],.],.],[.,[.,.]]]
=> ? = 0 + 1
[.,[.,[.,[[.,.],[[.,.],[.,.]]]]]]
=> [.,[.,[.,[[.,[[.,[.,.]],.]],.]]]]
=> [6,5,7,4,8,3,2,1] => [[[[[[.,.],.],.],.],.],[.,[.,.]]]
=> ? = 0 + 1
[.,[.,[.,[[.,[.,.]],[.,[.,.]]]]]]
=> [.,[.,[.,[[.,[.,[.,.]]],[.,.]]]]]
=> [6,5,4,8,7,3,2,1] => ?
=> ? = 1 + 1
[.,[.,[.,[[[.,.],.],[.,[.,.]]]]]]
=> [.,[.,[.,[[[.,[.,[.,.]]],.],.]]]]
=> [6,5,4,7,8,3,2,1] => [[[[[[.,.],.],.],.],.],[.,[.,.]]]
=> ? = 0 + 1
[.,[.,[.,[[[.,.],.],[[.,.],.]]]]]
=> [.,[.,[.,[[[.,[[.,.],.]],.],.]]]]
=> [5,6,4,7,8,3,2,1] => [[[[[.,.],.],.],.],[.,[.,[.,.]]]]
=> ? = 0 + 1
[.,[.,[.,[[.,[.,[.,.]]],[.,.]]]]]
=> [.,[.,[.,[[.,[.,.]],[.,[.,.]]]]]]
=> [5,4,8,7,6,3,2,1] => ?
=> ? = 1 + 1
[.,[.,[.,[[.,[.,[.,[.,.]]]],.]]]]
=> [.,[.,[.,[[.,.],[.,[.,[.,.]]]]]]]
=> [4,8,7,6,5,3,2,1] => [[[[.,.],.],.],[[[[.,.],.],.],.]]
=> ? = 1 + 1
[.,[.,[.,[[.,[.,[[.,.],.]]],.]]]]
=> [.,[.,[.,[[.,.],[.,[[.,.],.]]]]]]
=> [4,7,8,6,5,3,2,1] => [[[[.,.],.],.],[[[.,.],.],[.,.]]]
=> ? = 1 + 1
[.,[.,[.,[[.,[[.,.],[.,.]]],.]]]]
=> [.,[.,[.,[[.,.],[[.,[.,.]],.]]]]]
=> [4,7,6,8,5,3,2,1] => [[[[.,.],.],.],[[[.,.],.],[.,.]]]
=> ? = 1 + 1
[.,[.,[.,[[.,[[.,[.,.]],.]],.]]]]
=> [.,[.,[.,[[.,.],[[.,.],[.,.]]]]]]
=> [4,6,8,7,5,3,2,1] => [[[[.,.],.],.],[[.,.],[[.,.],.]]]
=> ? = 2 + 1
[.,[.,[.,[[[.,.],[.,[.,.]]],.]]]]
=> [.,[.,[.,[[[.,.],[.,[.,.]]],.]]]]
=> [4,7,6,5,8,3,2,1] => [[[[.,.],.],.],[[[.,.],.],[.,.]]]
=> ? = 1 + 1
[.,[.,[.,[[[.,.],[[.,.],.]],.]]]]
=> [.,[.,[.,[[[.,.],[[.,.],.]],.]]]]
=> [4,6,7,5,8,3,2,1] => [[[[.,.],.],.],[[.,.],[.,[.,.]]]]
=> ? = 1 + 1
[.,[.,[.,[[[.,[.,[.,.]]],.],.]]]]
=> [.,[.,[.,[[[.,.],.],[.,[.,.]]]]]]
=> [4,5,8,7,6,3,2,1] => [[[[.,.],.],.],[.,[[[.,.],.],.]]]
=> ? = 1 + 1
[.,[.,[[.,.],[.,[.,[.,[.,.]]]]]]]
=> [.,[.,[[.,[.,[.,[.,[.,.]]]]],.]]]
=> [7,6,5,4,3,8,2,1] => [[[[[[[.,.],.],.],.],.],.],[.,.]]
=> ? = 0 + 1
[.,[.,[[.,.],[.,[.,[[.,.],.]]]]]]
=> [.,[.,[[.,[.,[.,[[.,.],.]]]],.]]]
=> [6,7,5,4,3,8,2,1] => [[[[[[.,.],.],.],.],.],[.,[.,.]]]
=> ? = 0 + 1
[.,[.,[[.,.],[.,[[.,[.,.]],.]]]]]
=> [.,[.,[[.,[.,[[.,.],[.,.]]]],.]]]
=> [5,7,6,4,3,8,2,1] => [[[[[.,.],.],.],.],[[.,.],[.,.]]]
=> ? = 1 + 1
[.,[.,[[.,.],[[.,[.,.]],[.,.]]]]]
=> [.,[.,[[.,[[.,[.,.]],[.,.]]],.]]]
=> [5,4,7,6,3,8,2,1] => [[[[[.,.],.],.],.],[[.,.],[.,.]]]
=> ? = 1 + 1
[.,[.,[[.,.],[[.,[.,[.,.]]],.]]]]
=> [.,[.,[[.,[[.,.],[.,[.,.]]]],.]]]
=> [4,7,6,5,3,8,2,1] => [[[[.,.],.],.],[[[.,.],.],[.,.]]]
=> ? = 1 + 1
[.,[.,[[.,.],[[[.,[.,.]],.],.]]]]
=> [.,[.,[[.,[[[.,.],.],[.,.]]],.]]]
=> [4,5,7,6,3,8,2,1] => ?
=> ? = 1 + 1
[.,[.,[[.,[.,[.,.]]],[.,[.,.]]]]]
=> [.,[.,[[.,[.,[.,.]]],[.,[.,.]]]]]
=> [5,4,3,8,7,6,2,1] => [[[[[.,.],.],.],.],[[[.,.],.],.]]
=> ? = 1 + 1
[.,[.,[[[.,.],[.,.]],[.,[.,.]]]]]
=> [.,[.,[[[.,[.,[.,.]]],[.,.]],.]]]
=> [5,4,3,7,6,8,2,1] => ?
=> ? = 1 + 1
[.,[.,[[[[[.,.],.],.],.],[.,.]]]]
=> [.,[.,[[[[[.,[.,.]],.],.],.],.]]]
=> [4,3,5,6,7,8,2,1] => [[[[.,.],.],.],[.,[.,[.,[.,.]]]]]
=> ? = 0 + 1
[.,[.,[[.,[.,[.,[.,[.,.]]]]],.]]]
=> [.,[.,[[.,.],[.,[.,[.,[.,.]]]]]]]
=> [3,8,7,6,5,4,2,1] => [[[.,.],.],[[[[[.,.],.],.],.],.]]
=> ? = 1 + 1
[.,[.,[[.,[.,[[.,.],[.,.]]]],.]]]
=> [.,[.,[[.,.],[.,[[.,[.,.]],.]]]]]
=> [3,7,6,8,5,4,2,1] => [[[.,.],.],[[[[.,.],.],.],[.,.]]]
=> ? = 1 + 1
[.,[.,[[.,[[.,.],[.,[.,.]]]],.]]]
=> [.,[.,[[.,.],[[.,[.,[.,.]]],.]]]]
=> [3,7,6,5,8,4,2,1] => [[[.,.],.],[[[[.,.],.],.],[.,.]]]
=> ? = 1 + 1
[.,[.,[[.,[[.,[.,.]],[.,.]]],.]]]
=> [.,[.,[[.,.],[[.,[.,.]],[.,.]]]]]
=> [3,6,5,8,7,4,2,1] => ?
=> ? = 2 + 1
[.,[.,[[.,[[[.,.],.],[.,.]]],.]]]
=> [.,[.,[[.,.],[[[.,[.,.]],.],.]]]]
=> [3,6,5,7,8,4,2,1] => ?
=> ? = 1 + 1
[.,[.,[[[.,.],[.,[.,[.,.]]]],.]]]
=> [.,[.,[[[.,.],[.,[.,[.,.]]]],.]]]
=> [3,7,6,5,4,8,2,1] => [[[.,.],.],[[[[.,.],.],.],[.,.]]]
=> ? = 1 + 1
[.,[.,[[[.,[.,[.,.]]],[.,.]],.]]]
=> [.,[.,[[[.,.],[.,.]],[.,[.,.]]]]]
=> [3,5,4,8,7,6,2,1] => ?
=> ? = 2 + 1
[.,[.,[[[[.,.],[.,.]],[.,.]],.]]]
=> [.,[.,[[[[.,.],[.,.]],[.,.]],.]]]
=> [3,5,4,7,6,8,2,1] => [[[.,.],.],[[.,.],[[.,.],[.,.]]]]
=> ? = 2 + 1
[.,[.,[[[[[.,[.,.]],.],.],.],.]]]
=> [.,[.,[[[[[.,.],.],.],.],[.,.]]]]
=> [3,4,5,6,8,7,2,1] => [[[.,.],.],[.,[.,[.,[[.,.],.]]]]]
=> ? = 1 + 1
[.,[.,[[[[[[.,.],.],.],.],.],.]]]
=> [.,[.,[[[[[[.,.],.],.],.],.],.]]]
=> [3,4,5,6,7,8,2,1] => [[[.,.],.],[.,[.,[.,[.,[.,.]]]]]]
=> ? = 0 + 1
[.,[[.,.],[.,[.,[.,[.,[.,.]]]]]]]
=> [.,[[.,[.,[.,[.,[.,[.,.]]]]]],.]]
=> [7,6,5,4,3,2,8,1] => [[[[[[[.,.],.],.],.],.],.],[.,.]]
=> ? = 0 + 1
[.,[[.,.],[.,[.,[.,[[.,.],.]]]]]]
=> [.,[[.,[.,[.,[.,[[.,.],.]]]]],.]]
=> [6,7,5,4,3,2,8,1] => [[[[[[.,.],.],.],.],.],[.,[.,.]]]
=> ? = 0 + 1
Description
The hook number of a binary tree. A hook of a binary tree is a vertex together with is left- and its right-most branch. Then there is a unique decomposition of the tree into hooks and the hook number is the number of hooks in this decomposition.
Matching statistic: St000157
Mp00014: Binary trees to 132-avoiding permutationPermutations
Mp00223: Permutations runsortPermutations
Mp00059: Permutations Robinson-Schensted insertion tableauStandard tableaux
St000157: Standard tableaux ⟶ ℤResult quality: 64% values known / values provided: 64%distinct values known / distinct values provided: 100%
Values
[.,.]
=> [1] => [1] => [[1]]
=> 0
[.,[.,.]]
=> [2,1] => [1,2] => [[1,2]]
=> 0
[[.,.],.]
=> [1,2] => [1,2] => [[1,2]]
=> 0
[.,[.,[.,.]]]
=> [3,2,1] => [1,2,3] => [[1,2,3]]
=> 0
[.,[[.,.],.]]
=> [2,3,1] => [1,2,3] => [[1,2,3]]
=> 0
[[.,.],[.,.]]
=> [3,1,2] => [1,2,3] => [[1,2,3]]
=> 0
[[.,[.,.]],.]
=> [2,1,3] => [1,3,2] => [[1,2],[3]]
=> 1
[[[.,.],.],.]
=> [1,2,3] => [1,2,3] => [[1,2,3]]
=> 0
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [1,2,3,4] => [[1,2,3,4]]
=> 0
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => [1,2,3,4] => [[1,2,3,4]]
=> 0
[.,[[.,.],[.,.]]]
=> [4,2,3,1] => [1,2,3,4] => [[1,2,3,4]]
=> 0
[.,[[.,[.,.]],.]]
=> [3,2,4,1] => [1,2,4,3] => [[1,2,3],[4]]
=> 1
[.,[[[.,.],.],.]]
=> [2,3,4,1] => [1,2,3,4] => [[1,2,3,4]]
=> 0
[[.,.],[.,[.,.]]]
=> [4,3,1,2] => [1,2,3,4] => [[1,2,3,4]]
=> 0
[[.,.],[[.,.],.]]
=> [3,4,1,2] => [1,2,3,4] => [[1,2,3,4]]
=> 0
[[.,[.,.]],[.,.]]
=> [4,2,1,3] => [1,3,2,4] => [[1,2,4],[3]]
=> 1
[[[.,.],.],[.,.]]
=> [4,1,2,3] => [1,2,3,4] => [[1,2,3,4]]
=> 0
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => [1,4,2,3] => [[1,2,3],[4]]
=> 1
[[.,[[.,.],.]],.]
=> [2,3,1,4] => [1,4,2,3] => [[1,2,3],[4]]
=> 1
[[[.,.],[.,.]],.]
=> [3,1,2,4] => [1,2,4,3] => [[1,2,3],[4]]
=> 1
[[[.,[.,.]],.],.]
=> [2,1,3,4] => [1,3,4,2] => [[1,2,4],[3]]
=> 1
[[[[.,.],.],.],.]
=> [1,2,3,4] => [1,2,3,4] => [[1,2,3,4]]
=> 0
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
[.,[.,[[.,.],[.,.]]]]
=> [5,3,4,2,1] => [1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => [1,2,3,5,4] => [[1,2,3,4],[5]]
=> 1
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
[.,[[.,.],[.,[.,.]]]]
=> [5,4,2,3,1] => [1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
[.,[[.,.],[[.,.],.]]]
=> [4,5,2,3,1] => [1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
[.,[[.,[.,.]],[.,.]]]
=> [5,3,2,4,1] => [1,2,4,3,5] => [[1,2,3,5],[4]]
=> 1
[.,[[[.,.],.],[.,.]]]
=> [5,2,3,4,1] => [1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [1,2,5,3,4] => [[1,2,3,4],[5]]
=> 1
[.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => [1,2,5,3,4] => [[1,2,3,4],[5]]
=> 1
[.,[[[.,.],[.,.]],.]]
=> [4,2,3,5,1] => [1,2,3,5,4] => [[1,2,3,4],[5]]
=> 1
[.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => [1,2,4,5,3] => [[1,2,3,5],[4]]
=> 1
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
[[.,.],[.,[.,[.,.]]]]
=> [5,4,3,1,2] => [1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
[[.,.],[.,[[.,.],.]]]
=> [4,5,3,1,2] => [1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
[[.,.],[[.,.],[.,.]]]
=> [5,3,4,1,2] => [1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
[[.,.],[[.,[.,.]],.]]
=> [4,3,5,1,2] => [1,2,3,5,4] => [[1,2,3,4],[5]]
=> 1
[[.,.],[[[.,.],.],.]]
=> [3,4,5,1,2] => [1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
[[.,[.,.]],[.,[.,.]]]
=> [5,4,2,1,3] => [1,3,2,4,5] => [[1,2,4,5],[3]]
=> 1
[[.,[.,.]],[[.,.],.]]
=> [4,5,2,1,3] => [1,3,2,4,5] => [[1,2,4,5],[3]]
=> 1
[[[.,.],.],[.,[.,.]]]
=> [5,4,1,2,3] => [1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
[[[.,.],.],[[.,.],.]]
=> [4,5,1,2,3] => [1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
[[.,[.,[.,.]]],[.,.]]
=> [5,3,2,1,4] => [1,4,2,3,5] => [[1,2,3,5],[4]]
=> 1
[[.,[[.,.],.]],[.,.]]
=> [5,2,3,1,4] => [1,4,2,3,5] => [[1,2,3,5],[4]]
=> 1
[[[.,.],[.,.]],[.,.]]
=> [5,3,1,2,4] => [1,2,4,3,5] => [[1,2,3,5],[4]]
=> 1
[[[.,[.,.]],.],[.,.]]
=> [5,2,1,3,4] => [1,3,4,2,5] => [[1,2,4,5],[3]]
=> 1
[[[[.,.],.],.],[.,.]]
=> [5,1,2,3,4] => [1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
[.,[.,[.,[.,[.,[[.,.],[.,.]]]]]]]
=> [8,6,7,5,4,3,2,1] => ? => ?
=> ? = 0
[.,[.,[.,[.,[[.,.],[.,[.,.]]]]]]]
=> [8,7,5,6,4,3,2,1] => ? => ?
=> ? = 0
[.,[.,[.,[.,[[.,[.,.]],[.,.]]]]]]
=> [8,6,5,7,4,3,2,1] => ? => ?
=> ? = 1
[.,[.,[.,[.,[[[.,.],.],[.,.]]]]]]
=> [8,5,6,7,4,3,2,1] => ? => ?
=> ? = 0
[.,[.,[.,[.,[[.,[[.,.],.]],.]]]]]
=> [6,7,5,8,4,3,2,1] => ? => ?
=> ? = 1
[.,[.,[.,[[.,[.,.]],[.,[.,.]]]]]]
=> [8,7,5,4,6,3,2,1] => ? => ?
=> ? = 1
[.,[.,[.,[[[.,.],.],[.,[.,.]]]]]]
=> [8,7,4,5,6,3,2,1] => ? => ?
=> ? = 0
[.,[.,[.,[[[.,.],.],[[.,.],.]]]]]
=> [7,8,4,5,6,3,2,1] => ? => ?
=> ? = 0
[.,[.,[.,[[.,[.,[.,.]]],[.,.]]]]]
=> [8,6,5,4,7,3,2,1] => ? => ?
=> ? = 1
[.,[.,[.,[[.,[.,[[.,.],.]]],.]]]]
=> [6,7,5,4,8,3,2,1] => ? => ?
=> ? = 1
[.,[.,[.,[[.,[[.,.],[.,.]]],.]]]]
=> [7,5,6,4,8,3,2,1] => ? => ?
=> ? = 1
[.,[.,[.,[[[.,.],[[.,.],.]],.]]]]
=> [6,7,4,5,8,3,2,1] => ? => ?
=> ? = 1
[.,[.,[.,[[[.,[.,[.,.]]],.],.]]]]
=> [6,5,4,7,8,3,2,1] => ? => ?
=> ? = 1
[.,[.,[[.,.],[.,[[.,[.,.]],.]]]]]
=> [7,6,8,5,3,4,2,1] => ? => ?
=> ? = 1
[.,[.,[[.,.],[[.,[.,.]],[.,.]]]]]
=> [8,6,5,7,3,4,2,1] => ? => ?
=> ? = 1
[.,[.,[[.,.],[[.,[.,[.,.]]],.]]]]
=> [7,6,5,8,3,4,2,1] => ? => ?
=> ? = 1
[.,[.,[[.,.],[[[.,[.,.]],.],.]]]]
=> [6,5,7,8,3,4,2,1] => ? => ?
=> ? = 1
[.,[.,[[[.,.],[.,.]],[.,[.,.]]]]]
=> [8,7,5,3,4,6,2,1] => ? => ?
=> ? = 1
[.,[.,[[[[[.,.],.],.],.],[.,.]]]]
=> [8,3,4,5,6,7,2,1] => ? => ?
=> ? = 0
[.,[.,[[.,[.,[[.,.],[.,.]]]],.]]]
=> [7,5,6,4,3,8,2,1] => ? => ?
=> ? = 1
[.,[.,[[.,[[.,.],[.,[.,.]]]],.]]]
=> [7,6,4,5,3,8,2,1] => ? => ?
=> ? = 1
[.,[.,[[.,[[.,[.,.]],[.,.]]],.]]]
=> [7,5,4,6,3,8,2,1] => ? => ?
=> ? = 2
[.,[.,[[.,[[[.,.],.],[.,.]]],.]]]
=> [7,4,5,6,3,8,2,1] => ? => ?
=> ? = 1
[.,[.,[[[.,[.,[.,.]]],[.,.]],.]]]
=> [7,5,4,3,6,8,2,1] => ? => ?
=> ? = 2
[.,[.,[[[[.,.],[.,.]],[.,.]],.]]]
=> [7,5,3,4,6,8,2,1] => ? => ?
=> ? = 2
[.,[.,[[[[[[.,.],.],.],.],.],.]]]
=> [3,4,5,6,7,8,2,1] => ? => ?
=> ? = 0
[.,[[.,.],[.,[.,[[.,[.,.]],.]]]]]
=> [7,6,8,5,4,2,3,1] => ? => ?
=> ? = 1
[.,[[[[.,.],.],.],[[[.,.],.],.]]]
=> [6,7,8,2,3,4,5,1] => ? => ?
=> ? = 0
[.,[[[[[.,.],.],.],.],[.,[.,.]]]]
=> [8,7,2,3,4,5,6,1] => ? => ?
=> ? = 0
[.,[[[[[.,.],.],.],.],[[.,.],.]]]
=> [7,8,2,3,4,5,6,1] => ? => ?
=> ? = 0
[.,[[[[[[.,.],.],.],.],.],[.,.]]]
=> [8,2,3,4,5,6,7,1] => ? => ?
=> ? = 0
[.,[[.,[.,[.,[[.,.],[.,.]]]]],.]]
=> [7,5,6,4,3,2,8,1] => ? => ?
=> ? = 1
[.,[[.,[.,[.,[[[.,.],.],.]]]],.]]
=> [5,6,7,4,3,2,8,1] => ? => ?
=> ? = 1
[.,[[.,[.,[[.,.],[.,[.,.]]]]],.]]
=> [7,6,4,5,3,2,8,1] => ? => ?
=> ? = 1
[.,[[.,[.,[[.,[.,[.,.]]],.]]],.]]
=> [6,5,4,7,3,2,8,1] => ? => ?
=> ? = 2
[.,[[.,[[[[[.,.],.],.],.],.]],.]]
=> [3,4,5,6,7,2,8,1] => ? => ?
=> ? = 1
[.,[[[[[[.,.],.],.],.],[.,.]],.]]
=> [7,2,3,4,5,6,8,1] => ? => ?
=> ? = 1
[.,[[[[[[.,.],.],.],[.,.]],.],.]]
=> [6,2,3,4,5,7,8,1] => ? => ?
=> ? = 1
[.,[[[[[.,[.,.]],[.,.]],.],.],.]]
=> [5,3,2,4,6,7,8,1] => ? => ?
=> ? = 2
[[.,.],[.,[.,[.,[[.,[.,.]],.]]]]]
=> [7,6,8,5,4,3,1,2] => ? => ?
=> ? = 1
[[.,.],[.,[.,[.,[[[.,.],.],.]]]]]
=> [6,7,8,5,4,3,1,2] => ? => ?
=> ? = 0
[[.,.],[.,[.,[[.,.],[[.,.],.]]]]]
=> [7,8,5,6,4,3,1,2] => ? => ?
=> ? = 0
[[.,.],[.,[.,[[.,[.,.]],[.,.]]]]]
=> [8,6,5,7,4,3,1,2] => ? => ?
=> ? = 1
[[.,.],[.,[.,[[[.,.],.],[.,.]]]]]
=> [8,5,6,7,4,3,1,2] => ? => ?
=> ? = 0
[[.,.],[.,[.,[[.,[.,[.,.]]],.]]]]
=> [7,6,5,8,4,3,1,2] => ? => ?
=> ? = 1
[[.,.],[.,[.,[[.,[[.,.],.]],.]]]]
=> [6,7,5,8,4,3,1,2] => ? => ?
=> ? = 1
[[.,.],[.,[.,[[[.,.],[.,.]],.]]]]
=> [7,5,6,8,4,3,1,2] => ? => ?
=> ? = 1
[[.,.],[.,[[.,.],[[.,.],[.,.]]]]]
=> [8,6,7,4,5,3,1,2] => ? => ?
=> ? = 0
[[.,.],[.,[[.,.],[[.,[.,.]],.]]]]
=> [7,6,8,4,5,3,1,2] => ? => ?
=> ? = 1
[[.,.],[.,[[.,.],[[[.,.],.],.]]]]
=> [6,7,8,4,5,3,1,2] => ? => ?
=> ? = 0
Description
The number of descents of a standard tableau. Entry $i$ of a standard Young tableau is a descent if $i+1$ appears in a row below the row of $i$.
Matching statistic: St000919
Mp00014: Binary trees to 132-avoiding permutationPermutations
Mp00223: Permutations runsortPermutations
Mp00072: Permutations binary search tree: left to rightBinary trees
St000919: Binary trees ⟶ ℤResult quality: 63% values known / values provided: 63%distinct values known / distinct values provided: 100%
Values
[.,.]
=> [1] => [1] => [.,.]
=> ? = 0
[.,[.,.]]
=> [2,1] => [1,2] => [.,[.,.]]
=> 0
[[.,.],.]
=> [1,2] => [1,2] => [.,[.,.]]
=> 0
[.,[.,[.,.]]]
=> [3,2,1] => [1,2,3] => [.,[.,[.,.]]]
=> 0
[.,[[.,.],.]]
=> [2,3,1] => [1,2,3] => [.,[.,[.,.]]]
=> 0
[[.,.],[.,.]]
=> [3,1,2] => [1,2,3] => [.,[.,[.,.]]]
=> 0
[[.,[.,.]],.]
=> [2,1,3] => [1,3,2] => [.,[[.,.],.]]
=> 1
[[[.,.],.],.]
=> [1,2,3] => [1,2,3] => [.,[.,[.,.]]]
=> 0
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> 0
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> 0
[.,[[.,.],[.,.]]]
=> [4,2,3,1] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> 0
[.,[[.,[.,.]],.]]
=> [3,2,4,1] => [1,2,4,3] => [.,[.,[[.,.],.]]]
=> 1
[.,[[[.,.],.],.]]
=> [2,3,4,1] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> 0
[[.,.],[.,[.,.]]]
=> [4,3,1,2] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> 0
[[.,.],[[.,.],.]]
=> [3,4,1,2] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> 0
[[.,[.,.]],[.,.]]
=> [4,2,1,3] => [1,3,2,4] => [.,[[.,.],[.,.]]]
=> 1
[[[.,.],.],[.,.]]
=> [4,1,2,3] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> 0
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => [1,4,2,3] => [.,[[.,[.,.]],.]]
=> 1
[[.,[[.,.],.]],.]
=> [2,3,1,4] => [1,4,2,3] => [.,[[.,[.,.]],.]]
=> 1
[[[.,.],[.,.]],.]
=> [3,1,2,4] => [1,2,4,3] => [.,[.,[[.,.],.]]]
=> 1
[[[.,[.,.]],.],.]
=> [2,1,3,4] => [1,3,4,2] => [.,[[.,.],[.,.]]]
=> 1
[[[[.,.],.],.],.]
=> [1,2,3,4] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> 0
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 0
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 0
[.,[.,[[.,.],[.,.]]]]
=> [5,3,4,2,1] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 0
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => [1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> 1
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 0
[.,[[.,.],[.,[.,.]]]]
=> [5,4,2,3,1] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 0
[.,[[.,.],[[.,.],.]]]
=> [4,5,2,3,1] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 0
[.,[[.,[.,.]],[.,.]]]
=> [5,3,2,4,1] => [1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> 1
[.,[[[.,.],.],[.,.]]]
=> [5,2,3,4,1] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 0
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [1,2,5,3,4] => [.,[.,[[.,[.,.]],.]]]
=> 1
[.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => [1,2,5,3,4] => [.,[.,[[.,[.,.]],.]]]
=> 1
[.,[[[.,.],[.,.]],.]]
=> [4,2,3,5,1] => [1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> 1
[.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => [1,2,4,5,3] => [.,[.,[[.,.],[.,.]]]]
=> 1
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 0
[[.,.],[.,[.,[.,.]]]]
=> [5,4,3,1,2] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 0
[[.,.],[.,[[.,.],.]]]
=> [4,5,3,1,2] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 0
[[.,.],[[.,.],[.,.]]]
=> [5,3,4,1,2] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 0
[[.,.],[[.,[.,.]],.]]
=> [4,3,5,1,2] => [1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> 1
[[.,.],[[[.,.],.],.]]
=> [3,4,5,1,2] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 0
[[.,[.,.]],[.,[.,.]]]
=> [5,4,2,1,3] => [1,3,2,4,5] => [.,[[.,.],[.,[.,.]]]]
=> 1
[[.,[.,.]],[[.,.],.]]
=> [4,5,2,1,3] => [1,3,2,4,5] => [.,[[.,.],[.,[.,.]]]]
=> 1
[[[.,.],.],[.,[.,.]]]
=> [5,4,1,2,3] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 0
[[[.,.],.],[[.,.],.]]
=> [4,5,1,2,3] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 0
[[.,[.,[.,.]]],[.,.]]
=> [5,3,2,1,4] => [1,4,2,3,5] => [.,[[.,[.,.]],[.,.]]]
=> 1
[[.,[[.,.],.]],[.,.]]
=> [5,2,3,1,4] => [1,4,2,3,5] => [.,[[.,[.,.]],[.,.]]]
=> 1
[[[.,.],[.,.]],[.,.]]
=> [5,3,1,2,4] => [1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> 1
[[[.,[.,.]],.],[.,.]]
=> [5,2,1,3,4] => [1,3,4,2,5] => [.,[[.,.],[.,[.,.]]]]
=> 1
[[[[.,.],.],.],[.,.]]
=> [5,1,2,3,4] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> 0
[[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => [1,5,2,3,4] => [.,[[.,[.,[.,.]]],.]]
=> 1
[.,[.,[.,[.,[.,[[.,.],[.,.]]]]]]]
=> [8,6,7,5,4,3,2,1] => ? => ?
=> ? = 0
[.,[.,[.,[.,[[.,.],[.,[.,.]]]]]]]
=> [8,7,5,6,4,3,2,1] => ? => ?
=> ? = 0
[.,[.,[.,[.,[[.,[.,.]],[.,.]]]]]]
=> [8,6,5,7,4,3,2,1] => ? => ?
=> ? = 1
[.,[.,[.,[.,[[[.,.],.],[.,.]]]]]]
=> [8,5,6,7,4,3,2,1] => ? => ?
=> ? = 0
[.,[.,[.,[.,[[.,[[.,.],.]],.]]]]]
=> [6,7,5,8,4,3,2,1] => ? => ?
=> ? = 1
[.,[.,[.,[[.,[.,.]],[.,[.,.]]]]]]
=> [8,7,5,4,6,3,2,1] => ? => ?
=> ? = 1
[.,[.,[.,[[[.,.],.],[.,[.,.]]]]]]
=> [8,7,4,5,6,3,2,1] => ? => ?
=> ? = 0
[.,[.,[.,[[[.,.],.],[[.,.],.]]]]]
=> [7,8,4,5,6,3,2,1] => ? => ?
=> ? = 0
[.,[.,[.,[[.,[.,[.,.]]],[.,.]]]]]
=> [8,6,5,4,7,3,2,1] => ? => ?
=> ? = 1
[.,[.,[.,[[.,[.,[[.,.],.]]],.]]]]
=> [6,7,5,4,8,3,2,1] => ? => ?
=> ? = 1
[.,[.,[.,[[.,[[.,.],[.,.]]],.]]]]
=> [7,5,6,4,8,3,2,1] => ? => ?
=> ? = 1
[.,[.,[.,[[[.,.],[[.,.],.]],.]]]]
=> [6,7,4,5,8,3,2,1] => ? => ?
=> ? = 1
[.,[.,[.,[[[.,[.,[.,.]]],.],.]]]]
=> [6,5,4,7,8,3,2,1] => ? => ?
=> ? = 1
[.,[.,[[.,.],[.,[[.,[.,.]],.]]]]]
=> [7,6,8,5,3,4,2,1] => ? => ?
=> ? = 1
[.,[.,[[.,.],[[.,[.,.]],[.,.]]]]]
=> [8,6,5,7,3,4,2,1] => ? => ?
=> ? = 1
[.,[.,[[.,.],[[.,[.,[.,.]]],.]]]]
=> [7,6,5,8,3,4,2,1] => ? => ?
=> ? = 1
[.,[.,[[.,.],[[[.,[.,.]],.],.]]]]
=> [6,5,7,8,3,4,2,1] => ? => ?
=> ? = 1
[.,[.,[[[.,.],[.,.]],[.,[.,.]]]]]
=> [8,7,5,3,4,6,2,1] => ? => ?
=> ? = 1
[.,[.,[[[[[.,.],.],.],.],[.,.]]]]
=> [8,3,4,5,6,7,2,1] => ? => ?
=> ? = 0
[.,[.,[[.,[.,[[.,.],[.,.]]]],.]]]
=> [7,5,6,4,3,8,2,1] => ? => ?
=> ? = 1
[.,[.,[[.,[[.,.],[.,[.,.]]]],.]]]
=> [7,6,4,5,3,8,2,1] => ? => ?
=> ? = 1
[.,[.,[[.,[[.,[.,.]],[.,.]]],.]]]
=> [7,5,4,6,3,8,2,1] => ? => ?
=> ? = 2
[.,[.,[[.,[[[.,.],.],[.,.]]],.]]]
=> [7,4,5,6,3,8,2,1] => ? => ?
=> ? = 1
[.,[.,[[[.,[.,[.,.]]],[.,.]],.]]]
=> [7,5,4,3,6,8,2,1] => ? => ?
=> ? = 2
[.,[.,[[[[.,.],[.,.]],[.,.]],.]]]
=> [7,5,3,4,6,8,2,1] => ? => ?
=> ? = 2
[.,[.,[[[[[[.,.],.],.],.],.],.]]]
=> [3,4,5,6,7,8,2,1] => ? => ?
=> ? = 0
[.,[[.,.],[.,[.,[[.,[.,.]],.]]]]]
=> [7,6,8,5,4,2,3,1] => ? => ?
=> ? = 1
[.,[[[[.,.],.],.],[[[.,.],.],.]]]
=> [6,7,8,2,3,4,5,1] => ? => ?
=> ? = 0
[.,[[[[[.,.],.],.],.],[.,[.,.]]]]
=> [8,7,2,3,4,5,6,1] => ? => ?
=> ? = 0
[.,[[[[[.,.],.],.],.],[[.,.],.]]]
=> [7,8,2,3,4,5,6,1] => ? => ?
=> ? = 0
[.,[[[[[[.,.],.],.],.],.],[.,.]]]
=> [8,2,3,4,5,6,7,1] => ? => ?
=> ? = 0
[.,[[.,[.,[.,[[.,.],[.,.]]]]],.]]
=> [7,5,6,4,3,2,8,1] => ? => ?
=> ? = 1
[.,[[.,[.,[.,[[[.,.],.],.]]]],.]]
=> [5,6,7,4,3,2,8,1] => ? => ?
=> ? = 1
[.,[[.,[.,[[.,.],[.,[.,.]]]]],.]]
=> [7,6,4,5,3,2,8,1] => ? => ?
=> ? = 1
[.,[[.,[.,[[.,[.,[.,.]]],.]]],.]]
=> [6,5,4,7,3,2,8,1] => ? => ?
=> ? = 2
[.,[[.,[[[[[.,.],.],.],.],.]],.]]
=> [3,4,5,6,7,2,8,1] => ? => ?
=> ? = 1
[.,[[[[[[.,.],.],.],.],[.,.]],.]]
=> [7,2,3,4,5,6,8,1] => ? => ?
=> ? = 1
[.,[[[[[[.,.],.],.],[.,.]],.],.]]
=> [6,2,3,4,5,7,8,1] => ? => ?
=> ? = 1
[.,[[[[[.,[.,.]],[.,.]],.],.],.]]
=> [5,3,2,4,6,7,8,1] => ? => ?
=> ? = 2
[[.,.],[.,[.,[.,[[.,[.,.]],.]]]]]
=> [7,6,8,5,4,3,1,2] => ? => ?
=> ? = 1
[[.,.],[.,[.,[.,[[[.,.],.],.]]]]]
=> [6,7,8,5,4,3,1,2] => ? => ?
=> ? = 0
[[.,.],[.,[.,[[.,.],[[.,.],.]]]]]
=> [7,8,5,6,4,3,1,2] => ? => ?
=> ? = 0
[[.,.],[.,[.,[[.,[.,.]],[.,.]]]]]
=> [8,6,5,7,4,3,1,2] => ? => ?
=> ? = 1
[[.,.],[.,[.,[[[.,.],.],[.,.]]]]]
=> [8,5,6,7,4,3,1,2] => ? => ?
=> ? = 0
[[.,.],[.,[.,[[.,[.,[.,.]]],.]]]]
=> [7,6,5,8,4,3,1,2] => ? => ?
=> ? = 1
[[.,.],[.,[.,[[.,[[.,.],.]],.]]]]
=> [6,7,5,8,4,3,1,2] => ? => ?
=> ? = 1
[[.,.],[.,[.,[[[.,.],[.,.]],.]]]]
=> [7,5,6,8,4,3,1,2] => ? => ?
=> ? = 1
[[.,.],[.,[[.,.],[[.,.],[.,.]]]]]
=> [8,6,7,4,5,3,1,2] => ? => ?
=> ? = 0
[[.,.],[.,[[.,.],[[.,[.,.]],.]]]]
=> [7,6,8,4,5,3,1,2] => ? => ?
=> ? = 1
Description
The number of maximal left branches of a binary tree. A maximal left branch of a binary tree is an inclusion wise maximal path which consists of left edges only. This statistic records the number of distinct maximal left branches in the tree.
Matching statistic: St000069
Mp00018: Binary trees left border symmetryBinary trees
Mp00013: Binary trees to posetPosets
Mp00125: Posets dual posetPosets
St000069: Posets ⟶ ℤResult quality: 60% values known / values provided: 60%distinct values known / distinct values provided: 100%
Values
[.,.]
=> [.,.]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[.,[.,.]]
=> [.,[.,.]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
[[.,.],.]
=> [[.,.],.]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
[.,[.,[.,.]]]
=> [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[.,[[.,.],.]]
=> [.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[.,.],[.,.]]
=> [[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[.,[.,.]],.]
=> [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ([(0,1),(0,2)],3)
=> 2 = 1 + 1
[[[.,.],.],.]
=> [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[.,[.,[.,[.,.]]]]
=> [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[.,[.,[[.,.],.]]]
=> [.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[.,[[.,.],[.,.]]]
=> [.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[.,[[.,[.,.]],.]]
=> [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(3,1),(3,2)],4)
=> 2 = 1 + 1
[.,[[[.,.],.],.]]
=> [.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[.,.],[.,[.,.]]]
=> [[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[.,.],[[.,.],.]]
=> [[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[.,[.,.]],[.,.]]
=> [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(3,1)],4)
=> 2 = 1 + 1
[[[.,.],.],[.,.]]
=> [[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[.,[.,[.,.]]],.]
=> [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(3,1)],4)
=> 2 = 1 + 1
[[.,[[.,.],.]],.]
=> [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(3,1)],4)
=> 2 = 1 + 1
[[[.,.],[.,.]],.]
=> [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(3,1),(3,2)],4)
=> 2 = 1 + 1
[[[.,[.,.]],.],.]
=> [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(3,1)],4)
=> 2 = 1 + 1
[[[[.,.],.],.],.]
=> [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[.,[.,[.,[.,[.,.]]]]]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[.,[.,[.,[[.,.],.]]]]
=> [.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[.,[.,[[.,.],[.,.]]]]
=> [.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[.,[.,[[.,[.,.]],.]]]
=> [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,3),(3,4),(4,1),(4,2)],5)
=> 2 = 1 + 1
[.,[.,[[[.,.],.],.]]]
=> [.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[.,[[.,.],[.,[.,.]]]]
=> [.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[.,[[.,.],[[.,.],.]]]
=> [.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[.,[[.,[.,.]],[.,.]]]
=> [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,4),(3,2),(4,1),(4,3)],5)
=> 2 = 1 + 1
[.,[[[.,.],.],[.,.]]]
=> [.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[.,[[.,[.,[.,.]]],.]]
=> [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,4),(3,2),(4,1),(4,3)],5)
=> 2 = 1 + 1
[.,[[.,[[.,.],.]],.]]
=> [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,4),(3,2),(4,1),(4,3)],5)
=> 2 = 1 + 1
[.,[[[.,.],[.,.]],.]]
=> [.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,3),(3,4),(4,1),(4,2)],5)
=> 2 = 1 + 1
[.,[[[.,[.,.]],.],.]]
=> [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,4),(3,2),(4,1),(4,3)],5)
=> 2 = 1 + 1
[.,[[[[.,.],.],.],.]]
=> [.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[.,.],[.,[.,[.,.]]]]
=> [[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[.,.],[.,[[.,.],.]]]
=> [[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[.,.],[[.,.],[.,.]]]
=> [[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[.,.],[[.,[.,.]],.]]
=> [[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,3),(3,4),(4,1),(4,2)],5)
=> 2 = 1 + 1
[[.,.],[[[.,.],.],.]]
=> [[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[.,[.,.]],[.,[.,.]]]
=> [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> 2 = 1 + 1
[[.,[.,.]],[[.,.],.]]
=> [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> 2 = 1 + 1
[[[.,.],.],[.,[.,.]]]
=> [[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[[.,.],.],[[.,.],.]]
=> [[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[.,[.,[.,.]]],[.,.]]
=> [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> 2 = 1 + 1
[[.,[[.,.],.]],[.,.]]
=> [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> 2 = 1 + 1
[[[.,.],[.,.]],[.,.]]
=> [[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,4),(3,2),(4,1),(4,3)],5)
=> 2 = 1 + 1
[[[.,[.,.]],.],[.,.]]
=> [[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> 2 = 1 + 1
[[[[.,.],.],.],[.,.]]
=> [[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[.,[.,[.,[.,[.,[[.,[.,.]],.]]]]]]
=> [.,[.,[.,[.,[.,[[.,.],[.,.]]]]]]]
=> ([(0,7),(1,7),(3,5),(4,3),(5,2),(6,4),(7,6)],8)
=> ([(0,6),(3,5),(4,3),(5,7),(6,4),(7,1),(7,2)],8)
=> ? = 1 + 1
[.,[.,[.,[.,[[.,[.,.]],[.,.]]]]]]
=> [.,[.,[.,[.,[[.,[.,.]],[.,.]]]]]]
=> ([(0,7),(1,3),(3,7),(4,5),(5,2),(6,4),(7,6)],8)
=> ([(0,6),(3,4),(4,7),(5,1),(6,3),(7,2),(7,5)],8)
=> ? = 1 + 1
[.,[.,[.,[.,[[.,[.,[.,.]]],.]]]]]
=> [.,[.,[.,[.,[[.,.],[.,[.,.]]]]]]]
=> ([(0,7),(1,3),(3,7),(4,5),(5,2),(6,4),(7,6)],8)
=> ([(0,6),(3,4),(4,7),(5,1),(6,3),(7,2),(7,5)],8)
=> ? = 1 + 1
[.,[.,[.,[.,[[.,[[.,.],.]],.]]]]]
=> [.,[.,[.,[.,[[.,.],[[.,.],.]]]]]]
=> ([(0,7),(1,3),(3,7),(4,5),(5,2),(6,4),(7,6)],8)
=> ([(0,6),(3,4),(4,7),(5,1),(6,3),(7,2),(7,5)],8)
=> ? = 1 + 1
[.,[.,[.,[.,[[[.,.],[.,.]],.]]]]]
=> [.,[.,[.,[.,[[[.,.],[.,.]],.]]]]]
=> ([(0,7),(1,7),(3,5),(4,3),(5,2),(6,4),(7,6)],8)
=> ([(0,6),(3,5),(4,3),(5,7),(6,4),(7,1),(7,2)],8)
=> ? = 1 + 1
[.,[.,[.,[.,[[[.,[.,.]],.],.]]]]]
=> [.,[.,[.,[.,[[[.,.],.],[.,.]]]]]]
=> ([(0,7),(1,3),(3,7),(4,5),(5,2),(6,4),(7,6)],8)
=> ([(0,6),(3,4),(4,7),(5,1),(6,3),(7,2),(7,5)],8)
=> ? = 1 + 1
[.,[.,[.,[[.,[.,.]],[.,[.,.]]]]]]
=> [.,[.,[.,[[.,[.,[.,.]]],[.,.]]]]]
=> ([(0,7),(1,5),(3,7),(4,2),(5,3),(6,4),(7,6)],8)
=> ([(0,6),(3,7),(4,5),(5,1),(6,3),(7,2),(7,4)],8)
=> ? = 1 + 1
[.,[.,[.,[[.,[.,[.,.]]],[.,.]]]]]
=> [.,[.,[.,[[.,[.,.]],[.,[.,.]]]]]]
=> ([(0,4),(1,3),(3,7),(4,7),(5,2),(6,5),(7,6)],8)
=> ([(0,6),(3,7),(4,2),(5,1),(6,3),(7,4),(7,5)],8)
=> ? = 1 + 1
[.,[.,[.,[[.,[.,[.,[.,.]]]],.]]]]
=> [.,[.,[.,[[.,.],[.,[.,[.,.]]]]]]]
=> ([(0,7),(1,5),(3,7),(4,2),(5,3),(6,4),(7,6)],8)
=> ([(0,6),(3,7),(4,5),(5,1),(6,3),(7,2),(7,4)],8)
=> ? = 1 + 1
[.,[.,[.,[[.,[.,[[.,.],.]]],.]]]]
=> [.,[.,[.,[[.,.],[.,[[.,.],.]]]]]]
=> ([(0,7),(1,5),(3,7),(4,2),(5,3),(6,4),(7,6)],8)
=> ([(0,6),(3,7),(4,5),(5,1),(6,3),(7,2),(7,4)],8)
=> ? = 1 + 1
[.,[.,[.,[[.,[[.,.],[.,.]]],.]]]]
=> [.,[.,[.,[[.,.],[[.,[.,.]],.]]]]]
=> ([(0,7),(1,5),(3,7),(4,2),(5,3),(6,4),(7,6)],8)
=> ([(0,6),(3,7),(4,5),(5,1),(6,3),(7,2),(7,4)],8)
=> ? = 1 + 1
[.,[.,[.,[[.,[[.,[.,.]],.]],.]]]]
=> [.,[.,[.,[[.,.],[[.,.],[.,.]]]]]]
=> ([(0,7),(1,6),(2,6),(3,5),(5,4),(6,7),(7,3)],8)
=> ([(0,5),(4,7),(5,4),(6,2),(6,3),(7,1),(7,6)],8)
=> ? = 2 + 1
[.,[.,[.,[[[.,.],[.,[.,.]]],.]]]]
=> [.,[.,[.,[[[.,.],[.,[.,.]]],.]]]]
=> ([(0,7),(1,3),(3,7),(4,5),(5,2),(6,4),(7,6)],8)
=> ([(0,6),(3,4),(4,7),(5,1),(6,3),(7,2),(7,5)],8)
=> ? = 1 + 1
[.,[.,[.,[[[.,.],[[.,.],.]],.]]]]
=> [.,[.,[.,[[[.,.],[[.,.],.]],.]]]]
=> ([(0,7),(1,3),(3,7),(4,5),(5,2),(6,4),(7,6)],8)
=> ([(0,6),(3,4),(4,7),(5,1),(6,3),(7,2),(7,5)],8)
=> ? = 1 + 1
[.,[.,[.,[[[.,[.,[.,.]]],.],.]]]]
=> [.,[.,[.,[[[.,.],.],[.,[.,.]]]]]]
=> ([(0,4),(1,3),(3,7),(4,7),(5,2),(6,5),(7,6)],8)
=> ([(0,6),(3,7),(4,2),(5,1),(6,3),(7,4),(7,5)],8)
=> ? = 1 + 1
[.,[.,[[.,.],[.,[[.,[.,.]],.]]]]]
=> [.,[.,[[.,[.,[[.,.],[.,.]]]],.]]]
=> ([(0,7),(1,7),(3,5),(4,3),(5,2),(6,4),(7,6)],8)
=> ([(0,6),(3,5),(4,3),(5,7),(6,4),(7,1),(7,2)],8)
=> ? = 1 + 1
[.,[.,[[.,.],[[.,[.,.]],[.,.]]]]]
=> [.,[.,[[.,[[.,[.,.]],[.,.]]],.]]]
=> ([(0,7),(1,3),(3,7),(4,5),(5,2),(6,4),(7,6)],8)
=> ([(0,6),(3,4),(4,7),(5,1),(6,3),(7,2),(7,5)],8)
=> ? = 1 + 1
[.,[.,[[.,.],[[.,[.,[.,.]]],.]]]]
=> [.,[.,[[.,[[.,.],[.,[.,.]]]],.]]]
=> ([(0,7),(1,3),(3,7),(4,5),(5,2),(6,4),(7,6)],8)
=> ([(0,6),(3,4),(4,7),(5,1),(6,3),(7,2),(7,5)],8)
=> ? = 1 + 1
[.,[.,[[.,.],[[[.,[.,.]],.],.]]]]
=> [.,[.,[[.,[[[.,.],.],[.,.]]],.]]]
=> ([(0,7),(1,3),(3,7),(4,5),(5,2),(6,4),(7,6)],8)
=> ([(0,6),(3,4),(4,7),(5,1),(6,3),(7,2),(7,5)],8)
=> ? = 1 + 1
[.,[.,[[.,[.,[.,.]]],[.,[.,.]]]]]
=> [.,[.,[[.,[.,[.,.]]],[.,[.,.]]]]]
=> ([(0,6),(1,4),(3,7),(4,7),(5,2),(6,3),(7,5)],8)
=> ([(0,6),(3,4),(4,1),(5,2),(6,7),(7,3),(7,5)],8)
=> ? = 1 + 1
[.,[.,[[[.,.],[.,.]],[.,[.,.]]]]]
=> [.,[.,[[[.,[.,[.,.]]],[.,.]],.]]]
=> ([(0,7),(1,5),(3,7),(4,2),(5,3),(6,4),(7,6)],8)
=> ([(0,6),(3,7),(4,5),(5,1),(6,3),(7,2),(7,4)],8)
=> ? = 1 + 1
[.,[.,[[.,[.,[.,[.,[.,.]]]]],.]]]
=> [.,[.,[[.,.],[.,[.,[.,[.,.]]]]]]]
=> ([(0,7),(1,5),(3,7),(4,3),(5,4),(6,2),(7,6)],8)
=> ([(0,6),(3,5),(4,3),(5,1),(6,7),(7,2),(7,4)],8)
=> ? = 1 + 1
[.,[.,[[.,[.,[[.,.],[.,.]]]],.]]]
=> [.,[.,[[.,.],[.,[[.,[.,.]],.]]]]]
=> ([(0,7),(1,5),(3,7),(4,3),(5,4),(6,2),(7,6)],8)
=> ([(0,6),(3,5),(4,3),(5,1),(6,7),(7,2),(7,4)],8)
=> ? = 1 + 1
[.,[.,[[.,[[.,.],[.,[.,.]]]],.]]]
=> [.,[.,[[.,.],[[.,[.,[.,.]]],.]]]]
=> ([(0,7),(1,5),(3,7),(4,3),(5,4),(6,2),(7,6)],8)
=> ([(0,6),(3,5),(4,3),(5,1),(6,7),(7,2),(7,4)],8)
=> ? = 1 + 1
[.,[.,[[.,[[.,[.,.]],[.,.]]],.]]]
=> [.,[.,[[.,.],[[.,[.,.]],[.,.]]]]]
=> ([(0,7),(1,6),(2,3),(3,7),(4,5),(6,4),(7,6)],8)
=> ([(0,5),(4,3),(5,6),(6,2),(6,7),(7,1),(7,4)],8)
=> ? = 2 + 1
[.,[.,[[.,[[[.,.],.],[.,.]]],.]]]
=> [.,[.,[[.,.],[[[.,[.,.]],.],.]]]]
=> ([(0,7),(1,5),(3,7),(4,3),(5,4),(6,2),(7,6)],8)
=> ([(0,6),(3,5),(4,3),(5,1),(6,7),(7,2),(7,4)],8)
=> ? = 1 + 1
[.,[.,[[[.,.],[.,[.,[.,.]]]],.]]]
=> [.,[.,[[[.,.],[.,[.,[.,.]]]],.]]]
=> ([(0,7),(1,5),(3,7),(4,2),(5,3),(6,4),(7,6)],8)
=> ([(0,6),(3,7),(4,5),(5,1),(6,3),(7,2),(7,4)],8)
=> ? = 1 + 1
[.,[.,[[[.,[.,[.,.]]],[.,.]],.]]]
=> [.,[.,[[[.,.],[.,.]],[.,[.,.]]]]]
=> ([(0,6),(1,6),(2,3),(3,7),(4,5),(6,7),(7,4)],8)
=> ([(0,5),(4,3),(5,7),(6,1),(6,2),(7,4),(7,6)],8)
=> ? = 2 + 1
[.,[.,[[[[.,.],[.,.]],[.,.]],.]]]
=> [.,[.,[[[[.,.],[.,.]],[.,.]],.]]]
=> ([(0,7),(1,6),(2,6),(3,5),(5,4),(6,7),(7,3)],8)
=> ([(0,5),(4,7),(5,4),(6,2),(6,3),(7,1),(7,6)],8)
=> ? = 2 + 1
[.,[.,[[[[[.,[.,.]],.],.],.],.]]]
=> [.,[.,[[[[[.,.],.],.],.],[.,.]]]]
=> ([(0,7),(1,5),(3,7),(4,3),(5,4),(6,2),(7,6)],8)
=> ([(0,6),(3,5),(4,3),(5,1),(6,7),(7,2),(7,4)],8)
=> ? = 1 + 1
[.,[[.,.],[.,[.,[[.,[.,.]],.]]]]]
=> [.,[[.,[.,[.,[[.,.],[.,.]]]]],.]]
=> ([(0,7),(1,7),(3,5),(4,3),(5,2),(6,4),(7,6)],8)
=> ([(0,6),(3,5),(4,3),(5,7),(6,4),(7,1),(7,2)],8)
=> ? = 1 + 1
[.,[[.,[.,[.,[.,[.,[.,.]]]]]],.]]
=> [.,[[.,.],[.,[.,[.,[.,[.,.]]]]]]]
=> ([(0,7),(1,6),(2,7),(4,5),(5,2),(6,4),(7,3)],8)
=> ([(0,7),(3,4),(4,6),(5,3),(6,1),(7,2),(7,5)],8)
=> ? = 1 + 1
[.,[[.,[.,[.,[.,[[.,.],.]]]]],.]]
=> [.,[[.,.],[.,[.,[.,[[.,.],.]]]]]]
=> ([(0,7),(1,6),(2,7),(4,5),(5,2),(6,4),(7,3)],8)
=> ([(0,7),(3,4),(4,6),(5,3),(6,1),(7,2),(7,5)],8)
=> ? = 1 + 1
[.,[[.,[.,[.,[[.,.],[.,.]]]]],.]]
=> [.,[[.,.],[.,[.,[[.,[.,.]],.]]]]]
=> ([(0,7),(1,6),(2,7),(4,5),(5,2),(6,4),(7,3)],8)
=> ([(0,7),(3,4),(4,6),(5,3),(6,1),(7,2),(7,5)],8)
=> ? = 1 + 1
[.,[[.,[.,[.,[[.,[.,.]],.]]]],.]]
=> [.,[[.,.],[.,[.,[[.,.],[.,.]]]]]]
=> ([(0,6),(1,6),(2,7),(4,5),(5,7),(6,4),(7,3)],8)
=> ([(0,7),(4,5),(5,6),(6,2),(6,3),(7,1),(7,4)],8)
=> ? = 2 + 1
[.,[[.,[.,[.,[[[.,.],.],.]]]],.]]
=> [.,[[.,.],[.,[.,[[[.,.],.],.]]]]]
=> ([(0,7),(1,6),(2,7),(4,5),(5,2),(6,4),(7,3)],8)
=> ([(0,7),(3,4),(4,6),(5,3),(6,1),(7,2),(7,5)],8)
=> ? = 1 + 1
[.,[[.,[.,[[.,.],[.,[.,.]]]]],.]]
=> [.,[[.,.],[.,[[.,[.,[.,.]]],.]]]]
=> ([(0,7),(1,6),(2,7),(4,5),(5,2),(6,4),(7,3)],8)
=> ([(0,7),(3,4),(4,6),(5,3),(6,1),(7,2),(7,5)],8)
=> ? = 1 + 1
[.,[[.,[.,[[.,[.,[.,.]]],.]]],.]]
=> [.,[[.,.],[.,[[.,.],[.,[.,.]]]]]]
=> ([(0,6),(1,7),(2,3),(3,7),(5,6),(6,4),(7,5)],8)
=> ([(0,7),(4,6),(5,3),(6,2),(6,5),(7,1),(7,4)],8)
=> ? = 2 + 1
[.,[[.,[[[[[.,.],.],.],.],.]],.]]
=> [.,[[.,.],[[[[[.,.],.],.],.],.]]]
=> ([(0,7),(1,6),(2,7),(4,5),(5,2),(6,4),(7,3)],8)
=> ([(0,7),(3,4),(4,6),(5,3),(6,1),(7,2),(7,5)],8)
=> ? = 1 + 1
[.,[[[[[[.,.],.],.],.],[.,.]],.]]
=> [.,[[[[[[.,.],[.,.]],.],.],.],.]]
=> ([(0,7),(1,7),(3,5),(4,3),(5,2),(6,4),(7,6)],8)
=> ([(0,6),(3,5),(4,3),(5,7),(6,4),(7,1),(7,2)],8)
=> ? = 1 + 1
[.,[[[[[[.,.],.],.],[.,.]],.],.]]
=> [.,[[[[[[.,.],.],[.,.]],.],.],.]]
=> ([(0,7),(1,3),(3,7),(4,5),(5,2),(6,4),(7,6)],8)
=> ([(0,6),(3,4),(4,7),(5,1),(6,3),(7,2),(7,5)],8)
=> ? = 1 + 1
[.,[[[[.,[[[.,.],.],.]],.],.],.]]
=> [.,[[[[.,.],.],.],[[[.,.],.],.]]]
=> ([(0,6),(1,5),(2,7),(3,7),(5,2),(6,3),(7,4)],8)
=> ([(0,7),(3,5),(4,6),(5,2),(6,1),(7,3),(7,4)],8)
=> ? = 1 + 1
[.,[[[[[.,[.,.]],[.,.]],.],.],.]]
=> [.,[[[[[.,.],.],.],[.,.]],[.,.]]]
=> ([(0,7),(1,6),(2,4),(4,5),(5,6),(6,7),(7,3)],8)
=> ([(0,7),(4,5),(5,3),(6,2),(6,4),(7,1),(7,6)],8)
=> ? = 2 + 1
[.,[[[[[[.,.],.],[.,.]],.],.],.]]
=> [.,[[[[[[.,.],.],.],[.,.]],.],.]]
=> ([(0,7),(1,5),(3,7),(4,2),(5,3),(6,4),(7,6)],8)
=> ([(0,6),(3,7),(4,5),(5,1),(6,3),(7,2),(7,4)],8)
=> ? = 1 + 1
[.,[[[[[.,[[.,.],.]],.],.],.],.]]
=> [.,[[[[[.,.],.],.],.],[[.,.],.]]]
=> ([(0,6),(1,4),(2,7),(4,7),(5,2),(6,5),(7,3)],8)
=> ([(0,7),(3,5),(4,3),(5,2),(6,1),(7,4),(7,6)],8)
=> ? = 1 + 1
[.,[[[[[[.,.],[.,.]],.],.],.],.]]
=> [.,[[[[[[.,.],.],.],.],[.,.]],.]]
=> ([(0,7),(1,5),(3,7),(4,3),(5,4),(6,2),(7,6)],8)
=> ([(0,6),(3,5),(4,3),(5,1),(6,7),(7,2),(7,4)],8)
=> ? = 1 + 1
[.,[[[[[[.,[.,.]],.],.],.],.],.]]
=> [.,[[[[[[.,.],.],.],.],.],[.,.]]]
=> ([(0,7),(1,6),(2,7),(4,5),(5,2),(6,4),(7,3)],8)
=> ([(0,7),(3,4),(4,6),(5,3),(6,1),(7,2),(7,5)],8)
=> ? = 1 + 1
[[.,.],[.,[.,[.,[[.,[.,.]],.]]]]]
=> [[.,[.,[.,[.,[[.,.],[.,.]]]]]],.]
=> ([(0,7),(1,7),(3,5),(4,3),(5,2),(6,4),(7,6)],8)
=> ([(0,6),(3,5),(4,3),(5,7),(6,4),(7,1),(7,2)],8)
=> ? = 1 + 1
[[.,.],[.,[.,[[.,[.,.]],[.,.]]]]]
=> [[.,[.,[.,[[.,[.,.]],[.,.]]]]],.]
=> ([(0,7),(1,3),(3,7),(4,5),(5,2),(6,4),(7,6)],8)
=> ([(0,6),(3,4),(4,7),(5,1),(6,3),(7,2),(7,5)],8)
=> ? = 1 + 1
[[.,.],[.,[.,[[.,[.,[.,.]]],.]]]]
=> [[.,[.,[.,[[.,.],[.,[.,.]]]]]],.]
=> ([(0,7),(1,3),(3,7),(4,5),(5,2),(6,4),(7,6)],8)
=> ([(0,6),(3,4),(4,7),(5,1),(6,3),(7,2),(7,5)],8)
=> ? = 1 + 1
Description
The number of maximal elements of a poset.
Mp00018: Binary trees left border symmetryBinary trees
Mp00013: Binary trees to posetPosets
Mp00125: Posets dual posetPosets
St000071: Posets ⟶ ℤResult quality: 60% values known / values provided: 60%distinct values known / distinct values provided: 100%
Values
[.,.]
=> [.,.]
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
[.,[.,.]]
=> [.,[.,.]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
[[.,.],.]
=> [[.,.],.]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
[.,[.,[.,.]]]
=> [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[.,[[.,.],.]]
=> [.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[.,.],[.,.]]
=> [[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[.,[.,.]],.]
=> [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ([(0,1),(0,2)],3)
=> 2 = 1 + 1
[[[.,.],.],.]
=> [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[.,[.,[.,[.,.]]]]
=> [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[.,[.,[[.,.],.]]]
=> [.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[.,[[.,.],[.,.]]]
=> [.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[.,[[.,[.,.]],.]]
=> [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(3,1),(3,2)],4)
=> 2 = 1 + 1
[.,[[[.,.],.],.]]
=> [.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[.,.],[.,[.,.]]]
=> [[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[.,.],[[.,.],.]]
=> [[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[.,[.,.]],[.,.]]
=> [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(3,1)],4)
=> 2 = 1 + 1
[[[.,.],.],[.,.]]
=> [[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[.,[.,[.,.]]],.]
=> [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(3,1)],4)
=> 2 = 1 + 1
[[.,[[.,.],.]],.]
=> [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(3,1)],4)
=> 2 = 1 + 1
[[[.,.],[.,.]],.]
=> [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(3,1),(3,2)],4)
=> 2 = 1 + 1
[[[.,[.,.]],.],.]
=> [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(3,1)],4)
=> 2 = 1 + 1
[[[[.,.],.],.],.]
=> [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[.,[.,[.,[.,[.,.]]]]]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[.,[.,[.,[[.,.],.]]]]
=> [.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[.,[.,[[.,.],[.,.]]]]
=> [.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[.,[.,[[.,[.,.]],.]]]
=> [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,3),(3,4),(4,1),(4,2)],5)
=> 2 = 1 + 1
[.,[.,[[[.,.],.],.]]]
=> [.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[.,[[.,.],[.,[.,.]]]]
=> [.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[.,[[.,.],[[.,.],.]]]
=> [.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[.,[[.,[.,.]],[.,.]]]
=> [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,4),(3,2),(4,1),(4,3)],5)
=> 2 = 1 + 1
[.,[[[.,.],.],[.,.]]]
=> [.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[.,[[.,[.,[.,.]]],.]]
=> [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,4),(3,2),(4,1),(4,3)],5)
=> 2 = 1 + 1
[.,[[.,[[.,.],.]],.]]
=> [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,4),(3,2),(4,1),(4,3)],5)
=> 2 = 1 + 1
[.,[[[.,.],[.,.]],.]]
=> [.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,3),(3,4),(4,1),(4,2)],5)
=> 2 = 1 + 1
[.,[[[.,[.,.]],.],.]]
=> [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,4),(3,2),(4,1),(4,3)],5)
=> 2 = 1 + 1
[.,[[[[.,.],.],.],.]]
=> [.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[.,.],[.,[.,[.,.]]]]
=> [[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[.,.],[.,[[.,.],.]]]
=> [[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[.,.],[[.,.],[.,.]]]
=> [[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[.,.],[[.,[.,.]],.]]
=> [[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,3),(3,4),(4,1),(4,2)],5)
=> 2 = 1 + 1
[[.,.],[[[.,.],.],.]]
=> [[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[.,[.,.]],[.,[.,.]]]
=> [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> 2 = 1 + 1
[[.,[.,.]],[[.,.],.]]
=> [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> 2 = 1 + 1
[[[.,.],.],[.,[.,.]]]
=> [[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[[.,.],.],[[.,.],.]]
=> [[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[.,[.,[.,.]]],[.,.]]
=> [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> 2 = 1 + 1
[[.,[[.,.],.]],[.,.]]
=> [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> 2 = 1 + 1
[[[.,.],[.,.]],[.,.]]
=> [[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,4),(3,2),(4,1),(4,3)],5)
=> 2 = 1 + 1
[[[.,[.,.]],.],[.,.]]
=> [[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> 2 = 1 + 1
[[[[.,.],.],.],[.,.]]
=> [[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[.,[.,[.,[.,[.,[[.,[.,.]],.]]]]]]
=> [.,[.,[.,[.,[.,[[.,.],[.,.]]]]]]]
=> ([(0,7),(1,7),(3,5),(4,3),(5,2),(6,4),(7,6)],8)
=> ([(0,6),(3,5),(4,3),(5,7),(6,4),(7,1),(7,2)],8)
=> ? = 1 + 1
[.,[.,[.,[.,[[.,[.,.]],[.,.]]]]]]
=> [.,[.,[.,[.,[[.,[.,.]],[.,.]]]]]]
=> ([(0,7),(1,3),(3,7),(4,5),(5,2),(6,4),(7,6)],8)
=> ([(0,6),(3,4),(4,7),(5,1),(6,3),(7,2),(7,5)],8)
=> ? = 1 + 1
[.,[.,[.,[.,[[.,[.,[.,.]]],.]]]]]
=> [.,[.,[.,[.,[[.,.],[.,[.,.]]]]]]]
=> ([(0,7),(1,3),(3,7),(4,5),(5,2),(6,4),(7,6)],8)
=> ([(0,6),(3,4),(4,7),(5,1),(6,3),(7,2),(7,5)],8)
=> ? = 1 + 1
[.,[.,[.,[.,[[.,[[.,.],.]],.]]]]]
=> [.,[.,[.,[.,[[.,.],[[.,.],.]]]]]]
=> ([(0,7),(1,3),(3,7),(4,5),(5,2),(6,4),(7,6)],8)
=> ([(0,6),(3,4),(4,7),(5,1),(6,3),(7,2),(7,5)],8)
=> ? = 1 + 1
[.,[.,[.,[.,[[[.,.],[.,.]],.]]]]]
=> [.,[.,[.,[.,[[[.,.],[.,.]],.]]]]]
=> ([(0,7),(1,7),(3,5),(4,3),(5,2),(6,4),(7,6)],8)
=> ([(0,6),(3,5),(4,3),(5,7),(6,4),(7,1),(7,2)],8)
=> ? = 1 + 1
[.,[.,[.,[.,[[[.,[.,.]],.],.]]]]]
=> [.,[.,[.,[.,[[[.,.],.],[.,.]]]]]]
=> ([(0,7),(1,3),(3,7),(4,5),(5,2),(6,4),(7,6)],8)
=> ([(0,6),(3,4),(4,7),(5,1),(6,3),(7,2),(7,5)],8)
=> ? = 1 + 1
[.,[.,[.,[[.,[.,.]],[.,[.,.]]]]]]
=> [.,[.,[.,[[.,[.,[.,.]]],[.,.]]]]]
=> ([(0,7),(1,5),(3,7),(4,2),(5,3),(6,4),(7,6)],8)
=> ([(0,6),(3,7),(4,5),(5,1),(6,3),(7,2),(7,4)],8)
=> ? = 1 + 1
[.,[.,[.,[[.,[.,[.,.]]],[.,.]]]]]
=> [.,[.,[.,[[.,[.,.]],[.,[.,.]]]]]]
=> ([(0,4),(1,3),(3,7),(4,7),(5,2),(6,5),(7,6)],8)
=> ([(0,6),(3,7),(4,2),(5,1),(6,3),(7,4),(7,5)],8)
=> ? = 1 + 1
[.,[.,[.,[[.,[.,[.,[.,.]]]],.]]]]
=> [.,[.,[.,[[.,.],[.,[.,[.,.]]]]]]]
=> ([(0,7),(1,5),(3,7),(4,2),(5,3),(6,4),(7,6)],8)
=> ([(0,6),(3,7),(4,5),(5,1),(6,3),(7,2),(7,4)],8)
=> ? = 1 + 1
[.,[.,[.,[[.,[.,[[.,.],.]]],.]]]]
=> [.,[.,[.,[[.,.],[.,[[.,.],.]]]]]]
=> ([(0,7),(1,5),(3,7),(4,2),(5,3),(6,4),(7,6)],8)
=> ([(0,6),(3,7),(4,5),(5,1),(6,3),(7,2),(7,4)],8)
=> ? = 1 + 1
[.,[.,[.,[[.,[[.,.],[.,.]]],.]]]]
=> [.,[.,[.,[[.,.],[[.,[.,.]],.]]]]]
=> ([(0,7),(1,5),(3,7),(4,2),(5,3),(6,4),(7,6)],8)
=> ([(0,6),(3,7),(4,5),(5,1),(6,3),(7,2),(7,4)],8)
=> ? = 1 + 1
[.,[.,[.,[[.,[[.,[.,.]],.]],.]]]]
=> [.,[.,[.,[[.,.],[[.,.],[.,.]]]]]]
=> ([(0,7),(1,6),(2,6),(3,5),(5,4),(6,7),(7,3)],8)
=> ([(0,5),(4,7),(5,4),(6,2),(6,3),(7,1),(7,6)],8)
=> ? = 2 + 1
[.,[.,[.,[[[.,.],[.,[.,.]]],.]]]]
=> [.,[.,[.,[[[.,.],[.,[.,.]]],.]]]]
=> ([(0,7),(1,3),(3,7),(4,5),(5,2),(6,4),(7,6)],8)
=> ([(0,6),(3,4),(4,7),(5,1),(6,3),(7,2),(7,5)],8)
=> ? = 1 + 1
[.,[.,[.,[[[.,.],[[.,.],.]],.]]]]
=> [.,[.,[.,[[[.,.],[[.,.],.]],.]]]]
=> ([(0,7),(1,3),(3,7),(4,5),(5,2),(6,4),(7,6)],8)
=> ([(0,6),(3,4),(4,7),(5,1),(6,3),(7,2),(7,5)],8)
=> ? = 1 + 1
[.,[.,[.,[[[.,[.,[.,.]]],.],.]]]]
=> [.,[.,[.,[[[.,.],.],[.,[.,.]]]]]]
=> ([(0,4),(1,3),(3,7),(4,7),(5,2),(6,5),(7,6)],8)
=> ([(0,6),(3,7),(4,2),(5,1),(6,3),(7,4),(7,5)],8)
=> ? = 1 + 1
[.,[.,[[.,.],[.,[[.,[.,.]],.]]]]]
=> [.,[.,[[.,[.,[[.,.],[.,.]]]],.]]]
=> ([(0,7),(1,7),(3,5),(4,3),(5,2),(6,4),(7,6)],8)
=> ([(0,6),(3,5),(4,3),(5,7),(6,4),(7,1),(7,2)],8)
=> ? = 1 + 1
[.,[.,[[.,.],[[.,[.,.]],[.,.]]]]]
=> [.,[.,[[.,[[.,[.,.]],[.,.]]],.]]]
=> ([(0,7),(1,3),(3,7),(4,5),(5,2),(6,4),(7,6)],8)
=> ([(0,6),(3,4),(4,7),(5,1),(6,3),(7,2),(7,5)],8)
=> ? = 1 + 1
[.,[.,[[.,.],[[.,[.,[.,.]]],.]]]]
=> [.,[.,[[.,[[.,.],[.,[.,.]]]],.]]]
=> ([(0,7),(1,3),(3,7),(4,5),(5,2),(6,4),(7,6)],8)
=> ([(0,6),(3,4),(4,7),(5,1),(6,3),(7,2),(7,5)],8)
=> ? = 1 + 1
[.,[.,[[.,.],[[[.,[.,.]],.],.]]]]
=> [.,[.,[[.,[[[.,.],.],[.,.]]],.]]]
=> ([(0,7),(1,3),(3,7),(4,5),(5,2),(6,4),(7,6)],8)
=> ([(0,6),(3,4),(4,7),(5,1),(6,3),(7,2),(7,5)],8)
=> ? = 1 + 1
[.,[.,[[.,[.,[.,.]]],[.,[.,.]]]]]
=> [.,[.,[[.,[.,[.,.]]],[.,[.,.]]]]]
=> ([(0,6),(1,4),(3,7),(4,7),(5,2),(6,3),(7,5)],8)
=> ([(0,6),(3,4),(4,1),(5,2),(6,7),(7,3),(7,5)],8)
=> ? = 1 + 1
[.,[.,[[[.,.],[.,.]],[.,[.,.]]]]]
=> [.,[.,[[[.,[.,[.,.]]],[.,.]],.]]]
=> ([(0,7),(1,5),(3,7),(4,2),(5,3),(6,4),(7,6)],8)
=> ([(0,6),(3,7),(4,5),(5,1),(6,3),(7,2),(7,4)],8)
=> ? = 1 + 1
[.,[.,[[.,[.,[.,[.,[.,.]]]]],.]]]
=> [.,[.,[[.,.],[.,[.,[.,[.,.]]]]]]]
=> ([(0,7),(1,5),(3,7),(4,3),(5,4),(6,2),(7,6)],8)
=> ([(0,6),(3,5),(4,3),(5,1),(6,7),(7,2),(7,4)],8)
=> ? = 1 + 1
[.,[.,[[.,[.,[[.,.],[.,.]]]],.]]]
=> [.,[.,[[.,.],[.,[[.,[.,.]],.]]]]]
=> ([(0,7),(1,5),(3,7),(4,3),(5,4),(6,2),(7,6)],8)
=> ([(0,6),(3,5),(4,3),(5,1),(6,7),(7,2),(7,4)],8)
=> ? = 1 + 1
[.,[.,[[.,[[.,.],[.,[.,.]]]],.]]]
=> [.,[.,[[.,.],[[.,[.,[.,.]]],.]]]]
=> ([(0,7),(1,5),(3,7),(4,3),(5,4),(6,2),(7,6)],8)
=> ([(0,6),(3,5),(4,3),(5,1),(6,7),(7,2),(7,4)],8)
=> ? = 1 + 1
[.,[.,[[.,[[.,[.,.]],[.,.]]],.]]]
=> [.,[.,[[.,.],[[.,[.,.]],[.,.]]]]]
=> ([(0,7),(1,6),(2,3),(3,7),(4,5),(6,4),(7,6)],8)
=> ([(0,5),(4,3),(5,6),(6,2),(6,7),(7,1),(7,4)],8)
=> ? = 2 + 1
[.,[.,[[.,[[[.,.],.],[.,.]]],.]]]
=> [.,[.,[[.,.],[[[.,[.,.]],.],.]]]]
=> ([(0,7),(1,5),(3,7),(4,3),(5,4),(6,2),(7,6)],8)
=> ([(0,6),(3,5),(4,3),(5,1),(6,7),(7,2),(7,4)],8)
=> ? = 1 + 1
[.,[.,[[[.,.],[.,[.,[.,.]]]],.]]]
=> [.,[.,[[[.,.],[.,[.,[.,.]]]],.]]]
=> ([(0,7),(1,5),(3,7),(4,2),(5,3),(6,4),(7,6)],8)
=> ([(0,6),(3,7),(4,5),(5,1),(6,3),(7,2),(7,4)],8)
=> ? = 1 + 1
[.,[.,[[[.,[.,[.,.]]],[.,.]],.]]]
=> [.,[.,[[[.,.],[.,.]],[.,[.,.]]]]]
=> ([(0,6),(1,6),(2,3),(3,7),(4,5),(6,7),(7,4)],8)
=> ([(0,5),(4,3),(5,7),(6,1),(6,2),(7,4),(7,6)],8)
=> ? = 2 + 1
[.,[.,[[[[.,.],[.,.]],[.,.]],.]]]
=> [.,[.,[[[[.,.],[.,.]],[.,.]],.]]]
=> ([(0,7),(1,6),(2,6),(3,5),(5,4),(6,7),(7,3)],8)
=> ([(0,5),(4,7),(5,4),(6,2),(6,3),(7,1),(7,6)],8)
=> ? = 2 + 1
[.,[.,[[[[[.,[.,.]],.],.],.],.]]]
=> [.,[.,[[[[[.,.],.],.],.],[.,.]]]]
=> ([(0,7),(1,5),(3,7),(4,3),(5,4),(6,2),(7,6)],8)
=> ([(0,6),(3,5),(4,3),(5,1),(6,7),(7,2),(7,4)],8)
=> ? = 1 + 1
[.,[[.,.],[.,[.,[[.,[.,.]],.]]]]]
=> [.,[[.,[.,[.,[[.,.],[.,.]]]]],.]]
=> ([(0,7),(1,7),(3,5),(4,3),(5,2),(6,4),(7,6)],8)
=> ([(0,6),(3,5),(4,3),(5,7),(6,4),(7,1),(7,2)],8)
=> ? = 1 + 1
[.,[[.,[.,[.,[.,[.,[.,.]]]]]],.]]
=> [.,[[.,.],[.,[.,[.,[.,[.,.]]]]]]]
=> ([(0,7),(1,6),(2,7),(4,5),(5,2),(6,4),(7,3)],8)
=> ([(0,7),(3,4),(4,6),(5,3),(6,1),(7,2),(7,5)],8)
=> ? = 1 + 1
[.,[[.,[.,[.,[.,[[.,.],.]]]]],.]]
=> [.,[[.,.],[.,[.,[.,[[.,.],.]]]]]]
=> ([(0,7),(1,6),(2,7),(4,5),(5,2),(6,4),(7,3)],8)
=> ([(0,7),(3,4),(4,6),(5,3),(6,1),(7,2),(7,5)],8)
=> ? = 1 + 1
[.,[[.,[.,[.,[[.,.],[.,.]]]]],.]]
=> [.,[[.,.],[.,[.,[[.,[.,.]],.]]]]]
=> ([(0,7),(1,6),(2,7),(4,5),(5,2),(6,4),(7,3)],8)
=> ([(0,7),(3,4),(4,6),(5,3),(6,1),(7,2),(7,5)],8)
=> ? = 1 + 1
[.,[[.,[.,[.,[[.,[.,.]],.]]]],.]]
=> [.,[[.,.],[.,[.,[[.,.],[.,.]]]]]]
=> ([(0,6),(1,6),(2,7),(4,5),(5,7),(6,4),(7,3)],8)
=> ([(0,7),(4,5),(5,6),(6,2),(6,3),(7,1),(7,4)],8)
=> ? = 2 + 1
[.,[[.,[.,[.,[[[.,.],.],.]]]],.]]
=> [.,[[.,.],[.,[.,[[[.,.],.],.]]]]]
=> ([(0,7),(1,6),(2,7),(4,5),(5,2),(6,4),(7,3)],8)
=> ([(0,7),(3,4),(4,6),(5,3),(6,1),(7,2),(7,5)],8)
=> ? = 1 + 1
[.,[[.,[.,[[.,.],[.,[.,.]]]]],.]]
=> [.,[[.,.],[.,[[.,[.,[.,.]]],.]]]]
=> ([(0,7),(1,6),(2,7),(4,5),(5,2),(6,4),(7,3)],8)
=> ([(0,7),(3,4),(4,6),(5,3),(6,1),(7,2),(7,5)],8)
=> ? = 1 + 1
[.,[[.,[.,[[.,[.,[.,.]]],.]]],.]]
=> [.,[[.,.],[.,[[.,.],[.,[.,.]]]]]]
=> ([(0,6),(1,7),(2,3),(3,7),(5,6),(6,4),(7,5)],8)
=> ([(0,7),(4,6),(5,3),(6,2),(6,5),(7,1),(7,4)],8)
=> ? = 2 + 1
[.,[[.,[[[[[.,.],.],.],.],.]],.]]
=> [.,[[.,.],[[[[[.,.],.],.],.],.]]]
=> ([(0,7),(1,6),(2,7),(4,5),(5,2),(6,4),(7,3)],8)
=> ([(0,7),(3,4),(4,6),(5,3),(6,1),(7,2),(7,5)],8)
=> ? = 1 + 1
[.,[[[[[[.,.],.],.],.],[.,.]],.]]
=> [.,[[[[[[.,.],[.,.]],.],.],.],.]]
=> ([(0,7),(1,7),(3,5),(4,3),(5,2),(6,4),(7,6)],8)
=> ([(0,6),(3,5),(4,3),(5,7),(6,4),(7,1),(7,2)],8)
=> ? = 1 + 1
[.,[[[[[[.,.],.],.],[.,.]],.],.]]
=> [.,[[[[[[.,.],.],[.,.]],.],.],.]]
=> ([(0,7),(1,3),(3,7),(4,5),(5,2),(6,4),(7,6)],8)
=> ([(0,6),(3,4),(4,7),(5,1),(6,3),(7,2),(7,5)],8)
=> ? = 1 + 1
[.,[[[[.,[[[.,.],.],.]],.],.],.]]
=> [.,[[[[.,.],.],.],[[[.,.],.],.]]]
=> ([(0,6),(1,5),(2,7),(3,7),(5,2),(6,3),(7,4)],8)
=> ([(0,7),(3,5),(4,6),(5,2),(6,1),(7,3),(7,4)],8)
=> ? = 1 + 1
[.,[[[[[.,[.,.]],[.,.]],.],.],.]]
=> [.,[[[[[.,.],.],.],[.,.]],[.,.]]]
=> ([(0,7),(1,6),(2,4),(4,5),(5,6),(6,7),(7,3)],8)
=> ([(0,7),(4,5),(5,3),(6,2),(6,4),(7,1),(7,6)],8)
=> ? = 2 + 1
[.,[[[[[[.,.],.],[.,.]],.],.],.]]
=> [.,[[[[[[.,.],.],.],[.,.]],.],.]]
=> ([(0,7),(1,5),(3,7),(4,2),(5,3),(6,4),(7,6)],8)
=> ([(0,6),(3,7),(4,5),(5,1),(6,3),(7,2),(7,4)],8)
=> ? = 1 + 1
[.,[[[[[.,[[.,.],.]],.],.],.],.]]
=> [.,[[[[[.,.],.],.],.],[[.,.],.]]]
=> ([(0,6),(1,4),(2,7),(4,7),(5,2),(6,5),(7,3)],8)
=> ([(0,7),(3,5),(4,3),(5,2),(6,1),(7,4),(7,6)],8)
=> ? = 1 + 1
[.,[[[[[[.,.],[.,.]],.],.],.],.]]
=> [.,[[[[[[.,.],.],.],.],[.,.]],.]]
=> ([(0,7),(1,5),(3,7),(4,3),(5,4),(6,2),(7,6)],8)
=> ([(0,6),(3,5),(4,3),(5,1),(6,7),(7,2),(7,4)],8)
=> ? = 1 + 1
[.,[[[[[[.,[.,.]],.],.],.],.],.]]
=> [.,[[[[[[.,.],.],.],.],.],[.,.]]]
=> ([(0,7),(1,6),(2,7),(4,5),(5,2),(6,4),(7,3)],8)
=> ([(0,7),(3,4),(4,6),(5,3),(6,1),(7,2),(7,5)],8)
=> ? = 1 + 1
[[.,.],[.,[.,[.,[[.,[.,.]],.]]]]]
=> [[.,[.,[.,[.,[[.,.],[.,.]]]]]],.]
=> ([(0,7),(1,7),(3,5),(4,3),(5,2),(6,4),(7,6)],8)
=> ([(0,6),(3,5),(4,3),(5,7),(6,4),(7,1),(7,2)],8)
=> ? = 1 + 1
[[.,.],[.,[.,[[.,[.,.]],[.,.]]]]]
=> [[.,[.,[.,[[.,[.,.]],[.,.]]]]],.]
=> ([(0,7),(1,3),(3,7),(4,5),(5,2),(6,4),(7,6)],8)
=> ([(0,6),(3,4),(4,7),(5,1),(6,3),(7,2),(7,5)],8)
=> ? = 1 + 1
[[.,.],[.,[.,[[.,[.,[.,.]]],.]]]]
=> [[.,[.,[.,[[.,.],[.,[.,.]]]]]],.]
=> ([(0,7),(1,3),(3,7),(4,5),(5,2),(6,4),(7,6)],8)
=> ([(0,6),(3,4),(4,7),(5,1),(6,3),(7,2),(7,5)],8)
=> ? = 1 + 1
Description
The number of maximal chains in a poset.
The following 71 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000527The width of the poset. St000068The number of minimal elements in a poset. St000201The number of leaf nodes in a binary tree. St001083The number of boxed occurrences of 132 in a permutation. St000010The length of the partition. St000257The number of distinct parts of a partition that occur at least twice. St000097The order of the largest clique of the graph. St001581The achromatic number of a graph. St000196The number of occurrences of the contiguous pattern [[.,.],[.,. St000632The jump number of the poset. St001840The number of descents of a set partition. St000985The number of positive eigenvalues of the adjacency matrix of the graph. St001354The number of series nodes in the modular decomposition of a graph. St000098The chromatic number of a graph. St000172The Grundy number of a graph. St001029The size of the core of a graph. St001304The number of maximally independent sets of vertices of a graph. St001489The maximum of the number of descents and the number of inverse descents. St000470The number of runs in a permutation. St000619The number of cyclic descents of a permutation. St000354The number of recoils of a permutation. St001687The number of distinct positions of the pattern letter 2 in occurrences of 213 in a permutation. St000353The number of inner valleys of a permutation. St001738The minimal order of a graph which is not an induced subgraph of the given graph. St000647The number of big descents of a permutation. St001086The number of occurrences of the consecutive pattern 132 in a permutation. St000256The number of parts from which one can substract 2 and still get an integer partition. St000672The number of minimal elements in Bruhat order not less than the permutation. St000455The second largest eigenvalue of a graph if it is integral. St000779The tier of a permutation. St000710The number of big deficiencies of a permutation. St001728The number of invisible descents of a permutation. St000711The number of big exceedences of a permutation. St000646The number of big ascents of a permutation. St000251The number of nonsingleton blocks of a set partition. St001685The number of distinct positions of the pattern letter 1 in occurrences of 132 in a permutation. St000360The number of occurrences of the pattern 32-1. St000092The number of outer peaks of a permutation. St000023The number of inner peaks of a permutation. St000523The number of 2-protected nodes of a rooted tree. St000099The number of valleys of a permutation, including the boundary. St000021The number of descents of a permutation. St001744The number of occurrences of the arrow pattern 1-2 with an arrow from 1 to 2 in a permutation. St001812The biclique partition number of a graph. St000325The width of the tree associated to a permutation. St000409The number of pitchforks in a binary tree. St000659The number of rises of length at least 2 of a Dyck path. St001597The Frobenius rank of a skew partition. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St000298The order dimension or Dushnik-Miller dimension of a poset. St000035The number of left outer peaks of a permutation. St000307The number of rowmotion orbits of a poset. St000884The number of isolated descents of a permutation. St001330The hat guessing number of a graph. St000994The number of cycle peaks and the number of cycle valleys of a permutation. St000640The rank of the largest boolean interval in a poset. St001621The number of atoms of a lattice. St001624The breadth of a lattice. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000252The number of nodes of degree 3 of a binary tree. St001896The number of right descents of a signed permutations. St000243The number of cyclic valleys and cyclic peaks of a permutation. St000333The dez statistic, the number of descents of a permutation after replacing fixed points by zeros. St001212The number of simple modules in the corresponding Nakayama algebra that have non-zero second Ext-group with the regular module. St001729The number of visible descents of a permutation. St001737The number of descents of type 2 in a permutation. St001928The number of non-overlapping descents in a permutation. St001960The number of descents of a permutation minus one if its first entry is not one. St001823The Stasinski-Voll length of a signed permutation. St000805The number of peaks of the associated bargraph. St001582The grades of the simple modules corresponding to the points in the poset of the symmetric group under the Bruhat order.