searching the database
Your data matches 2 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000389
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
St000389: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
0 => 0
1 => 1
00 => 0
01 => 1
10 => 1
11 => 0
000 => 0
001 => 1
010 => 1
011 => 0
100 => 1
101 => 2
110 => 0
111 => 1
0000 => 0
0001 => 1
0010 => 1
0011 => 0
0100 => 1
0101 => 2
0110 => 0
0111 => 1
1000 => 1
1001 => 2
1010 => 2
1011 => 1
1100 => 0
1101 => 1
1110 => 1
1111 => 0
00000 => 0
00001 => 1
00010 => 1
00011 => 0
00100 => 1
00101 => 2
00110 => 0
00111 => 1
01000 => 1
01001 => 2
01010 => 2
01011 => 1
01100 => 0
01101 => 1
01110 => 1
01111 => 0
10000 => 1
10001 => 2
10010 => 2
10011 => 1
Description
The number of runs of ones of odd length in a binary word.
Matching statistic: St000142
Mp00105: Binary words —complement⟶ Binary words
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00040: Integer compositions —to partition⟶ Integer partitions
St000142: Integer partitions ⟶ ℤResult quality: 49% ●values known / values provided: 49%●distinct values known / distinct values provided: 100%
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00040: Integer compositions —to partition⟶ Integer partitions
St000142: Integer partitions ⟶ ℤResult quality: 49% ●values known / values provided: 49%●distinct values known / distinct values provided: 100%
Values
0 => 1 => [1,1] => [1,1]
=> 0
1 => 0 => [2] => [2]
=> 1
00 => 11 => [1,1,1] => [1,1,1]
=> 0
01 => 10 => [1,2] => [2,1]
=> 1
10 => 01 => [2,1] => [2,1]
=> 1
11 => 00 => [3] => [3]
=> 0
000 => 111 => [1,1,1,1] => [1,1,1,1]
=> 0
001 => 110 => [1,1,2] => [2,1,1]
=> 1
010 => 101 => [1,2,1] => [2,1,1]
=> 1
011 => 100 => [1,3] => [3,1]
=> 0
100 => 011 => [2,1,1] => [2,1,1]
=> 1
101 => 010 => [2,2] => [2,2]
=> 2
110 => 001 => [3,1] => [3,1]
=> 0
111 => 000 => [4] => [4]
=> 1
0000 => 1111 => [1,1,1,1,1] => [1,1,1,1,1]
=> 0
0001 => 1110 => [1,1,1,2] => [2,1,1,1]
=> 1
0010 => 1101 => [1,1,2,1] => [2,1,1,1]
=> 1
0011 => 1100 => [1,1,3] => [3,1,1]
=> 0
0100 => 1011 => [1,2,1,1] => [2,1,1,1]
=> 1
0101 => 1010 => [1,2,2] => [2,2,1]
=> 2
0110 => 1001 => [1,3,1] => [3,1,1]
=> 0
0111 => 1000 => [1,4] => [4,1]
=> 1
1000 => 0111 => [2,1,1,1] => [2,1,1,1]
=> 1
1001 => 0110 => [2,1,2] => [2,2,1]
=> 2
1010 => 0101 => [2,2,1] => [2,2,1]
=> 2
1011 => 0100 => [2,3] => [3,2]
=> 1
1100 => 0011 => [3,1,1] => [3,1,1]
=> 0
1101 => 0010 => [3,2] => [3,2]
=> 1
1110 => 0001 => [4,1] => [4,1]
=> 1
1111 => 0000 => [5] => [5]
=> 0
00000 => 11111 => [1,1,1,1,1,1] => [1,1,1,1,1,1]
=> 0
00001 => 11110 => [1,1,1,1,2] => [2,1,1,1,1]
=> 1
00010 => 11101 => [1,1,1,2,1] => [2,1,1,1,1]
=> 1
00011 => 11100 => [1,1,1,3] => [3,1,1,1]
=> 0
00100 => 11011 => [1,1,2,1,1] => [2,1,1,1,1]
=> 1
00101 => 11010 => [1,1,2,2] => [2,2,1,1]
=> 2
00110 => 11001 => [1,1,3,1] => [3,1,1,1]
=> 0
00111 => 11000 => [1,1,4] => [4,1,1]
=> 1
01000 => 10111 => [1,2,1,1,1] => [2,1,1,1,1]
=> 1
01001 => 10110 => [1,2,1,2] => [2,2,1,1]
=> 2
01010 => 10101 => [1,2,2,1] => [2,2,1,1]
=> 2
01011 => 10100 => [1,2,3] => [3,2,1]
=> 1
01100 => 10011 => [1,3,1,1] => [3,1,1,1]
=> 0
01101 => 10010 => [1,3,2] => [3,2,1]
=> 1
01110 => 10001 => [1,4,1] => [4,1,1]
=> 1
01111 => 10000 => [1,5] => [5,1]
=> 0
10000 => 01111 => [2,1,1,1,1] => [2,1,1,1,1]
=> 1
10001 => 01110 => [2,1,1,2] => [2,2,1,1]
=> 2
10010 => 01101 => [2,1,2,1] => [2,2,1,1]
=> 2
10011 => 01100 => [2,1,3] => [3,2,1]
=> 1
1010101100 => 0101010011 => [2,2,2,3,1,1] => [3,2,2,2,1,1]
=> ? = 3
1010110010 => 0101001101 => [2,2,3,1,2,1] => [3,2,2,2,1,1]
=> ? = 3
1010110100 => 0101001011 => [2,2,3,2,1,1] => [3,2,2,2,1,1]
=> ? = 3
1010111000 => 0101000111 => [2,2,4,1,1,1] => [4,2,2,1,1,1]
=> ? = 3
1011001010 => 0100110101 => [2,3,1,2,2,1] => [3,2,2,2,1,1]
=> ? = 3
1011001100 => 0100110011 => [2,3,1,3,1,1] => [3,3,2,1,1,1]
=> ? = 1
1011010010 => 0100101101 => [2,3,2,1,2,1] => [3,2,2,2,1,1]
=> ? = 3
1011010100 => 0100101011 => [2,3,2,2,1,1] => [3,2,2,2,1,1]
=> ? = 3
1011011000 => 0100100111 => [2,3,3,1,1,1] => [3,3,2,1,1,1]
=> ? = 1
1011100010 => 0100011101 => [2,4,1,1,2,1] => [4,2,2,1,1,1]
=> ? = 3
1011100100 => 0100011011 => [2,4,1,2,1,1] => [4,2,2,1,1,1]
=> ? = 3
1011101000 => 0100010111 => [2,4,2,1,1,1] => [4,2,2,1,1,1]
=> ? = 3
1100101010 => 0011010101 => [3,1,2,2,2,1] => [3,2,2,2,1,1]
=> ? = 3
1100101100 => 0011010011 => [3,1,2,3,1,1] => [3,3,2,1,1,1]
=> ? = 1
1100110010 => 0011001101 => [3,1,3,1,2,1] => [3,3,2,1,1,1]
=> ? = 1
1100110100 => 0011001011 => [3,1,3,2,1,1] => [3,3,2,1,1,1]
=> ? = 1
1100111000 => 0011000111 => [3,1,4,1,1,1] => [4,3,1,1,1,1]
=> ? = 1
1101001010 => 0010110101 => [3,2,1,2,2,1] => [3,2,2,2,1,1]
=> ? = 3
1101001100 => 0010110011 => [3,2,1,3,1,1] => [3,3,2,1,1,1]
=> ? = 1
1101010010 => 0010101101 => [3,2,2,1,2,1] => [3,2,2,2,1,1]
=> ? = 3
1101010100 => 0010101011 => [3,2,2,2,1,1] => [3,2,2,2,1,1]
=> ? = 3
1101011000 => 0010100111 => [3,2,3,1,1,1] => [3,3,2,1,1,1]
=> ? = 1
1101100010 => 0010011101 => [3,3,1,1,2,1] => [3,3,2,1,1,1]
=> ? = 1
1101100100 => 0010011011 => [3,3,1,2,1,1] => [3,3,2,1,1,1]
=> ? = 1
1101101000 => 0010010111 => [3,3,2,1,1,1] => [3,3,2,1,1,1]
=> ? = 1
1101110000 => 0010001111 => [3,4,1,1,1,1] => [4,3,1,1,1,1]
=> ? = 1
1110001010 => 0001110101 => [4,1,1,2,2,1] => [4,2,2,1,1,1]
=> ? = 3
1110001100 => 0001110011 => [4,1,1,3,1,1] => [4,3,1,1,1,1]
=> ? = 1
1110010010 => 0001101101 => [4,1,2,1,2,1] => [4,2,2,1,1,1]
=> ? = 3
1110010100 => 0001101011 => [4,1,2,2,1,1] => [4,2,2,1,1,1]
=> ? = 3
1110011000 => 0001100111 => [4,1,3,1,1,1] => [4,3,1,1,1,1]
=> ? = 1
1110100010 => 0001011101 => [4,2,1,1,2,1] => [4,2,2,1,1,1]
=> ? = 3
1110100100 => 0001011011 => [4,2,1,2,1,1] => [4,2,2,1,1,1]
=> ? = 3
1110101000 => 0001010111 => [4,2,2,1,1,1] => [4,2,2,1,1,1]
=> ? = 3
1110110000 => 0001001111 => [4,3,1,1,1,1] => [4,3,1,1,1,1]
=> ? = 1
101010101100 => 010101010011 => [2,2,2,2,3,1,1] => [3,2,2,2,2,1,1]
=> ? = 4
101010110010 => 010101001101 => [2,2,2,3,1,2,1] => [3,2,2,2,2,1,1]
=> ? = 4
101010110100 => 010101001011 => [2,2,2,3,2,1,1] => [3,2,2,2,2,1,1]
=> ? = 4
101010111000 => 010101000111 => [2,2,2,4,1,1,1] => [4,2,2,2,1,1,1]
=> ? = 4
101011001010 => 010100110101 => [2,2,3,1,2,2,1] => [3,2,2,2,2,1,1]
=> ? = 4
101011001100 => 010100110011 => [2,2,3,1,3,1,1] => [3,3,2,2,1,1,1]
=> ? = 2
101011010010 => 010100101101 => [2,2,3,2,1,2,1] => [3,2,2,2,2,1,1]
=> ? = 4
101011010100 => 010100101011 => [2,2,3,2,2,1,1] => [3,2,2,2,2,1,1]
=> ? = 4
101011011000 => 010100100111 => [2,2,3,3,1,1,1] => [3,3,2,2,1,1,1]
=> ? = 2
101011100010 => 010100011101 => [2,2,4,1,1,2,1] => [4,2,2,2,1,1,1]
=> ? = 4
101011100100 => 010100011011 => [2,2,4,1,2,1,1] => [4,2,2,2,1,1,1]
=> ? = 4
101011101000 => 010100010111 => [2,2,4,2,1,1,1] => [4,2,2,2,1,1,1]
=> ? = 4
101011110000 => 010100001111 => [2,2,5,1,1,1,1] => [5,2,2,1,1,1,1]
=> ? = 2
101100101010 => 010011010101 => [2,3,1,2,2,2,1] => [3,2,2,2,2,1,1]
=> ? = 4
101100101100 => 010011010011 => [2,3,1,2,3,1,1] => [3,3,2,2,1,1,1]
=> ? = 2
Description
The number of even parts of a partition.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!