Processing math: 5%

Your data matches 38 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000390
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00089: Permutations —Inverse Kreweras complement⟶ Permutations
Mp00114: Permutations —connectivity set⟶ Binary words
St000390: Binary words ⟶ ℤResult quality: 100% ā—values known / values provided: 100%ā—distinct values known / distinct values provided: 100%
Values
[1,0]
=> [2,1] => [1,2] => 1 => 1
[1,0,1,0]
=> [3,1,2] => [3,1,2] => 00 => 0
[1,1,0,0]
=> [2,3,1] => [1,2,3] => 11 => 1
[1,0,1,0,1,0]
=> [4,1,2,3] => [3,4,1,2] => 000 => 0
[1,0,1,1,0,0]
=> [3,1,4,2] => [4,1,3,2] => 000 => 0
[1,1,0,0,1,0]
=> [2,4,1,3] => [1,4,2,3] => 100 => 1
[1,1,0,1,0,0]
=> [4,3,1,2] => [4,2,1,3] => 000 => 0
[1,1,1,0,0,0]
=> [2,3,4,1] => [1,2,3,4] => 111 => 1
[1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [3,4,5,1,2] => 0000 => 0
[1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [3,5,1,4,2] => 0000 => 0
[1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [4,1,5,3,2] => 0000 => 0
[1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => [4,5,3,1,2] => 0000 => 0
[1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [5,1,3,4,2] => 0000 => 0
[1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => [1,4,5,2,3] => 1000 => 1
[1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [1,5,2,4,3] => 1000 => 1
[1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => [4,2,5,1,3] => 0000 => 0
[1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [4,5,2,1,3] => 0000 => 0
[1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => [5,2,1,4,3] => 0000 => 0
[1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [1,2,5,3,4] => 1100 => 1
[1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [1,5,3,2,4] => 1000 => 1
[1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [5,2,3,1,4] => 0000 => 0
[1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [1,2,3,4,5] => 1111 => 1
[1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [3,4,5,6,1,2] => 00000 => 0
[1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => [3,4,6,1,5,2] => 00000 => 0
[1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => [3,5,1,6,4,2] => 00000 => 0
[1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => [3,5,6,4,1,2] => 00000 => 0
[1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [3,6,1,4,5,2] => 00000 => 0
[1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => [4,1,5,6,3,2] => 00000 => 0
[1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [4,1,6,3,5,2] => 00000 => 0
[1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => [4,5,3,6,1,2] => 00000 => 0
[1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => [4,5,6,3,1,2] => 00000 => 0
[1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => [4,6,3,1,5,2] => 00000 => 0
[1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => [5,1,3,6,4,2] => 00000 => 0
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => [5,1,6,4,3,2] => 00000 => 0
[1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => [5,6,3,4,1,2] => 00000 => 0
[1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => [6,1,3,4,5,2] => 00000 => 0
[1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => [1,4,5,6,2,3] => 10000 => 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [1,4,6,2,5,3] => 10000 => 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => [1,5,2,6,4,3] => 10000 => 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => [1,5,6,4,2,3] => 10000 => 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [1,6,2,4,5,3] => 10000 => 1
[1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => [4,2,5,6,1,3] => 00000 => 0
[1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => [4,2,6,1,5,3] => 00000 => 0
[1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [4,5,2,6,1,3] => 00000 => 0
[1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [4,5,6,1,2,3] => 00000 => 0
[1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => [4,6,2,1,5,3] => 00000 => 0
[1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => [5,2,1,6,4,3] => 00000 => 0
[1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => [5,2,6,4,1,3] => 00000 => 0
[1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => [5,6,2,4,1,3] => 00000 => 0
[1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => [6,2,1,4,5,3] => 00000 => 0
Description
The number of runs of ones in a binary word.
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00109: Permutations —descent word⟶ Binary words
St000297: Binary words ⟶ ℤResult quality: 100% ā—values known / values provided: 100%ā—distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => => ? = 1
[1,0,1,0]
=> [1,2] => 0 => 0
[1,1,0,0]
=> [2,1] => 1 => 1
[1,0,1,0,1,0]
=> [1,2,3] => 00 => 0
[1,0,1,1,0,0]
=> [1,3,2] => 01 => 0
[1,1,0,0,1,0]
=> [2,1,3] => 10 => 1
[1,1,0,1,0,0]
=> [2,3,1] => 01 => 0
[1,1,1,0,0,0]
=> [3,1,2] => 10 => 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 000 => 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 001 => 0
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 010 => 0
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 001 => 0
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => 010 => 0
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 100 => 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 101 => 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 010 => 0
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 001 => 0
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => 010 => 0
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => 100 => 1
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => 101 => 1
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => 010 => 0
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => 100 => 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 0000 => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 0001 => 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 0010 => 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => 0001 => 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => 0010 => 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 0100 => 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 0101 => 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 0010 => 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 0001 => 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => 0010 => 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => 0100 => 0
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => 0101 => 0
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => 0010 => 0
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => 0100 => 0
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 1000 => 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 1001 => 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 1010 => 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 1001 => 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => 1010 => 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 0100 => 0
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => 0101 => 0
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 0010 => 0
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 0001 => 0
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => 0010 => 0
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => 0100 => 0
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => 0101 => 0
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => 0010 => 0
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => 0100 => 0
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => 1000 => 1
Description
The number of leading ones in a binary word.
Matching statistic: St000877
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00069: Permutations —complement⟶ Permutations
Mp00109: Permutations —descent word⟶ Binary words
St000877: Binary words ⟶ ℤResult quality: 100% ā—values known / values provided: 100%ā—distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => => ? = 1
[1,0,1,0]
=> [1,2] => [2,1] => 1 => 0
[1,1,0,0]
=> [2,1] => [1,2] => 0 => 1
[1,0,1,0,1,0]
=> [1,2,3] => [3,2,1] => 11 => 0
[1,0,1,1,0,0]
=> [1,3,2] => [3,1,2] => 10 => 0
[1,1,0,0,1,0]
=> [2,1,3] => [2,3,1] => 01 => 1
[1,1,0,1,0,0]
=> [2,3,1] => [2,1,3] => 10 => 0
[1,1,1,0,0,0]
=> [3,1,2] => [1,3,2] => 01 => 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [4,3,2,1] => 111 => 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [4,3,1,2] => 110 => 0
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [4,2,3,1] => 101 => 0
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [4,2,1,3] => 110 => 0
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [4,1,3,2] => 101 => 0
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [3,4,2,1] => 011 => 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [3,4,1,2] => 010 => 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,2,4,1] => 101 => 0
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [3,2,1,4] => 110 => 0
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [3,1,4,2] => 101 => 0
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [2,4,3,1] => 011 => 1
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [2,4,1,3] => 010 => 1
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [2,1,4,3] => 101 => 0
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [1,4,3,2] => 011 => 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [5,4,3,2,1] => 1111 => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [5,4,3,1,2] => 1110 => 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [5,4,2,3,1] => 1101 => 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [5,4,2,1,3] => 1110 => 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [5,4,1,3,2] => 1101 => 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [5,3,4,2,1] => 1011 => 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [5,3,4,1,2] => 1010 => 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [5,3,2,4,1] => 1101 => 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [5,3,2,1,4] => 1110 => 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [5,3,1,4,2] => 1101 => 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [5,2,4,3,1] => 1011 => 0
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [5,2,4,1,3] => 1010 => 0
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [5,2,1,4,3] => 1101 => 0
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [5,1,4,3,2] => 1011 => 0
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [4,5,3,2,1] => 0111 => 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [4,5,3,1,2] => 0110 => 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [4,5,2,3,1] => 0101 => 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [4,5,2,1,3] => 0110 => 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [4,5,1,3,2] => 0101 => 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [4,3,5,2,1] => 1011 => 0
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [4,3,5,1,2] => 1010 => 0
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,3,2,5,1] => 1101 => 0
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [4,3,2,1,5] => 1110 => 0
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [4,3,1,5,2] => 1101 => 0
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [4,2,5,3,1] => 1011 => 0
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [4,2,5,1,3] => 1010 => 0
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [4,2,1,5,3] => 1101 => 0
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [4,1,5,3,2] => 1011 => 0
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => [3,5,4,2,1] => 0111 => 1
[1,1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [2,8,1,9,3,4,5,6,7] => [8,2,9,1,7,6,5,4,3] => ? => ? = 0
Description
The depth of the binary word interpreted as a path. This is the maximal value of the number of zeros minus the number of ones occurring in a prefix of the binary word, see [1, sec.9.1.2]. The number of binary words of length n with depth k is \binom{n}{\lfloor\frac{(n+1) - (-1)^{n-k}(k+1)}{2}\rfloor}, see [2].
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00069: Permutations —complement⟶ Permutations
Mp00109: Permutations —descent word⟶ Binary words
St000326: Binary words ⟶ ℤResult quality: 100% ā—values known / values provided: 100%ā—distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => => ? = 1 + 1
[1,0,1,0]
=> [1,2] => [2,1] => 1 => 1 = 0 + 1
[1,1,0,0]
=> [2,1] => [1,2] => 0 => 2 = 1 + 1
[1,0,1,0,1,0]
=> [1,2,3] => [3,2,1] => 11 => 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,3,2] => [3,1,2] => 10 => 1 = 0 + 1
[1,1,0,0,1,0]
=> [2,1,3] => [2,3,1] => 01 => 2 = 1 + 1
[1,1,0,1,0,0]
=> [2,3,1] => [2,1,3] => 10 => 1 = 0 + 1
[1,1,1,0,0,0]
=> [3,1,2] => [1,3,2] => 01 => 2 = 1 + 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [4,3,2,1] => 111 => 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [4,3,1,2] => 110 => 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [4,2,3,1] => 101 => 1 = 0 + 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [4,2,1,3] => 110 => 1 = 0 + 1
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [4,1,3,2] => 101 => 1 = 0 + 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [3,4,2,1] => 011 => 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [3,4,1,2] => 010 => 2 = 1 + 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,2,4,1] => 101 => 1 = 0 + 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [3,2,1,4] => 110 => 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [3,1,4,2] => 101 => 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [2,4,3,1] => 011 => 2 = 1 + 1
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [2,4,1,3] => 010 => 2 = 1 + 1
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [2,1,4,3] => 101 => 1 = 0 + 1
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [1,4,3,2] => 011 => 2 = 1 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [5,4,3,2,1] => 1111 => 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [5,4,3,1,2] => 1110 => 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [5,4,2,3,1] => 1101 => 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [5,4,2,1,3] => 1110 => 1 = 0 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [5,4,1,3,2] => 1101 => 1 = 0 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [5,3,4,2,1] => 1011 => 1 = 0 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [5,3,4,1,2] => 1010 => 1 = 0 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [5,3,2,4,1] => 1101 => 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [5,3,2,1,4] => 1110 => 1 = 0 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [5,3,1,4,2] => 1101 => 1 = 0 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [5,2,4,3,1] => 1011 => 1 = 0 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [5,2,4,1,3] => 1010 => 1 = 0 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [5,2,1,4,3] => 1101 => 1 = 0 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [5,1,4,3,2] => 1011 => 1 = 0 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [4,5,3,2,1] => 0111 => 2 = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [4,5,3,1,2] => 0110 => 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [4,5,2,3,1] => 0101 => 2 = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [4,5,2,1,3] => 0110 => 2 = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [4,5,1,3,2] => 0101 => 2 = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [4,3,5,2,1] => 1011 => 1 = 0 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [4,3,5,1,2] => 1010 => 1 = 0 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,3,2,5,1] => 1101 => 1 = 0 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [4,3,2,1,5] => 1110 => 1 = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [4,3,1,5,2] => 1101 => 1 = 0 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [4,2,5,3,1] => 1011 => 1 = 0 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [4,2,5,1,3] => 1010 => 1 = 0 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [4,2,1,5,3] => 1101 => 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [4,1,5,3,2] => 1011 => 1 = 0 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => [3,5,4,2,1] => 0111 => 2 = 1 + 1
[1,1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [2,8,1,9,3,4,5,6,7] => [8,2,9,1,7,6,5,4,3] => ? => ? = 0 + 1
Description
The position of the first one in a binary word after appending a 1 at the end. Regarding the binary word as a subset of \{1,\dots,n,n+1\} that contains n+1, this is the minimal element of the set.
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00059: Permutations —Robinson-Schensted insertion tableau⟶ Standard tableaux
St000745: Standard tableaux ⟶ ℤResult quality: 90% ā—values known / values provided: 90%ā—distinct values known / distinct values provided: 100%
Values
[1,0]
=> [2,1] => [[1],[2]]
=> 2 = 1 + 1
[1,0,1,0]
=> [3,1,2] => [[1,2],[3]]
=> 1 = 0 + 1
[1,1,0,0]
=> [2,3,1] => [[1,3],[2]]
=> 2 = 1 + 1
[1,0,1,0,1,0]
=> [4,1,2,3] => [[1,2,3],[4]]
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> [3,1,4,2] => [[1,2],[3,4]]
=> 1 = 0 + 1
[1,1,0,0,1,0]
=> [2,4,1,3] => [[1,3],[2,4]]
=> 2 = 1 + 1
[1,1,0,1,0,0]
=> [4,3,1,2] => [[1,2],[3],[4]]
=> 1 = 0 + 1
[1,1,1,0,0,0]
=> [2,3,4,1] => [[1,3,4],[2]]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [[1,2,3,4],[5]]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [[1,2,3],[4,5]]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [[1,2,4],[3,5]]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => [[1,2,3],[4],[5]]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [[1,2,5],[3,4]]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => [[1,3,4],[2,5]]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [[1,3,5],[2,4]]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => [[1,2,4],[3],[5]]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [[1,2,3],[4],[5]]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => [[1,2],[3,5],[4]]
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [[1,3,4],[2,5]]
=> 2 = 1 + 1
[1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [[1,3],[2,4],[5]]
=> 2 = 1 + 1
[1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [[1,2],[3,4],[5]]
=> 1 = 0 + 1
[1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [[1,3,4,5],[2]]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [[1,2,3,4,5],[6]]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => [[1,2,3,4],[5,6]]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => [[1,2,3,5],[4,6]]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => [[1,2,3,4],[5],[6]]
=> 1 = 0 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [[1,2,3,6],[4,5]]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => [[1,2,4,5],[3,6]]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [[1,2,4],[3,5,6]]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => [[1,2,3,5],[4],[6]]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => [[1,2,3,4],[5],[6]]
=> 1 = 0 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => [[1,2,3],[4,6],[5]]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => [[1,2,5],[3,4,6]]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => [[1,2,4],[3,5],[6]]
=> 1 = 0 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => [[1,2,3],[4,5],[6]]
=> 1 = 0 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => [[1,2,5,6],[3,4]]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => [[1,3,4,5],[2,6]]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [[1,3,4],[2,5,6]]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => [[1,3,5],[2,4,6]]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => [[1,3,4],[2,5],[6]]
=> 2 = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [[1,3,5,6],[2,4]]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => [[1,2,4,5],[3],[6]]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => [[1,2,4],[3,6],[5]]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [[1,2,3,5],[4],[6]]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [[1,2,3,4],[5,6]]
=> 1 = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => [[1,2,3],[4,6],[5]]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => [[1,2,5],[3,6],[4]]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => [[1,2,4],[3,5],[6]]
=> 1 = 0 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => [[1,2,3],[4,5],[6]]
=> 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => [[1,2,6],[3,5],[4]]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [5,1,2,3,9,8,4,6,7] => [[1,2,3,4,6,7],[5,8],[9]]
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [5,1,2,3,6,9,8,4,7] => [[1,2,3,4,7],[5,6,8],[9]]
=> ? = 0 + 1
[1,0,1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [4,1,2,8,9,3,5,6,7] => [[1,2,3,5,6,7],[4,8,9]]
=> ? = 0 + 1
[1,0,1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> [8,1,2,5,9,3,4,6,7] => [[1,2,3,4,6,7],[5,9],[8]]
=> ? = 0 + 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [4,1,2,5,9,8,3,6,7] => [[1,2,3,6,7],[4,5,8],[9]]
=> ? = 0 + 1
[1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [9,1,4,2,3,5,6,7,8] => ?
=> ? = 0 + 1
[1,0,1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [3,1,9,8,2,4,5,6,7] => [[1,2,4,5,6,7],[3,8],[9]]
=> ? = 0 + 1
[1,0,1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [9,1,4,8,2,3,5,6,7] => [[1,2,3,5,6,7],[4,8],[9]]
=> ? = 0 + 1
[1,0,1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> [3,1,4,8,9,2,5,6,7] => [[1,2,5,6,7],[3,4,8,9]]
=> ? = 0 + 1
[1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [7,1,4,5,6,2,8,9,3] => [[1,2,3,6,8,9],[4,5],[7]]
=> ? = 0 + 1
[1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [8,1,4,5,6,7,2,9,3] => [[1,2,3,6,7,9],[4,5],[8]]
=> ? = 0 + 1
[1,0,1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [3,1,4,9,6,7,8,2,5] => [[1,2,5,7,8],[3,4,6],[9]]
=> ? = 0 + 1
[1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [3,1,9,5,6,7,8,2,4] => [[1,2,4,7,8],[3,5,6],[9]]
=> ? = 0 + 1
[1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [9,1,4,5,6,7,8,2,3] => [[1,2,3,6,7,8],[4,5],[9]]
=> ? = 0 + 1
[1,1,0,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [9,3,1,5,6,7,8,2,4] => [[1,2,4,7,8],[3,5,6],[9]]
=> ? = 0 + 1
[1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,9,8,1,3,4,5,6,7] => [[1,3,4,5,6,7],[2,8],[9]]
=> ? = 1 + 1
[1,1,1,0,1,0,0,1,0,1,0,1,0,1,0,0]
=> [9,3,8,1,2,4,5,6,7] => [[1,2,4,5,6,7],[3,8],[9]]
=> ? = 0 + 1
[1,1,1,0,1,1,1,1,0,0,0,1,0,0,0,0]
=> [9,3,4,1,6,7,8,2,5] => ?
=> ? = 0 + 1
[1,1,1,1,0,0,0,1,0,1,0,1,0,1,0,0]
=> [2,3,9,8,1,4,5,6,7] => [[1,3,4,5,6,7],[2,8],[9]]
=> ? = 1 + 1
[1,1,1,1,0,0,1,0,1,0,1,0,1,0,0,0]
=> [2,7,8,9,1,3,4,5,6] => [[1,3,4,5,6],[2,7,8,9]]
=> ? = 1 + 1
[1,1,1,1,0,1,0,0,1,0,1,0,1,0,0,0]
=> [7,3,8,9,1,2,4,5,6] => [[1,2,4,5,6],[3,8,9],[7]]
=> ? = 0 + 1
[1,1,1,1,0,1,1,1,0,0,0,0,0,0,1,0]
=> [6,3,4,5,1,7,9,2,8] => [[1,2,5,7,8],[3,4,9],[6]]
=> ? = 0 + 1
[1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [9,7,4,5,6,1,2,3,8] => [[1,2,3,8],[4,5,6],[7],[9]]
=> ? = 0 + 1
[1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> [7,3,4,5,6,1,9,2,8] => [[1,2,5,6,8],[3,4,9],[7]]
=> ? = 0 + 1
[1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0]
=> [2,3,9,5,6,7,1,4,8] => [[1,3,4,6,7,8],[2,5],[9]]
=> ? = 1 + 1
[1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0]
=> [2,9,4,5,6,7,1,3,8] => [[1,3,5,6,7,8],[2,4],[9]]
=> ? = 1 + 1
[1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [9,3,4,5,6,7,1,2,8] => [[1,2,5,6,7,8],[3,4],[9]]
=> ? = 0 + 1
[1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [9,3,4,5,6,7,8,1,2] => [[1,2,5,6,7,8],[3,4],[9]]
=> ? = 0 + 1
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [2,3,4,5,6,7,8,10,1,9] => [[1,3,4,5,6,7,8,9],[2,10]]
=> ? = 1 + 1
[1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [10,3,4,5,6,7,8,1,2,9] => [[1,2,5,6,7,8,9],[3,4],[10]]
=> ? = 0 + 1
[1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [10,1,4,5,6,7,8,9,2,3] => [[1,2,3,6,7,8,9],[4,5],[10]]
=> ? = 0 + 1
[1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [3,1,4,5,6,7,8,9,10,11,2] => [[1,2,5,6,7,8,9,10,11],[3,4]]
=> ? = 0 + 1
[1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> [11,3,4,5,6,7,8,9,1,2,10] => [[1,2,5,6,7,8,9,10],[3,4],[11]]
=> ? = 0 + 1
[1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,1,0]
=> [2,10,4,5,6,7,8,1,3,9] => [[1,3,5,6,7,8,9],[2,4],[10]]
=> ? = 1 + 1
[1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,1,0]
=> [8,3,4,5,6,7,1,10,2,9] => [[1,2,5,6,7,9],[3,4,10],[8]]
=> ? = 0 + 1
[1,0,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [3,1,10,5,6,7,8,9,2,4] => [[1,2,4,7,8,9],[3,5,6],[10]]
=> ? = 0 + 1
[1,0,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [9,1,4,5,6,7,8,2,10,3] => [[1,2,3,6,7,8,10],[4,5],[9]]
=> ? = 0 + 1
[1,0,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [11,1,4,5,6,7,8,9,10,2,3] => [[1,2,3,6,7,8,9,10],[4,5],[11]]
=> ? = 0 + 1
[1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,1,0]
=> [2,3,4,5,6,7,10,1,8,9] => [[1,3,4,5,6,7,8,9],[2,10]]
=> ? = 1 + 1
[1,0,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [4,1,2,5,6,7,8,9,10,3] => [[1,2,3,6,7,8,9,10],[4,5]]
=> ? = 0 + 1
[1,0,1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [4,1,2,5,6,7,8,9,10,11,3] => ?
=> ? = 0 + 1
[1,1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [10,3,1,5,6,7,8,9,2,4] => [[1,2,4,7,8,9],[3,5,6],[10]]
=> ? = 0 + 1
[1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,9,10,1,3,4,5,6,7,8] => [[1,3,4,5,6,7,8],[2,9,10]]
=> ? = 1 + 1
[1,1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> [9,3,10,1,2,4,5,6,7,8] => [[1,2,4,5,6,7,8],[3,10],[9]]
=> ? = 0 + 1
[1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [10,3,4,5,6,7,8,9,1,2] => [[1,2,5,6,7,8,9],[3,4],[10]]
=> ? = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [11,1,2,3,4,5,6,7,8,9,10] => [[1,2,3,4,5,6,7,8,9,10],[11]]
=> ? = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [10,1,2,3,4,5,6,7,8,11,9] => [[1,2,3,4,5,6,7,8,9],[10,11]]
=> ? = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [8,1,2,3,4,5,6,9,10,7] => [[1,2,3,4,5,6,7,10],[8,9]]
=> ? = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [11,1,2,3,4,5,6,7,10,8,9] => [[1,2,3,4,5,6,7,8,9],[10],[11]]
=> ? = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [11,1,2,3,4,5,6,10,7,8,9] => [[1,2,3,4,5,6,7,8,9],[10],[11]]
=> ? = 0 + 1
Description
The index of the last row whose first entry is the row number in a standard Young tableau.
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00071: Permutations —descent composition⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St000932: Dyck paths ⟶ ℤResult quality: 87% ā—values known / values provided: 87%ā—distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => [1,0]
=> ? = 1
[1,0,1,0]
=> [1,2] => [2] => [1,1,0,0]
=> 0
[1,1,0,0]
=> [2,1] => [1,1] => [1,0,1,0]
=> 1
[1,0,1,0,1,0]
=> [1,2,3] => [3] => [1,1,1,0,0,0]
=> 0
[1,0,1,1,0,0]
=> [1,3,2] => [2,1] => [1,1,0,0,1,0]
=> 0
[1,1,0,0,1,0]
=> [2,1,3] => [1,2] => [1,0,1,1,0,0]
=> 1
[1,1,0,1,0,0]
=> [2,3,1] => [2,1] => [1,1,0,0,1,0]
=> 0
[1,1,1,0,0,0]
=> [3,1,2] => [1,2] => [1,0,1,1,0,0]
=> 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [4] => [1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> 0
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> 0
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> 0
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> 0
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> 0
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> 0
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 1
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> 0
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 0
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 0
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6,7,8] => [8] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,5,6,8,7] => [7,1] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 0
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,4,5,7,8,6] => [7,1] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 0
[1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,4,5,8,6,7] => [6,2] => [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 0
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,3,4,6,7,8,5] => [7,1] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 0
[1,0,1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,2,3,4,7,5,8,6] => [5,2,1] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0,1,0]
=> ? = 0
[1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,2,3,4,7,8,5,6] => [6,2] => [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 0
[1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,3,4,8,5,6,7] => [5,3] => [1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0]
=> ? = 0
[1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,2,3,5,6,7,8,4] => [7,1] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 0
[1,0,1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,2,3,6,4,7,8,5] => [4,3,1] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0,1,0]
=> ? = 0
[1,0,1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,2,3,6,7,4,8,5] => [5,2,1] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0,1,0]
=> ? = 0
[1,0,1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,2,3,7,4,5,8,6] => [4,3,1] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0,1,0]
=> ? = 0
[1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,2,4,5,6,7,8,3] => [7,1] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 0
[1,0,1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,2,5,3,6,7,8,4] => [3,4,1] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 0
[1,0,1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,2,5,6,3,7,8,4] => [4,3,1] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0,1,0]
=> ? = 0
[1,0,1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,2,6,3,4,7,8,5] => [3,4,1] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 0
[1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,8,3,4,5,6,7] => [3,5] => [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 0
[1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,3,4,2,5,6,7,8] => [3,5] => [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 0
[1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,7,8,2] => [7,1] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 0
[1,0,1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,4,5,2,6,7,8,3] => [3,4,1] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 0
[1,0,1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,4,5,6,7,8,2,3] => [6,2] => [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 0
[1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,5,8,2,3,4,6,7] => [3,5] => [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 0
[1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,6,7,8,2,3,4,5] => [4,4] => [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 0
[1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,6,8,2,3,4,5,7] => [3,5] => [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 0
[1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,7,8,2,3,4,5,6] => [3,5] => [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 0
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,8,1] => [7,1] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 0
[1,1,0,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [2,6,7,8,1,3,4,5] => [4,4] => [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 0
[1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [3,4,5,6,7,8,1,2] => [6,2] => [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 0
[1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [5,6,7,1,2,3,4,8] => [3,5] => [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 0
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [8,1,2,3,4,5,6,7,9] => [1,8] => [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 1
[1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,9,2,3,4,5,6,7,8] => [2,7] => [1,1,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 0
[1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [7,8,1,2,3,4,5,6,9] => [2,7] => [1,1,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 0
[1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,8,9,2,3,4,5,6,7] => [3,6] => [1,1,1,0,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 0
[1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,10,2,3,4,5,6,7,8,9] => [2,8] => [1,1,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 0
[1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> [8,9,1,2,3,4,5,6,7,10] => [2,8] => [1,1,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 0
[1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,1,0]
=> [7,1,8,2,3,4,5,6,9] => [1,2,6] => [1,0,1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1
[1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,1,0]
=> [6,8,1,2,3,4,5,7,9] => [2,7] => [1,1,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 0
[1,0,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,8,2,9,3,4,5,6,7] => [2,2,5] => [1,1,0,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 0
[1,0,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [1,7,9,2,3,4,5,6,8] => [3,6] => [1,1,1,0,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 0
[1,0,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [1,9,10,2,3,4,5,6,7,8] => [3,7] => [1,1,1,0,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 0
[1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,1,0]
=> [7,1,2,3,4,5,6,8,9] => [1,8] => [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 1
[1,0,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,2,9,3,4,5,6,7,8] => [3,6] => [1,1,1,0,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 0
[1,0,1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,2,10,3,4,5,6,7,8,9] => [3,7] => [1,1,1,0,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 0
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,8,9,1] => [8,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 0
[1,1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [2,8,1,9,3,4,5,6,7] => [2,2,5] => [1,1,0,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 0
[1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [3,1,4,5,6,7,8,9,2] => [1,7,1] => [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 1
[1,1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> [3,4,1,5,6,7,8,9,2] => [2,6,1] => [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 0
[1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [3,4,5,6,7,8,9,1,2] => [7,2] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,0,0]
=> ? = 0
[1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> [4,5,6,7,8,9,1,2,3] => [6,3] => [1,1,1,1,1,1,0,0,0,0,0,0,1,1,1,0,0,0]
=> ? = 0
Description
The number of occurrences of the pattern UDU in a Dyck path. The number of Dyck paths with statistic value 0 are counted by the Motzkin numbers [1].
Mp00035: Dyck paths —to alternating sign matrix⟶ Alternating sign matrices
Mp00002: Alternating sign matrices —to left key permutation⟶ Permutations
Mp00240: Permutations —weak exceedance partition⟶ Set partitions
St000504: Set partitions ⟶ ℤResult quality: 83% ā—values known / values provided: 83%ā—distinct values known / distinct values provided: 100%
Values
[1,0]
=> [[1]]
=> [1] => {{1}}
=> ? = 1 + 1
[1,0,1,0]
=> [[1,0],[0,1]]
=> [1,2] => {{1},{2}}
=> 1 = 0 + 1
[1,1,0,0]
=> [[0,1],[1,0]]
=> [2,1] => {{1,2}}
=> 2 = 1 + 1
[1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,2,3] => {{1},{2},{3}}
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,3,2] => {{1},{2,3}}
=> 1 = 0 + 1
[1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [2,1,3] => {{1,2},{3}}
=> 2 = 1 + 1
[1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,3,2] => {{1},{2,3}}
=> 1 = 0 + 1
[1,1,1,0,0,0]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [3,1,2] => {{1,3},{2}}
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,2,3,4] => {{1},{2},{3},{4}}
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,2,4,3] => {{1},{2},{3,4}}
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => {{1},{2,3},{4}}
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => {{1},{2},{3,4}}
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => {{1},{2,4},{3}}
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [2,1,3,4] => {{1,2},{3},{4}}
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [2,1,4,3] => {{1,2},{3,4}}
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => {{1},{2,3},{4}}
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => {{1},{2},{3,4}}
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => {{1},{2,4},{3}}
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [3,1,2,4] => {{1,3},{2},{4}}
=> 2 = 1 + 1
[1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [2,1,4,3] => {{1,2},{3,4}}
=> 2 = 1 + 1
[1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => {{1},{2,4},{3}}
=> 1 = 0 + 1
[1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [4,1,2,3] => {{1,4},{2},{3}}
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,2,3,4,5] => {{1},{2},{3},{4},{5}}
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => {{1},{2},{3},{4,5}}
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => {{1},{2},{3,4},{5}}
=> 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => {{1},{2},{3},{4,5}}
=> 1 = 0 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => {{1},{2},{3,5},{4}}
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => {{1},{2,3},{4},{5}}
=> 1 = 0 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => {{1},{2,3},{4,5}}
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => {{1},{2},{3,4},{5}}
=> 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => {{1},{2},{3},{4,5}}
=> 1 = 0 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => {{1},{2},{3,5},{4}}
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,4,2,3,5] => {{1},{2,4},{3},{5}}
=> 1 = 0 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => {{1},{2,3},{4,5}}
=> 1 = 0 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => {{1},{2},{3,5},{4}}
=> 1 = 0 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,5,2,3,4] => {{1},{2,5},{3},{4}}
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [2,1,3,4,5] => {{1,2},{3},{4},{5}}
=> 2 = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => {{1,2},{3},{4,5}}
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [2,1,4,3,5] => {{1,2},{3,4},{5}}
=> 2 = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => {{1,2},{3},{4,5}}
=> 2 = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [2,1,5,3,4] => {{1,2},{3,5},{4}}
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => {{1},{2,3},{4},{5}}
=> 1 = 0 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => {{1},{2,3},{4,5}}
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => {{1},{2},{3,4},{5}}
=> 1 = 0 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => {{1},{2},{3},{4,5}}
=> 1 = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => {{1},{2},{3,5},{4}}
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,4,2,3,5] => {{1},{2,4},{3},{5}}
=> 1 = 0 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => {{1},{2,3},{4,5}}
=> 1 = 0 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => {{1},{2},{3,5},{4}}
=> 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,5,2,3,4] => {{1},{2,5},{3},{4}}
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [3,1,2,4,5] => {{1,3},{2},{4},{5}}
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> [1,2,3,4,5,6,7,8] => {{1},{2},{3},{4},{5},{6},{7},{8}}
=> ? = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> [1,2,3,4,5,6,8,7] => {{1},{2},{3},{4},{5},{6},{7,8}}
=> ? = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,-1,1],[0,0,0,0,0,0,1,0]]
=> [1,2,3,4,5,6,8,7] => {{1},{2},{3},{4},{5},{6},{7,8}}
=> ? = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,2,3,4,5,8,6,7] => {{1},{2},{3},{4},{5},{6,8},{7}}
=> ? = 0 + 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,-1,1,0],[0,0,0,0,0,1,-1,1],[0,0,0,0,0,0,1,0]]
=> [1,2,3,4,5,6,8,7] => {{1},{2},{3},{4},{5},{6},{7,8}}
=> ? = 0 + 1
[1,0,1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,-1,1],[0,0,0,0,0,0,1,0]]
=> [1,2,3,4,6,5,8,7] => ?
=> ? = 0 + 1
[1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,-1,1],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,2,3,4,5,8,6,7] => {{1},{2},{3},{4},{5},{6,8},{7}}
=> ? = 0 + 1
[1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,2,3,4,8,5,6,7] => {{1},{2},{3},{4},{5,8},{6},{7}}
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,-1,1,0,0],[0,0,0,0,1,-1,1,0],[0,0,0,0,0,1,-1,1],[0,0,0,0,0,0,1,0]]
=> [1,2,3,4,5,6,8,7] => {{1},{2},{3},{4},{5},{6},{7,8}}
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,-1,1,0],[0,0,0,0,0,1,-1,1],[0,0,0,0,0,0,1,0]]
=> [1,2,3,5,4,6,8,7] => ?
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,1,0,-1,1,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,-1,1],[0,0,0,0,0,0,1,0]]
=> [1,2,3,4,6,5,8,7] => ?
=> ? = 0 + 1
[1,0,1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,-1,1],[0,0,0,0,0,0,1,0]]
=> [1,2,3,6,4,5,8,7] => ?
=> ? = 0 + 1
[1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,-1,1,0,0,0],[0,0,0,1,-1,1,0,0],[0,0,0,0,1,-1,1,0],[0,0,0,0,0,1,-1,1],[0,0,0,0,0,0,1,0]]
=> [1,2,3,4,5,6,8,7] => {{1},{2},{3},{4},{5},{6},{7,8}}
=> ? = 0 + 1
[1,0,1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,-1,1,0,0],[0,0,0,0,1,-1,1,0],[0,0,0,0,0,1,-1,1],[0,0,0,0,0,0,1,0]]
=> [1,2,4,3,5,6,8,7] => ?
=> ? = 0 + 1
[1,0,1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,-1,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,-1,1,0],[0,0,0,0,0,1,-1,1],[0,0,0,0,0,0,1,0]]
=> [1,2,3,5,4,6,8,7] => ?
=> ? = 0 + 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,-1,1,0],[0,0,0,0,0,1,-1,1],[0,0,0,0,0,0,1,0]]
=> [1,2,5,3,4,6,8,7] => ?
=> ? = 0 + 1
[1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,2,8,3,4,5,6,7] => ?
=> ? = 0 + 1
[1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,-1,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> ? => ?
=> ? = 0 + 1
[1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,-1,1,0,0,0,0],[0,0,1,-1,1,0,0,0],[0,0,0,1,-1,1,0,0],[0,0,0,0,1,-1,1,0],[0,0,0,0,0,1,-1,1],[0,0,0,0,0,0,1,0]]
=> [1,2,3,4,5,6,8,7] => {{1},{2},{3},{4},{5},{6},{7,8}}
=> ? = 0 + 1
[1,0,1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,-1,1,0,0,0],[0,0,0,1,-1,1,0,0],[0,0,0,0,1,-1,1,0],[0,0,0,0,0,1,-1,1],[0,0,0,0,0,0,1,0]]
=> [1,3,2,4,5,6,8,7] => ?
=> ? = 0 + 1
[1,0,1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,-1,1,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,-1,1,0,0],[0,0,0,0,1,-1,1,0],[0,0,0,0,0,1,-1,1],[0,0,0,0,0,0,1,0]]
=> [1,2,4,3,5,6,8,7] => ?
=> ? = 0 + 1
[1,0,1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,-1,1,0,0,0],[0,0,1,0,-1,1,0,0],[0,0,0,1,0,-1,1,0],[0,0,0,0,1,0,-1,1],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,2,3,4,5,8,6,7] => {{1},{2},{3},{4},{5},{6,8},{7}}
=> ? = 0 + 1
[1,0,1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> [[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,-1,1,0,0],[0,0,0,0,1,-1,1,0],[0,0,0,0,0,1,-1,1],[0,0,0,0,0,0,1,0]]
=> [1,4,2,3,5,6,8,7] => ?
=> ? = 0 + 1
[1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,1,0,0,-1,0,0,1],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,2,8,3,4,5,6,7] => ?
=> ? = 0 + 1
[1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,-1,1,0],[0,0,1,0,0,0,-1,1],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,2,3,8,4,5,6,7] => {{1},{2},{3},{4,8},{5},{6},{7}}
=> ? = 0 + 1
[1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,-1,0,1],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,2,8,3,4,5,6,7] => ?
=> ? = 0 + 1
[1,0,1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,-1,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,4,2,3,8,5,6,7] => {{1},{2,4},{3},{5,8},{6},{7}}
=> ? = 0 + 1
[1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,-1,1],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,3,2,8,4,5,6,7] => {{1},{2,3},{4,8},{5},{6},{7}}
=> ? = 0 + 1
[1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,1,0,0,0,0,-1,1],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,2,8,3,4,5,6,7] => ?
=> ? = 0 + 1
[1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,8,2,3,4,5,6,7] => {{1},{2,8},{3},{4},{5},{6},{7}}
=> ? = 0 + 1
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> [2,1,3,4,5,6,7,8] => {{1,2},{3},{4},{5},{6},{7},{8}}
=> ? = 1 + 1
[1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ? => ?
=> ? = 1 + 1
[1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> [1,3,2,4,5,6,7,8] => {{1},{2,3},{4},{5},{6},{7},{8}}
=> ? = 0 + 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,1,0,0,0,0,0],[0,1,-1,1,0,0,0,0],[0,0,1,-1,1,0,0,0],[0,0,0,1,-1,1,0,0],[0,0,0,0,1,-1,1,0],[0,0,0,0,0,1,-1,1],[0,0,0,0,0,0,1,0]]
=> [1,2,3,4,5,6,8,7] => {{1},{2},{3},{4},{5},{6},{7,8}}
=> ? = 0 + 1
[1,1,0,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,0,0,0,1,0,0],[0,1,0,0,0,-1,1,0],[0,0,1,0,0,0,-1,1],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,2,3,8,4,5,6,7] => {{1},{2},{3},{4,8},{5},{6},{7}}
=> ? = 0 + 1
[1,1,0,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,-1,1],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,3,2,8,4,5,6,7] => {{1},{2,3},{4,8},{5},{6},{7}}
=> ? = 0 + 1
[1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> [[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,-1,1,0,0,0,0],[0,0,1,-1,1,0,0,0],[0,0,0,1,-1,1,0,0],[0,0,0,0,1,-1,1,0],[0,0,0,0,0,1,-1,1],[0,0,0,0,0,0,1,0]]
=> [2,1,3,4,5,6,8,7] => {{1,2},{3},{4},{5},{6},{7,8}}
=> ? = 1 + 1
[1,1,1,0,1,0,0,1,0,1,0,1,0,1,0,0]
=> [[0,0,1,0,0,0,0,0],[1,0,-1,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,-1,1,0,0,0],[0,0,0,1,-1,1,0,0],[0,0,0,0,1,-1,1,0],[0,0,0,0,0,1,-1,1],[0,0,0,0,0,0,1,0]]
=> [1,3,2,4,5,6,8,7] => ?
=> ? = 0 + 1
[1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [[0,0,1,0,0,0,0,0],[1,0,-1,1,0,0,0,0],[0,1,0,-1,1,0,0,0],[0,0,1,0,-1,1,0,0],[0,0,0,1,0,-1,1,0],[0,0,0,0,1,0,-1,1],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,2,3,4,5,8,6,7] => {{1},{2},{3},{4},{5},{6,8},{7}}
=> ? = 0 + 1
[1,1,1,0,1,1,1,1,0,0,0,1,0,0,0,0]
=> [[0,0,1,0,0,0,0,0],[1,0,-1,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,-1,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> ? => ?
=> ? = 0 + 1
[1,1,1,1,0,0,0,1,0,1,0,1,0,1,0,0]
=> [[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,-1,1,0,0,0],[0,0,0,1,-1,1,0,0],[0,0,0,0,1,-1,1,0],[0,0,0,0,0,1,-1,1],[0,0,0,0,0,0,1,0]]
=> [3,1,2,4,5,6,8,7] => ?
=> ? = 1 + 1
[1,1,1,1,0,0,1,0,1,0,1,0,1,0,0,0]
=> [[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,-1,1,0,0,0],[0,0,1,0,-1,1,0,0],[0,0,0,1,0,-1,1,0],[0,0,0,0,1,0,-1,1],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [2,1,3,4,5,8,6,7] => ?
=> ? = 1 + 1
[1,1,1,1,0,1,0,0,1,0,1,0,1,0,0,0]
=> [[0,0,0,1,0,0,0,0],[1,0,0,-1,1,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,-1,1,0,0],[0,0,0,1,0,-1,1,0],[0,0,0,0,1,0,-1,1],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> ? => ?
=> ? = 0 + 1
[1,1,1,1,0,1,1,1,0,0,0,0,0,0,1,0]
=> [[0,0,0,1,0,0,0,0],[1,0,0,-1,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1]]
=> [1,7,2,3,4,5,6,8] => {{1},{2,7},{3},{4},{5},{6},{8}}
=> ? = 0 + 1
[1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [[0,0,0,0,1,0,0,0],[1,0,0,0,-1,1,0,0],[0,1,0,0,0,-1,1,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1]]
=> [1,2,7,3,4,5,6,8] => ?
=> ? = 0 + 1
[1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> [[0,0,0,0,1,0,0,0],[1,0,0,0,-1,0,1,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1]]
=> [1,7,2,3,4,5,6,8] => {{1},{2,7},{3},{4},{5},{6},{8}}
=> ? = 0 + 1
[1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> [[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> [6,1,2,3,4,5,7,8] => {{1,6},{2},{3},{4},{5},{7},{8}}
=> ? = 1 + 1
[1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> [6,1,2,3,4,5,8,7] => {{1,6},{2},{3},{4},{5},{7,8}}
=> ? = 1 + 1
[1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0]
=> [[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,-1,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1]]
=> [3,1,2,7,4,5,6,8] => ?
=> ? = 1 + 1
Description
The cardinality of the first block of a set partition. The number of partitions of \{1,\ldots,n\} into k blocks in which the first block has cardinality j+1 is given by \binom{n-1}{j}S(n-j-1,k-1), see [1, Theorem 1.1] and the references therein. Here, S(n,k) are the ''Stirling numbers of the second kind'' counting all set partitions of \{1,\ldots,n\} into k blocks [2].
Mp00027: Dyck paths —to partition⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St001217: Dyck paths ⟶ ℤResult quality: 82% ā—values known / values provided: 82%ā—distinct values known / distinct values provided: 100%
Values
[1,0]
=> []
=> ?
=> ?
=> ? = 1
[1,0,1,0]
=> [1]
=> []
=> []
=> ? = 0
[1,1,0,0]
=> []
=> ?
=> ?
=> ? = 1
[1,0,1,0,1,0]
=> [2,1]
=> [1]
=> [1,0,1,0]
=> 0
[1,0,1,1,0,0]
=> [1,1]
=> [1]
=> [1,0,1,0]
=> 0
[1,1,0,0,1,0]
=> [2]
=> []
=> []
=> ? = 1
[1,1,0,1,0,0]
=> [1]
=> []
=> []
=> ? = 0
[1,1,1,0,0,0]
=> []
=> ?
=> ?
=> ? = 1
[1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [2,1]
=> [1,0,1,0,1,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [2,1]
=> [1,0,1,0,1,0]
=> 0
[1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 0
[1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 0
[1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 0
[1,1,0,0,1,0,1,0]
=> [3,2]
=> [2]
=> [1,1,0,0,1,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [2,2]
=> [2]
=> [1,1,0,0,1,0]
=> 1
[1,1,0,1,0,0,1,0]
=> [3,1]
=> [1]
=> [1,0,1,0]
=> 0
[1,1,0,1,0,1,0,0]
=> [2,1]
=> [1]
=> [1,0,1,0]
=> 0
[1,1,0,1,1,0,0,0]
=> [1,1]
=> [1]
=> [1,0,1,0]
=> 0
[1,1,1,0,0,0,1,0]
=> [3]
=> []
=> []
=> ? = 1
[1,1,1,0,0,1,0,0]
=> [2]
=> []
=> []
=> ? = 1
[1,1,1,0,1,0,0,0]
=> [1]
=> []
=> []
=> ? = 0
[1,1,1,1,0,0,0,0]
=> []
=> ?
=> ?
=> ? = 1
[1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [3,3,1]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> [2,1]
=> [1,0,1,0,1,0]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> [2,1]
=> [1,0,1,0,1,0]
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> [2,1]
=> [1,0,1,0,1,0]
=> 0
[1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 0
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 0
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 0
[1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 1
[1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [2]
=> [1,1,0,0,1,0]
=> 1
[1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [2]
=> [1,1,0,0,1,0]
=> 1
[1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [2]
=> [1,1,0,0,1,0]
=> 1
[1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> [1]
=> [1,0,1,0]
=> 0
[1,1,1,0,1,0,0,1,0,0]
=> [3,1]
=> [1]
=> [1,0,1,0]
=> 0
[1,1,1,0,1,0,1,0,0,0]
=> [2,1]
=> [1]
=> [1,0,1,0]
=> 0
[1,1,1,0,1,1,0,0,0,0]
=> [1,1]
=> [1]
=> [1,0,1,0]
=> 0
[1,1,1,1,0,0,0,0,1,0]
=> [4]
=> []
=> []
=> ? = 1
[1,1,1,1,0,0,0,1,0,0]
=> [3]
=> []
=> []
=> ? = 1
[1,1,1,1,0,0,1,0,0,0]
=> [2]
=> []
=> []
=> ? = 1
[1,1,1,1,0,1,0,0,0,0]
=> [1]
=> []
=> []
=> ? = 0
[1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ?
=> ? = 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [5]
=> []
=> []
=> ? = 1
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> []
=> []
=> ? = 1
[1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> []
=> []
=> ? = 1
[1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> []
=> []
=> ? = 1
[1,1,1,1,1,0,1,0,0,0,0,0]
=> [1]
=> []
=> []
=> ? = 0
[1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ?
=> ?
=> ? = 1
[1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [6]
=> []
=> []
=> ? = 1
[1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [5]
=> []
=> []
=> ? = 1
[1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [4]
=> []
=> []
=> ? = 1
[1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [3]
=> []
=> []
=> ? = 1
[1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [2]
=> []
=> []
=> ? = 1
[1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1]
=> []
=> []
=> ? = 0
[1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> []
=> ?
=> ?
=> ? = 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,3,2,1]
=> [6,5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,6,5,4,3,2,1]
=> [6,5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [6,5,5,4,3,2,1]
=> [5,5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0
[1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,5,5,4,3,2,1]
=> [5,5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [6,5,4,4,3,2,1]
=> [5,4,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 0
[1,0,1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [6,4,4,4,3,2,1]
=> [4,4,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 0
[1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [5,4,4,4,3,2,1]
=> [4,4,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 0
[1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,4,4,4,3,2,1]
=> [4,4,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 0
[1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [6,5,4,3,3,2,1]
=> [5,4,3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> ? = 0
[1,0,1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [6,5,3,3,3,2,1]
=> [5,3,3,3,2,1]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> ? = 0
[1,0,1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [6,4,3,3,3,2,1]
=> [4,3,3,3,2,1]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> ? = 0
[1,0,1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [6,3,3,3,3,2,1]
=> [3,3,3,3,2,1]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 0
[1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [6,5,4,3,2,2,1]
=> [5,4,3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 0
[1,0,1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [6,5,4,2,2,2,1]
=> [5,4,2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> ? = 0
[1,0,1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> [6,5,3,2,2,2,1]
=> [5,3,2,2,2,1]
=> [1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> ? = 0
[1,0,1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [6,5,2,2,2,2,1]
=> [5,2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> ? = 0
[1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,2,2,2,2,2,1]
=> [2,2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 0
[1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,2,1,1]
=> ?
=> ?
=> ? = 0
[1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [6,5,4,3,2,1,1]
=> [5,4,3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 0
[1,0,1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [6,5,4,3,1,1,1]
=> [5,4,3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> ? = 0
[1,0,1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [6,5,4,2,1,1,1]
=> [5,4,2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> ? = 0
[1,0,1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [5,4,3,2,1,1,1]
=> [4,3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,0,1,0,0,0]
=> ? = 0
Description
The projective dimension of the indecomposable injective module I[n-2] in the corresponding Nakayama algebra with simples enumerated from 0 to n-1.
Mp00035: Dyck paths —to alternating sign matrix⟶ Alternating sign matrices
Mp00002: Alternating sign matrices —to left key permutation⟶ Permutations
Mp00066: Permutations —inverse⟶ Permutations
St000541: Permutations ⟶ ℤResult quality: 66% ā—values known / values provided: 66%ā—distinct values known / distinct values provided: 100%
Values
[1,0]
=> [[1]]
=> [1] => [1] => ? = 1
[1,0,1,0]
=> [[1,0],[0,1]]
=> [1,2] => [1,2] => 0
[1,1,0,0]
=> [[0,1],[1,0]]
=> [2,1] => [2,1] => 1
[1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,2,3] => [1,2,3] => 0
[1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,3,2] => [1,3,2] => 0
[1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [2,1,3] => [2,1,3] => 1
[1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,3,2] => [1,3,2] => 0
[1,1,1,0,0,0]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [3,1,2] => [2,3,1] => 1
[1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,2,3,4] => [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,2,4,3] => [1,2,4,3] => 0
[1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => [1,3,2,4] => 0
[1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => [1,2,4,3] => 0
[1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => [1,3,4,2] => 0
[1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [2,1,3,4] => [2,1,3,4] => 1
[1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [2,1,4,3] => [2,1,4,3] => 1
[1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => [1,3,2,4] => 0
[1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => [1,2,4,3] => 0
[1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => [1,3,4,2] => 0
[1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [3,1,2,4] => [2,3,1,4] => 1
[1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [2,1,4,3] => [2,1,4,3] => 1
[1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => [1,3,4,2] => 0
[1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [4,1,2,3] => [2,3,4,1] => 1
[1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => [1,2,3,5,4] => 0
[1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => [1,2,4,3,5] => 0
[1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => [1,2,3,5,4] => 0
[1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => [1,2,4,5,3] => 0
[1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => [1,3,2,4,5] => 0
[1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => [1,3,2,5,4] => 0
[1,0,1,1,0,1,0,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => [1,2,4,3,5] => 0
[1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => [1,2,3,5,4] => 0
[1,0,1,1,0,1,1,0,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => [1,2,4,5,3] => 0
[1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,4,2,3,5] => [1,3,4,2,5] => 0
[1,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => [1,3,2,5,4] => 0
[1,0,1,1,1,0,1,0,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => [1,2,4,5,3] => 0
[1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,5,2,3,4] => [1,3,4,5,2] => 0
[1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [2,1,3,4,5] => [2,1,3,4,5] => 1
[1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => [2,1,3,5,4] => 1
[1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [2,1,4,3,5] => [2,1,4,3,5] => 1
[1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => [2,1,3,5,4] => 1
[1,1,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [2,1,5,3,4] => [2,1,4,5,3] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => [1,3,2,4,5] => 0
[1,1,0,1,0,0,1,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => [1,3,2,5,4] => 0
[1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => [1,2,4,3,5] => 0
[1,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => [1,2,3,5,4] => 0
[1,1,0,1,0,1,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => [1,2,4,5,3] => 0
[1,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,4,2,3,5] => [1,3,4,2,5] => 0
[1,1,0,1,1,0,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => [1,3,2,5,4] => 0
[1,1,0,1,1,0,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => [1,2,4,5,3] => 0
[1,1,0,1,1,1,0,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,5,2,3,4] => [1,3,4,5,2] => 0
[1,1,1,0,0,0,1,0,1,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [3,1,2,4,5] => [2,3,1,4,5] => 1
[1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,3,4,5,6,7] => [2,1,3,4,5,6,7] => ? = 1
[1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [2,1,3,4,5,7,6] => [2,1,3,4,5,7,6] => ? = 1
[1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,3,5,4,6,7] => [2,1,3,5,4,6,7] => ? = 1
[1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [2,1,3,5,4,7,6] => [2,1,3,5,4,7,6] => ? = 1
[1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,6,4,5,7] => [2,1,3,5,6,4,7] => ? = 1
[1,1,0,0,1,0,1,1,1,0,1,0,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [2,1,3,4,7,5,6] => [2,1,3,4,6,7,5] => ? = 1
[1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,4,3,5,6,7] => [2,1,4,3,5,6,7] => ? = 1
[1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [2,1,4,3,5,7,6] => [2,1,4,3,5,7,6] => ? = 1
[1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,4,3,6,5,7] => [2,1,4,3,6,5,7] => ? = 1
[1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [2,1,4,3,5,7,6] => [2,1,4,3,5,7,6] => ? = 1
[1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [2,1,4,3,7,5,6] => [2,1,4,3,6,7,5] => ? = 1
[1,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,4,6,5,7] => [2,1,3,4,6,5,7] => ? = 1
[1,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [2,1,3,4,5,7,6] => [2,1,3,4,5,7,6] => ? = 1
[1,1,0,0,1,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,6,4,5,7] => [2,1,3,5,6,4,7] => ? = 1
[1,1,0,0,1,1,0,1,1,0,0,1,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [2,1,3,5,4,7,6] => [2,1,3,5,4,7,6] => ? = 1
[1,1,0,0,1,1,0,1,1,1,0,0,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [2,1,3,7,4,5,6] => [2,1,3,5,6,7,4] => ? = 1
[1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,5,3,4,6,7] => [2,1,4,5,3,6,7] => ? = 1
[1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [2,1,5,3,4,7,6] => [2,1,4,5,3,7,6] => ? = 1
[1,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,4,3,6,5,7] => [2,1,4,3,6,5,7] => ? = 1
[1,1,0,0,1,1,1,0,1,1,0,0,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,-1,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [2,1,3,7,4,5,6] => [2,1,3,5,6,7,4] => ? = 1
[1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,6,3,4,5,7] => [2,1,4,5,6,3,7] => ? = 1
[1,1,0,0,1,1,1,1,0,0,0,1,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [2,1,5,3,4,7,6] => [2,1,4,5,3,7,6] => ? = 1
[1,1,0,0,1,1,1,1,0,1,0,0,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,1,0,0,-1,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [2,1,3,7,4,5,6] => [2,1,3,5,6,7,4] => ? = 1
[1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,0,0,1],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [2,1,7,3,4,5,6] => [2,1,4,5,6,7,3] => ? = 1
[1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [3,1,2,4,5,6,7] => [2,3,1,4,5,6,7] => ? = 1
[1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [3,1,2,4,5,7,6] => [2,3,1,4,5,7,6] => ? = 1
[1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [3,1,2,4,6,5,7] => [2,3,1,4,6,5,7] => ? = 1
[1,1,1,0,0,0,1,0,1,1,0,1,0,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [3,1,2,4,5,7,6] => [2,3,1,4,5,7,6] => ? = 1
[1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [3,1,2,4,7,5,6] => [2,3,1,4,6,7,5] => ? = 1
[1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [3,1,2,5,4,6,7] => [2,3,1,5,4,6,7] => ? = 1
[1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [3,1,2,5,4,7,6] => [2,3,1,5,4,7,6] => ? = 1
[1,1,1,0,0,0,1,1,0,1,0,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [3,1,2,4,6,5,7] => [2,3,1,4,6,5,7] => ? = 1
[1,1,1,0,0,0,1,1,0,1,0,1,0,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [3,1,2,4,5,7,6] => [2,3,1,4,5,7,6] => ? = 1
[1,1,1,0,0,0,1,1,0,1,1,0,0,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [3,1,2,4,7,5,6] => [2,3,1,4,6,7,5] => ? = 1
[1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [3,1,2,6,4,5,7] => [2,3,1,5,6,4,7] => ? = 1
[1,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [3,1,2,5,4,7,6] => [2,3,1,5,4,7,6] => ? = 1
[1,1,1,0,0,0,1,1,1,0,1,0,0,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [3,1,2,4,7,5,6] => [2,3,1,4,6,7,5] => ? = 1
[1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [3,1,2,7,4,5,6] => [2,3,1,5,6,7,4] => ? = 1
[1,1,1,0,0,1,0,0,1,0,1,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,4,3,5,6,7] => [2,1,4,3,5,6,7] => ? = 1
[1,1,1,0,0,1,0,0,1,0,1,1,0,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [2,1,4,3,5,7,6] => [2,1,4,3,5,7,6] => ? = 1
[1,1,1,0,0,1,0,0,1,1,0,1,0,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [2,1,4,3,5,7,6] => [2,1,4,3,5,7,6] => ? = 1
[1,1,1,0,0,1,0,0,1,1,1,0,0,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [2,1,4,3,7,5,6] => [2,1,4,3,6,7,5] => ? = 1
[1,1,1,0,0,1,0,1,0,0,1,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,3,5,4,6,7] => [2,1,3,5,4,6,7] => ? = 1
[1,1,1,0,0,1,0,1,0,0,1,1,0,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [2,1,3,5,4,7,6] => [2,1,3,5,4,7,6] => ? = 1
[1,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,4,6,5,7] => [2,1,3,4,6,5,7] => ? = 1
[1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [2,1,3,4,5,7,6] => [2,1,3,4,5,7,6] => ? = 1
[1,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [2,1,3,4,7,5,6] => [2,1,3,4,6,7,5] => ? = 1
[1,1,1,0,0,1,0,1,1,0,0,1,0,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [2,1,3,5,4,7,6] => [2,1,3,5,4,7,6] => ? = 1
[1,1,1,0,0,1,0,1,1,0,1,0,0,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [2,1,3,4,7,5,6] => [2,1,3,4,6,7,5] => ? = 1
Description
The number of indices greater than or equal to 2 of a permutation such that all smaller indices appear to its right. For a permutation \pi of length n, this is the number of indices 2 \leq j \leq n such that for all 1 \leq i < j, the pair (i,j) is an inversion of \pi.
Mp00027: Dyck paths —to partition⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
St000990: Permutations ⟶ ℤResult quality: 64% ā—values known / values provided: 64%ā—distinct values known / distinct values provided: 100%
Values
[1,0]
=> []
=> []
=> [] => ? = 1 + 1
[1,0,1,0]
=> [1]
=> [1,0,1,0]
=> [1,2] => 1 = 0 + 1
[1,1,0,0]
=> []
=> []
=> [] => ? = 1 + 1
[1,0,1,0,1,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> [1,2,3] => 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,3,2] => 1 = 0 + 1
[1,1,0,0,1,0]
=> [2]
=> [1,1,0,0,1,0]
=> [2,1,3] => 2 = 1 + 1
[1,1,0,1,0,0]
=> [1]
=> [1,0,1,0]
=> [1,2] => 1 = 0 + 1
[1,1,1,0,0,0]
=> []
=> []
=> [] => ? = 1 + 1
[1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1 = 0 + 1
[1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 1 = 0 + 1
[1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,4,2,3] => 1 = 0 + 1
[1,1,0,0,1,0,1,0]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 2 = 1 + 1
[1,1,0,1,0,0,1,0]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 1 = 0 + 1
[1,1,0,1,0,1,0,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> [1,2,3] => 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,3,2] => 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [3,1,2,4] => 2 = 1 + 1
[1,1,1,0,0,1,0,0]
=> [2]
=> [1,1,0,0,1,0]
=> [2,1,3] => 2 = 1 + 1
[1,1,1,0,1,0,0,0]
=> [1]
=> [1,0,1,0]
=> [1,2] => 1 = 0 + 1
[1,1,1,1,0,0,0,0]
=> []
=> []
=> [] => ? = 1 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => 1 = 0 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => 1 = 0 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 1 = 0 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 1 = 0 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 1 = 0 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => 1 = 0 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => 1 = 0 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => 1 = 0 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => 1 = 0 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => 1 = 0 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 2 = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 2 = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 2 = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => 2 = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 1 = 0 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => 1 = 0 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 1 = 0 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 1 = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 1 = 0 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => 1 = 0 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1 = 0 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,4,2,3] => 1 = 0 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => 2 = 1 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,1,2,5,4] => 2 = 1 + 1
[1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,5] => 2 = 1 + 1
[1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 2 = 1 + 1
[1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> [] => ? = 1 + 1
[1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> []
=> [] => ? = 1 + 1
[1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [3,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,4,6,7,2,3,5] => ? = 0 + 1
[1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,4,7,2,3,5,6] => ? = 0 + 1
[1,0,1,1,1,1,0,0,0,1,0,0,1,0]
=> [6,4,1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,5,2,3,6,4,7] => ? = 0 + 1
[1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [5,4,1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,5,2,3,6,7,4] => ? = 0 + 1
[1,0,1,1,1,1,0,0,1,0,0,1,0,0]
=> [5,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,5,2,6,3,7,4] => ? = 0 + 1
[1,0,1,1,1,1,0,0,1,0,1,0,0,0]
=> [4,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,5,2,6,7,3,4] => ? = 0 + 1
[1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [3,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,5,2,7,3,4,6] => ? = 0 + 1
[1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [5,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,5,6,2,3,7,4] => ? = 0 + 1
[1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [4,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,5,6,2,7,3,4] => ? = 0 + 1
[1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [3,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,5,6,7,2,3,4] => ? = 0 + 1
[1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,5,7,2,3,4,6] => ? = 0 + 1
[1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [5,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,6,2,3,4,7,5] => ? = 0 + 1
[1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [4,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,6,2,3,7,4,5] => ? = 0 + 1
[1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,6,2,7,3,4,5] => ? = 0 + 1
[1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,6,7,2,3,4,5] => ? = 0 + 1
[1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,7,2,3,4,5,6] => ? = 0 + 1
[1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6,7] => ? = 1 + 1
[1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [5,5,4,3,2]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [2,1,3,4,5,7,6] => ? = 1 + 1
[1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [6,5,3,3,2]
=> [1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [2,1,3,5,4,6,7] => ? = 1 + 1
[1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [5,5,3,3,2]
=> [1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [2,1,3,5,4,7,6] => ? = 1 + 1
[1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [6,3,3,3,2]
=> [1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,6,4,5,7] => ? = 1 + 1
[1,1,0,0,1,0,1,1,1,0,1,0,0,0]
=> [4,3,3,3,2]
=> [1,1,0,0,1,0,1,1,1,0,1,0,0,0]
=> [2,1,3,6,7,4,5] => ? = 1 + 1
[1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,2]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [2,1,4,3,5,6,7] => ? = 1 + 1
[1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [5,5,4,2,2]
=> [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [2,1,4,3,5,7,6] => ? = 1 + 1
[1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [6,4,4,2,2]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,6,5,7] => ? = 1 + 1
[1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [5,4,4,2,2]
=> [1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,3,6,7,5] => ? = 1 + 1
[1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [4,4,4,2,2]
=> [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [2,1,4,3,7,5,6] => ? = 1 + 1
[1,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> [6,4,3,2,2]
=> [1,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> [2,1,4,5,6,3,7] => ? = 1 + 1
[1,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> [5,4,3,2,2]
=> [1,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> [2,1,4,5,6,7,3] => ? = 1 + 1
[1,1,0,0,1,1,0,1,1,0,0,0,1,0]
=> [6,3,3,2,2]
=> [1,1,0,0,1,1,0,1,1,0,0,0,1,0]
=> [2,1,4,6,3,5,7] => ? = 1 + 1
[1,1,0,0,1,1,0,1,1,0,0,1,0,0]
=> [5,3,3,2,2]
=> [1,1,0,0,1,1,0,1,1,0,0,1,0,0]
=> [2,1,4,6,3,7,5] => ? = 1 + 1
[1,1,0,0,1,1,0,1,1,1,0,0,0,0]
=> [3,3,3,2,2]
=> [1,1,0,0,1,1,0,1,1,1,0,0,0,0]
=> [2,1,4,7,3,5,6] => ? = 1 + 1
[1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [6,5,2,2,2]
=> [1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [2,1,5,3,4,6,7] => ? = 1 + 1
[1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [5,5,2,2,2]
=> [1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [2,1,5,3,4,7,6] => ? = 1 + 1
[1,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> [6,4,2,2,2]
=> [1,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> [2,1,5,3,6,4,7] => ? = 1 + 1
[1,1,0,0,1,1,1,0,1,1,0,0,0,0]
=> [3,3,2,2,2]
=> [1,1,0,0,1,1,1,0,1,1,0,0,0,0]
=> [2,1,5,7,3,4,6] => ? = 1 + 1
[1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [6,2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [2,1,6,3,4,5,7] => ? = 1 + 1
[1,1,0,0,1,1,1,1,0,0,0,1,0,0]
=> [5,2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,0,1,0,0]
=> [2,1,6,3,4,7,5] => ? = 1 + 1
[1,1,0,0,1,1,1,1,0,1,0,0,0,0]
=> [3,2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,1,0,0,0,0]
=> [2,1,6,7,3,4,5] => ? = 1 + 1
[1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [2,1,7,3,4,5,6] => ? = 1 + 1
[1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,1]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [2,3,1,4,5,6,7] => ? = 0 + 1
[1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [5,5,4,3,1]
=> [1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [2,3,1,4,5,7,6] => ? = 0 + 1
[1,1,0,1,0,0,1,0,1,1,0,0,1,0]
=> [6,4,4,3,1]
=> [1,1,0,1,0,0,1,0,1,1,0,0,1,0]
=> [2,3,1,4,6,5,7] => ? = 0 + 1
[1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [5,4,4,3,1]
=> [1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [2,3,1,4,6,7,5] => ? = 0 + 1
Description
The first ascent of a permutation. For a permutation \pi, this is the smallest index such that \pi(i) < \pi(i+1). For the first descent, see [[St000654]].
The following 28 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001199The dominant dimension of eAe for the corresponding Nakayama algebra A with minimal faithful projective-injective module eA. St001204Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series L=[c_0,c_1,...,c_{nāˆ’1}] such that n=c_0 < c_i for all i > 0 a special CNakayama algebra. St000678The number of up steps after the last double rise of a Dyck path. St000352The Elizalde-Pak rank of a permutation. St000237The number of small exceedances. St000989The number of final rises of a permutation. St001594The number of indecomposable projective modules in the Nakayama algebra corresponding to the Dyck path such that the UC-condition is satisfied. St001135The projective dimension of the first simple module in the Nakayama algebra corresponding to the Dyck path. St000654The first descent of a permutation. St000061The number of nodes on the left branch of a binary tree. St001498The normalised height of a Nakayama algebra with magnitude 1. St000234The number of global ascents of a permutation. St000864The number of circled entries of the shifted recording tableau of a permutation. St000542The number of left-to-right-minima of a permutation. St001198The number of simple modules in the algebra eAe with projective dimension at most 1 in the corresponding Nakayama algebra A with minimal faithful projective-injective module eA. St001206The maximal dimension of an indecomposable projective eAe-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module eA. St001545The second Elser number of a connected graph. St001640The number of ascent tops in the permutation such that all smaller elements appear before. St001125The number of simple modules that satisfy the 2-regular condition in the corresponding Nakayama algebra. St001185The number of indecomposable injective modules of grade at least 2 in the corresponding Nakayama algebra. St000056The decomposition (or block) number of a permutation. St001201The grade of the simple module S_0 in the special CNakayama algebra corresponding to the Dyck path. St001390The number of bumps occurring when Schensted-inserting the letter 1 of a permutation. St001948The number of augmented double ascents of a permutation. St001195The global dimension of the algebra A/AfA of the corresponding Nakayama algebra A with minimal left faithful projective-injective module Af. St000455The second largest eigenvalue of a graph if it is integral. St001200The number of simple modules in eAe with projective dimension at most 2 in the corresponding Nakayama algebra A with minimal faithful projective-injective module eA. St001816Eigenvalues of the top-to-random operator acting on a simple module.