Processing math: 100%

Your data matches 13 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00049: Ordered trees to binary tree: left brother = left childBinary trees
St000396: Binary trees ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[]]
=> [.,.]
=> 1
[[],[]]
=> [[.,.],.]
=> 1
[[[]]]
=> [.,[.,.]]
=> 1
[[],[],[]]
=> [[[.,.],.],.]
=> 1
[[],[[]]]
=> [[.,.],[.,.]]
=> 2
[[[]],[]]
=> [[.,[.,.]],.]
=> 1
[[[],[]]]
=> [.,[[.,.],.]]
=> 1
[[[[]]]]
=> [.,[.,[.,.]]]
=> 1
[[],[],[],[]]
=> [[[[.,.],.],.],.]
=> 1
[[],[],[[]]]
=> [[[.,.],.],[.,.]]
=> 2
[[],[[]],[]]
=> [[[.,.],[.,.]],.]
=> 2
[[],[[],[]]]
=> [[.,.],[[.,.],.]]
=> 2
[[],[[[]]]]
=> [[.,.],[.,[.,.]]]
=> 2
[[[]],[],[]]
=> [[[.,[.,.]],.],.]
=> 1
[[[]],[[]]]
=> [[.,[.,.]],[.,.]]
=> 2
[[[],[]],[]]
=> [[.,[[.,.],.]],.]
=> 1
[[[[]]],[]]
=> [[.,[.,[.,.]]],.]
=> 1
[[[],[],[]]]
=> [.,[[[.,.],.],.]]
=> 1
[[[],[[]]]]
=> [.,[[.,.],[.,.]]]
=> 2
[[[[]],[]]]
=> [.,[[.,[.,.]],.]]
=> 1
[[[[],[]]]]
=> [.,[.,[[.,.],.]]]
=> 1
[[[[[]]]]]
=> [.,[.,[.,[.,.]]]]
=> 1
[[],[],[],[],[]]
=> [[[[[.,.],.],.],.],.]
=> 1
[[],[],[],[[]]]
=> [[[[.,.],.],.],[.,.]]
=> 2
[[],[],[[]],[]]
=> [[[[.,.],.],[.,.]],.]
=> 2
[[],[],[[],[]]]
=> [[[.,.],.],[[.,.],.]]
=> 2
[[],[],[[[]]]]
=> [[[.,.],.],[.,[.,.]]]
=> 2
[[],[[]],[],[]]
=> [[[[.,.],[.,.]],.],.]
=> 2
[[],[[]],[[]]]
=> [[[.,.],[.,.]],[.,.]]
=> 2
[[],[[],[]],[]]
=> [[[.,.],[[.,.],.]],.]
=> 2
[[],[[[]]],[]]
=> [[[.,.],[.,[.,.]]],.]
=> 2
[[],[[],[],[]]]
=> [[.,.],[[[.,.],.],.]]
=> 2
[[],[[],[[]]]]
=> [[.,.],[[.,.],[.,.]]]
=> 2
[[],[[[]],[]]]
=> [[.,.],[[.,[.,.]],.]]
=> 2
[[],[[[],[]]]]
=> [[.,.],[.,[[.,.],.]]]
=> 2
[[],[[[[]]]]]
=> [[.,.],[.,[.,[.,.]]]]
=> 2
[[[]],[],[],[]]
=> [[[[.,[.,.]],.],.],.]
=> 1
[[[]],[],[[]]]
=> [[[.,[.,.]],.],[.,.]]
=> 2
[[[]],[[]],[]]
=> [[[.,[.,.]],[.,.]],.]
=> 2
[[[]],[[],[]]]
=> [[.,[.,.]],[[.,.],.]]
=> 2
[[[]],[[[]]]]
=> [[.,[.,.]],[.,[.,.]]]
=> 2
[[[],[]],[],[]]
=> [[[.,[[.,.],.]],.],.]
=> 1
[[[[]]],[],[]]
=> [[[.,[.,[.,.]]],.],.]
=> 1
[[[],[]],[[]]]
=> [[.,[[.,.],.]],[.,.]]
=> 2
[[[[]]],[[]]]
=> [[.,[.,[.,.]]],[.,.]]
=> 2
[[[],[],[]],[]]
=> [[.,[[[.,.],.],.]],.]
=> 1
[[[],[[]]],[]]
=> [[.,[[.,.],[.,.]]],.]
=> 2
[[[[]],[]],[]]
=> [[.,[[.,[.,.]],.]],.]
=> 1
[[[[],[]]],[]]
=> [[.,[.,[[.,.],.]]],.]
=> 1
[[[[[]]]],[]]
=> [[.,[.,[.,[.,.]]]],.]
=> 1
Description
The register function (or Horton-Strahler number) of a binary tree. This is different from the dimension of the associated poset for the tree [[[.,.],[.,.]],[[.,.],[.,.]]]: its register function is 3, whereas the dimension of the associated poset is 2.
Mp00049: Ordered trees to binary tree: left brother = left childBinary trees
Mp00141: Binary trees pruning number to logarithmic heightDyck paths
St000920: Dyck paths ⟶ ℤResult quality: 91% values known / values provided: 91%distinct values known / distinct values provided: 100%
Values
[[]]
=> [.,.]
=> [1,0]
=> 1
[[],[]]
=> [[.,.],.]
=> [1,1,0,0]
=> 1
[[[]]]
=> [.,[.,.]]
=> [1,0,1,0]
=> 1
[[],[],[]]
=> [[[.,.],.],.]
=> [1,1,0,1,0,0]
=> 1
[[],[[]]]
=> [[.,.],[.,.]]
=> [1,1,1,0,0,0]
=> 2
[[[]],[]]
=> [[.,[.,.]],.]
=> [1,1,0,0,1,0]
=> 1
[[[],[]]]
=> [.,[[.,.],.]]
=> [1,0,1,1,0,0]
=> 1
[[[[]]]]
=> [.,[.,[.,.]]]
=> [1,0,1,0,1,0]
=> 1
[[],[],[],[]]
=> [[[[.,.],.],.],.]
=> [1,1,0,1,0,1,0,0]
=> 1
[[],[],[[]]]
=> [[[.,.],.],[.,.]]
=> [1,1,1,1,0,0,0,0]
=> 2
[[],[[]],[]]
=> [[[.,.],[.,.]],.]
=> [1,1,0,1,1,0,0,0]
=> 2
[[],[[],[]]]
=> [[.,.],[[.,.],.]]
=> [1,1,1,0,0,1,0,0]
=> 2
[[],[[[]]]]
=> [[.,.],[.,[.,.]]]
=> [1,1,1,0,0,0,1,0]
=> 2
[[[]],[],[]]
=> [[[.,[.,.]],.],.]
=> [1,1,0,1,0,0,1,0]
=> 1
[[[]],[[]]]
=> [[.,[.,.]],[.,.]]
=> [1,1,1,0,1,0,0,0]
=> 2
[[[],[]],[]]
=> [[.,[[.,.],.]],.]
=> [1,1,0,0,1,1,0,0]
=> 1
[[[[]]],[]]
=> [[.,[.,[.,.]]],.]
=> [1,1,0,0,1,0,1,0]
=> 1
[[[],[],[]]]
=> [.,[[[.,.],.],.]]
=> [1,0,1,1,0,1,0,0]
=> 1
[[[],[[]]]]
=> [.,[[.,.],[.,.]]]
=> [1,0,1,1,1,0,0,0]
=> 2
[[[[]],[]]]
=> [.,[[.,[.,.]],.]]
=> [1,0,1,1,0,0,1,0]
=> 1
[[[[],[]]]]
=> [.,[.,[[.,.],.]]]
=> [1,0,1,0,1,1,0,0]
=> 1
[[[[[]]]]]
=> [.,[.,[.,[.,.]]]]
=> [1,0,1,0,1,0,1,0]
=> 1
[[],[],[],[],[]]
=> [[[[[.,.],.],.],.],.]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1
[[],[],[],[[]]]
=> [[[[.,.],.],.],[.,.]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2
[[],[],[[]],[]]
=> [[[[.,.],.],[.,.]],.]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2
[[],[],[[],[]]]
=> [[[.,.],.],[[.,.],.]]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
[[],[],[[[]]]]
=> [[[.,.],.],[.,[.,.]]]
=> [1,1,1,1,0,0,0,0,1,0]
=> 2
[[],[[]],[],[]]
=> [[[[.,.],[.,.]],.],.]
=> [1,1,0,1,0,1,1,0,0,0]
=> 2
[[],[[]],[[]]]
=> [[[.,.],[.,.]],[.,.]]
=> [1,1,1,1,1,0,0,0,0,0]
=> 2
[[],[[],[]],[]]
=> [[[.,.],[[.,.],.]],.]
=> [1,1,0,1,1,0,0,1,0,0]
=> 2
[[],[[[]]],[]]
=> [[[.,.],[.,[.,.]]],.]
=> [1,1,0,1,1,0,0,0,1,0]
=> 2
[[],[[],[],[]]]
=> [[.,.],[[[.,.],.],.]]
=> [1,1,1,0,0,1,0,1,0,0]
=> 2
[[],[[],[[]]]]
=> [[.,.],[[.,.],[.,.]]]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2
[[],[[[]],[]]]
=> [[.,.],[[.,[.,.]],.]]
=> [1,1,1,0,0,1,0,0,1,0]
=> 2
[[],[[[],[]]]]
=> [[.,.],[.,[[.,.],.]]]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2
[[],[[[[]]]]]
=> [[.,.],[.,[.,[.,.]]]]
=> [1,1,1,0,0,0,1,0,1,0]
=> 2
[[[]],[],[],[]]
=> [[[[.,[.,.]],.],.],.]
=> [1,1,0,1,0,1,0,0,1,0]
=> 1
[[[]],[],[[]]]
=> [[[.,[.,.]],.],[.,.]]
=> [1,1,1,1,0,0,1,0,0,0]
=> 2
[[[]],[[]],[]]
=> [[[.,[.,.]],[.,.]],.]
=> [1,1,0,1,1,0,1,0,0,0]
=> 2
[[[]],[[],[]]]
=> [[.,[.,.]],[[.,.],.]]
=> [1,1,1,0,1,0,0,1,0,0]
=> 2
[[[]],[[[]]]]
=> [[.,[.,.]],[.,[.,.]]]
=> [1,1,1,0,1,0,0,0,1,0]
=> 2
[[[],[]],[],[]]
=> [[[.,[[.,.],.]],.],.]
=> [1,1,0,1,0,0,1,1,0,0]
=> 1
[[[[]]],[],[]]
=> [[[.,[.,[.,.]]],.],.]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1
[[[],[]],[[]]]
=> [[.,[[.,.],.]],[.,.]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2
[[[[]]],[[]]]
=> [[.,[.,[.,.]]],[.,.]]
=> [1,1,1,0,1,0,1,0,0,0]
=> 2
[[[],[],[]],[]]
=> [[.,[[[.,.],.],.]],.]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1
[[[],[[]]],[]]
=> [[.,[[.,.],[.,.]]],.]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2
[[[[]],[]],[]]
=> [[.,[[.,[.,.]],.]],.]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1
[[[[],[]]],[]]
=> [[.,[.,[[.,.],.]]],.]
=> [1,1,0,0,1,0,1,1,0,0]
=> 1
[[[[[]]]],[]]
=> [[.,[.,[.,[.,.]]]],.]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1
[[],[[],[],[],[],[[]]]]
=> [[.,.],[[[[[.,.],.],.],.],[.,.]]]
=> [1,1,1,0,0,1,1,1,0,1,0,1,0,0,0,0]
=> ? = 2
[[],[[],[],[],[[]],[]]]
=> [[.,.],[[[[[.,.],.],.],[.,.]],.]]
=> [1,1,1,0,0,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 2
[[],[[],[],[],[[],[]]]]
=> [[.,.],[[[[.,.],.],.],[[.,.],.]]]
=> [1,1,1,0,0,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 2
[[],[[],[],[],[[[]]]]]
=> [[.,.],[[[[.,.],.],.],[.,[.,.]]]]
=> [1,1,1,0,0,1,1,1,0,1,0,0,0,0,1,0]
=> ? = 2
[[],[[],[],[[]],[[]]]]
=> [[.,.],[[[[.,.],.],[.,.]],[.,.]]]
=> [1,1,1,0,0,1,1,1,1,0,0,1,0,0,0,0]
=> ? = 2
[[],[[],[],[[[]]],[]]]
=> [[.,.],[[[[.,.],.],[.,[.,.]]],.]]
=> [1,1,1,0,0,1,0,1,1,1,0,0,0,0,1,0]
=> ? = 2
[[],[[],[],[[[]],[]]]]
=> [[.,.],[[[.,.],.],[[.,[.,.]],.]]]
=> [1,1,1,0,0,1,1,1,0,0,0,1,0,0,1,0]
=> ? = 2
[[],[[],[],[[[],[]]]]]
=> [[.,.],[[[.,.],.],[.,[[.,.],.]]]]
=> [1,1,1,0,0,1,1,1,0,0,0,0,1,1,0,0]
=> ? = 2
[[],[[],[],[[[[]]]]]]
=> [[.,.],[[[.,.],.],[.,[.,[.,.]]]]]
=> [1,1,1,0,0,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 2
[[],[[],[[]],[],[[]]]]
=> [[.,.],[[[[.,.],[.,.]],.],[.,.]]]
=> [1,1,1,0,0,1,1,1,0,1,1,0,0,0,0,0]
=> ? = 2
[[],[[],[[[]]],[],[]]]
=> [[.,.],[[[[.,.],[.,[.,.]]],.],.]]
=> [1,1,1,0,0,1,0,1,0,1,1,0,0,0,1,0]
=> ? = 2
[[],[[],[[[]]],[[]]]]
=> [[.,.],[[[.,.],[.,[.,.]]],[.,.]]]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 2
[[],[[],[[[]],[]],[]]]
=> [[.,.],[[[.,.],[[.,[.,.]],.]],.]]
=> [1,1,1,0,0,1,0,1,1,0,0,1,0,0,1,0]
=> ? = 2
[[],[[],[[[],[]]],[]]]
=> [[.,.],[[[.,.],[.,[[.,.],.]]],.]]
=> [1,1,1,0,0,1,0,1,1,0,0,0,1,1,0,0]
=> ? = 2
[[],[[],[[[[]]]],[]]]
=> [[.,.],[[[.,.],[.,[.,[.,.]]]],.]]
=> [1,1,1,0,0,1,0,1,1,0,0,0,1,0,1,0]
=> ? = 2
[[],[[],[[],[[[]]]]]]
=> [[.,.],[[.,.],[[.,.],[.,[.,.]]]]]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,0,1,0]
=> ? = 2
[[],[[],[[[]],[],[]]]]
=> [[.,.],[[.,.],[[[.,[.,.]],.],.]]]
=> [1,1,1,0,0,1,1,0,0,1,0,1,0,0,1,0]
=> ? = 2
[[],[[],[[[]],[[]]]]]
=> [[.,.],[[.,.],[[.,[.,.]],[.,.]]]]
=> [1,1,1,0,0,1,1,0,0,1,1,0,1,0,0,0]
=> ? = 2
[[],[[],[[[],[]],[]]]]
=> [[.,.],[[.,.],[[.,[[.,.],.]],.]]]
=> [1,1,1,0,0,1,1,0,0,1,0,0,1,1,0,0]
=> ? = 2
[[],[[],[[[[]]],[]]]]
=> [[.,.],[[.,.],[[.,[.,[.,.]]],.]]]
=> [1,1,1,0,0,1,1,0,0,1,0,0,1,0,1,0]
=> ? = 2
[[],[[],[[[],[],[]]]]]
=> [[.,.],[[.,.],[.,[[[.,.],.],.]]]]
=> [1,1,1,0,0,1,1,0,0,0,1,1,0,1,0,0]
=> ? = 2
[[],[[],[[[],[[]]]]]]
=> [[.,.],[[.,.],[.,[[.,.],[.,.]]]]]
=> [1,1,1,0,0,1,1,0,0,0,1,1,1,0,0,0]
=> ? = 2
[[],[[],[[[[]],[]]]]]
=> [[.,.],[[.,.],[.,[[.,[.,.]],.]]]]
=> [1,1,1,0,0,1,1,0,0,0,1,1,0,0,1,0]
=> ? = 2
[[],[[],[[[[],[]]]]]]
=> [[.,.],[[.,.],[.,[.,[[.,.],.]]]]]
=> [1,1,1,0,0,1,1,0,0,0,1,0,1,1,0,0]
=> ? = 2
[[],[[],[[[[[]]]]]]]
=> [[.,.],[[.,.],[.,[.,[.,[.,.]]]]]]
=> [1,1,1,0,0,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 2
[[],[[[]],[],[],[[]]]]
=> [[.,.],[[[[.,[.,.]],.],.],[.,.]]]
=> [1,1,1,0,0,1,1,1,0,1,0,0,1,0,0,0]
=> ? = 2
[[],[[[]],[],[[]],[]]]
=> [[.,.],[[[[.,[.,.]],.],[.,.]],.]]
=> [1,1,1,0,0,1,0,1,1,1,0,0,1,0,0,0]
=> ? = 2
[[],[[[]],[],[[],[]]]]
=> [[.,.],[[[.,[.,.]],.],[[.,.],.]]]
=> [1,1,1,0,0,1,1,1,0,0,1,0,0,1,0,0]
=> ? = 2
[[],[[[]],[],[[[]]]]]
=> [[.,.],[[[.,[.,.]],.],[.,[.,.]]]]
=> [1,1,1,0,0,1,1,1,0,0,1,0,0,0,1,0]
=> ? = 2
[[],[[[]],[[]],[],[]]]
=> [[.,.],[[[[.,[.,.]],[.,.]],.],.]]
=> [1,1,1,0,0,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 2
[[],[[[]],[[]],[[]]]]
=> [[.,.],[[[.,[.,.]],[.,.]],[.,.]]]
=> [1,1,1,0,0,1,1,1,1,0,0,0,1,0,0,0]
=> ? = 2
[[],[[[]],[[],[]],[]]]
=> [[.,.],[[[.,[.,.]],[[.,.],.]],.]]
=> [1,1,1,0,0,1,0,1,1,0,1,0,0,1,0,0]
=> ? = 2
[[],[[[]],[[[]]],[]]]
=> [[.,.],[[[.,[.,.]],[.,[.,.]]],.]]
=> [1,1,1,0,0,1,0,1,1,0,1,0,0,0,1,0]
=> ? = 2
[[],[[[]],[[],[],[]]]]
=> [[.,.],[[.,[.,.]],[[[.,.],.],.]]]
=> [1,1,1,0,0,1,1,0,1,0,0,1,0,1,0,0]
=> ? = 2
[[],[[[]],[[],[[]]]]]
=> [[.,.],[[.,[.,.]],[[.,.],[.,.]]]]
=> [1,1,1,0,0,1,1,0,1,0,0,1,1,0,0,0]
=> ? = 2
[[],[[[]],[[[]],[]]]]
=> [[.,.],[[.,[.,.]],[[.,[.,.]],.]]]
=> [1,1,1,0,0,1,1,0,1,0,0,1,0,0,1,0]
=> ? = 2
[[],[[[]],[[[],[]]]]]
=> [[.,.],[[.,[.,.]],[.,[[.,.],.]]]]
=> [1,1,1,0,0,1,1,0,1,0,0,0,1,1,0,0]
=> ? = 2
[[],[[[]],[[[[]]]]]]
=> [[.,.],[[.,[.,.]],[.,[.,[.,.]]]]]
=> [1,1,1,0,0,1,1,0,1,0,0,0,1,0,1,0]
=> ? = 2
[[],[[[],[]],[],[],[]]]
=> [[.,.],[[[[.,[[.,.],.]],.],.],.]]
=> [1,1,1,0,0,1,0,1,0,1,0,0,1,1,0,0]
=> ? = 2
[[],[[[],[]],[],[[]]]]
=> [[.,.],[[[.,[[.,.],.]],.],[.,.]]]
=> [1,1,1,0,0,1,1,1,0,0,1,1,0,0,0,0]
=> ? = 2
[[],[[[[]]],[],[[]]]]
=> [[.,.],[[[.,[.,[.,.]]],.],[.,.]]]
=> [1,1,1,0,0,1,1,1,0,0,1,0,1,0,0,0]
=> ? = 2
[[],[[[],[]],[[]],[]]]
=> [[.,.],[[[.,[[.,.],.]],[.,.]],.]]
=> [1,1,1,0,0,1,0,1,1,0,1,1,0,0,0,0]
=> ? = 2
[[],[[[[]]],[[]],[]]]
=> [[.,.],[[[.,[.,[.,.]]],[.,.]],.]]
=> [1,1,1,0,0,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 2
[[],[[[],[]],[[],[]]]]
=> [[.,.],[[.,[[.,.],.]],[[.,.],.]]]
=> [1,1,1,0,0,1,1,0,1,1,0,0,0,1,0,0]
=> ? = 2
[[],[[[],[]],[[[]]]]]
=> [[.,.],[[.,[[.,.],.]],[.,[.,.]]]]
=> [1,1,1,0,0,1,1,0,1,1,0,0,0,0,1,0]
=> ? = 2
[[],[[[[]]],[[],[]]]]
=> [[.,.],[[.,[.,[.,.]]],[[.,.],.]]]
=> [1,1,1,0,0,1,1,0,1,0,1,0,0,1,0,0]
=> ? = 2
[[],[[[[]]],[[[]]]]]
=> [[.,.],[[.,[.,[.,.]]],[.,[.,.]]]]
=> [1,1,1,0,0,1,1,0,1,0,1,0,0,0,1,0]
=> ? = 2
[[],[[[],[],[]],[],[]]]
=> [[.,.],[[[.,[[[.,.],.],.]],.],.]]
=> [1,1,1,0,0,1,0,1,0,0,1,1,0,1,0,0]
=> ? = 2
[[],[[[],[[]]],[],[]]]
=> [[.,.],[[[.,[[.,.],[.,.]]],.],.]]
=> [1,1,1,0,0,1,0,1,0,0,1,1,1,0,0,0]
=> ? = 2
[[],[[[[]],[]],[],[]]]
=> [[.,.],[[[.,[[.,[.,.]],.]],.],.]]
=> [1,1,1,0,0,1,0,1,0,0,1,1,0,0,1,0]
=> ? = 2
Description
The logarithmic height of a Dyck path. This is the floor of the binary logarithm of the usual height increased by one: log2(1+height(D))
Matching statistic: St000455
Mp00049: Ordered trees to binary tree: left brother = left childBinary trees
Mp00013: Binary trees to posetPosets
Mp00198: Posets incomparability graphGraphs
St000455: Graphs ⟶ ℤResult quality: 29% values known / values provided: 29%distinct values known / distinct values provided: 33%
Values
[[]]
=> [.,.]
=> ([],1)
=> ([],1)
=> ? = 1 - 2
[[],[]]
=> [[.,.],.]
=> ([(0,1)],2)
=> ([],2)
=> ? = 1 - 2
[[[]]]
=> [.,[.,.]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 1 - 2
[[],[],[]]
=> [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1 - 2
[[],[[]]]
=> [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 0 = 2 - 2
[[[]],[]]
=> [[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1 - 2
[[[],[]]]
=> [.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1 - 2
[[[[]]]]
=> [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1 - 2
[[],[],[],[]]
=> [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 1 - 2
[[],[],[[]]]
=> [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0 = 2 - 2
[[],[[]],[]]
=> [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 0 = 2 - 2
[[],[[],[]]]
=> [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0 = 2 - 2
[[],[[[]]]]
=> [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0 = 2 - 2
[[[]],[],[]]
=> [[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 1 - 2
[[[]],[[]]]
=> [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0 = 2 - 2
[[[],[]],[]]
=> [[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 1 - 2
[[[[]]],[]]
=> [[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 1 - 2
[[[],[],[]]]
=> [.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 1 - 2
[[[],[[]]]]
=> [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 0 = 2 - 2
[[[[]],[]]]
=> [.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 1 - 2
[[[[],[]]]]
=> [.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 1 - 2
[[[[[]]]]]
=> [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 1 - 2
[[],[],[],[],[]]
=> [[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 1 - 2
[[],[],[],[[]]]
=> [[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 0 = 2 - 2
[[],[],[[]],[]]
=> [[[[.,.],.],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 0 = 2 - 2
[[],[],[[],[]]]
=> [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 0 = 2 - 2
[[],[],[[[]]]]
=> [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 0 = 2 - 2
[[],[[]],[],[]]
=> [[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> 0 = 2 - 2
[[],[[]],[[]]]
=> [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[[],[[],[]],[]]
=> [[[.,.],[[.,.],.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 0 = 2 - 2
[[],[[[]]],[]]
=> [[[.,.],[.,[.,.]]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 0 = 2 - 2
[[],[[],[],[]]]
=> [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 0 = 2 - 2
[[],[[],[[]]]]
=> [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
[[],[[[]],[]]]
=> [[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 0 = 2 - 2
[[],[[[],[]]]]
=> [[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 0 = 2 - 2
[[],[[[[]]]]]
=> [[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 0 = 2 - 2
[[[]],[],[],[]]
=> [[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 1 - 2
[[[]],[],[[]]]
=> [[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 0 = 2 - 2
[[[]],[[]],[]]
=> [[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 0 = 2 - 2
[[[]],[[],[]]]
=> [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 0 = 2 - 2
[[[]],[[[]]]]
=> [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 0 = 2 - 2
[[[],[]],[],[]]
=> [[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 1 - 2
[[[[]]],[],[]]
=> [[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 1 - 2
[[[],[]],[[]]]
=> [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 0 = 2 - 2
[[[[]]],[[]]]
=> [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 0 = 2 - 2
[[[],[],[]],[]]
=> [[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 1 - 2
[[[],[[]]],[]]
=> [[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> 0 = 2 - 2
[[[[]],[]],[]]
=> [[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 1 - 2
[[[[],[]]],[]]
=> [[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 1 - 2
[[[[[]]]],[]]
=> [[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 1 - 2
[[[],[],[],[]]]
=> [.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 1 - 2
[[[],[],[[]]]]
=> [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 0 = 2 - 2
[[[],[[]],[]]]
=> [.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> 0 = 2 - 2
[[[],[[],[]]]]
=> [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 0 = 2 - 2
[[[],[[[]]]]]
=> [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 0 = 2 - 2
[[[[]],[],[]]]
=> [.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 1 - 2
[[[[]],[[]]]]
=> [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 0 = 2 - 2
[[[[],[]],[]]]
=> [.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 1 - 2
[[[[[]]],[]]]
=> [.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 1 - 2
[[[[],[],[]]]]
=> [.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 1 - 2
[[[[],[[]]]]]
=> [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> 0 = 2 - 2
[[[[[]],[]]]]
=> [.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 1 - 2
[[[[[],[]]]]]
=> [.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 1 - 2
[[[[[[]]]]]]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 1 - 2
[[],[],[],[],[],[]]
=> [[[[[[.,.],.],.],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ? = 1 - 2
[[],[],[],[],[[]]]
=> [[[[[.,.],.],.],.],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 2 - 2
[[],[],[],[[]],[]]
=> [[[[[.,.],.],.],[.,.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> 0 = 2 - 2
[[],[],[],[[],[]]]
=> [[[[.,.],.],.],[[.,.],.]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 0 = 2 - 2
[[],[],[],[[[]]]]
=> [[[[.,.],.],.],[.,[.,.]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 0 = 2 - 2
[[],[],[[]],[],[]]
=> [[[[[.,.],.],[.,.]],.],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(3,5),(4,5)],6)
=> 0 = 2 - 2
[[],[],[[]],[[]]]
=> [[[[.,.],.],[.,.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[[],[],[[],[]],[]]
=> [[[[.,.],.],[[.,.],.]],.]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> 0 = 2 - 2
[[],[],[[[]]],[]]
=> [[[[.,.],.],[.,[.,.]]],.]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> 0 = 2 - 2
[[],[],[[],[],[]]]
=> [[[.,.],.],[[[.,.],.],.]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 0 = 2 - 2
[[],[],[[],[[]]]]
=> [[[.,.],.],[[.,.],[.,.]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 2 - 2
[[],[],[[[]],[]]]
=> [[[.,.],.],[[.,[.,.]],.]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 0 = 2 - 2
[[],[],[[[],[]]]]
=> [[[.,.],.],[.,[[.,.],.]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 0 = 2 - 2
[[],[],[[[[]]]]]
=> [[[.,.],.],[.,[.,[.,.]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 0 = 2 - 2
[[],[[]],[],[],[]]
=> [[[[[.,.],[.,.]],.],.],.]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> 0 = 2 - 2
[[],[[]],[],[[]]]
=> [[[[.,.],[.,.]],.],[.,.]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[[],[[]],[[]],[]]
=> [[[[.,.],[.,.]],[.,.]],.]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[[],[[]],[[],[]]]
=> [[[.,.],[.,.]],[[.,.],.]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 2 - 2
[[],[[]],[[[]]]]
=> [[[.,.],[.,.]],[.,[.,.]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 2 - 2
[[],[[],[]],[],[]]
=> [[[[.,.],[[.,.],.]],.],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(3,5),(4,5)],6)
=> 0 = 2 - 2
[[],[[[]]],[],[]]
=> [[[[.,.],[.,[.,.]]],.],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(3,5),(4,5)],6)
=> 0 = 2 - 2
[[],[[],[]],[[]]]
=> [[[.,.],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[[],[[[]]],[[]]]
=> [[[.,.],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[[],[[],[],[]],[]]
=> [[[.,.],[[[.,.],.],.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> 0 = 2 - 2
[[],[[],[[]]],[]]
=> [[[.,.],[[.,.],[.,.]]],.]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[[],[[[]],[]],[]]
=> [[[.,.],[[.,[.,.]],.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> 0 = 2 - 2
[[],[[[],[]]],[]]
=> [[[.,.],[.,[[.,.],.]]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> 0 = 2 - 2
[[],[[[[]]]],[]]
=> [[[.,.],[.,[.,[.,.]]]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> 0 = 2 - 2
[[],[[],[],[],[]]]
=> [[.,.],[[[[.,.],.],.],.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 2 - 2
[[],[[],[],[[]]]]
=> [[.,.],[[[.,.],.],[.,.]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[[],[[],[[]],[]]]
=> [[.,.],[[[.,.],[.,.]],.]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[[],[[],[[],[]]]]
=> [[.,.],[[.,.],[[.,.],.]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[[],[[],[[[]]]]]
=> [[.,.],[[.,.],[.,[.,.]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[[],[[[]],[[]]]]
=> [[.,.],[[.,[.,.]],[.,.]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[[],[[[],[[]]]]]
=> [[.,.],[.,[[.,.],[.,.]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
[[[]],[],[],[],[]]
=> [[[[[.,[.,.]],.],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ? = 1 - 2
Description
The second largest eigenvalue of a graph if it is integral. This statistic is undefined if the second largest eigenvalue of the graph is not integral. Chapter 4 of [1] provides lots of context.
Mp00049: Ordered trees to binary tree: left brother = left childBinary trees
Mp00008: Binary trees to complete treeOrdered trees
St000397: Ordered trees ⟶ ℤResult quality: 16% values known / values provided: 16%distinct values known / distinct values provided: 67%
Values
[[]]
=> [.,.]
=> [[],[]]
=> 2 = 1 + 1
[[],[]]
=> [[.,.],.]
=> [[[],[]],[]]
=> 2 = 1 + 1
[[[]]]
=> [.,[.,.]]
=> [[],[[],[]]]
=> 2 = 1 + 1
[[],[],[]]
=> [[[.,.],.],.]
=> [[[[],[]],[]],[]]
=> 2 = 1 + 1
[[],[[]]]
=> [[.,.],[.,.]]
=> [[[],[]],[[],[]]]
=> 3 = 2 + 1
[[[]],[]]
=> [[.,[.,.]],.]
=> [[[],[[],[]]],[]]
=> 2 = 1 + 1
[[[],[]]]
=> [.,[[.,.],.]]
=> [[],[[[],[]],[]]]
=> 2 = 1 + 1
[[[[]]]]
=> [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 2 = 1 + 1
[[],[],[],[]]
=> [[[[.,.],.],.],.]
=> [[[[[],[]],[]],[]],[]]
=> 2 = 1 + 1
[[],[],[[]]]
=> [[[.,.],.],[.,.]]
=> [[[[],[]],[]],[[],[]]]
=> 3 = 2 + 1
[[],[[]],[]]
=> [[[.,.],[.,.]],.]
=> [[[[],[]],[[],[]]],[]]
=> 3 = 2 + 1
[[],[[],[]]]
=> [[.,.],[[.,.],.]]
=> [[[],[]],[[[],[]],[]]]
=> 3 = 2 + 1
[[],[[[]]]]
=> [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> 3 = 2 + 1
[[[]],[],[]]
=> [[[.,[.,.]],.],.]
=> [[[[],[[],[]]],[]],[]]
=> 2 = 1 + 1
[[[]],[[]]]
=> [[.,[.,.]],[.,.]]
=> [[[],[[],[]]],[[],[]]]
=> 3 = 2 + 1
[[[],[]],[]]
=> [[.,[[.,.],.]],.]
=> [[[],[[[],[]],[]]],[]]
=> 2 = 1 + 1
[[[[]]],[]]
=> [[.,[.,[.,.]]],.]
=> [[[],[[],[[],[]]]],[]]
=> 2 = 1 + 1
[[[],[],[]]]
=> [.,[[[.,.],.],.]]
=> [[],[[[[],[]],[]],[]]]
=> 2 = 1 + 1
[[[],[[]]]]
=> [.,[[.,.],[.,.]]]
=> [[],[[[],[]],[[],[]]]]
=> 3 = 2 + 1
[[[[]],[]]]
=> [.,[[.,[.,.]],.]]
=> [[],[[[],[[],[]]],[]]]
=> 2 = 1 + 1
[[[[],[]]]]
=> [.,[.,[[.,.],.]]]
=> [[],[[],[[[],[]],[]]]]
=> 2 = 1 + 1
[[[[[]]]]]
=> [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 2 = 1 + 1
[[],[],[],[],[]]
=> [[[[[.,.],.],.],.],.]
=> [[[[[[],[]],[]],[]],[]],[]]
=> 2 = 1 + 1
[[],[],[],[[]]]
=> [[[[.,.],.],.],[.,.]]
=> [[[[[],[]],[]],[]],[[],[]]]
=> 3 = 2 + 1
[[],[],[[]],[]]
=> [[[[.,.],.],[.,.]],.]
=> [[[[[],[]],[]],[[],[]]],[]]
=> 3 = 2 + 1
[[],[],[[],[]]]
=> [[[.,.],.],[[.,.],.]]
=> [[[[],[]],[]],[[[],[]],[]]]
=> 3 = 2 + 1
[[],[],[[[]]]]
=> [[[.,.],.],[.,[.,.]]]
=> [[[[],[]],[]],[[],[[],[]]]]
=> 3 = 2 + 1
[[],[[]],[],[]]
=> [[[[.,.],[.,.]],.],.]
=> [[[[[],[]],[[],[]]],[]],[]]
=> 3 = 2 + 1
[[],[[]],[[]]]
=> [[[.,.],[.,.]],[.,.]]
=> [[[[],[]],[[],[]]],[[],[]]]
=> 3 = 2 + 1
[[],[[],[]],[]]
=> [[[.,.],[[.,.],.]],.]
=> [[[[],[]],[[[],[]],[]]],[]]
=> 3 = 2 + 1
[[],[[[]]],[]]
=> [[[.,.],[.,[.,.]]],.]
=> [[[[],[]],[[],[[],[]]]],[]]
=> 3 = 2 + 1
[[],[[],[],[]]]
=> [[.,.],[[[.,.],.],.]]
=> [[[],[]],[[[[],[]],[]],[]]]
=> 3 = 2 + 1
[[],[[],[[]]]]
=> [[.,.],[[.,.],[.,.]]]
=> [[[],[]],[[[],[]],[[],[]]]]
=> 3 = 2 + 1
[[],[[[]],[]]]
=> [[.,.],[[.,[.,.]],.]]
=> [[[],[]],[[[],[[],[]]],[]]]
=> 3 = 2 + 1
[[],[[[],[]]]]
=> [[.,.],[.,[[.,.],.]]]
=> [[[],[]],[[],[[[],[]],[]]]]
=> 3 = 2 + 1
[[],[[[[]]]]]
=> [[.,.],[.,[.,[.,.]]]]
=> [[[],[]],[[],[[],[[],[]]]]]
=> 3 = 2 + 1
[[[]],[],[],[]]
=> [[[[.,[.,.]],.],.],.]
=> [[[[[],[[],[]]],[]],[]],[]]
=> 2 = 1 + 1
[[[]],[],[[]]]
=> [[[.,[.,.]],.],[.,.]]
=> [[[[],[[],[]]],[]],[[],[]]]
=> 3 = 2 + 1
[[[]],[[]],[]]
=> [[[.,[.,.]],[.,.]],.]
=> [[[[],[[],[]]],[[],[]]],[]]
=> 3 = 2 + 1
[[[]],[[],[]]]
=> [[.,[.,.]],[[.,.],.]]
=> [[[],[[],[]]],[[[],[]],[]]]
=> 3 = 2 + 1
[[[]],[[[]]]]
=> [[.,[.,.]],[.,[.,.]]]
=> [[[],[[],[]]],[[],[[],[]]]]
=> 3 = 2 + 1
[[[],[]],[],[]]
=> [[[.,[[.,.],.]],.],.]
=> [[[[],[[[],[]],[]]],[]],[]]
=> 2 = 1 + 1
[[[[]]],[],[]]
=> [[[.,[.,[.,.]]],.],.]
=> [[[[],[[],[[],[]]]],[]],[]]
=> 2 = 1 + 1
[[[],[]],[[]]]
=> [[.,[[.,.],.]],[.,.]]
=> [[[],[[[],[]],[]]],[[],[]]]
=> 3 = 2 + 1
[[[[]]],[[]]]
=> [[.,[.,[.,.]]],[.,.]]
=> [[[],[[],[[],[]]]],[[],[]]]
=> 3 = 2 + 1
[[[],[],[]],[]]
=> [[.,[[[.,.],.],.]],.]
=> [[[],[[[[],[]],[]],[]]],[]]
=> 2 = 1 + 1
[[[],[[]]],[]]
=> [[.,[[.,.],[.,.]]],.]
=> [[[],[[[],[]],[[],[]]]],[]]
=> 3 = 2 + 1
[[[[]],[]],[]]
=> [[.,[[.,[.,.]],.]],.]
=> [[[],[[[],[[],[]]],[]]],[]]
=> 2 = 1 + 1
[[[[],[]]],[]]
=> [[.,[.,[[.,.],.]]],.]
=> [[[],[[],[[[],[]],[]]]],[]]
=> 2 = 1 + 1
[[[[[]]]],[]]
=> [[.,[.,[.,[.,.]]]],.]
=> [[[],[[],[[],[[],[]]]]],[]]
=> 2 = 1 + 1
[[],[],[],[],[],[],[]]
=> [[[[[[[.,.],.],.],.],.],.],.]
=> [[[[[[[[],[]],[]],[]],[]],[]],[]],[]]
=> ? = 1 + 1
[[],[],[],[],[],[[]]]
=> [[[[[[.,.],.],.],.],.],[.,.]]
=> [[[[[[[],[]],[]],[]],[]],[]],[[],[]]]
=> ? = 2 + 1
[[],[],[],[],[[]],[]]
=> [[[[[[.,.],.],.],.],[.,.]],.]
=> [[[[[[[],[]],[]],[]],[]],[[],[]]],[]]
=> ? = 2 + 1
[[],[],[],[],[[],[]]]
=> [[[[[.,.],.],.],.],[[.,.],.]]
=> [[[[[[],[]],[]],[]],[]],[[[],[]],[]]]
=> ? = 2 + 1
[[],[],[],[],[[[]]]]
=> [[[[[.,.],.],.],.],[.,[.,.]]]
=> [[[[[[],[]],[]],[]],[]],[[],[[],[]]]]
=> ? = 2 + 1
[[],[],[],[[]],[],[]]
=> [[[[[[.,.],.],.],[.,.]],.],.]
=> [[[[[[[],[]],[]],[]],[[],[]]],[]],[]]
=> ? = 2 + 1
[[],[],[],[[]],[[]]]
=> [[[[[.,.],.],.],[.,.]],[.,.]]
=> [[[[[[],[]],[]],[]],[[],[]]],[[],[]]]
=> ? = 2 + 1
[[],[],[],[[],[]],[]]
=> [[[[[.,.],.],.],[[.,.],.]],.]
=> [[[[[[],[]],[]],[]],[[[],[]],[]]],[]]
=> ? = 2 + 1
[[],[],[],[[[]]],[]]
=> [[[[[.,.],.],.],[.,[.,.]]],.]
=> [[[[[[],[]],[]],[]],[[],[[],[]]]],[]]
=> ? = 2 + 1
[[],[],[],[[],[],[]]]
=> [[[[.,.],.],.],[[[.,.],.],.]]
=> [[[[[],[]],[]],[]],[[[[],[]],[]],[]]]
=> ? = 2 + 1
[[],[],[],[[],[[]]]]
=> [[[[.,.],.],.],[[.,.],[.,.]]]
=> [[[[[],[]],[]],[]],[[[],[]],[[],[]]]]
=> ? = 2 + 1
[[],[],[],[[[]],[]]]
=> [[[[.,.],.],.],[[.,[.,.]],.]]
=> [[[[[],[]],[]],[]],[[[],[[],[]]],[]]]
=> ? = 2 + 1
[[],[],[],[[[],[]]]]
=> [[[[.,.],.],.],[.,[[.,.],.]]]
=> [[[[[],[]],[]],[]],[[],[[[],[]],[]]]]
=> ? = 2 + 1
[[],[],[],[[[[]]]]]
=> [[[[.,.],.],.],[.,[.,[.,.]]]]
=> [[[[[],[]],[]],[]],[[],[[],[[],[]]]]]
=> ? = 2 + 1
[[],[],[[]],[],[],[]]
=> [[[[[[.,.],.],[.,.]],.],.],.]
=> [[[[[[[],[]],[]],[[],[]]],[]],[]],[]]
=> ? = 2 + 1
[[],[],[[]],[],[[]]]
=> [[[[[.,.],.],[.,.]],.],[.,.]]
=> [[[[[[],[]],[]],[[],[]]],[]],[[],[]]]
=> ? = 2 + 1
[[],[],[[]],[[]],[]]
=> [[[[[.,.],.],[.,.]],[.,.]],.]
=> [[[[[[],[]],[]],[[],[]]],[[],[]]],[]]
=> ? = 2 + 1
[[],[],[[]],[[],[]]]
=> [[[[.,.],.],[.,.]],[[.,.],.]]
=> [[[[[],[]],[]],[[],[]]],[[[],[]],[]]]
=> ? = 2 + 1
[[],[],[[]],[[[]]]]
=> [[[[.,.],.],[.,.]],[.,[.,.]]]
=> [[[[[],[]],[]],[[],[]]],[[],[[],[]]]]
=> ? = 2 + 1
[[],[],[[],[]],[],[]]
=> [[[[[.,.],.],[[.,.],.]],.],.]
=> [[[[[[],[]],[]],[[[],[]],[]]],[]],[]]
=> ? = 2 + 1
[[],[],[[[]]],[],[]]
=> [[[[[.,.],.],[.,[.,.]]],.],.]
=> [[[[[[],[]],[]],[[],[[],[]]]],[]],[]]
=> ? = 2 + 1
[[],[],[[],[]],[[]]]
=> [[[[.,.],.],[[.,.],.]],[.,.]]
=> [[[[[],[]],[]],[[[],[]],[]]],[[],[]]]
=> ? = 2 + 1
[[],[],[[[]]],[[]]]
=> [[[[.,.],.],[.,[.,.]]],[.,.]]
=> [[[[[],[]],[]],[[],[[],[]]]],[[],[]]]
=> ? = 2 + 1
[[],[],[[],[],[]],[]]
=> [[[[.,.],.],[[[.,.],.],.]],.]
=> [[[[[],[]],[]],[[[[],[]],[]],[]]],[]]
=> ? = 2 + 1
[[],[],[[],[[]]],[]]
=> [[[[.,.],.],[[.,.],[.,.]]],.]
=> [[[[[],[]],[]],[[[],[]],[[],[]]]],[]]
=> ? = 2 + 1
[[],[],[[[]],[]],[]]
=> [[[[.,.],.],[[.,[.,.]],.]],.]
=> [[[[[],[]],[]],[[[],[[],[]]],[]]],[]]
=> ? = 2 + 1
[[],[],[[[],[]]],[]]
=> [[[[.,.],.],[.,[[.,.],.]]],.]
=> [[[[[],[]],[]],[[],[[[],[]],[]]]],[]]
=> ? = 2 + 1
[[],[],[[[[]]]],[]]
=> [[[[.,.],.],[.,[.,[.,.]]]],.]
=> [[[[[],[]],[]],[[],[[],[[],[]]]]],[]]
=> ? = 2 + 1
[[],[],[[],[],[],[]]]
=> [[[.,.],.],[[[[.,.],.],.],.]]
=> [[[[],[]],[]],[[[[[],[]],[]],[]],[]]]
=> ? = 2 + 1
[[],[],[[],[],[[]]]]
=> [[[.,.],.],[[[.,.],.],[.,.]]]
=> [[[[],[]],[]],[[[[],[]],[]],[[],[]]]]
=> ? = 2 + 1
[[],[],[[],[[]],[]]]
=> [[[.,.],.],[[[.,.],[.,.]],.]]
=> [[[[],[]],[]],[[[[],[]],[[],[]]],[]]]
=> ? = 2 + 1
[[],[],[[],[[],[]]]]
=> [[[.,.],.],[[.,.],[[.,.],.]]]
=> [[[[],[]],[]],[[[],[]],[[[],[]],[]]]]
=> ? = 2 + 1
[[],[],[[],[[[]]]]]
=> [[[.,.],.],[[.,.],[.,[.,.]]]]
=> [[[[],[]],[]],[[[],[]],[[],[[],[]]]]]
=> ? = 2 + 1
[[],[],[[[]],[],[]]]
=> [[[.,.],.],[[[.,[.,.]],.],.]]
=> [[[[],[]],[]],[[[[],[[],[]]],[]],[]]]
=> ? = 2 + 1
[[],[],[[[]],[[]]]]
=> [[[.,.],.],[[.,[.,.]],[.,.]]]
=> [[[[],[]],[]],[[[],[[],[]]],[[],[]]]]
=> ? = 2 + 1
[[],[],[[[],[]],[]]]
=> [[[.,.],.],[[.,[[.,.],.]],.]]
=> [[[[],[]],[]],[[[],[[[],[]],[]]],[]]]
=> ? = 2 + 1
[[],[],[[[[]]],[]]]
=> [[[.,.],.],[[.,[.,[.,.]]],.]]
=> [[[[],[]],[]],[[[],[[],[[],[]]]],[]]]
=> ? = 2 + 1
[[],[],[[[],[],[]]]]
=> [[[.,.],.],[.,[[[.,.],.],.]]]
=> [[[[],[]],[]],[[],[[[[],[]],[]],[]]]]
=> ? = 2 + 1
[[],[],[[[],[[]]]]]
=> [[[.,.],.],[.,[[.,.],[.,.]]]]
=> [[[[],[]],[]],[[],[[[],[]],[[],[]]]]]
=> ? = 2 + 1
[[],[],[[[[]],[]]]]
=> [[[.,.],.],[.,[[.,[.,.]],.]]]
=> [[[[],[]],[]],[[],[[[],[[],[]]],[]]]]
=> ? = 2 + 1
[[],[],[[[[],[]]]]]
=> [[[.,.],.],[.,[.,[[.,.],.]]]]
=> [[[[],[]],[]],[[],[[],[[[],[]],[]]]]]
=> ? = 2 + 1
[[],[],[[[[[]]]]]]
=> [[[.,.],.],[.,[.,[.,[.,.]]]]]
=> [[[[],[]],[]],[[],[[],[[],[[],[]]]]]]
=> ? = 2 + 1
[[],[[]],[],[],[],[]]
=> [[[[[[.,.],[.,.]],.],.],.],.]
=> [[[[[[[],[]],[[],[]]],[]],[]],[]],[]]
=> ? = 2 + 1
[[],[[]],[],[],[[]]]
=> [[[[[.,.],[.,.]],.],.],[.,.]]
=> [[[[[[],[]],[[],[]]],[]],[]],[[],[]]]
=> ? = 2 + 1
[[],[[]],[],[[]],[]]
=> [[[[[.,.],[.,.]],.],[.,.]],.]
=> [[[[[[],[]],[[],[]]],[]],[[],[]]],[]]
=> ? = 2 + 1
[[],[[]],[],[[],[]]]
=> [[[[.,.],[.,.]],.],[[.,.],.]]
=> [[[[[],[]],[[],[]]],[]],[[[],[]],[]]]
=> ? = 2 + 1
[[],[[]],[],[[[]]]]
=> [[[[.,.],[.,.]],.],[.,[.,.]]]
=> [[[[[],[]],[[],[]]],[]],[[],[[],[]]]]
=> ? = 2 + 1
[[],[[]],[[]],[],[]]
=> [[[[[.,.],[.,.]],[.,.]],.],.]
=> [[[[[[],[]],[[],[]]],[[],[]]],[]],[]]
=> ? = 2 + 1
[[],[[]],[[]],[[]]]
=> [[[[.,.],[.,.]],[.,.]],[.,.]]
=> [[[[[],[]],[[],[]]],[[],[]]],[[],[]]]
=> ? = 2 + 1
[[],[[]],[[],[]],[]]
=> [[[[.,.],[.,.]],[[.,.],.]],.]
=> [[[[[],[]],[[],[]]],[[[],[]],[]]],[]]
=> ? = 2 + 1
Description
The Strahler number of a rooted tree.
Mp00139: Ordered trees Zeilberger's Strahler bijectionBinary trees
Mp00017: Binary trees to 312-avoiding permutationPermutations
St001174: Permutations ⟶ ℤResult quality: 16% values known / values provided: 16%distinct values known / distinct values provided: 67%
Values
[[]]
=> [.,.]
=> [1] => ? = 1 - 1
[[],[]]
=> [.,[.,.]]
=> [2,1] => 0 = 1 - 1
[[[]]]
=> [[.,.],.]
=> [1,2] => 0 = 1 - 1
[[],[],[]]
=> [.,[.,[.,.]]]
=> [3,2,1] => 0 = 1 - 1
[[],[[]]]
=> [.,[[.,.],.]]
=> [2,3,1] => 1 = 2 - 1
[[[]],[]]
=> [[.,[.,.]],.]
=> [2,1,3] => 0 = 1 - 1
[[[],[]]]
=> [[.,.],[.,.]]
=> [1,3,2] => 0 = 1 - 1
[[[[]]]]
=> [[[.,.],.],.]
=> [1,2,3] => 0 = 1 - 1
[[],[],[],[]]
=> [.,[.,[.,[.,.]]]]
=> [4,3,2,1] => 0 = 1 - 1
[[],[],[[]]]
=> [.,[.,[[.,.],.]]]
=> [3,4,2,1] => 1 = 2 - 1
[[],[[]],[]]
=> [.,[[.,[.,.]],.]]
=> [3,2,4,1] => 1 = 2 - 1
[[],[[],[]]]
=> [.,[[.,.],[.,.]]]
=> [2,4,3,1] => 1 = 2 - 1
[[],[[[]]]]
=> [.,[[[.,.],.],.]]
=> [2,3,4,1] => 1 = 2 - 1
[[[]],[],[]]
=> [[.,[.,[.,.]]],.]
=> [3,2,1,4] => 0 = 1 - 1
[[[]],[[]]]
=> [[.,[[.,.],.]],.]
=> [2,3,1,4] => 1 = 2 - 1
[[[],[]],[]]
=> [[.,[.,.]],[.,.]]
=> [2,1,4,3] => 0 = 1 - 1
[[[[]]],[]]
=> [[[.,[.,.]],.],.]
=> [2,1,3,4] => 0 = 1 - 1
[[[],[],[]]]
=> [[.,.],[.,[.,.]]]
=> [1,4,3,2] => 0 = 1 - 1
[[[],[[]]]]
=> [[.,.],[[.,.],.]]
=> [1,3,4,2] => 1 = 2 - 1
[[[[]],[]]]
=> [[[.,.],.],[.,.]]
=> [1,2,4,3] => 0 = 1 - 1
[[[[],[]]]]
=> [[[.,.],[.,.]],.]
=> [1,3,2,4] => 0 = 1 - 1
[[[[[]]]]]
=> [[[[.,.],.],.],.]
=> [1,2,3,4] => 0 = 1 - 1
[[],[],[],[],[]]
=> [.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => 0 = 1 - 1
[[],[],[],[[]]]
=> [.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => 1 = 2 - 1
[[],[],[[]],[]]
=> [.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => 1 = 2 - 1
[[],[],[[],[]]]
=> [.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => 1 = 2 - 1
[[],[],[[[]]]]
=> [.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => 1 = 2 - 1
[[],[[]],[],[]]
=> [.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => 1 = 2 - 1
[[],[[]],[[]]]
=> [.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => 1 = 2 - 1
[[],[[],[]],[]]
=> [.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => 1 = 2 - 1
[[],[[[]]],[]]
=> [.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => 1 = 2 - 1
[[],[[],[],[]]]
=> [.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => 1 = 2 - 1
[[],[[],[[]]]]
=> [.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => 1 = 2 - 1
[[],[[[]],[]]]
=> [.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => 1 = 2 - 1
[[],[[[],[]]]]
=> [.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => 1 = 2 - 1
[[],[[[[]]]]]
=> [.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => 1 = 2 - 1
[[[]],[],[],[]]
=> [[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => 0 = 1 - 1
[[[]],[],[[]]]
=> [[.,[.,[[.,.],.]]],.]
=> [3,4,2,1,5] => 1 = 2 - 1
[[[]],[[]],[]]
=> [[.,[[.,[.,.]],.]],.]
=> [3,2,4,1,5] => 1 = 2 - 1
[[[]],[[],[]]]
=> [[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => 1 = 2 - 1
[[[]],[[[]]]]
=> [[.,[[[.,.],.],.]],.]
=> [2,3,4,1,5] => 1 = 2 - 1
[[[],[]],[],[]]
=> [[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => 0 = 1 - 1
[[[[]]],[],[]]
=> [[[.,[.,[.,.]]],.],.]
=> [3,2,1,4,5] => 0 = 1 - 1
[[[],[]],[[]]]
=> [[.,[.,.]],[[.,.],.]]
=> [2,1,4,5,3] => 1 = 2 - 1
[[[[]]],[[]]]
=> [[[.,[[.,.],.]],.],.]
=> [2,3,1,4,5] => 1 = 2 - 1
[[[],[],[]],[]]
=> [[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => 0 = 1 - 1
[[[],[[]]],[]]
=> [[.,[[.,.],.]],[.,.]]
=> [2,3,1,5,4] => 1 = 2 - 1
[[[[]],[]],[]]
=> [[[.,[.,.]],.],[.,.]]
=> [2,1,3,5,4] => 0 = 1 - 1
[[[[],[]]],[]]
=> [[[.,[.,.]],[.,.]],.]
=> [2,1,4,3,5] => 0 = 1 - 1
[[[[[]]]],[]]
=> [[[[.,[.,.]],.],.],.]
=> [2,1,3,4,5] => 0 = 1 - 1
[[[],[],[],[]]]
=> [[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => 0 = 1 - 1
[[],[],[],[],[],[],[]]
=> [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [7,6,5,4,3,2,1] => ? = 1 - 1
[[],[],[],[],[],[[]]]
=> [.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> [6,7,5,4,3,2,1] => ? = 2 - 1
[[],[],[],[],[[]],[]]
=> [.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> [6,5,7,4,3,2,1] => ? = 2 - 1
[[],[],[],[],[[],[]]]
=> [.,[.,[.,[.,[[.,.],[.,.]]]]]]
=> [5,7,6,4,3,2,1] => ? = 2 - 1
[[],[],[],[],[[[]]]]
=> [.,[.,[.,[.,[[[.,.],.],.]]]]]
=> [5,6,7,4,3,2,1] => ? = 2 - 1
[[],[],[],[[]],[],[]]
=> [.,[.,[.,[[.,[.,[.,.]]],.]]]]
=> [6,5,4,7,3,2,1] => ? = 2 - 1
[[],[],[],[[]],[[]]]
=> [.,[.,[.,[[.,[[.,.],.]],.]]]]
=> [5,6,4,7,3,2,1] => ? = 2 - 1
[[],[],[],[[],[]],[]]
=> [.,[.,[.,[[.,[.,.]],[.,.]]]]]
=> [5,4,7,6,3,2,1] => ? = 2 - 1
[[],[],[],[[[]]],[]]
=> [.,[.,[.,[[[.,[.,.]],.],.]]]]
=> [5,4,6,7,3,2,1] => ? = 2 - 1
[[],[],[],[[],[],[]]]
=> [.,[.,[.,[[.,.],[.,[.,.]]]]]]
=> [4,7,6,5,3,2,1] => ? = 2 - 1
[[],[],[],[[],[[]]]]
=> [.,[.,[.,[[.,.],[[.,.],.]]]]]
=> [4,6,7,5,3,2,1] => ? = 2 - 1
[[],[],[],[[[]],[]]]
=> [.,[.,[.,[[[.,.],.],[.,.]]]]]
=> [4,5,7,6,3,2,1] => ? = 2 - 1
[[],[],[],[[[],[]]]]
=> [.,[.,[.,[[[.,.],[.,.]],.]]]]
=> [4,6,5,7,3,2,1] => ? = 2 - 1
[[],[],[],[[[[]]]]]
=> [.,[.,[.,[[[[.,.],.],.],.]]]]
=> [4,5,6,7,3,2,1] => ? = 2 - 1
[[],[],[[]],[],[],[]]
=> [.,[.,[[.,[.,[.,[.,.]]]],.]]]
=> [6,5,4,3,7,2,1] => ? = 2 - 1
[[],[],[[]],[],[[]]]
=> [.,[.,[[.,[.,[[.,.],.]]],.]]]
=> [5,6,4,3,7,2,1] => ? = 2 - 1
[[],[],[[]],[[]],[]]
=> [.,[.,[[.,[[.,[.,.]],.]],.]]]
=> [5,4,6,3,7,2,1] => ? = 2 - 1
[[],[],[[]],[[],[]]]
=> [.,[.,[[.,.],[[.,.],[.,.]]]]]
=> [3,5,7,6,4,2,1] => ? = 2 - 1
[[],[],[[]],[[[]]]]
=> [.,[.,[[.,[[[.,.],.],.]],.]]]
=> [4,5,6,3,7,2,1] => ? = 2 - 1
[[],[],[[],[]],[],[]]
=> [.,[.,[[.,[.,.]],[.,[.,.]]]]]
=> [4,3,7,6,5,2,1] => ? = 2 - 1
[[],[],[[[]]],[],[]]
=> [.,[.,[[[.,[.,[.,.]]],.],.]]]
=> [5,4,3,6,7,2,1] => ? = 2 - 1
[[],[],[[],[]],[[]]]
=> [.,[.,[[.,[.,.]],[[.,.],.]]]]
=> [4,3,6,7,5,2,1] => ? = 2 - 1
[[],[],[[[]]],[[]]]
=> [.,[.,[[[.,[[.,.],.]],.],.]]]
=> [4,5,3,6,7,2,1] => ? = 2 - 1
[[],[],[[],[],[]],[]]
=> [.,[.,[[.,[.,[.,.]]],[.,.]]]]
=> [5,4,3,7,6,2,1] => ? = 2 - 1
[[],[],[[],[[]]],[]]
=> [.,[.,[[.,[[.,.],.]],[.,.]]]]
=> [4,5,3,7,6,2,1] => ? = 2 - 1
[[],[],[[[]],[]],[]]
=> [.,[.,[[[.,[.,.]],.],[.,.]]]]
=> [4,3,5,7,6,2,1] => ? = 2 - 1
[[],[],[[[],[]]],[]]
=> [.,[.,[[[.,[.,.]],[.,.]],.]]]
=> [4,3,6,5,7,2,1] => ? = 2 - 1
[[],[],[[[[]]]],[]]
=> [.,[.,[[[[.,[.,.]],.],.],.]]]
=> [4,3,5,6,7,2,1] => ? = 2 - 1
[[],[],[[],[],[],[]]]
=> [.,[.,[[.,.],[.,[.,[.,.]]]]]]
=> [3,7,6,5,4,2,1] => ? = 2 - 1
[[],[],[[],[],[[]]]]
=> [.,[.,[[.,.],[.,[[.,.],.]]]]]
=> [3,6,7,5,4,2,1] => ? = 2 - 1
[[],[],[[],[[]],[]]]
=> [.,[.,[[.,.],[[.,[.,.]],.]]]]
=> [3,6,5,7,4,2,1] => ? = 2 - 1
[[],[],[[],[[],[]]]]
=> [.,[.,[[.,[[.,.],[.,.]]],.]]]
=> [4,6,5,3,7,2,1] => ? = 2 - 1
[[],[],[[],[[[]]]]]
=> [.,[.,[[.,.],[[[.,.],.],.]]]]
=> [3,5,6,7,4,2,1] => ? = 2 - 1
[[],[],[[[]],[],[]]]
=> [.,[.,[[[.,.],.],[.,[.,.]]]]]
=> [3,4,7,6,5,2,1] => ? = 2 - 1
[[],[],[[[]],[[]]]]
=> [.,[.,[[[.,.],.],[[.,.],.]]]]
=> [3,4,6,7,5,2,1] => ? = 2 - 1
[[],[],[[[],[]],[]]]
=> [.,[.,[[[.,.],[.,.]],[.,.]]]]
=> [3,5,4,7,6,2,1] => ? = 2 - 1
[[],[],[[[[]]],[]]]
=> [.,[.,[[[[.,.],.],.],[.,.]]]]
=> [3,4,5,7,6,2,1] => ? = 2 - 1
[[],[],[[[],[],[]]]]
=> [.,[.,[[[.,.],[.,[.,.]]],.]]]
=> [3,6,5,4,7,2,1] => ? = 2 - 1
[[],[],[[[],[[]]]]]
=> [.,[.,[[[.,.],[[.,.],.]],.]]]
=> [3,5,6,4,7,2,1] => ? = 2 - 1
[[],[],[[[[]],[]]]]
=> [.,[.,[[[[.,.],.],[.,.]],.]]]
=> [3,4,6,5,7,2,1] => ? = 2 - 1
[[],[],[[[[],[]]]]]
=> [.,[.,[[[[.,.],[.,.]],.],.]]]
=> [3,5,4,6,7,2,1] => ? = 2 - 1
[[],[],[[[[[]]]]]]
=> [.,[.,[[[[[.,.],.],.],.],.]]]
=> [3,4,5,6,7,2,1] => ? = 2 - 1
[[],[[]],[],[],[],[]]
=> [.,[[.,[.,[.,[.,[.,.]]]]],.]]
=> [6,5,4,3,2,7,1] => ? = 2 - 1
[[],[[]],[],[],[[]]]
=> [.,[[.,[.,[.,[[.,.],.]]]],.]]
=> [5,6,4,3,2,7,1] => ? = 2 - 1
[[],[[]],[],[[]],[]]
=> [.,[[.,[.,[[.,[.,.]],.]]],.]]
=> [5,4,6,3,2,7,1] => ? = 2 - 1
[[],[[]],[],[[],[]]]
=> [.,[[.,.],[.,[[.,.],[.,.]]]]]
=> [2,5,7,6,4,3,1] => ? = 2 - 1
[[],[[]],[],[[[]]]]
=> [.,[[.,[.,[[[.,.],.],.]]],.]]
=> [4,5,6,3,2,7,1] => ? = 2 - 1
[[],[[]],[[]],[],[]]
=> [.,[[.,[[.,[.,[.,.]]],.]],.]]
=> [5,4,3,6,2,7,1] => ? = 2 - 1
[[],[[]],[[]],[[]]]
=> [.,[[.,[[.,[[.,.],.]],.]],.]]
=> [4,5,3,6,2,7,1] => ? = 2 - 1
Description
The Gorenstein dimension of the algebra A/I when I is the tilting module corresponding to the permutation in the Auslander algebra of K[x]/(xn).
Matching statistic: St000862
Mp00051: Ordered trees to Dyck pathDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00031: Dyck paths to 312-avoiding permutationPermutations
St000862: Permutations ⟶ ℤResult quality: 8% values known / values provided: 8%distinct values known / distinct values provided: 67%
Values
[[]]
=> [1,0]
=> [1,1,0,0]
=> [2,1] => 1
[[],[]]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => 1
[[[]]]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => 1
[[],[],[]]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 1
[[],[[]]]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 2
[[[]],[]]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 1
[[[],[]]]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [3,4,2,1] => 1
[[[[]]]]
=> [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 1
[[],[],[],[]]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 1
[[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => 2
[[],[[]],[]]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => 2
[[],[[],[]]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => 2
[[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => 2
[[[]],[],[]]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => 1
[[[]],[[]]]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => 2
[[[],[]],[]]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [3,4,2,5,1] => 1
[[[[]]],[]]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => 1
[[[],[],[]]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [3,4,5,2,1] => 1
[[[],[[]]]]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [3,5,4,2,1] => 2
[[[[]],[]]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [4,3,5,2,1] => 1
[[[[],[]]]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [4,5,3,2,1] => 1
[[[[[]]]]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 1
[[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,1] => 1
[[],[],[],[[]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [2,3,4,6,5,1] => 2
[[],[],[[]],[]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [2,3,5,4,6,1] => 2
[[],[],[[],[]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [2,3,5,6,4,1] => 2
[[],[],[[[]]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,3,6,5,4,1] => 2
[[],[[]],[],[]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [2,4,3,5,6,1] => 2
[[],[[]],[[]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [2,4,3,6,5,1] => 2
[[],[[],[]],[]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [2,4,5,3,6,1] => 2
[[],[[[]]],[]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [2,5,4,3,6,1] => 2
[[],[[],[],[]]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [2,4,5,6,3,1] => 2
[[],[[],[[]]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [2,4,6,5,3,1] => 2
[[],[[[]],[]]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [2,5,4,6,3,1] => 2
[[],[[[],[]]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,5,6,4,3,1] => 2
[[],[[[[]]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,6,5,4,3,1] => 2
[[[]],[],[],[]]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [3,2,4,5,6,1] => 1
[[[]],[],[[]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [3,2,4,6,5,1] => 2
[[[]],[[]],[]]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [3,2,5,4,6,1] => 2
[[[]],[[],[]]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [3,2,5,6,4,1] => 2
[[[]],[[[]]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [3,2,6,5,4,1] => 2
[[[],[]],[],[]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [3,4,2,5,6,1] => 1
[[[[]]],[],[]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [4,3,2,5,6,1] => 1
[[[],[]],[[]]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [3,4,2,6,5,1] => 2
[[[[]]],[[]]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [4,3,2,6,5,1] => 2
[[[],[],[]],[]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [3,4,5,2,6,1] => 1
[[[],[[]]],[]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [3,5,4,2,6,1] => 2
[[[[]],[]],[]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [4,3,5,2,6,1] => 1
[[[[],[]]],[]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [4,5,3,2,6,1] => 1
[[[[[]]]],[]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [5,4,3,2,6,1] => 1
[[],[],[],[],[[]]]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [2,3,4,5,7,6,1] => ? = 2
[[],[],[],[[]],[]]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [2,3,4,6,5,7,1] => ? = 2
[[],[],[],[[],[]]]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [2,3,4,6,7,5,1] => ? = 2
[[],[],[],[[[]]]]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [2,3,4,7,6,5,1] => ? = 2
[[],[],[[]],[],[]]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [2,3,5,4,6,7,1] => ? = 2
[[],[],[[]],[[]]]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> [2,3,5,4,7,6,1] => ? = 2
[[],[],[[],[]],[]]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> [2,3,5,6,4,7,1] => ? = 2
[[],[],[[[]]],[]]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [2,3,6,5,4,7,1] => ? = 2
[[],[],[[],[],[]]]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [2,3,5,6,7,4,1] => ? = 2
[[],[],[[],[[]]]]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [2,3,5,7,6,4,1] => ? = 2
[[],[],[[[]],[]]]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> [2,3,6,5,7,4,1] => ? = 2
[[],[],[[[],[]]]]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> [2,3,6,7,5,4,1] => ? = 2
[[],[],[[[[]]]]]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [2,3,7,6,5,4,1] => ? = 2
[[],[[]],[],[],[]]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [2,4,3,5,6,7,1] => ? = 2
[[],[[]],[],[[]]]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> [2,4,3,5,7,6,1] => ? = 2
[[],[[]],[[]],[]]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [2,4,3,6,5,7,1] => ? = 2
[[],[[]],[[],[]]]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,1,0,0,0]
=> [2,4,3,6,7,5,1] => ? = 2
[[],[[]],[[[]]]]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> [2,4,3,7,6,5,1] => ? = 2
[[],[[],[]],[],[]]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [2,4,5,3,6,7,1] => ? = 2
[[],[[[]]],[],[]]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> [2,5,4,3,6,7,1] => ? = 2
[[],[[],[]],[[]]]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,1,0,0,0]
=> [2,4,5,3,7,6,1] => ? = 2
[[],[[[]]],[[]]]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> [2,5,4,3,7,6,1] => ? = 2
[[],[[],[],[]],[]]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> [2,4,5,6,3,7,1] => ? = 2
[[],[[],[[]]],[]]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,1,0,0]
=> [2,4,6,5,3,7,1] => ? = 2
[[],[[[]],[]],[]]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,0,1,0,0]
=> [2,5,4,6,3,7,1] => ? = 2
[[],[[[],[]]],[]]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,0,0,1,0,0]
=> [2,5,6,4,3,7,1] => ? = 2
[[],[[[[]]]],[]]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> [2,6,5,4,3,7,1] => ? = 2
[[],[[],[],[],[]]]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> [2,4,5,6,7,3,1] => ? = 2
[[],[[],[],[[]]]]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> [2,4,5,7,6,3,1] => ? = 2
[[],[[],[[]],[]]]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,1,0,0,1,0,0,0]
=> [2,4,6,5,7,3,1] => ? = 2
[[],[[],[[],[]]]]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [2,4,6,7,5,3,1] => ? = 2
[[],[[],[[[]]]]]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> [2,4,7,6,5,3,1] => ? = 2
[[],[[[]],[],[]]]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> [2,5,4,6,7,3,1] => ? = 2
[[],[[[]],[[]]]]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> [2,5,4,7,6,3,1] => ? = 2
[[],[[[],[]],[]]]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,1,0,0,1,0,0,0]
=> [2,5,6,4,7,3,1] => ? = 2
[[],[[[[]]],[]]]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,1,0,0,0]
=> [2,6,5,4,7,3,1] => ? = 2
[[],[[[],[],[]]]]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,1,0,0,0,0]
=> [2,5,6,7,4,3,1] => ? = 2
[[],[[[],[[]]]]]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> [2,5,7,6,4,3,1] => ? = 2
[[],[[[[]],[]]]]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> [2,6,5,7,4,3,1] => ? = 2
[[],[[[[],[]]]]]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [2,6,7,5,4,3,1] => ? = 2
[[],[[[[[]]]]]]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [2,7,6,5,4,3,1] => ? = 2
[[[]],[],[],[[]]]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> [3,2,4,5,7,6,1] => ? = 2
[[[]],[],[[]],[]]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,1,0,0]
=> [3,2,4,6,5,7,1] => ? = 2
[[[]],[],[[],[]]]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,1,0,0,0]
=> [3,2,4,6,7,5,1] => ? = 2
[[[]],[],[[[]]]]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,1,1,0,0,0,0]
=> [3,2,4,7,6,5,1] => ? = 2
[[[]],[[]],[],[]]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,1,0,0]
=> [3,2,5,4,6,7,1] => ? = 2
[[[]],[[]],[[]]]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,7,6,1] => ? = 2
[[[]],[[],[]],[]]
=> [1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,1,0,0,1,0,0]
=> [3,2,5,6,4,7,1] => ? = 2
[[[]],[[[]]],[]]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,1,0,0]
=> [3,2,6,5,4,7,1] => ? = 2
[[[]],[[],[],[]]]
=> [1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,1,0,0,0]
=> [3,2,5,6,7,4,1] => ? = 2
Description
The number of parts of the shifted shape of a permutation. The diagram of a strict partition λ1<λ2<<λ of n is a tableau with rows, the i-th row being indented by i cells. A shifted standard Young tableau is a filling of such a diagram, where entries in rows and columns are strictly increasing. The shifted Robinson-Schensted algorithm [1] associates to a permutation a pair (P,Q) of standard shifted Young tableaux of the same shape, where off-diagonal entries in Q may be circled. This statistic records the number of parts of the shifted shape.
Matching statistic: St001621
Mp00049: Ordered trees to binary tree: left brother = left childBinary trees
Mp00013: Binary trees to posetPosets
Mp00195: Posets order idealsLattices
St001621: Lattices ⟶ ℤResult quality: 6% values known / values provided: 6%distinct values known / distinct values provided: 67%
Values
[[]]
=> [.,.]
=> ([],1)
=> ([(0,1)],2)
=> 1
[[],[]]
=> [[.,.],.]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 1
[[[]]]
=> [.,[.,.]]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 1
[[],[],[]]
=> [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[[],[[]]]
=> [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
[[[]],[]]
=> [[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[[[],[]]]
=> [.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[[[[]]]]
=> [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[[],[],[],[]]
=> [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[[],[],[[]]]
=> [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 2
[[],[[]],[]]
=> [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 2
[[],[[],[]]]
=> [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 2
[[],[[[]]]]
=> [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 2
[[[]],[],[]]
=> [[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[[[]],[[]]]
=> [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 2
[[[],[]],[]]
=> [[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[[[[]]],[]]
=> [[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[[[],[],[]]]
=> [.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[[[],[[]]]]
=> [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 2
[[[[]],[]]]
=> [.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[[[[],[]]]]
=> [.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[[[[[]]]]]
=> [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[[],[],[],[],[]]
=> [[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[],[],[],[[]]]
=> [[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 2
[[],[],[[]],[]]
=> [[[[.,.],.],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 2
[[],[],[[],[]]]
=> [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2
[[],[],[[[]]]]
=> [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2
[[],[[]],[],[]]
=> [[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 2
[[],[[]],[[]]]
=> [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> ? = 2
[[],[[],[]],[]]
=> [[[.,.],[[.,.],.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 2
[[],[[[]]],[]]
=> [[[.,.],[.,[.,.]]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 2
[[],[[],[],[]]]
=> [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 2
[[],[[],[[]]]]
=> [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> ? = 2
[[],[[[]],[]]]
=> [[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 2
[[],[[[],[]]]]
=> [[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 2
[[],[[[[]]]]]
=> [[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 2
[[[]],[],[],[]]
=> [[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[[]],[],[[]]]
=> [[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 2
[[[]],[[]],[]]
=> [[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 2
[[[]],[[],[]]]
=> [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2
[[[]],[[[]]]]
=> [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2
[[[],[]],[],[]]
=> [[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[[[]]],[],[]]
=> [[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[[],[]],[[]]]
=> [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 2
[[[[]]],[[]]]
=> [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 2
[[[],[],[]],[]]
=> [[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[[],[[]]],[]]
=> [[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 2
[[[[]],[]],[]]
=> [[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[[[],[]]],[]]
=> [[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[[[[]]]],[]]
=> [[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[[],[],[],[]]]
=> [.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[[],[],[[]]]]
=> [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 2
[[[],[[]],[]]]
=> [.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 2
[[[],[[],[]]]]
=> [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 2
[[[],[[[]]]]]
=> [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 2
[[[[]],[],[]]]
=> [.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[[[]],[[]]]]
=> [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 2
[[[[],[]],[]]]
=> [.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[[[[]]],[]]]
=> [.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[[[],[],[]]]]
=> [.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[[[],[[]]]]]
=> [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 2
[[[[[]],[]]]]
=> [.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[[[[],[]]]]]
=> [.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[[[[[]]]]]]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[],[],[],[],[],[]]
=> [[[[[[.,.],.],.],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
[[],[],[],[],[[]]]
=> [[[[[.,.],.],.],.],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(0,6),(2,10),(3,7),(4,5),(4,9),(5,2),(5,8),(6,4),(6,7),(7,9),(8,10),(9,8),(10,1)],11)
=> ? = 2
[[],[],[],[[]],[]]
=> [[[[[.,.],.],.],[.,.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 2
[[],[],[],[[],[]]]
=> [[[[.,.],.],.],[[.,.],.]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,2),(4,10),(5,3),(5,7),(6,4),(6,7),(7,8),(7,10),(8,11),(9,12),(10,9),(10,11),(11,12),(12,1)],13)
=> ? = 2
[[],[],[],[[[]]]]
=> [[[[.,.],.],.],[.,[.,.]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,2),(4,10),(5,3),(5,7),(6,4),(6,7),(7,8),(7,10),(8,11),(9,12),(10,9),(10,11),(11,12),(12,1)],13)
=> ? = 2
[[],[],[[]],[],[]]
=> [[[[[.,.],.],[.,.]],.],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ? = 2
[[],[],[[]],[[]]]
=> [[[[.,.],.],[.,.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,4),(0,5),(0,6),(1,11),(3,10),(3,12),(4,7),(4,8),(5,7),(5,9),(6,3),(6,8),(6,9),(7,14),(8,12),(8,14),(9,10),(9,14),(10,13),(11,2),(12,1),(12,13),(13,11),(14,13)],15)
=> ? = 2
[[],[],[[],[]],[]]
=> [[[[.,.],.],[[.,.],.]],.]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2
[[],[],[[[]]],[]]
=> [[[[.,.],.],[.,[.,.]]],.]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2
[[],[],[[],[],[]]]
=> [[[.,.],.],[[[.,.],.],.]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,2),(4,10),(5,3),(5,7),(6,4),(6,7),(7,8),(7,10),(8,11),(9,12),(10,9),(10,11),(11,12),(12,1)],13)
=> ? = 2
[[],[],[[],[[]]]]
=> [[[.,.],.],[[.,.],[.,.]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(2,11),(3,7),(3,8),(4,10),(4,13),(5,10),(5,12),(6,3),(6,12),(6,13),(7,15),(8,15),(9,1),(10,2),(10,14),(11,9),(12,7),(12,14),(13,8),(13,14),(14,11),(14,15),(15,9)],16)
=> ? = 2
[[],[],[[[]],[]]]
=> [[[.,.],.],[[.,[.,.]],.]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,2),(4,10),(5,3),(5,7),(6,4),(6,7),(7,8),(7,10),(8,11),(9,12),(10,9),(10,11),(11,12),(12,1)],13)
=> ? = 2
[[],[],[[[],[]]]]
=> [[[.,.],.],[.,[[.,.],.]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,2),(4,10),(5,3),(5,7),(6,4),(6,7),(7,8),(7,10),(8,11),(9,12),(10,9),(10,11),(11,12),(12,1)],13)
=> ? = 2
[[],[],[[[[]]]]]
=> [[[.,.],.],[.,[.,[.,.]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,2),(4,10),(5,3),(5,7),(6,4),(6,7),(7,8),(7,10),(8,11),(9,12),(10,9),(10,11),(11,12),(12,1)],13)
=> ? = 2
[[],[[]],[],[],[]]
=> [[[[[.,.],[.,.]],.],.],.]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ? = 2
[[],[[]],[],[[]]]
=> [[[[.,.],[.,.]],.],[.,.]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(0,3),(0,4),(0,5),(2,11),(3,7),(3,8),(4,8),(4,9),(5,7),(5,9),(6,2),(6,10),(7,12),(8,12),(9,6),(9,12),(10,11),(11,1),(12,10)],13)
=> ? = 2
[[],[[]],[[]],[]]
=> [[[[.,.],[.,.]],[.,.]],.]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ([(0,3),(0,4),(0,5),(2,9),(3,8),(3,10),(4,7),(4,10),(5,7),(5,8),(6,1),(7,11),(8,11),(9,6),(10,2),(10,11),(11,9)],12)
=> ? = 2
[[],[[]],[[],[]]]
=> [[[.,.],[.,.]],[[.,.],.]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(2,11),(3,7),(3,8),(4,10),(4,13),(5,10),(5,12),(6,3),(6,12),(6,13),(7,15),(8,15),(9,1),(10,2),(10,14),(11,9),(12,7),(12,14),(13,8),(13,14),(14,11),(14,15),(15,9)],16)
=> ? = 2
[[],[[]],[[[]]]]
=> [[[.,.],[.,.]],[.,[.,.]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(2,11),(3,7),(3,8),(4,10),(4,13),(5,10),(5,12),(6,3),(6,12),(6,13),(7,15),(8,15),(9,1),(10,2),(10,14),(11,9),(12,7),(12,14),(13,8),(13,14),(14,11),(14,15),(15,9)],16)
=> ? = 2
[[],[[],[]],[],[]]
=> [[[[.,.],[[.,.],.]],.],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ? = 2
[[],[[[]]],[],[]]
=> [[[[.,.],[.,[.,.]]],.],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ? = 2
[[],[[],[]],[[]]]
=> [[[.,.],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,4),(0,5),(0,6),(1,11),(3,10),(3,12),(4,7),(4,8),(5,7),(5,9),(6,3),(6,8),(6,9),(7,14),(8,12),(8,14),(9,10),(9,14),(10,13),(11,2),(12,1),(12,13),(13,11),(14,13)],15)
=> ? = 2
[[],[[[]]],[[]]]
=> [[[.,.],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,4),(0,5),(0,6),(1,11),(3,10),(3,12),(4,7),(4,8),(5,7),(5,9),(6,3),(6,8),(6,9),(7,14),(8,12),(8,14),(9,10),(9,14),(10,13),(11,2),(12,1),(12,13),(13,11),(14,13)],15)
=> ? = 2
[[],[[],[],[]],[]]
=> [[[.,.],[[[.,.],.],.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 2
[[],[[],[[]]],[]]
=> [[[.,.],[[.,.],[.,.]]],.]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ([(0,3),(0,4),(0,5),(2,9),(3,8),(3,10),(4,7),(4,10),(5,7),(5,8),(6,1),(7,11),(8,11),(9,6),(10,2),(10,11),(11,9)],12)
=> ? = 2
[[],[[[]],[]],[]]
=> [[[.,.],[[.,[.,.]],.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 2
[[],[[[],[]]],[]]
=> [[[.,.],[.,[[.,.],.]]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 2
[[],[[[[]]]],[]]
=> [[[.,.],[.,[.,[.,.]]]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 2
[[],[[],[],[],[]]]
=> [[.,.],[[[[.,.],.],.],.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(0,6),(2,10),(3,7),(4,5),(4,9),(5,2),(5,8),(6,4),(6,7),(7,9),(8,10),(9,8),(10,1)],11)
=> ? = 2
[[[]],[],[],[],[]]
=> [[[[[.,[.,.]],.],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
[[[],[]],[],[],[]]
=> [[[[.,[[.,.],.]],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
[[[[]]],[],[],[]]
=> [[[[.,[.,[.,.]]],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
[[[],[],[]],[],[]]
=> [[[.,[[[.,.],.],.]],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
[[[[]],[]],[],[]]
=> [[[.,[[.,[.,.]],.]],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
[[[[],[]]],[],[]]
=> [[[.,[.,[[.,.],.]]],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
[[[[[]]]],[],[]]
=> [[[.,[.,[.,[.,.]]]],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
Description
The number of atoms of a lattice. An element of a lattice is an '''atom''' if it covers the least element.
Matching statistic: St001624
Mp00049: Ordered trees to binary tree: left brother = left childBinary trees
Mp00013: Binary trees to posetPosets
Mp00195: Posets order idealsLattices
St001624: Lattices ⟶ ℤResult quality: 6% values known / values provided: 6%distinct values known / distinct values provided: 67%
Values
[[]]
=> [.,.]
=> ([],1)
=> ([(0,1)],2)
=> 1
[[],[]]
=> [[.,.],.]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 1
[[[]]]
=> [.,[.,.]]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 1
[[],[],[]]
=> [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[[],[[]]]
=> [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
[[[]],[]]
=> [[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[[[],[]]]
=> [.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[[[[]]]]
=> [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[[],[],[],[]]
=> [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[[],[],[[]]]
=> [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 2
[[],[[]],[]]
=> [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 2
[[],[[],[]]]
=> [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 2
[[],[[[]]]]
=> [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 2
[[[]],[],[]]
=> [[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[[[]],[[]]]
=> [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 2
[[[],[]],[]]
=> [[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[[[[]]],[]]
=> [[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[[[],[],[]]]
=> [.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[[[],[[]]]]
=> [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 2
[[[[]],[]]]
=> [.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[[[[],[]]]]
=> [.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[[[[[]]]]]
=> [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[[],[],[],[],[]]
=> [[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[],[],[],[[]]]
=> [[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 2
[[],[],[[]],[]]
=> [[[[.,.],.],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 2
[[],[],[[],[]]]
=> [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2
[[],[],[[[]]]]
=> [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2
[[],[[]],[],[]]
=> [[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 2
[[],[[]],[[]]]
=> [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> ? = 2
[[],[[],[]],[]]
=> [[[.,.],[[.,.],.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 2
[[],[[[]]],[]]
=> [[[.,.],[.,[.,.]]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 2
[[],[[],[],[]]]
=> [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 2
[[],[[],[[]]]]
=> [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> ? = 2
[[],[[[]],[]]]
=> [[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 2
[[],[[[],[]]]]
=> [[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 2
[[],[[[[]]]]]
=> [[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 2
[[[]],[],[],[]]
=> [[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[[]],[],[[]]]
=> [[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 2
[[[]],[[]],[]]
=> [[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 2
[[[]],[[],[]]]
=> [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2
[[[]],[[[]]]]
=> [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2
[[[],[]],[],[]]
=> [[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[[[]]],[],[]]
=> [[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[[],[]],[[]]]
=> [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 2
[[[[]]],[[]]]
=> [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 2
[[[],[],[]],[]]
=> [[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[[],[[]]],[]]
=> [[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 2
[[[[]],[]],[]]
=> [[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[[[],[]]],[]]
=> [[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[[[[]]]],[]]
=> [[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[[],[],[],[]]]
=> [.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[[],[],[[]]]]
=> [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 2
[[[],[[]],[]]]
=> [.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 2
[[[],[[],[]]]]
=> [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 2
[[[],[[[]]]]]
=> [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 2
[[[[]],[],[]]]
=> [.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[[[]],[[]]]]
=> [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 2
[[[[],[]],[]]]
=> [.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[[[[]]],[]]]
=> [.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[[[],[],[]]]]
=> [.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[[[],[[]]]]]
=> [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 2
[[[[[]],[]]]]
=> [.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[[[[],[]]]]]
=> [.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[[[[[]]]]]]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[],[],[],[],[],[]]
=> [[[[[[.,.],.],.],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
[[],[],[],[],[[]]]
=> [[[[[.,.],.],.],.],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(0,6),(2,10),(3,7),(4,5),(4,9),(5,2),(5,8),(6,4),(6,7),(7,9),(8,10),(9,8),(10,1)],11)
=> ? = 2
[[],[],[],[[]],[]]
=> [[[[[.,.],.],.],[.,.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 2
[[],[],[],[[],[]]]
=> [[[[.,.],.],.],[[.,.],.]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,2),(4,10),(5,3),(5,7),(6,4),(6,7),(7,8),(7,10),(8,11),(9,12),(10,9),(10,11),(11,12),(12,1)],13)
=> ? = 2
[[],[],[],[[[]]]]
=> [[[[.,.],.],.],[.,[.,.]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,2),(4,10),(5,3),(5,7),(6,4),(6,7),(7,8),(7,10),(8,11),(9,12),(10,9),(10,11),(11,12),(12,1)],13)
=> ? = 2
[[],[],[[]],[],[]]
=> [[[[[.,.],.],[.,.]],.],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ? = 2
[[],[],[[]],[[]]]
=> [[[[.,.],.],[.,.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,4),(0,5),(0,6),(1,11),(3,10),(3,12),(4,7),(4,8),(5,7),(5,9),(6,3),(6,8),(6,9),(7,14),(8,12),(8,14),(9,10),(9,14),(10,13),(11,2),(12,1),(12,13),(13,11),(14,13)],15)
=> ? = 2
[[],[],[[],[]],[]]
=> [[[[.,.],.],[[.,.],.]],.]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2
[[],[],[[[]]],[]]
=> [[[[.,.],.],[.,[.,.]]],.]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2
[[],[],[[],[],[]]]
=> [[[.,.],.],[[[.,.],.],.]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,2),(4,10),(5,3),(5,7),(6,4),(6,7),(7,8),(7,10),(8,11),(9,12),(10,9),(10,11),(11,12),(12,1)],13)
=> ? = 2
[[],[],[[],[[]]]]
=> [[[.,.],.],[[.,.],[.,.]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(2,11),(3,7),(3,8),(4,10),(4,13),(5,10),(5,12),(6,3),(6,12),(6,13),(7,15),(8,15),(9,1),(10,2),(10,14),(11,9),(12,7),(12,14),(13,8),(13,14),(14,11),(14,15),(15,9)],16)
=> ? = 2
[[],[],[[[]],[]]]
=> [[[.,.],.],[[.,[.,.]],.]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,2),(4,10),(5,3),(5,7),(6,4),(6,7),(7,8),(7,10),(8,11),(9,12),(10,9),(10,11),(11,12),(12,1)],13)
=> ? = 2
[[],[],[[[],[]]]]
=> [[[.,.],.],[.,[[.,.],.]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,2),(4,10),(5,3),(5,7),(6,4),(6,7),(7,8),(7,10),(8,11),(9,12),(10,9),(10,11),(11,12),(12,1)],13)
=> ? = 2
[[],[],[[[[]]]]]
=> [[[.,.],.],[.,[.,[.,.]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,2),(4,10),(5,3),(5,7),(6,4),(6,7),(7,8),(7,10),(8,11),(9,12),(10,9),(10,11),(11,12),(12,1)],13)
=> ? = 2
[[],[[]],[],[],[]]
=> [[[[[.,.],[.,.]],.],.],.]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ? = 2
[[],[[]],[],[[]]]
=> [[[[.,.],[.,.]],.],[.,.]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(0,3),(0,4),(0,5),(2,11),(3,7),(3,8),(4,8),(4,9),(5,7),(5,9),(6,2),(6,10),(7,12),(8,12),(9,6),(9,12),(10,11),(11,1),(12,10)],13)
=> ? = 2
[[],[[]],[[]],[]]
=> [[[[.,.],[.,.]],[.,.]],.]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ([(0,3),(0,4),(0,5),(2,9),(3,8),(3,10),(4,7),(4,10),(5,7),(5,8),(6,1),(7,11),(8,11),(9,6),(10,2),(10,11),(11,9)],12)
=> ? = 2
[[],[[]],[[],[]]]
=> [[[.,.],[.,.]],[[.,.],.]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(2,11),(3,7),(3,8),(4,10),(4,13),(5,10),(5,12),(6,3),(6,12),(6,13),(7,15),(8,15),(9,1),(10,2),(10,14),(11,9),(12,7),(12,14),(13,8),(13,14),(14,11),(14,15),(15,9)],16)
=> ? = 2
[[],[[]],[[[]]]]
=> [[[.,.],[.,.]],[.,[.,.]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(2,11),(3,7),(3,8),(4,10),(4,13),(5,10),(5,12),(6,3),(6,12),(6,13),(7,15),(8,15),(9,1),(10,2),(10,14),(11,9),(12,7),(12,14),(13,8),(13,14),(14,11),(14,15),(15,9)],16)
=> ? = 2
[[],[[],[]],[],[]]
=> [[[[.,.],[[.,.],.]],.],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ? = 2
[[],[[[]]],[],[]]
=> [[[[.,.],[.,[.,.]]],.],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ? = 2
[[],[[],[]],[[]]]
=> [[[.,.],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,4),(0,5),(0,6),(1,11),(3,10),(3,12),(4,7),(4,8),(5,7),(5,9),(6,3),(6,8),(6,9),(7,14),(8,12),(8,14),(9,10),(9,14),(10,13),(11,2),(12,1),(12,13),(13,11),(14,13)],15)
=> ? = 2
[[],[[[]]],[[]]]
=> [[[.,.],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,4),(0,5),(0,6),(1,11),(3,10),(3,12),(4,7),(4,8),(5,7),(5,9),(6,3),(6,8),(6,9),(7,14),(8,12),(8,14),(9,10),(9,14),(10,13),(11,2),(12,1),(12,13),(13,11),(14,13)],15)
=> ? = 2
[[],[[],[],[]],[]]
=> [[[.,.],[[[.,.],.],.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 2
[[],[[],[[]]],[]]
=> [[[.,.],[[.,.],[.,.]]],.]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ([(0,3),(0,4),(0,5),(2,9),(3,8),(3,10),(4,7),(4,10),(5,7),(5,8),(6,1),(7,11),(8,11),(9,6),(10,2),(10,11),(11,9)],12)
=> ? = 2
[[],[[[]],[]],[]]
=> [[[.,.],[[.,[.,.]],.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 2
[[],[[[],[]]],[]]
=> [[[.,.],[.,[[.,.],.]]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 2
[[],[[[[]]]],[]]
=> [[[.,.],[.,[.,[.,.]]]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 2
[[],[[],[],[],[]]]
=> [[.,.],[[[[.,.],.],.],.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(0,6),(2,10),(3,7),(4,5),(4,9),(5,2),(5,8),(6,4),(6,7),(7,9),(8,10),(9,8),(10,1)],11)
=> ? = 2
[[[]],[],[],[],[]]
=> [[[[[.,[.,.]],.],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
[[[],[]],[],[],[]]
=> [[[[.,[[.,.],.]],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
[[[[]]],[],[],[]]
=> [[[[.,[.,[.,.]]],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
[[[],[],[]],[],[]]
=> [[[.,[[[.,.],.],.]],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
[[[[]],[]],[],[]]
=> [[[.,[[.,[.,.]],.]],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
[[[[],[]]],[],[]]
=> [[[.,[.,[[.,.],.]]],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
[[[[[]]]],[],[]]
=> [[[.,[.,[.,[.,.]]]],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
Description
The breadth of a lattice. The '''breadth''' of a lattice is the least integer b such that any join x1x2xn, with n>b, can be expressed as a join over a proper subset of {x1,x2,,xn}.
Matching statistic: St001878
Mp00049: Ordered trees to binary tree: left brother = left childBinary trees
Mp00013: Binary trees to posetPosets
Mp00195: Posets order idealsLattices
St001878: Lattices ⟶ ℤResult quality: 6% values known / values provided: 6%distinct values known / distinct values provided: 67%
Values
[[]]
=> [.,.]
=> ([],1)
=> ([(0,1)],2)
=> ? = 1
[[],[]]
=> [[.,.],.]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 1
[[[]]]
=> [.,[.,.]]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 1
[[],[],[]]
=> [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[[],[[]]]
=> [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
[[[]],[]]
=> [[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[[[],[]]]
=> [.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[[[[]]]]
=> [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[[],[],[],[]]
=> [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[[],[],[[]]]
=> [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 2
[[],[[]],[]]
=> [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 2
[[],[[],[]]]
=> [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 2
[[],[[[]]]]
=> [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 2
[[[]],[],[]]
=> [[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[[[]],[[]]]
=> [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 2
[[[],[]],[]]
=> [[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[[[[]]],[]]
=> [[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[[[],[],[]]]
=> [.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[[[],[[]]]]
=> [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 2
[[[[]],[]]]
=> [.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[[[[],[]]]]
=> [.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[[[[[]]]]]
=> [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[[],[],[],[],[]]
=> [[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[],[],[],[[]]]
=> [[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 2
[[],[],[[]],[]]
=> [[[[.,.],.],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 2
[[],[],[[],[]]]
=> [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2
[[],[],[[[]]]]
=> [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2
[[],[[]],[],[]]
=> [[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 2
[[],[[]],[[]]]
=> [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> ? = 2
[[],[[],[]],[]]
=> [[[.,.],[[.,.],.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 2
[[],[[[]]],[]]
=> [[[.,.],[.,[.,.]]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 2
[[],[[],[],[]]]
=> [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 2
[[],[[],[[]]]]
=> [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> ? = 2
[[],[[[]],[]]]
=> [[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 2
[[],[[[],[]]]]
=> [[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 2
[[],[[[[]]]]]
=> [[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 2
[[[]],[],[],[]]
=> [[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[[]],[],[[]]]
=> [[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 2
[[[]],[[]],[]]
=> [[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 2
[[[]],[[],[]]]
=> [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2
[[[]],[[[]]]]
=> [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 2
[[[],[]],[],[]]
=> [[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[[[]]],[],[]]
=> [[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[[],[]],[[]]]
=> [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 2
[[[[]]],[[]]]
=> [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 2
[[[],[],[]],[]]
=> [[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[[],[[]]],[]]
=> [[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 2
[[[[]],[]],[]]
=> [[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[[[],[]]],[]]
=> [[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[[[[]]]],[]]
=> [[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[[],[],[],[]]]
=> [.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[[],[],[[]]]]
=> [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 2
[[[],[[]],[]]]
=> [.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 2
[[[],[[],[]]]]
=> [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 2
[[[],[[[]]]]]
=> [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 2
[[[[]],[],[]]]
=> [.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[[[]],[[]]]]
=> [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 2
[[[[],[]],[]]]
=> [.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[[[[]]],[]]]
=> [.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[[[],[],[]]]]
=> [.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[[[],[[]]]]]
=> [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 2
[[[[[]],[]]]]
=> [.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[[[[],[]]]]]
=> [.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[[[[[]]]]]]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[[],[],[],[],[],[]]
=> [[[[[[.,.],.],.],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
[[],[],[],[],[[]]]
=> [[[[[.,.],.],.],.],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(0,6),(2,10),(3,7),(4,5),(4,9),(5,2),(5,8),(6,4),(6,7),(7,9),(8,10),(9,8),(10,1)],11)
=> ? = 2
[[],[],[],[[]],[]]
=> [[[[[.,.],.],.],[.,.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 2
[[],[],[],[[],[]]]
=> [[[[.,.],.],.],[[.,.],.]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,2),(4,10),(5,3),(5,7),(6,4),(6,7),(7,8),(7,10),(8,11),(9,12),(10,9),(10,11),(11,12),(12,1)],13)
=> ? = 2
[[],[],[],[[[]]]]
=> [[[[.,.],.],.],[.,[.,.]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,2),(4,10),(5,3),(5,7),(6,4),(6,7),(7,8),(7,10),(8,11),(9,12),(10,9),(10,11),(11,12),(12,1)],13)
=> ? = 2
[[],[],[[]],[],[]]
=> [[[[[.,.],.],[.,.]],.],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ? = 2
[[],[],[[]],[[]]]
=> [[[[.,.],.],[.,.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,4),(0,5),(0,6),(1,11),(3,10),(3,12),(4,7),(4,8),(5,7),(5,9),(6,3),(6,8),(6,9),(7,14),(8,12),(8,14),(9,10),(9,14),(10,13),(11,2),(12,1),(12,13),(13,11),(14,13)],15)
=> ? = 2
[[],[],[[],[]],[]]
=> [[[[.,.],.],[[.,.],.]],.]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2
[[],[],[[[]]],[]]
=> [[[[.,.],.],[.,[.,.]]],.]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 2
[[],[],[[],[],[]]]
=> [[[.,.],.],[[[.,.],.],.]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,2),(4,10),(5,3),(5,7),(6,4),(6,7),(7,8),(7,10),(8,11),(9,12),(10,9),(10,11),(11,12),(12,1)],13)
=> ? = 2
[[],[],[[],[[]]]]
=> [[[.,.],.],[[.,.],[.,.]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(2,11),(3,7),(3,8),(4,10),(4,13),(5,10),(5,12),(6,3),(6,12),(6,13),(7,15),(8,15),(9,1),(10,2),(10,14),(11,9),(12,7),(12,14),(13,8),(13,14),(14,11),(14,15),(15,9)],16)
=> ? = 2
[[],[],[[[]],[]]]
=> [[[.,.],.],[[.,[.,.]],.]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,2),(4,10),(5,3),(5,7),(6,4),(6,7),(7,8),(7,10),(8,11),(9,12),(10,9),(10,11),(11,12),(12,1)],13)
=> ? = 2
[[],[],[[[],[]]]]
=> [[[.,.],.],[.,[[.,.],.]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,2),(4,10),(5,3),(5,7),(6,4),(6,7),(7,8),(7,10),(8,11),(9,12),(10,9),(10,11),(11,12),(12,1)],13)
=> ? = 2
[[],[],[[[[]]]]]
=> [[[.,.],.],[.,[.,[.,.]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,2),(4,10),(5,3),(5,7),(6,4),(6,7),(7,8),(7,10),(8,11),(9,12),(10,9),(10,11),(11,12),(12,1)],13)
=> ? = 2
[[],[[]],[],[],[]]
=> [[[[[.,.],[.,.]],.],.],.]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> ? = 2
[[],[[]],[],[[]]]
=> [[[[.,.],[.,.]],.],[.,.]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(0,3),(0,4),(0,5),(2,11),(3,7),(3,8),(4,8),(4,9),(5,7),(5,9),(6,2),(6,10),(7,12),(8,12),(9,6),(9,12),(10,11),(11,1),(12,10)],13)
=> ? = 2
[[],[[]],[[]],[]]
=> [[[[.,.],[.,.]],[.,.]],.]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ([(0,3),(0,4),(0,5),(2,9),(3,8),(3,10),(4,7),(4,10),(5,7),(5,8),(6,1),(7,11),(8,11),(9,6),(10,2),(10,11),(11,9)],12)
=> ? = 2
[[],[[]],[[],[]]]
=> [[[.,.],[.,.]],[[.,.],.]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(2,11),(3,7),(3,8),(4,10),(4,13),(5,10),(5,12),(6,3),(6,12),(6,13),(7,15),(8,15),(9,1),(10,2),(10,14),(11,9),(12,7),(12,14),(13,8),(13,14),(14,11),(14,15),(15,9)],16)
=> ? = 2
[[],[[]],[[[]]]]
=> [[[.,.],[.,.]],[.,[.,.]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(2,11),(3,7),(3,8),(4,10),(4,13),(5,10),(5,12),(6,3),(6,12),(6,13),(7,15),(8,15),(9,1),(10,2),(10,14),(11,9),(12,7),(12,14),(13,8),(13,14),(14,11),(14,15),(15,9)],16)
=> ? = 2
[[],[[],[]],[],[]]
=> [[[[.,.],[[.,.],.]],.],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ? = 2
[[],[[[]]],[],[]]
=> [[[[.,.],[.,[.,.]]],.],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> ? = 2
[[],[[],[]],[[]]]
=> [[[.,.],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,4),(0,5),(0,6),(1,11),(3,10),(3,12),(4,7),(4,8),(5,7),(5,9),(6,3),(6,8),(6,9),(7,14),(8,12),(8,14),(9,10),(9,14),(10,13),(11,2),(12,1),(12,13),(13,11),(14,13)],15)
=> ? = 2
[[],[[[]]],[[]]]
=> [[[.,.],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,4),(0,5),(0,6),(1,11),(3,10),(3,12),(4,7),(4,8),(5,7),(5,9),(6,3),(6,8),(6,9),(7,14),(8,12),(8,14),(9,10),(9,14),(10,13),(11,2),(12,1),(12,13),(13,11),(14,13)],15)
=> ? = 2
[[],[[],[],[]],[]]
=> [[[.,.],[[[.,.],.],.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 2
[[],[[],[[]]],[]]
=> [[[.,.],[[.,.],[.,.]]],.]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ([(0,3),(0,4),(0,5),(2,9),(3,8),(3,10),(4,7),(4,10),(5,7),(5,8),(6,1),(7,11),(8,11),(9,6),(10,2),(10,11),(11,9)],12)
=> ? = 2
[[],[[[]],[]],[]]
=> [[[.,.],[[.,[.,.]],.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 2
[[],[[[],[]]],[]]
=> [[[.,.],[.,[[.,.],.]]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 2
[[],[[[[]]]],[]]
=> [[[.,.],[.,[.,[.,.]]]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 2
[[[]],[],[],[],[]]
=> [[[[[.,[.,.]],.],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
[[[],[]],[],[],[]]
=> [[[[.,[[.,.],.]],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
[[[[]]],[],[],[]]
=> [[[[.,[.,[.,.]]],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
[[[],[],[]],[],[]]
=> [[[.,[[[.,.],.],.]],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
[[[[]],[]],[],[]]
=> [[[.,[[.,[.,.]],.]],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
[[[[],[]]],[],[]]
=> [[[.,[.,[[.,.],.]]],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
[[[[[]]]],[],[]]
=> [[[.,[.,[.,[.,.]]]],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
[[[],[],[],[]],[]]
=> [[.,[[[[.,.],.],.],.]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
Description
The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L.
Matching statistic: St000805
Mp00051: Ordered trees to Dyck pathDyck paths
Mp00093: Dyck paths to binary wordBinary words
Mp00178: Binary words to compositionInteger compositions
St000805: Integer compositions ⟶ ℤResult quality: 2% values known / values provided: 2%distinct values known / distinct values provided: 67%
Values
[[]]
=> [1,0]
=> 10 => [1,2] => 1
[[],[]]
=> [1,0,1,0]
=> 1010 => [1,2,2] => 1
[[[]]]
=> [1,1,0,0]
=> 1100 => [1,1,3] => 1
[[],[],[]]
=> [1,0,1,0,1,0]
=> 101010 => [1,2,2,2] => 1
[[],[[]]]
=> [1,0,1,1,0,0]
=> 101100 => [1,2,1,3] => 2
[[[]],[]]
=> [1,1,0,0,1,0]
=> 110010 => [1,1,3,2] => 1
[[[],[]]]
=> [1,1,0,1,0,0]
=> 110100 => [1,1,2,3] => 1
[[[[]]]]
=> [1,1,1,0,0,0]
=> 111000 => [1,1,1,4] => 1
[[],[],[],[]]
=> [1,0,1,0,1,0,1,0]
=> 10101010 => [1,2,2,2,2] => 1
[[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> 10101100 => [1,2,2,1,3] => 2
[[],[[]],[]]
=> [1,0,1,1,0,0,1,0]
=> 10110010 => [1,2,1,3,2] => 2
[[],[[],[]]]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => [1,2,1,2,3] => 2
[[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> 10111000 => [1,2,1,1,4] => 2
[[[]],[],[]]
=> [1,1,0,0,1,0,1,0]
=> 11001010 => [1,1,3,2,2] => 1
[[[]],[[]]]
=> [1,1,0,0,1,1,0,0]
=> 11001100 => [1,1,3,1,3] => 2
[[[],[]],[]]
=> [1,1,0,1,0,0,1,0]
=> 11010010 => [1,1,2,3,2] => 1
[[[[]]],[]]
=> [1,1,1,0,0,0,1,0]
=> 11100010 => [1,1,1,4,2] => 1
[[[],[],[]]]
=> [1,1,0,1,0,1,0,0]
=> 11010100 => [1,1,2,2,3] => 1
[[[],[[]]]]
=> [1,1,0,1,1,0,0,0]
=> 11011000 => [1,1,2,1,4] => 2
[[[[]],[]]]
=> [1,1,1,0,0,1,0,0]
=> 11100100 => [1,1,1,3,3] => 1
[[[[],[]]]]
=> [1,1,1,0,1,0,0,0]
=> 11101000 => [1,1,1,2,4] => 1
[[[[[]]]]]
=> [1,1,1,1,0,0,0,0]
=> 11110000 => [1,1,1,1,5] => 1
[[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1010101010 => [1,2,2,2,2,2] => ? = 1
[[],[],[],[[]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1010101100 => [1,2,2,2,1,3] => ? = 2
[[],[],[[]],[]]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1010110010 => [1,2,2,1,3,2] => ? = 2
[[],[],[[],[]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1010110100 => [1,2,2,1,2,3] => ? = 2
[[],[],[[[]]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1010111000 => [1,2,2,1,1,4] => ? = 2
[[],[[]],[],[]]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1011001010 => [1,2,1,3,2,2] => ? = 2
[[],[[]],[[]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1011001100 => [1,2,1,3,1,3] => ? = 2
[[],[[],[]],[]]
=> [1,0,1,1,0,1,0,0,1,0]
=> 1011010010 => [1,2,1,2,3,2] => ? = 2
[[],[[[]]],[]]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1011100010 => [1,2,1,1,4,2] => ? = 2
[[],[[],[],[]]]
=> [1,0,1,1,0,1,0,1,0,0]
=> 1011010100 => [1,2,1,2,2,3] => ? = 2
[[],[[],[[]]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> 1011011000 => [1,2,1,2,1,4] => ? = 2
[[],[[[]],[]]]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1011100100 => [1,2,1,1,3,3] => ? = 2
[[],[[[],[]]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1011101000 => [1,2,1,1,2,4] => ? = 2
[[],[[[[]]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1011110000 => [1,2,1,1,1,5] => ? = 2
[[[]],[],[],[]]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1100101010 => [1,1,3,2,2,2] => ? = 1
[[[]],[],[[]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> 1100101100 => [1,1,3,2,1,3] => ? = 2
[[[]],[[]],[]]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1100110010 => [1,1,3,1,3,2] => ? = 2
[[[]],[[],[]]]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1100110100 => [1,1,3,1,2,3] => ? = 2
[[[]],[[[]]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> 1100111000 => [1,1,3,1,1,4] => ? = 2
[[[],[]],[],[]]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1101001010 => [1,1,2,3,2,2] => ? = 1
[[[[]]],[],[]]
=> [1,1,1,0,0,0,1,0,1,0]
=> 1110001010 => [1,1,1,4,2,2] => ? = 1
[[[],[]],[[]]]
=> [1,1,0,1,0,0,1,1,0,0]
=> 1101001100 => [1,1,2,3,1,3] => ? = 2
[[[[]]],[[]]]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1110001100 => [1,1,1,4,1,3] => ? = 2
[[[],[],[]],[]]
=> [1,1,0,1,0,1,0,0,1,0]
=> 1101010010 => [1,1,2,2,3,2] => ? = 1
[[[],[[]]],[]]
=> [1,1,0,1,1,0,0,0,1,0]
=> 1101100010 => [1,1,2,1,4,2] => ? = 2
[[[[]],[]],[]]
=> [1,1,1,0,0,1,0,0,1,0]
=> 1110010010 => [1,1,1,3,3,2] => ? = 1
[[[[],[]]],[]]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => [1,1,1,2,4,2] => ? = 1
[[[[[]]]],[]]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1111000010 => [1,1,1,1,5,2] => ? = 1
[[[],[],[],[]]]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1101010100 => [1,1,2,2,2,3] => ? = 1
[[[],[],[[]]]]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1101011000 => [1,1,2,2,1,4] => ? = 2
[[[],[[]],[]]]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1101100100 => [1,1,2,1,3,3] => ? = 2
[[[],[[],[]]]]
=> [1,1,0,1,1,0,1,0,0,0]
=> 1101101000 => [1,1,2,1,2,4] => ? = 2
[[[],[[[]]]]]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1101110000 => [1,1,2,1,1,5] => ? = 2
[[[[]],[],[]]]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1110010100 => [1,1,1,3,2,3] => ? = 1
[[[[]],[[]]]]
=> [1,1,1,0,0,1,1,0,0,0]
=> 1110011000 => [1,1,1,3,1,4] => ? = 2
[[[[],[]],[]]]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1110100100 => [1,1,1,2,3,3] => ? = 1
[[[[[]]],[]]]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1111000100 => [1,1,1,1,4,3] => ? = 1
[[[[],[],[]]]]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1110101000 => [1,1,1,2,2,4] => ? = 1
[[[[],[[]]]]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1110110000 => [1,1,1,2,1,5] => ? = 2
[[[[[]],[]]]]
=> [1,1,1,1,0,0,1,0,0,0]
=> 1111001000 => [1,1,1,1,3,4] => ? = 1
[[[[[],[]]]]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1111010000 => [1,1,1,1,2,5] => ? = 1
[[[[[[]]]]]]
=> [1,1,1,1,1,0,0,0,0,0]
=> 1111100000 => [1,1,1,1,1,6] => ? = 1
[[],[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 101010101010 => [1,2,2,2,2,2,2] => ? = 1
[[],[],[],[],[[]]]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 101010101100 => [1,2,2,2,2,1,3] => ? = 2
[[],[],[],[[]],[]]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 101010110010 => [1,2,2,2,1,3,2] => ? = 2
[[],[],[],[[],[]]]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 101010110100 => [1,2,2,2,1,2,3] => ? = 2
[[],[],[],[[[]]]]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> 101010111000 => [1,2,2,2,1,1,4] => ? = 2
[[],[],[[]],[],[]]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 101011001010 => [1,2,2,1,3,2,2] => ? = 2
[[],[],[[]],[[]]]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> 101011001100 => [1,2,2,1,3,1,3] => ? = 2
[[],[],[[],[]],[]]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> 101011010010 => [1,2,2,1,2,3,2] => ? = 2
Description
The number of peaks of the associated bargraph. Interpret the composition as the sequence of heights of the bars of a bargraph. This statistic is the number of contiguous subsequences consisting of an up step, a sequence of horizontal steps, and a down step.
The following 3 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001729The number of visible descents of a permutation. St000807The sum of the heights of the valleys of the associated bargraph. St000454The largest eigenvalue of a graph if it is integral.