Processing math: 40%

Your data matches 51 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00137: Dyck paths to symmetric ASMAlternating sign matrices
Mp00002: Alternating sign matrices to left key permutationPermutations
Mp00067: Permutations Foata bijectionPermutations
St000441: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [[1]]
=> [1] => [1] => 0
[1,0,1,0]
=> [[1,0],[0,1]]
=> [1,2] => [1,2] => 1
[1,1,0,0]
=> [[0,1],[1,0]]
=> [2,1] => [2,1] => 0
[1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,2,3] => [1,2,3] => 2
[1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,3,2] => [3,1,2] => 1
[1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [2,1,3] => [2,1,3] => 0
[1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,3,2] => [3,1,2] => 1
[1,1,1,0,0,0]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> [3,2,1] => [3,2,1] => 0
[1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,2,3,4] => [1,2,3,4] => 3
[1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,2,4,3] => [4,1,2,3] => 2
[1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => [3,1,2,4] => 1
[1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => [4,1,2,3] => 2
[1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,4,3,2] => [4,3,1,2] => 1
[1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [2,1,3,4] => [2,1,3,4] => 1
[1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [2,1,4,3] => [4,2,1,3] => 0
[1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => [3,1,2,4] => 1
[1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => [4,1,2,3] => 2
[1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,4,3,2] => [4,3,1,2] => 1
[1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [3,2,1,4] => [3,2,1,4] => 0
[1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [2,1,4,3] => [4,2,1,3] => 0
[1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,4,3,2] => [4,3,1,2] => 1
[1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [4,3,2,1] => [4,3,2,1] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,2,3,4,5] => [1,2,3,4,5] => 4
[1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => [5,1,2,3,4] => 3
[1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => [4,1,2,3,5] => 2
[1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => [5,1,2,3,4] => 3
[1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => [5,4,1,2,3] => 2
[1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => [3,1,2,4,5] => 2
[1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => [5,3,1,2,4] => 1
[1,0,1,1,0,1,0,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => [4,1,2,3,5] => 2
[1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => [5,1,2,3,4] => 3
[1,0,1,1,0,1,1,0,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => [5,4,1,2,3] => 2
[1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,4,3,2,5] => [4,3,1,2,5] => 1
[1,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => [5,3,1,2,4] => 1
[1,0,1,1,1,0,1,0,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => [5,4,1,2,3] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,5,4,3,2] => [5,4,3,1,2] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [2,1,3,4,5] => [2,1,3,4,5] => 2
[1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => [5,2,1,3,4] => 1
[1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [2,1,4,3,5] => [4,2,1,3,5] => 0
[1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => [5,2,1,3,4] => 1
[1,1,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [2,1,5,4,3] => [5,4,2,1,3] => 0
[1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => [3,1,2,4,5] => 2
[1,1,0,1,0,0,1,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => [5,3,1,2,4] => 1
[1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => [4,1,2,3,5] => 2
[1,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => [5,1,2,3,4] => 3
[1,1,0,1,0,1,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => [5,4,1,2,3] => 2
[1,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,4,3,2,5] => [4,3,1,2,5] => 1
[1,1,0,1,1,0,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => [5,3,1,2,4] => 1
[1,1,0,1,1,0,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,2,5,4,3] => [5,4,1,2,3] => 2
[1,1,0,1,1,1,0,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,5,4,3,2] => [5,4,3,1,2] => 1
Description
The number of successions of a permutation. A succession of a permutation π is an index i such that π(i)+1=π(i+1). Successions are also known as ''small ascents'' or ''1-rises''.
Mp00027: Dyck paths to partitionInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
St000932: Dyck paths ⟶ ℤResult quality: 80% values known / values provided: 81%distinct values known / distinct values provided: 80%
Values
[1,0]
=> []
=> []
=> ? = 0
[1,0,1,0]
=> [1]
=> [1,0,1,0]
=> 1
[1,1,0,0]
=> []
=> []
=> ? = 0
[1,0,1,0,1,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> 2
[1,0,1,1,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> [2]
=> [1,1,0,0,1,0]
=> 0
[1,1,0,1,0,0]
=> [1]
=> [1,0,1,0]
=> 1
[1,1,1,0,0,0]
=> []
=> []
=> ? = 0
[1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> 3
[1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> 2
[1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,0,0,1,0]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 1
[1,1,0,1,0,1,0,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> 2
[1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> 1
[1,1,1,0,0,0,1,0]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 0
[1,1,1,0,0,1,0,0]
=> [2]
=> [1,1,0,0,1,0]
=> 0
[1,1,1,0,1,0,0,0]
=> [1]
=> [1,0,1,0]
=> 1
[1,1,1,1,0,0,0,0]
=> []
=> []
=> ? = 0
[1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> [1,0,1,0,1,1,0,0,1,0]
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [1,0,1,1,0,0,1,0,1,0]
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [1,1,0,0,1,0,1,0,1,0]
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> 0
[1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> 1
[1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 0
[1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> []
=> ? = 0
[1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> []
=> []
=> ? = 0
[1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [7,6,5,3,2,1]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 5
[1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [7,6,4,3,2,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 5
[1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [7,5,4,3,2,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 5
[1,1,0,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [6,6,1,1,1,1]
=> [1,1,0,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> ? = 1
[1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,3]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 4
[1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> [6,6,5,4,3]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 3
[1,1,1,0,0,0,1,0,1,0,1,1,0,1,0,0]
=> [6,5,5,4,3]
=> [1,1,1,0,0,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 3
[1,1,1,0,0,1,0,0,1,1,1,1,0,0,0,0]
=> [4,4,4,4,2]
=> [1,1,1,0,0,1,0,0,1,1,1,1,0,0,0,0]
=> ? = 0
[1,1,1,0,1,1,1,0,0,0,0,0,1,1,0,0]
=> [6,6,1,1,1]
=> [1,1,1,0,1,1,1,0,0,0,0,0,1,1,0,0]
=> ? = 1
[1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 3
[1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> [4,4,4,4]
=> [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 0
[1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> [7,6,5]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 2
[1,1,1,1,1,0,0,1,0,0,0,0,1,1,0,0]
=> [6,6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,1,0,0]
=> ? = 0
[1,1,1,1,1,0,1,0,0,0,0,0,1,1,0,0]
=> [6,6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,1,0,0]
=> ? = 1
[1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> [7,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 1
[1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [6,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 0
[1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 0
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> []
=> []
=> ? = 0
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 0
[1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 1
[1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 0
[1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> ? = 2
[1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> ? = 1
[1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 0
[1,0,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [2,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> ? = 2
[1,0,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [2,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> ? = 2
[1,0,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [3,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> ? = 3
[1,0,1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0]
=> [3,2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0]
=> ? = 3
[1,0,1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0]
=> [4,3,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0]
=> ? = 4
[1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,1,0]
=> [8,7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,1,0]
=> ? = 1
[1,0,1,1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0,0]
=> [4,3,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0,0]
=> ? = 4
[1,0,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,2,2,2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 2
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0,1,0]
=> [9,8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0,1,0]
=> ? = 1
[1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> []
=> []
=> ? = 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [8,7,6,5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 8
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [7,7,6,5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 7
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [7,6,6,5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 7
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [7,6,5,5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> ? = 7
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [7,6,5,4,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 7
[1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [7,6,5,4,3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 7
[1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [7,6,5,4,3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 7
[1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [7,6,5,4,3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 7
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [9,8,7,6,5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9
Description
The number of occurrences of the pattern UDU in a Dyck path. The number of Dyck paths with statistic value 0 are counted by the Motzkin numbers [1].
Mp00027: Dyck paths to partitionInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
St001484: Integer partitions ⟶ ℤResult quality: 81% values known / values provided: 81%distinct values known / distinct values provided: 100%
Values
[1,0]
=> []
=> []
=> 0
[1,0,1,0]
=> [1]
=> [1]
=> 1
[1,1,0,0]
=> []
=> []
=> 0
[1,0,1,0,1,0]
=> [2,1]
=> [2,1]
=> 2
[1,0,1,1,0,0]
=> [1,1]
=> [2]
=> 1
[1,1,0,0,1,0]
=> [2]
=> [1,1]
=> 0
[1,1,0,1,0,0]
=> [1]
=> [1]
=> 1
[1,1,1,0,0,0]
=> []
=> []
=> 0
[1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [3,2,1]
=> 3
[1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [3,2]
=> 2
[1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [3,1,1]
=> 1
[1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [3,1]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [3]
=> 1
[1,1,0,0,1,0,1,0]
=> [3,2]
=> [2,2,1]
=> 1
[1,1,0,0,1,1,0,0]
=> [2,2]
=> [2,2]
=> 0
[1,1,0,1,0,0,1,0]
=> [3,1]
=> [2,1,1]
=> 1
[1,1,0,1,0,1,0,0]
=> [2,1]
=> [2,1]
=> 2
[1,1,0,1,1,0,0,0]
=> [1,1]
=> [2]
=> 1
[1,1,1,0,0,0,1,0]
=> [3]
=> [1,1,1]
=> 0
[1,1,1,0,0,1,0,0]
=> [2]
=> [1,1]
=> 0
[1,1,1,0,1,0,0,0]
=> [1]
=> [1]
=> 1
[1,1,1,1,0,0,0,0]
=> []
=> []
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> [4,3,2,1]
=> 4
[1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> [4,3,2]
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> [4,3,1,1]
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> [4,3,1]
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [4,3]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [4,2,2,1]
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> [4,2,2]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> [4,2,1,1]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> [4,2,1]
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [4,2]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [4,1,1,1]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [4,1,1]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [4,1]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [4]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [3,3,2,1]
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> [3,3,2]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> [3,3,1,1]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> [3,3,1]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> [3,3]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [3,2,2,1]
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [3,3,1]
=> [3,2,2]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> [3,2,1,1]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> [3,2,1]
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> [3,2]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> [3,1,1,1]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,1]
=> [3,1,1]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> [3,1]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> [3]
=> 1
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [6,4,3,3,2,1]
=> [6,5,4,2,1,1]
=> ? = 4
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [5,4,3,3,2,1]
=> [6,5,4,2,1]
=> ? = 5
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [5,4,4,2,2,1]
=> [6,5,3,3,1]
=> ? = 3
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,2,1]
=> [6,5,3,2,2,1]
=> ? = 4
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [5,5,3,2,2,1]
=> [6,5,3,2,2]
=> ? = 3
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [6,4,3,2,2,1]
=> [6,5,3,2,1,1]
=> ? = 4
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [5,4,4,3,1,1]
=> [6,4,4,3,1]
=> ? = 3
[1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,1,1]
=> [6,4,3,3,2,1]
=> ? = 4
[1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> [5,5,4,2,1,1]
=> [6,4,3,3,2]
=> ? = 3
[1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,1,1]
=> [6,4,3,2,2,1]
=> ? = 4
[1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [5,4,4,3,2]
=> [5,5,4,3,1]
=> ? = 3
[1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [5,5,4,3,1]
=> [5,4,4,3,2]
=> ? = 3
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [6,5,5,4,3,2,1]
=> [7,6,5,4,3,1]
=> ? = 6
[1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,5,5,4,3,2,1]
=> [7,6,5,4,3]
=> ? = 5
[1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [7,6,4,4,3,2,1]
=> [7,6,5,4,2,2,1]
=> ? = 5
[1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [7,5,4,4,3,2,1]
=> ?
=> ? = 5
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [6,5,4,4,3,2,1]
=> [7,6,5,4,2,1]
=> ? = 6
[1,0,1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [5,5,4,4,3,2,1]
=> [7,6,5,4,2]
=> ? = 5
[1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [5,4,4,4,3,2,1]
=> [7,6,5,4,1]
=> ? = 5
[1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,4,4,4,3,2,1]
=> [7,6,5,4]
=> ? = 4
[1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [6,5,4,3,3,2,1]
=> [7,6,5,3,2,1]
=> ? = 6
[1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [6,6,5,4,2,2,1]
=> [7,6,4,4,3,2]
=> ? = 4
[1,0,1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [6,5,5,4,2,2,1]
=> [7,6,4,4,3,1]
=> ? = 4
[1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [6,5,4,3,2,2,1]
=> [7,6,4,3,2,1]
=> ? = 6
[1,0,1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> [5,5,4,3,2,2,1]
=> ?
=> ? = 5
[1,0,1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [6,5,4,2,2,2,1]
=> [7,6,3,3,2,1]
=> ? = 4
[1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [6,6,5,4,3,1,1]
=> [7,5,5,4,3,2]
=> ? = 4
[1,0,1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [6,5,5,4,3,1,1]
=> [7,5,5,4,3,1]
=> ? = 4
[1,0,1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [6,6,5,4,2,1,1]
=> [7,5,4,4,3,2]
=> ? = 4
[1,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [6,5,5,4,2,1,1]
=> [7,5,4,4,3,1]
=> ? = 4
[1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [6,5,4,3,2,1,1]
=> [7,5,4,3,2,1]
=> ? = 6
[1,0,1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [5,5,4,3,2,1,1]
=> [7,5,4,3,2]
=> ? = 5
[1,0,1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [6,5,4,3,1,1,1]
=> [7,4,4,3,2,1]
=> ? = 4
[1,0,1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [6,5,4,2,1,1,1]
=> [7,4,3,3,2,1]
=> ? = 4
[1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,6,5,4,3,2]
=> [6,6,5,4,3,2]
=> ? = 4
[1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [6,5,5,4,3,2]
=> [6,6,5,4,3,1]
=> ? = 4
[1,1,0,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [6,5,4,4,3,2]
=> [6,6,5,4,2,1]
=> ? = 4
[1,1,0,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [6,5,4,3,3,2]
=> ?
=> ? = 4
[1,1,0,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [6,5,4,3,2,2]
=> ?
=> ? = 4
[1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [6,6,5,4,3,1]
=> [6,5,5,4,3,2]
=> ? = 4
[1,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [6,5,5,4,3,1]
=> [6,5,5,4,3,1]
=> ? = 4
[1,1,0,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [5,4,3,3,2,1]
=> [6,5,4,2,1]
=> ? = 5
[1,1,0,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [6,5,4,2,1,1]
=> [6,4,3,3,2,1]
=> ? = 4
[1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> [6,6,5,4,3]
=> [5,5,5,4,3,2]
=> ? = 3
[1,1,1,0,0,0,1,0,1,0,1,1,0,1,0,0]
=> [6,5,5,4,3]
=> [5,5,5,4,3,1]
=> ? = 3
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0,1,0]
=> [9,8]
=> [2,2,2,2,2,2,2,2,1]
=> ? = 1
[1,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [6,5,5,4,3,2,1]
=> [7,6,5,4,3,1]
=> ? = 6
[1,1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [5,5,5,4,3,2,1]
=> [7,6,5,4,3]
=> ? = 5
[1,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [6,5,4,4,3,2,1]
=> [7,6,5,4,2,1]
=> ? = 6
[1,1,0,1,0,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [5,5,4,4,3,2,1]
=> [7,6,5,4,2]
=> ? = 5
Description
The number of singletons of an integer partition. A singleton in an integer partition is a part that appear precisely once.
Mp00124: Dyck paths Adin-Bagno-Roichman transformationDyck paths
Mp00027: Dyck paths to partitionInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
St001067: Dyck paths ⟶ ℤResult quality: 70% values known / values provided: 71%distinct values known / distinct values provided: 70%
Values
[1,0]
=> [1,0]
=> []
=> []
=> ? = 0
[1,0,1,0]
=> [1,0,1,0]
=> [1]
=> [1,0,1,0]
=> 1
[1,1,0,0]
=> [1,1,0,0]
=> []
=> []
=> ? = 0
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> 2
[1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [1]
=> [1,0,1,0]
=> 1
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [2]
=> [1,1,0,0,1,0]
=> 0
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> 1
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> []
=> []
=> ? = 0
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> 3
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> 2
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> [1,0,1,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> [1,1,0,0,1,0]
=> 0
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 1
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> 2
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 0
[1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 0
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? = 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> [1,0,1,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [1,1,0,0,1,0,1,0,1,0]
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> [1,1,0,0,1,0]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [1,0,1,1,0,0,1,0,1,0]
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> [1,0,1,0,1,1,0,0,1,0]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> 1
[1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 0
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 0
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> []
=> ? = 0
[1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> []
=> []
=> ? = 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 7
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [6,5,4,3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 6
[1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [7,6,4,3,2,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 5
[1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [7,5,4,3,2,1,1]
=> ?
=> ? = 5
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [6,5,4,3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 6
[1,0,1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [5,4,3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> ? = 5
[1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [6,5,4,3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 6
[1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [6,5,4,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> ? = 6
[1,0,1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [5,4,3,3,3,2,1]
=> [1,0,1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> ? = 5
[1,0,1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> [6,5,4,4,2,1]
=> ?
=> ? = 4
[1,0,1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [6,5,4,2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> ? = 4
[1,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [6,5,4,2,2,1,1]
=> ?
=> ? = 4
[1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [6,5,5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 6
[1,0,1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [5,4,4,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> ? = 5
[1,0,1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [6,5,5,4,3,1]
=> [1,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 4
[1,0,1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [6,5,5,4,2,1]
=> ?
=> ? = 4
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,3,2]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 5
[1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [6,5,4,3,2,2]
=> [1,1,0,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 4
[1,1,0,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [6,5,4,3,3,2]
=> [1,1,0,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 4
[1,1,0,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [6,5,4,4,3,2]
=> [1,1,0,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> ? = 4
[1,1,0,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [6,5,5,4,3,2]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 4
[1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [6,5,4,3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> ? = 4
[1,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> [6,5,4,3,3,1,1]
=> ?
=> ? = 4
[1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [7,6,5,3,3,2,1]
=> ?
=> ? = 5
[1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [7,6,4,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 5
[1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [7,5,5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 5
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,6,5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 6
[1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,5,5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 5
[1,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [5,5,4,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> ? = 5
[1,1,0,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,4,4,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 4
[1,1,0,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [5,5,4,3,3,2,1]
=> ?
=> ? = 5
[1,1,0,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [4,4,4,3,3,2,1]
=> ?
=> ? = 4
[1,1,0,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [4,4,3,3,3,2,1]
=> ?
=> ? = 4
[1,1,0,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [6,6,5,4,2,2,1]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ? = 4
[1,1,0,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,1,1,0,0,0,0]
=> [4,4,3,3,2,2,1]
=> ?
=> ? = 4
[1,1,0,1,0,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [4,4,3,2,2,2,1]
=> ?
=> ? = 4
[1,1,0,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [6,6,5,4,3,1,1]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 4
[1,1,0,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [6,6,5,4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> ? = 4
[1,1,0,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [5,5,4,3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> ? = 5
[1,1,0,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [4,4,4,3,2,1,1]
=> ?
=> ? = 4
[1,1,0,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> [4,4,3,2,2,1,1]
=> [1,0,1,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> ? = 4
[1,1,0,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> [4,4,3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> ? = 4
[1,1,0,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [6,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> ? = 1
Description
The number of simple modules of dominant dimension at least two in the corresponding Nakayama algebra.
Mp00027: Dyck paths to partitionInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00030: Dyck paths zeta mapDyck paths
St001189: Dyck paths ⟶ ℤResult quality: 70% values known / values provided: 70%distinct values known / distinct values provided: 70%
Values
[1,0]
=> []
=> []
=> []
=> ? = 0
[1,0,1,0]
=> [1]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1
[1,1,0,0]
=> []
=> []
=> []
=> ? = 0
[1,0,1,0,1,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 2
[1,0,1,1,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> [2]
=> [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> 0
[1,1,0,1,0,0]
=> [1]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1
[1,1,1,0,0,0]
=> []
=> []
=> []
=> ? = 0
[1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 3
[1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2
[1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 0
[1,1,0,1,0,0,1,0]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[1,1,0,1,0,1,0,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 2
[1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[1,1,1,0,0,0,1,0]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 0
[1,1,1,0,0,1,0,0]
=> [2]
=> [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> 0
[1,1,1,0,1,0,0,0]
=> [1]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1
[1,1,1,1,0,0,0,0]
=> []
=> []
=> []
=> ? = 0
[1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 4
[1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 0
[1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 0
[1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> []
=> ? = 0
[1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> []
=> []
=> ? = 0
[1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> []
=> []
=> []
=> ? = 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 7
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,6,5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 6
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [6,5,5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 6
[1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,5,5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 5
[1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [7,6,4,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 5
[1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [7,5,4,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 5
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [6,5,4,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 6
[1,0,1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [5,5,4,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 5
[1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [5,4,4,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 5
[1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,4,4,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 4
[1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [6,5,4,3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 6
[1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [3,3,3,3,3,2,1]
=> [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 3
[1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [6,6,5,4,2,2,1]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> ? = 4
[1,0,1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [6,5,5,4,2,2,1]
=> [1,0,1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,1,1,0,0,0,0,0]
=> ? = 4
[1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [6,5,4,3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0]
=> ? = 6
[1,0,1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> [5,5,4,3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> ? = 5
[1,0,1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [6,5,4,2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,1,1,0,0,0]
=> ? = 4
[1,0,1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [4,3,2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 4
[1,0,1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [3,2,2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 3
[1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,2,2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 2
[1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [6,6,5,4,3,1,1]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> ? = 4
[1,0,1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [6,5,5,4,3,1,1]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,1,0,1,1,0,0,0,0,0]
=> ? = 4
[1,0,1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [6,6,5,4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,1,1,0,0,1,1,0,0,0,0,0]
=> ? = 4
[1,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [6,5,5,4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,1,1,0,0,1,1,0,0,0,0]
=> ? = 4
[1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [6,5,4,3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 6
[1,0,1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [5,5,4,3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> ? = 5
[1,0,1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [6,5,4,3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,1,0,0]
=> ? = 4
[1,0,1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [6,5,4,2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,1,0,0]
=> ? = 4
[1,0,1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [5,4,3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,1,0,0]
=> ? = 5
[1,0,1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [4,3,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,1,0,0]
=> ? = 4
[1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [2,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ? = 2
[1,0,1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [6,6,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> ? = 1
[1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [3,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 3
[1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,3,2]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> ? = 5
[1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,6,5,4,3,2]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ? = 4
[1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [6,5,5,4,3,2]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 4
[1,1,0,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [6,5,4,4,3,2]
=> [1,1,0,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,1,1,0,1,0,0,0,0]
=> ? = 4
[1,1,0,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [6,5,4,3,3,2]
=> [1,1,0,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,1,0,0,0]
=> ? = 4
[1,1,0,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [6,5,4,3,2,2]
=> [1,1,0,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,1,0,0]
=> ? = 4
[1,1,0,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [6,2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,1,0,1,0,0]
=> ? = 0
Description
The number of simple modules with dominant and codominant dimension equal to zero in the Nakayama algebra corresponding to the Dyck path.
Mp00028: Dyck paths reverseDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00121: Dyck paths Cori-Le Borgne involutionDyck paths
St000445: Dyck paths ⟶ ℤResult quality: 69% values known / values provided: 69%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> 0
[1,0,1,0]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[1,1,0,0]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 0
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0]
=> 0
[1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 3
[1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 2
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 0
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 1
[1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 0
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 0
[1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 4
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0]
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,0]
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 1
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,0,1,0,0,1,0]
=> ? = 3
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,1,0,0]
=> ? = 3
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0,1,0]
=> ? = 3
[1,0,1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> ? = 3
[1,0,1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,1,0,0]
=> ? = 3
[1,0,1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,0,1,0]
=> ? = 3
[1,0,1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,0,1,0]
=> ? = 3
[1,1,0,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0,1,1,0,0]
=> ? = 1
[1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,1,1,1,0,0,0,0]
=> ? = 2
[1,1,1,0,0,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,1,0,1,1,1,0,0,0,0]
=> ? = 2
[1,1,1,0,0,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,0,1,1,1,0,0,0,0]
=> ? = 1
[1,1,1,1,0,0,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,1,1,0,1,1,0,0,0,0,0]
=> [1,1,0,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> ? = 1
[1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 5
[1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 5
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 6
[1,0,1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 5
[1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,1,0,1,0,1,0,0]
=> ? = 5
[1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 6
[1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,1,0,1,0,0,0,0]
=> ? = 3
[1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 4
[1,0,1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,1,0,0,1,0,1,0,0]
=> ?
=> ? = 4
[1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 6
[1,0,1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 5
[1,0,1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,1,1,0,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> ? = 4
[1,0,1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,0,1,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,1,0,1,0,0]
=> ?
=> ? = 4
[1,0,1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,1,0,1,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,1,0,1,0,0,0,0]
=> ? = 3
[1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,1,0,0,0,0,0]
=> ? = 2
[1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,1,1,0,0,0,1,0]
=> ? = 4
[1,0,1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,1,1,0,0,1,0,0]
=> ?
=> ? = 4
[1,0,1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> ?
=> ? = 4
[1,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,0,0]
=> ?
=> ? = 4
[1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 6
[1,0,1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> ? = 4
[1,0,1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> ? = 5
[1,0,1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> ? = 4
[1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> ? = 3
[1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0,0]
=> [1,0,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> ? = 2
[1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,1,1,0,0,0]
=> ? = 4
[1,1,0,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 4
[1,1,0,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 4
[1,1,0,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 4
[1,1,0,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,1,1,0,0,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,1,1,0,0,0,0]
=> ? = 0
[1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,1,1,0,0,0,0,0]
=> ? = 0
[1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0,1,1,1,0,0,0]
=> ? = 4
[1,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0,1,1,1,0,0,0]
=> ? = 4
[1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> ? = 5
[1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> ? = 5
[1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> ? = 5
[1,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 5
[1,1,0,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0,0]
=> ? = 4
Description
The number of rises of length 1 of a Dyck path.
Mp00031: Dyck paths to 312-avoiding permutationPermutations
Mp00070: Permutations Robinson-Schensted recording tableauStandard tableaux
Mp00284: Standard tableaux rowsSet partitions
St000502: Set partitions ⟶ ℤResult quality: 63% values known / values provided: 63%distinct values known / distinct values provided: 80%
Values
[1,0]
=> [1] => [[1]]
=> {{1}}
=> ? = 0
[1,0,1,0]
=> [1,2] => [[1,2]]
=> {{1,2}}
=> 1
[1,1,0,0]
=> [2,1] => [[1],[2]]
=> {{1},{2}}
=> 0
[1,0,1,0,1,0]
=> [1,2,3] => [[1,2,3]]
=> {{1,2,3}}
=> 2
[1,0,1,1,0,0]
=> [1,3,2] => [[1,2],[3]]
=> {{1,2},{3}}
=> 1
[1,1,0,0,1,0]
=> [2,1,3] => [[1,3],[2]]
=> {{1,3},{2}}
=> 0
[1,1,0,1,0,0]
=> [2,3,1] => [[1,2],[3]]
=> {{1,2},{3}}
=> 1
[1,1,1,0,0,0]
=> [3,2,1] => [[1],[2],[3]]
=> {{1},{2},{3}}
=> 0
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [[1,2,3,4]]
=> {{1,2,3,4}}
=> 3
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [[1,2,3],[4]]
=> {{1,2,3},{4}}
=> 2
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [[1,2,4],[3]]
=> {{1,2,4},{3}}
=> 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [[1,2,3],[4]]
=> {{1,2,3},{4}}
=> 2
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [[1,2],[3],[4]]
=> {{1,2},{3},{4}}
=> 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [[1,3,4],[2]]
=> {{1,3,4},{2}}
=> 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [[1,3],[2,4]]
=> {{1,3},{2,4}}
=> 0
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [[1,2,4],[3]]
=> {{1,2,4},{3}}
=> 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [[1,2,3],[4]]
=> {{1,2,3},{4}}
=> 2
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [[1,2],[3],[4]]
=> {{1,2},{3},{4}}
=> 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [[1,4],[2],[3]]
=> {{1,4},{2},{3}}
=> 0
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [[1,3],[2],[4]]
=> {{1,3},{2},{4}}
=> 0
[1,1,1,0,1,0,0,0]
=> [3,4,2,1] => [[1,2],[3],[4]]
=> {{1,2},{3},{4}}
=> 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [[1],[2],[3],[4]]
=> {{1},{2},{3},{4}}
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [[1,2,3,4,5]]
=> {{1,2,3,4,5}}
=> 4
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [[1,2,3,4],[5]]
=> {{1,2,3,4},{5}}
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [[1,2,3,5],[4]]
=> {{1,2,3,5},{4}}
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [[1,2,3,4],[5]]
=> {{1,2,3,4},{5}}
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [[1,2,3],[4],[5]]
=> {{1,2,3},{4},{5}}
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [[1,2,4,5],[3]]
=> {{1,2,4,5},{3}}
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [[1,2,4],[3,5]]
=> {{1,2,4},{3,5}}
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [[1,2,3,5],[4]]
=> {{1,2,3,5},{4}}
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [[1,2,3,4],[5]]
=> {{1,2,3,4},{5}}
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [[1,2,3],[4],[5]]
=> {{1,2,3},{4},{5}}
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [[1,2,5],[3],[4]]
=> {{1,2,5},{3},{4}}
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [[1,2,4],[3],[5]]
=> {{1,2,4},{3},{5}}
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => [[1,2,3],[4],[5]]
=> {{1,2,3},{4},{5}}
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [[1,2],[3],[4],[5]]
=> {{1,2},{3},{4},{5}}
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [[1,3,4,5],[2]]
=> {{1,3,4,5},{2}}
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [[1,3,4],[2,5]]
=> {{1,3,4},{2,5}}
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [[1,3,5],[2,4]]
=> {{1,3,5},{2,4}}
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [[1,3,4],[2,5]]
=> {{1,3,4},{2,5}}
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [[1,3],[2,4],[5]]
=> {{1,3},{2,4},{5}}
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [[1,2,4,5],[3]]
=> {{1,2,4,5},{3}}
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [[1,2,4],[3,5]]
=> {{1,2,4},{3,5}}
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [[1,2,3,5],[4]]
=> {{1,2,3,5},{4}}
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [[1,2,3,4],[5]]
=> {{1,2,3,4},{5}}
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [[1,2,3],[4],[5]]
=> {{1,2,3},{4},{5}}
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [[1,2,5],[3],[4]]
=> {{1,2,5},{3},{4}}
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [[1,2,4],[3],[5]]
=> {{1,2,4},{3},{5}}
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => [[1,2,3],[4],[5]]
=> {{1,2,3},{4},{5}}
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [[1,2],[3],[4],[5]]
=> {{1,2},{3},{4},{5}}
=> 1
[1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [[1,4,5],[2],[3]]
=> {{1,4,5},{2},{3}}
=> 1
[1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,4,5,8,7,6] => [[1,2,3,4,5,6],[7],[8]]
=> {{1,2,3,4,5,6},{7},{8}}
=> ? = 5
[1,0,1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,2,3,4,6,8,7,5] => [[1,2,3,4,5,6],[7],[8]]
=> {{1,2,3,4,5,6},{7},{8}}
=> ? = 5
[1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,2,3,4,7,8,6,5] => [[1,2,3,4,5,6],[7],[8]]
=> {{1,2,3,4,5,6},{7},{8}}
=> ? = 5
[1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,3,4,8,7,6,5] => [[1,2,3,4,5],[6],[7],[8]]
=> {{1,2,3,4,5},{6},{7},{8}}
=> ? = 4
[1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,8,7,6,5,4] => [[1,2,3,4],[5],[6],[7],[8]]
=> {{1,2,3,4},{5},{6},{7},{8}}
=> ? = 3
[1,0,1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,2,4,5,6,8,7,3] => [[1,2,3,4,5,6],[7],[8]]
=> {{1,2,3,4,5,6},{7},{8}}
=> ? = 5
[1,0,1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,2,5,4,6,7,8,3] => [[1,2,3,5,6,7],[4],[8]]
=> {{1,2,3,5,6,7},{4},{8}}
=> ? = 4
[1,0,1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,2,6,7,8,5,4,3] => [[1,2,3,4,5],[6],[7],[8]]
=> {{1,2,3,4,5},{6},{7},{8}}
=> ? = 4
[1,0,1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,2,7,8,6,5,4,3] => [[1,2,3,4],[5],[6],[7],[8]]
=> {{1,2,3,4},{5},{6},{7},{8}}
=> ? = 3
[1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,8,7,6,5,4,3] => [[1,2,3],[4],[5],[6],[7],[8]]
=> {{1,2,3},{4},{5},{6},{7},{8}}
=> ? = 2
[1,0,1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,3,4,5,6,8,7,2] => [[1,2,3,4,5,6],[7],[8]]
=> {{1,2,3,4,5,6},{7},{8}}
=> ? = 5
[1,0,1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,4,3,5,6,7,8,2] => [[1,2,4,5,6,7],[3],[8]]
=> {{1,2,4,5,6,7},{3},{8}}
=> ? = 4
[1,0,1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,4,5,3,6,7,8,2] => [[1,2,3,5,6,7],[4],[8]]
=> {{1,2,3,5,6,7},{4},{8}}
=> ? = 4
[1,0,1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,4,5,6,7,8,3,2] => [[1,2,3,4,5,6],[7],[8]]
=> {{1,2,3,4,5,6},{7},{8}}
=> ? = 5
[1,0,1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,5,6,7,8,4,3,2] => [[1,2,3,4,5],[6],[7],[8]]
=> {{1,2,3,4,5},{6},{7},{8}}
=> ? = 4
[1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,5,8,7,6,4,3,2] => [[1,2,3],[4],[5],[6],[7],[8]]
=> {{1,2,3},{4},{5},{6},{7},{8}}
=> ? = 2
[1,0,1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,6,5,4,3,2,8,7] => [[1,2,7],[3,8],[4],[5],[6]]
=> {{1,2,7},{3,8},{4},{5},{6}}
=> ? = 1
[1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,6,7,8,5,4,3,2] => [[1,2,3,4],[5],[6],[7],[8]]
=> {{1,2,3,4},{5},{6},{7},{8}}
=> ? = 3
[1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,6,8,7,5,4,3,2] => [[1,2,3],[4],[5],[6],[7],[8]]
=> {{1,2,3},{4},{5},{6},{7},{8}}
=> ? = 2
[1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,7,8,6,5,4,3,2] => [[1,2,3],[4],[5],[6],[7],[8]]
=> {{1,2,3},{4},{5},{6},{7},{8}}
=> ? = 2
[1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,8,7,6,5,4,3,2] => [[1,2],[3],[4],[5],[6],[7],[8]]
=> {{1,2},{3},{4},{5},{6},{7},{8}}
=> ? = 1
[1,1,0,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [2,1,7,6,5,4,8,3] => [[1,3,7],[2,4],[5],[6],[8]]
=> {{1,3,7},{2,4},{5},{6},{8}}
=> ? = 0
[1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,1,8,7,6,5,4,3] => [[1,3],[2,4],[5],[6],[7],[8]]
=> {{1,3},{2,4},{5},{6},{7},{8}}
=> ? = 0
[1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [2,3,4,5,6,8,7,1] => [[1,2,3,4,5,6],[7],[8]]
=> {{1,2,3,4,5,6},{7},{8}}
=> ? = 5
[1,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [2,3,4,5,7,8,6,1] => [[1,2,3,4,5,6],[7],[8]]
=> {{1,2,3,4,5,6},{7},{8}}
=> ? = 5
[1,1,0,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [2,3,4,5,8,7,6,1] => [[1,2,3,4,5],[6],[7],[8]]
=> {{1,2,3,4,5},{6},{7},{8}}
=> ? = 4
[1,1,0,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [2,3,4,6,7,8,5,1] => [[1,2,3,4,5,6],[7],[8]]
=> {{1,2,3,4,5,6},{7},{8}}
=> ? = 5
[1,1,0,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [2,3,4,6,8,7,5,1] => [[1,2,3,4,5],[6],[7],[8]]
=> {{1,2,3,4,5},{6},{7},{8}}
=> ? = 4
[1,1,0,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> [2,3,4,7,8,6,5,1] => [[1,2,3,4,5],[6],[7],[8]]
=> {{1,2,3,4,5},{6},{7},{8}}
=> ? = 4
[1,1,0,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [2,3,5,4,6,7,8,1] => [[1,2,3,5,6,7],[4],[8]]
=> {{1,2,3,5,6,7},{4},{8}}
=> ? = 4
[1,1,0,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [2,3,5,7,8,6,4,1] => [[1,2,3,4,5],[6],[7],[8]]
=> {{1,2,3,4,5},{6},{7},{8}}
=> ? = 4
[1,1,0,1,0,1,1,1,0,1,0,1,0,0,0,0]
=> [2,3,6,7,8,5,4,1] => [[1,2,3,4,5],[6],[7],[8]]
=> {{1,2,3,4,5},{6},{7},{8}}
=> ? = 4
[1,1,0,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [2,4,3,5,6,7,8,1] => [[1,2,4,5,6,7],[3],[8]]
=> {{1,2,4,5,6,7},{3},{8}}
=> ? = 4
[1,1,0,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [2,4,5,3,6,7,8,1] => [[1,2,3,5,6,7],[4],[8]]
=> {{1,2,3,5,6,7},{4},{8}}
=> ? = 4
[1,1,0,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [2,4,5,6,7,8,3,1] => [[1,2,3,4,5,6],[7],[8]]
=> {{1,2,3,4,5,6},{7},{8}}
=> ? = 5
[1,1,0,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> [2,4,5,6,8,7,3,1] => [[1,2,3,4,5],[6],[7],[8]]
=> {{1,2,3,4,5},{6},{7},{8}}
=> ? = 4
[1,1,0,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> [2,4,6,7,8,5,3,1] => [[1,2,3,4,5],[6],[7],[8]]
=> {{1,2,3,4,5},{6},{7},{8}}
=> ? = 4
[1,1,0,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [2,5,6,7,8,4,3,1] => [[1,2,3,4,5],[6],[7],[8]]
=> {{1,2,3,4,5},{6},{7},{8}}
=> ? = 4
[1,1,0,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [2,6,5,4,3,1,8,7] => [[1,2,7],[3,8],[4],[5],[6]]
=> {{1,2,7},{3,8},{4},{5},{6}}
=> ? = 1
[1,1,0,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [2,6,7,8,5,4,3,1] => [[1,2,3,4],[5],[6],[7],[8]]
=> {{1,2,3,4},{5},{6},{7},{8}}
=> ? = 3
[1,1,0,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [2,7,6,5,4,3,8,1] => [[1,2,7],[3],[4],[5],[6],[8]]
=> {{1,2,7},{3},{4},{5},{6},{8}}
=> ? = 1
[1,1,0,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [2,7,8,6,5,4,3,1] => [[1,2,3],[4],[5],[6],[7],[8]]
=> {{1,2,3},{4},{5},{6},{7},{8}}
=> ? = 2
[1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,8,7,6,5,4,3,1] => [[1,2],[3],[4],[5],[6],[7],[8]]
=> {{1,2},{3},{4},{5},{6},{7},{8}}
=> ? = 1
[1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> [3,2,1,4,5,6,8,7] => [[1,4,5,6,7],[2,8],[3]]
=> {{1,4,5,6,7},{2,8},{3}}
=> ? = 3
[1,1,1,0,0,0,1,0,1,0,1,1,0,1,0,0]
=> [3,2,1,4,5,7,8,6] => [[1,4,5,6,7],[2,8],[3]]
=> {{1,4,5,6,7},{2,8},{3}}
=> ? = 3
[1,1,1,0,0,1,0,0,1,1,1,1,0,0,0,0]
=> [3,2,4,1,8,7,6,5] => [[1,3,5],[2,6],[4,7],[8]]
=> {{1,3,5},{2,6},{4,7},{8}}
=> ? = 0
[1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> [3,2,4,5,6,7,8,1] => [[1,3,4,5,6,7],[2],[8]]
=> {{1,3,4,5,6,7},{2},{8}}
=> ? = 4
[1,1,1,0,1,0,0,1,0,1,0,1,0,1,0,0]
=> [3,4,2,5,6,7,8,1] => [[1,2,4,5,6,7],[3],[8]]
=> {{1,2,4,5,6,7},{3},{8}}
=> ? = 4
[1,1,1,0,1,0,1,0,0,1,0,1,0,1,0,0]
=> [3,4,5,2,6,7,8,1] => [[1,2,3,5,6,7],[4],[8]]
=> {{1,2,3,5,6,7},{4},{8}}
=> ? = 4
Description
The number of successions of a set partitions. This is the number of indices i such that i and i+1 belonging to the same block.
Matching statistic: St000504
Mp00032: Dyck paths inverse zeta mapDyck paths
Mp00138: Dyck paths to noncrossing partitionSet partitions
Mp00171: Set partitions intertwining number to dual major indexSet partitions
St000504: Set partitions ⟶ ℤResult quality: 61% values known / values provided: 61%distinct values known / distinct values provided: 80%
Values
[1,0]
=> [1,0]
=> {{1}}
=> {{1}}
=> ? = 0 + 1
[1,0,1,0]
=> [1,1,0,0]
=> {{1,2}}
=> {{1,2}}
=> 2 = 1 + 1
[1,1,0,0]
=> [1,0,1,0]
=> {{1},{2}}
=> {{1},{2}}
=> 1 = 0 + 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> {{1,2,3}}
=> {{1,2,3}}
=> 3 = 2 + 1
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> {{1},{2,3}}
=> {{1,3},{2}}
=> 2 = 1 + 1
[1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> {{1,3},{2}}
=> {{1},{2,3}}
=> 1 = 0 + 1
[1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> {{1,2},{3}}
=> {{1,2},{3}}
=> 2 = 1 + 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> {{1},{2},{3}}
=> {{1},{2},{3}}
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> {{1,2,3,4}}
=> 4 = 3 + 1
[1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> {{1,3,4},{2}}
=> 3 = 2 + 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> {{1,3,4},{2}}
=> {{1,4},{2,3}}
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> {{1,2,3},{4}}
=> {{1,2,3},{4}}
=> 3 = 2 + 1
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> {{1},{2},{3,4}}
=> {{1,4},{2},{3}}
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> {{1,2,4},{3}}
=> {{1,2},{3,4}}
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> {{1},{2,4},{3}}
=> {{1},{2,4},{3}}
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> {{1,4},{2,3}}
=> {{1,3},{2,4}}
=> 2 = 1 + 1
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> {{1,2},{3,4}}
=> {{1,2,4},{3}}
=> 3 = 2 + 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> {{1},{2,3},{4}}
=> {{1,3},{2},{4}}
=> 2 = 1 + 1
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> {{1,4},{2},{3}}
=> {{1},{2},{3,4}}
=> 1 = 0 + 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> {{1,3},{2},{4}}
=> {{1},{2,3},{4}}
=> 1 = 0 + 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> {{1,2},{3},{4}}
=> {{1,2},{3},{4}}
=> 2 = 1 + 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4}}
=> {{1},{2},{3},{4}}
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> {{1,2,3,4,5}}
=> 5 = 4 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3,4,5}}
=> {{1,3,4,5},{2}}
=> 4 = 3 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> {{1,3,4,5},{2}}
=> {{1,4,5},{2,3}}
=> 3 = 2 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> {{1,2,3,4},{5}}
=> {{1,2,3,4},{5}}
=> 4 = 3 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5}}
=> {{1,4,5},{2},{3}}
=> 3 = 2 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> {{1,2,4,5},{3}}
=> {{1,2,5},{3,4}}
=> 3 = 2 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> {{1},{2,4,5},{3}}
=> {{1,5},{2,4},{3}}
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> {{1,5},{2,3,4}}
=> {{1,3,4},{2,5}}
=> 3 = 2 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5}}
=> {{1,2,4,5},{3}}
=> 4 = 3 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> {{1},{2,3,4},{5}}
=> {{1,3,4},{2},{5}}
=> 3 = 2 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> {{1,4,5},{2},{3}}
=> {{1,5},{2},{3,4}}
=> 2 = 1 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> {{1,3,4},{2},{5}}
=> {{1,4},{2,3},{5}}
=> 2 = 1 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> {{1,2,3},{4},{5}}
=> {{1,2,3},{4},{5}}
=> 3 = 2 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4,5}}
=> {{1,5},{2},{3},{4}}
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> {{1,2,3,5},{4}}
=> {{1,2,3},{4,5}}
=> 3 = 2 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> {{1},{2,3,5},{4}}
=> {{1,3},{2,5},{4}}
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> {{1,3,5},{2},{4}}
=> {{1},{2,3,5},{4}}
=> 1 = 0 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> {{1,2,4},{3},{5}}
=> {{1,2},{3,4},{5}}
=> 2 = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> {{1},{2},{3,5},{4}}
=> {{1},{2,5},{3},{4}}
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> {{1,2,5},{3,4}}
=> {{1,2,4},{3,5}}
=> 3 = 2 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> {{1},{2,5},{3,4}}
=> {{1,4},{2,5},{3}}
=> 2 = 1 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> {{1,4,5},{2,3}}
=> {{1,3,5},{2,4}}
=> 3 = 2 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> {{1,2,3},{4,5}}
=> {{1,2,3,5},{4}}
=> 4 = 3 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4,5}}
=> {{1,3,5},{2},{4}}
=> 3 = 2 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> {{1,5},{2},{3,4}}
=> {{1,4},{2},{3,5}}
=> 2 = 1 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> {{1,4},{2,3},{5}}
=> {{1,3},{2,4},{5}}
=> 2 = 1 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> {{1,2},{3},{4,5}}
=> {{1,2,5},{3},{4}}
=> 3 = 2 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> {{1},{2},{3,4},{5}}
=> {{1,4},{2},{3},{5}}
=> 2 = 1 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> {{1,2,5},{3},{4}}
=> {{1,2},{3},{4,5}}
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> {{1},{2,3,4,5,6,7},{8}}
=> {{1,3,4,5,6,7},{2},{8}}
=> ? = 5 + 1
[1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> {{1,2,3,4,5,6},{7},{8}}
=> {{1,2,3,4,5,6},{7},{8}}
=> ? = 5 + 1
[1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> {{1},{2},{3},{4,5,6,7,8}}
=> {{1,5,6,7,8},{2},{3},{4}}
=> ? = 4 + 1
[1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> {{1},{2},{3},{4},{5,6,7,8}}
=> {{1,6,7,8},{2},{3},{4},{5}}
=> ? = 3 + 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> {{1},{2,3,4,6,7,8},{5}}
=> {{1,3,4,7,8},{2,6},{5}}
=> ? = 4 + 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0,1,0]
=> {{1,2,3,5,6,7},{4},{8}}
=> {{1,2,3,6,7},{4,5},{8}}
=> ? = 4 + 1
[1,0,1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> {{1},{2,3,4,5,6},{7,8}}
=> {{1,3,4,5,6,8},{2},{7}}
=> ? = 5 + 1
[1,0,1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0,1,1,0,0]
=> {{1,2,4,5,6},{3},{7,8}}
=> {{1,2,5,6,8},{3,4},{7}}
=> ? = 4 + 1
[1,0,1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> {{1,2},{3,4,5,6},{7},{8}}
=> ?
=> ? = 4 + 1
[1,0,1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> {{1,2,3,4},{5},{6},{7},{8}}
=> {{1,2,3,4},{5},{6},{7},{8}}
=> ? = 3 + 1
[1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3},{4},{5},{6,7,8}}
=> {{1,7,8},{2},{3},{4},{5},{6}}
=> ? = 2 + 1
[1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> {{1},{2,3,4,5,7,8},{6}}
=> {{1,3,4,5,8},{2,7},{6}}
=> ? = 4 + 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> {{1,2,3,4,6,7},{5},{8}}
=> {{1,2,3,4,7},{5,6},{8}}
=> ? = 4 + 1
[1,0,1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> {{1},{2,3,4,8},{5,6,7}}
=> {{1,3,4,6,7},{2,8},{5}}
=> ? = 4 + 1
[1,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0]
=> {{1,2,3,7},{4,5,6},{8}}
=> {{1,2,3,5,6},{4,7},{8}}
=> ? = 4 + 1
[1,0,1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3,4},{5,6,7,8}}
=> ?
=> ? = 5 + 1
[1,0,1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,1,1,0,0,0,0]
=> {{1,2,3},{4,5,7,8},{6}}
=> {{1,2,3,5,8},{4,7},{6}}
=> ? = 4 + 1
[1,0,1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,1,1,1,0,0,0,0]
=> {{1,2,4},{3},{5,6,7,8}}
=> {{1,2,6,7,8},{3,4},{5}}
=> ? = 4 + 1
[1,0,1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> {{1,2,3,4},{5,6},{7,8}}
=> {{1,2,3,4,6,8},{5},{7}}
=> ? = 5 + 1
[1,0,1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> {{1,2},{3,4},{5,6,7},{8}}
=> ?
=> ? = 4 + 1
[1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> {{1},{2},{3,4,5},{6},{7},{8}}
=> {{1,4,5},{2},{3},{6},{7},{8}}
=> ? = 2 + 1
[1,0,1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> {{1},{2,7,8},{3},{4},{5},{6}}
=> {{1,8},{2},{3},{4},{5,7},{6}}
=> ? = 1 + 1
[1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> {{1,2},{3,4,5},{6},{7},{8}}
=> {{1,2,4,5},{3},{6},{7},{8}}
=> ? = 3 + 1
[1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> {{1},{2,3,4},{5},{6},{7},{8}}
=> {{1,3,4},{2},{5},{6},{7},{8}}
=> ? = 2 + 1
[1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> {{1,2,3},{4},{5},{6},{7},{8}}
=> {{1,2,3},{4},{5},{6},{7},{8}}
=> ? = 2 + 1
[1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4},{5},{6},{7,8}}
=> {{1,8},{2},{3},{4},{5},{6},{7}}
=> ? = 1 + 1
[1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> {{1},{2,3,4,5,6,8},{7}}
=> {{1,3,4,5,6},{2,8},{7}}
=> ? = 4 + 1
[1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> {{1,2,3,4,5,7},{6},{8}}
=> {{1,2,3,4,5},{6,7},{8}}
=> ? = 4 + 1
[1,1,0,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> {{1,2},{3,4,5,6,8},{7}}
=> {{1,2,4,5,6},{3,8},{7}}
=> ? = 4 + 1
[1,1,0,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,1,0,0]
=> {{1,2,3,4,6},{5},{7,8}}
=> {{1,2,3,4,8},{5,6},{7}}
=> ? = 4 + 1
[1,1,0,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,1,0,1,0,0,0,0]
=> {{1,2,3},{4,5,6,8},{7}}
=> {{1,2,3,5,6},{4,8},{7}}
=> ? = 4 + 1
[1,1,0,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0,1,0]
=> {{1,5,7},{2},{3},{4},{6},{8}}
=> {{1},{2,7},{3},{4,5},{6},{8}}
=> ? = 0 + 1
[1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> {{1},{2},{3},{4},{5},{6,8},{7}}
=> {{1},{2,8},{3},{4},{5},{6},{7}}
=> ? = 0 + 1
[1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> {{1},{2,3,4,5,8},{6,7}}
=> {{1,3,4,5,7},{2,8},{6}}
=> ? = 4 + 1
[1,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0]
=> {{1,2,3,4,7},{5,6},{8}}
=> {{1,2,3,4,6},{5,7},{8}}
=> ? = 4 + 1
[1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> {{1},{2,3,4,5},{6,7,8}}
=> ?
=> ? = 5 + 1
[1,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,1,1,0,0,0]
=> {{1,2,3,4},{5},{6,7,8}}
=> ?
=> ? = 5 + 1
[1,1,0,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5},{6,7,8}}
=> {{1,4,5,7,8},{2},{3},{6}}
=> ? = 4 + 1
[1,1,0,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0,1,0]
=> {{1,2,3,4},{5,6,7},{8}}
=> {{1,2,3,4,6,7},{5},{8}}
=> ? = 5 + 1
[1,1,0,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> {{1},{2,3,4},{5},{6,7,8}}
=> {{1,3,4,7,8},{2},{5},{6}}
=> ? = 4 + 1
[1,1,0,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> {{1,2,3},{4},{5},{6,7,8}}
=> {{1,2,3,7,8},{4},{5},{6}}
=> ? = 4 + 1
[1,1,0,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0,1,1,0,0]
=> {{1,2,5,6},{3,4},{7,8}}
=> ?
=> ? = 4 + 1
[1,1,0,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,1,0,0,0,1,0]
=> {{1,2,3},{4},{5,6,7},{8}}
=> ?
=> ? = 4 + 1
[1,1,0,1,0,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,0,1,0]
=> {{1,2,3},{4,5,6},{7},{8}}
=> {{1,2,3,5,6},{4},{7},{8}}
=> ? = 4 + 1
[1,1,0,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,1,0,0,0]
=> {{1,2,3},{4,5,8},{6,7}}
=> {{1,2,3,5,7},{4,8},{6}}
=> ? = 4 + 1
[1,1,0,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,1,1,0,0,0]
=> {{1,2,4,5},{3},{6,7,8}}
=> ?
=> ? = 4 + 1
[1,1,0,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,1,1,0,0,0]
=> {{1,2,3},{4,5},{6,7,8}}
=> ?
=> ? = 5 + 1
[1,1,0,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> {{1},{2,3},{4,5,6},{7,8}}
=> {{1,3,5,6,8},{2},{4},{7}}
=> ? = 4 + 1
[1,1,0,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> {{1,2},{3,4,5},{6},{7,8}}
=> ?
=> ? = 4 + 1
Description
The cardinality of the first block of a set partition. The number of partitions of {1,,n} into k blocks in which the first block has cardinality j+1 is given by \binom{n-1}{j}S(n-j-1,k-1), see [1, Theorem 1.1] and the references therein. Here, S(n,k) are the ''Stirling numbers of the second kind'' counting all set partitions of \{1,\ldots,n\} into k blocks [2].
Mp00035: Dyck paths to alternating sign matrixAlternating sign matrices
Mp00002: Alternating sign matrices to left key permutationPermutations
Mp00088: Permutations Kreweras complementPermutations
St000237: Permutations ⟶ ℤResult quality: 58% values known / values provided: 58%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [[1]]
=> [1] => [1] => 0
[1,0,1,0]
=> [[1,0],[0,1]]
=> [1,2] => [2,1] => 1
[1,1,0,0]
=> [[0,1],[1,0]]
=> [2,1] => [1,2] => 0
[1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,2,3] => [2,3,1] => 2
[1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,3,2] => [2,1,3] => 1
[1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [2,1,3] => [3,2,1] => 0
[1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,3,2] => [2,1,3] => 1
[1,1,1,0,0,0]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [3,1,2] => [3,1,2] => 0
[1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,2,3,4] => [2,3,4,1] => 3
[1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,2,4,3] => [2,3,1,4] => 2
[1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => [2,4,3,1] => 1
[1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => [2,3,1,4] => 2
[1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => [2,4,1,3] => 1
[1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [2,1,3,4] => [3,2,4,1] => 1
[1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [2,1,4,3] => [3,2,1,4] => 0
[1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => [2,4,3,1] => 1
[1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => [2,3,1,4] => 2
[1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => [2,4,1,3] => 1
[1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [3,1,2,4] => [3,4,2,1] => 0
[1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [2,1,4,3] => [3,2,1,4] => 0
[1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => [2,4,1,3] => 1
[1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [4,1,2,3] => [3,4,1,2] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,2,3,4,5] => [2,3,4,5,1] => 4
[1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => [2,3,4,1,5] => 3
[1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => [2,3,5,4,1] => 2
[1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => [2,3,4,1,5] => 3
[1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => [2,3,5,1,4] => 2
[1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => [2,4,3,5,1] => 2
[1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => [2,4,3,1,5] => 1
[1,0,1,1,0,1,0,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => [2,3,5,4,1] => 2
[1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => [2,3,4,1,5] => 3
[1,0,1,1,0,1,1,0,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => [2,3,5,1,4] => 2
[1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,4,2,3,5] => [2,4,5,3,1] => 1
[1,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => [2,4,3,1,5] => 1
[1,0,1,1,1,0,1,0,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => [2,3,5,1,4] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,5,2,3,4] => [2,4,5,1,3] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [2,1,3,4,5] => [3,2,4,5,1] => 2
[1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => [3,2,4,1,5] => 1
[1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [2,1,4,3,5] => [3,2,5,4,1] => 0
[1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => [3,2,4,1,5] => 1
[1,1,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [2,1,5,3,4] => [3,2,5,1,4] => 0
[1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => [2,4,3,5,1] => 2
[1,1,0,1,0,0,1,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => [2,4,3,1,5] => 1
[1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => [2,3,5,4,1] => 2
[1,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => [2,3,4,1,5] => 3
[1,1,0,1,0,1,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => [2,3,5,1,4] => 2
[1,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,4,2,3,5] => [2,4,5,3,1] => 1
[1,1,0,1,1,0,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => [2,4,3,1,5] => 1
[1,1,0,1,1,0,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => [2,3,5,1,4] => 2
[1,1,0,1,1,1,0,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,5,2,3,4] => [2,4,5,1,3] => 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [1,2,3,4,6,5,7] => [2,3,4,5,7,6,1] => ? = 4
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,2,3,5,4,6,7] => [2,3,4,6,5,7,1] => ? = 4
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [1,2,3,5,4,7,6] => [2,3,4,6,5,1,7] => ? = 3
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [1,2,3,4,6,5,7] => [2,3,4,5,7,6,1] => ? = 4
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [1,2,3,5,4,7,6] => [2,3,4,6,5,1,7] => ? = 3
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,2,4,3,5,6,7] => [2,3,5,4,6,7,1] => ? = 4
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [1,2,4,3,5,7,6] => [2,3,5,4,6,1,7] => ? = 3
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [1,2,4,3,5,7,6] => [2,3,5,4,6,1,7] => ? = 3
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,2,3,5,4,6,7] => [2,3,4,6,5,7,1] => ? = 4
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [1,2,3,5,4,7,6] => [2,3,4,6,5,1,7] => ? = 3
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [1,2,3,4,6,5,7] => [2,3,4,5,7,6,1] => ? = 4
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [1,2,3,5,4,7,6] => [2,3,4,6,5,1,7] => ? = 3
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [1,2,4,3,5,7,6] => [2,3,5,4,6,1,7] => ? = 3
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [1,2,3,5,4,7,6] => [2,3,4,6,5,1,7] => ? = 3
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,3,2,4,5,6,7] => [2,4,3,5,6,7,1] => ? = 4
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [1,3,2,4,5,7,6] => [2,4,3,5,6,1,7] => ? = 3
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [1,3,2,4,5,7,6] => [2,4,3,5,6,1,7] => ? = 3
[1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [1,3,2,4,5,7,6] => [2,4,3,5,6,1,7] => ? = 3
[1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,2,4,3,5,6,7] => [2,3,5,4,6,7,1] => ? = 4
[1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [1,2,4,3,5,7,6] => [2,3,5,4,6,1,7] => ? = 3
[1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [1,2,4,3,5,7,6] => [2,3,5,4,6,1,7] => ? = 3
[1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,2,3,5,4,6,7] => [2,3,4,6,5,7,1] => ? = 4
[1,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [1,2,3,5,4,7,6] => [2,3,4,6,5,1,7] => ? = 3
[1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [1,2,3,4,6,5,7] => [2,3,4,5,7,6,1] => ? = 4
[1,0,1,1,0,1,0,1,1,0,0,1,0,0]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [1,2,3,5,4,7,6] => [2,3,4,6,5,1,7] => ? = 3
[1,0,1,1,0,1,1,0,0,1,0,1,0,0]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [1,2,4,3,5,7,6] => [2,3,5,4,6,1,7] => ? = 3
[1,0,1,1,0,1,1,0,1,0,0,1,0,0]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,0,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [1,2,3,5,4,7,6] => [2,3,4,6,5,1,7] => ? = 3
[1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [1,3,2,4,5,7,6] => [2,4,3,5,6,1,7] => ? = 3
[1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> [[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,1,0,-1,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [1,2,4,3,5,7,6] => [2,3,5,4,6,1,7] => ? = 3
[1,0,1,1,1,0,1,0,1,0,0,1,0,0]
=> [[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,1,0,-1,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [1,2,3,5,4,7,6] => [2,3,4,6,5,1,7] => ? = 3
[1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [[1,0,0,0,0,0,0],[0,0,0,0,0,0,1],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [1,7,2,3,4,5,6] => [2,4,5,6,7,1,3] => ? = 1
[1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [2,1,3,4,5,7,6] => [3,2,4,5,6,1,7] => ? = 3
[1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [2,1,3,4,5,7,6] => [3,2,4,5,6,1,7] => ? = 3
[1,1,0,0,1,0,1,1,0,1,0,1,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [2,1,3,4,5,7,6] => [3,2,4,5,6,1,7] => ? = 3
[1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [2,1,4,3,5,7,6] => [3,2,5,4,6,1,7] => ? = 1
[1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [2,1,4,3,5,7,6] => [3,2,5,4,6,1,7] => ? = 1
[1,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [2,1,3,4,5,7,6] => [3,2,4,5,6,1,7] => ? = 3
[1,1,0,0,1,1,1,0,0,1,0,1,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [2,1,4,3,5,7,6] => [3,2,5,4,6,1,7] => ? = 1
[1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,3,2,4,5,6,7] => [2,4,3,5,6,7,1] => ? = 4
[1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [1,3,2,4,5,7,6] => [2,4,3,5,6,1,7] => ? = 3
[1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [1,3,2,4,5,7,6] => [2,4,3,5,6,1,7] => ? = 3
[1,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [1,3,2,4,5,7,6] => [2,4,3,5,6,1,7] => ? = 3
[1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,2,4,3,5,6,7] => [2,3,5,4,6,7,1] => ? = 4
[1,1,0,1,0,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [1,2,4,3,5,7,6] => [2,3,5,4,6,1,7] => ? = 3
[1,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [1,2,4,3,5,7,6] => [2,3,5,4,6,1,7] => ? = 3
[1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,2,3,5,4,6,7] => [2,3,4,6,5,7,1] => ? = 4
[1,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [1,2,3,5,4,7,6] => [2,3,4,6,5,1,7] => ? = 3
[1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [1,2,3,4,6,5,7] => [2,3,4,5,7,6,1] => ? = 4
[1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [1,2,3,5,4,7,6] => [2,3,4,6,5,1,7] => ? = 3
[1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [1,2,4,3,5,7,6] => [2,3,5,4,6,1,7] => ? = 3
Description
The number of small exceedances. This is the number of indices i such that \pi_i=i+1.
Matching statistic: St000475
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00138: Dyck paths to noncrossing partitionSet partitions
Mp00079: Set partitions shapeInteger partitions
St000475: Integer partitions ⟶ ℤResult quality: 57% values known / values provided: 57%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,1,0,0]
=> {{1,2}}
=> [2]
=> 0
[1,0,1,0]
=> [1,1,0,1,0,0]
=> {{1,3},{2}}
=> [2,1]
=> 1
[1,1,0,0]
=> [1,1,1,0,0,0]
=> {{1,2,3}}
=> [3]
=> 0
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> {{1,4},{2},{3}}
=> [2,1,1]
=> 2
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> {{1,3,4},{2}}
=> [3,1]
=> 1
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> {{1,4},{2,3}}
=> [2,2]
=> 0
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> {{1,2,4},{3}}
=> [3,1]
=> 1
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> [4]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> {{1,5},{2},{3},{4}}
=> [2,1,1,1]
=> 3
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> {{1,4,5},{2},{3}}
=> [3,1,1]
=> 2
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> {{1,5},{2},{3,4}}
=> [2,2,1]
=> 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> {{1,3,5},{2},{4}}
=> [3,1,1]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> {{1,3,4,5},{2}}
=> [4,1]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> {{1,5},{2,3},{4}}
=> [2,2,1]
=> 1
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> {{1,4,5},{2,3}}
=> [3,2]
=> 0
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> {{1,5},{2,4},{3}}
=> [2,2,1]
=> 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> {{1,2,5},{3},{4}}
=> [3,1,1]
=> 2
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> {{1,2,4,5},{3}}
=> [4,1]
=> 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> {{1,5},{2,3,4}}
=> [3,2]
=> 0
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> {{1,2,5},{3,4}}
=> [3,2]
=> 0
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> {{1,2,3,5},{4}}
=> [4,1]
=> 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> [5]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> {{1,6},{2},{3},{4},{5}}
=> [2,1,1,1,1]
=> 4
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> {{1,5,6},{2},{3},{4}}
=> [3,1,1,1]
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> {{1,6},{2},{3},{4,5}}
=> [2,2,1,1]
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> {{1,4,6},{2},{3},{5}}
=> [3,1,1,1]
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> {{1,4,5,6},{2},{3}}
=> [4,1,1]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> {{1,6},{2},{3,4},{5}}
=> [2,2,1,1]
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> {{1,5,6},{2},{3,4}}
=> [3,2,1]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> {{1,6},{2},{3,5},{4}}
=> [2,2,1,1]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> {{1,3,6},{2},{4},{5}}
=> [3,1,1,1]
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> {{1,3,5,6},{2},{4}}
=> [4,1,1]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> {{1,6},{2},{3,4,5}}
=> [3,2,1]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> {{1,3,6},{2},{4,5}}
=> [3,2,1]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> {{1,3,4,6},{2},{5}}
=> [4,1,1]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> {{1,3,4,5,6},{2}}
=> [5,1]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> {{1,6},{2,3},{4},{5}}
=> [2,2,1,1]
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> {{1,5,6},{2,3},{4}}
=> [3,2,1]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> {{1,6},{2,3},{4,5}}
=> [2,2,2]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> {{1,4,6},{2,3},{5}}
=> [3,2,1]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> {{1,4,5,6},{2,3}}
=> [4,2]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> {{1,6},{2,4},{3},{5}}
=> [2,2,1,1]
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> {{1,5,6},{2,4},{3}}
=> [3,2,1]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> {{1,6},{2,5},{3},{4}}
=> [2,2,1,1]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> {{1,2,6},{3},{4},{5}}
=> [3,1,1,1]
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> {{1,2,5,6},{3},{4}}
=> [4,1,1]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> {{1,6},{2,4,5},{3}}
=> [3,2,1]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> {{1,2,6},{3},{4,5}}
=> [3,2,1]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> {{1,2,4,6},{3},{5}}
=> [4,1,1]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> {{1,2,4,5,6},{3}}
=> [5,1]
=> 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> {{1,8},{2},{3},{4},{5,6},{7}}
=> ?
=> ? = 4
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> {{1,7,8},{2},{3},{4},{5,6}}
=> ?
=> ? = 3
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> {{1,5,8},{2},{3},{4},{6},{7}}
=> ?
=> ? = 5
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> {{1,5,8},{2},{3},{4},{6,7}}
=> ?
=> ? = 3
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> {{1,7,8},{2},{3},{4,5},{6}}
=> ?
=> ? = 3
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,1,0,0,0]
=> {{1,6,8},{2},{3},{4,5},{7}}
=> ?
=> ? = 3
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> {{1,8},{2},{3},{4,6},{5},{7}}
=> ?
=> ? = 4
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,1,0,0,0]
=> {{1,7,8},{2},{3},{4,6},{5}}
=> ?
=> ? = 3
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> {{1,8},{2},{3},{4,7},{5},{6}}
=> ?
=> ? = 4
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> {{1,4,8},{2},{3},{5},{6},{7}}
=> ?
=> ? = 5
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> {{1,4,7,8},{2},{3},{5},{6}}
=> ?
=> ? = 4
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,1,0,0,0]
=> {{1,4,8},{2},{3},{5},{6,7}}
=> ?
=> ? = 3
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> {{1,4,6,7,8},{2},{3},{5}}
=> ?
=> ? = 3
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,1,0,0,1,0,0,0]
=> {{1,4,8},{2},{3},{5,7},{6}}
=> ?
=> ? = 3
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> {{1,4,5,7,8},{2},{3},{6}}
=> ?
=> ? = 3
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> {{1,4,5,6,7,8},{2},{3}}
=> ?
=> ? = 2
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> {{1,7,8},{2},{3,4},{5},{6}}
=> ?
=> ? = 3
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,1,0,1,0,0,0]
=> {{1,6,8},{2},{3,4},{5},{7}}
=> ?
=> ? = 3
[1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,1,0,1,0,0,0]
=> {{1,5,8},{2},{3,4},{6},{7}}
=> ?
=> ? = 3
[1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,1,1,0,0,0]
=> {{1,7,8},{2},{3,5},{4},{6}}
=> ?
=> ? = 3
[1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,0,1,0,1,0,0]
=> {{1,8},{2},{3,6},{4},{5},{7}}
=> ?
=> ? = 4
[1,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,1,1,0,0,0]
=> {{1,7,8},{2},{3,6},{4},{5}}
=> ?
=> ? = 3
[1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,0,1,0,0]
=> {{1,8},{2},{3,7},{4},{5},{6}}
=> ?
=> ? = 4
[1,0,1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,1,0,0,1,0,0,0]
=> {{1,3,8},{2},{4},{5},{6,7}}
=> ?
=> ? = 3
[1,0,1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> {{1,3,6,8},{2},{4},{5},{7}}
=> ?
=> ? = 4
[1,0,1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> {{1,3,6,7,8},{2},{4},{5}}
=> ?
=> ? = 3
[1,0,1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,1,0,0,1,0,1,0,0,0]
=> {{1,3,8},{2},{4},{5,6},{7}}
=> ?
=> ? = 3
[1,0,1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,1,0,1,0,0,1,0,0,0]
=> {{1,3,8},{2},{4},{5,7},{6}}
=> ?
=> ? = 3
[1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> {{1,3,5,6,7,8},{2},{4}}
=> ?
=> ? = 2
[1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> {{1,3,8},{2},{4,5},{6},{7}}
=> ?
=> ? = 3
[1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,1,0,0,1,0,1,0,0,0]
=> {{1,3,8},{2},{4,6},{5},{7}}
=> ?
=> ? = 3
[1,0,1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,1,0,1,0,0,1,0,0,0]
=> {{1,3,8},{2},{4,7},{5},{6}}
=> ?
=> ? = 3
[1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> {{1,3,4,6,7,8},{2},{5}}
=> ?
=> ? = 2
[1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> {{1,3,4,5,7,8},{2},{6}}
=> ?
=> ? = 2
[1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,1,0,0,0]
=> {{1,7,8},{2,3},{4},{5},{6}}
=> ?
=> ? = 3
[1,1,0,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,1,0,1,0,0,0]
=> {{1,5,8},{2,3},{4},{6},{7}}
=> ?
=> ? = 3
[1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,1,1,0,0,0]
=> {{1,7,8},{2,4},{3},{5},{6}}
=> ?
=> ? = 3
[1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,1,0,1,1,0,1,0,0,0]
=> {{1,6,8},{2,4},{3},{5},{7}}
=> ?
=> ? = 3
[1,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,1,0,1,0,0,0]
=> {{1,5,8},{2,4},{3},{6},{7}}
=> ?
=> ? = 3
[1,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,1,1,0,1,0,0,0]
=> {{1,6,8},{2,5},{3},{4},{7}}
=> ?
=> ? = 3
[1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,1,0,1,0,0]
=> {{1,8},{2,6},{3},{4},{5},{7}}
=> ?
=> ? = 4
[1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,1,0,0,1,0,0,0]
=> {{1,2,8},{3},{4},{5},{6,7}}
=> ?
=> ? = 3
[1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,0,1,1,0,1,0,0,0,0]
=> {{1,2,6,8},{3},{4},{5},{7}}
=> ?
=> ? = 4
[1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,1,1,0,0,0,0,0]
=> {{1,2,6,7,8},{3},{4},{5}}
=> ?
=> ? = 3
[1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,1,0,0,1,0,1,0,0,0]
=> {{1,2,8},{3},{4},{5,6},{7}}
=> ?
=> ? = 3
[1,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,0,1,1,0,1,0,0,1,0,0,0]
=> {{1,2,8},{3},{4},{5,7},{6}}
=> ?
=> ? = 3
[1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,1,0,1,0,0,0,0]
=> {{1,2,5,8},{3},{4},{6},{7}}
=> ?
=> ? = 4
[1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,1,1,1,1,0,0,0,0,0,0]
=> {{1,2,5,6,7,8},{3},{4}}
=> ?
=> ? = 2
[1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,1,0,1,0,0,0]
=> {{1,2,8},{3},{4,5},{6},{7}}
=> ?
=> ? = 3
[1,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,1,0,1,0,0,1,0,1,0,0,0]
=> {{1,2,8},{3},{4,6},{5},{7}}
=> ?
=> ? = 3
Description
The number of parts equal to 1 in a partition.
The following 41 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000214The number of adjacencies of a permutation. St001223Number of indecomposable projective non-injective modules P such that the modules X and Y in a an Auslander-Reiten sequence ending at P are torsionless. St001233The number of indecomposable 2-dimensional modules with projective dimension one. St000931The number of occurrences of the pattern UUU in a Dyck path. St001640The number of ascent tops in the permutation such that all smaller elements appear before. St001061The number of indices that are both descents and recoils of a permutation. St000247The number of singleton blocks of a set partition. St000925The number of topologically connected components of a set partition. St000248The number of anti-singletons of a set partition. St001631The number of simple modules S with dim Ext^1(S,A)=1 in the incidence algebra A of the poset. St001216The number of indecomposable injective modules in the corresponding Nakayama algebra that have non-vanishing second Ext-group with the regular module. St001066The number of simple reflexive modules in the corresponding Nakayama algebra. St000118The number of occurrences of the contiguous pattern [.,[.,[.,.]]] in a binary tree. St001126Number of simple module that are 1-regular in the corresponding Nakayama algebra. St001483The number of simple module modules that appear in the socle of the regular module but have no nontrivial selfextensions with the regular module. St000365The number of double ascents of a permutation. St001810The number of fixed points of a permutation smaller than its largest moved point. St001948The number of augmented double ascents of a permutation. St000022The number of fixed points of a permutation. St000215The number of adjacencies of a permutation, zero appended. St000366The number of double descents of a permutation. St000374The number of exclusive right-to-left minima of a permutation. St000731The number of double exceedences of a permutation. St000373The number of weak exceedences of a permutation that are also mid-points of a decreasing subsequence of length 3. St000221The number of strong fixed points of a permutation. St000732The number of double deficiencies of a permutation. St000989The number of final rises of a permutation. St001744The number of occurrences of the arrow pattern 1-2 with an arrow from 1 to 2 in a permutation. St000991The number of right-to-left minima of a permutation. St001238The number of simple modules S such that the Auslander-Reiten translate of S is isomorphic to the Nakayama functor applied to the second syzygy of S. St001461The number of topologically connected components of the chord diagram of a permutation. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St000392The length of the longest run of ones in a binary word. St000982The length of the longest constant subword. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St000314The number of left-to-right-maxima of a permutation. St001192The maximal dimension of Ext_A^2(S,A) for a simple module S over the corresponding Nakayama algebra A. St001210Gives the maximal vector space dimension of the first Ext-group between an indecomposable module X and the regular module A, when A is the Nakayama algebra corresponding to the Dyck path. St001226The number of integers i such that the radical of the i-th indecomposable projective module has vanishing first extension group with the Jacobson radical J in the corresponding Nakayama algebra. St001240The number of indecomposable modules e_i J^2 that have injective dimension at most one in the corresponding Nakayama algebra St001621The number of atoms of a lattice.