Your data matches 78 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00103: Dyck paths peeling mapDyck paths
St000445: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> 1
[1,0,1,0]
=> [1,0,1,0]
=> 2
[1,1,0,0]
=> [1,0,1,0]
=> 2
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 3
[1,0,1,1,0,0]
=> [1,0,1,0,1,0]
=> 3
[1,1,0,0,1,0]
=> [1,0,1,0,1,0]
=> 3
[1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 3
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 3
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 3
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 3
Description
The number of rises of length 1 of a Dyck path.
Mp00028: Dyck paths reverseDyck paths
Mp00103: Dyck paths peeling mapDyck paths
St000932: Dyck paths ⟶ ℤResult quality: 64% values known / values provided: 93%distinct values known / distinct values provided: 64%
Values
[1,0]
=> [1,0]
=> [1,0]
=> ? = 1 - 1
[1,0,1,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> 1 = 2 - 1
[1,1,0,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1 = 2 - 1
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 2 = 3 - 1
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,0,1,0,1,0]
=> 2 = 3 - 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,0,1,0,1,0]
=> 2 = 3 - 1
[1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 2 = 3 - 1
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2 = 3 - 1
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 3 = 4 - 1
[1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 3 = 4 - 1
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 3 = 4 - 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 3 = 4 - 1
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 3 = 4 - 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3 = 4 - 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3 = 4 - 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3 = 4 - 1
[1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3 = 4 - 1
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3 = 4 - 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3 = 4 - 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3 = 4 - 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3 = 4 - 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1 = 2 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 2 = 3 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 2 = 3 - 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 3 - 1
[1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 3 - 1
[1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 3 - 1
[1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> ? = 4 - 1
[1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0,1,0,1,0]
=> ? = 4 - 1
[1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,1,0]
=> ? = 3 - 1
[1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 3 - 1
[1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> ? = 4 - 1
[1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> ? = 4 - 1
[1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> ? = 3 - 1
[1,0,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 4 - 1
[1,0,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0,1,0,1,0]
=> ? = 3 - 1
[1,0,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 4 - 1
[1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0,1,0]
=> ? = 3 - 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 1
[1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 1
[1,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 1
[1,1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> ?
=> ? = 9 - 1
[1,1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,0,0]
=> ?
=> ? = 9 - 1
[1,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0,0]
=> ?
=> ? = 9 - 1
[1,1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 1
[1,1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 1
[1,1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0,0]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 4 - 1
[1,1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0,1,0,1,0]
=> ? = 4 - 1
[1,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 3 - 1
[1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 1
[1,1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 1
[1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 1
[1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 1
[1,1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 3 - 1
[1,1,1,1,0,1,0,1,0,0,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,0,1,1,0,1,0,1,0,0,0,0]
=> ?
=> ? = 7 - 1
[1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> ? = 3 - 1
[1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> ?
=> ? = 4 - 1
[1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> ? = 4 - 1
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 3 - 1
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0,0]
=> [1,1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 3 - 1
[1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2 - 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 1
[1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 1
[1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 1
[1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 10 - 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 10 - 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 1
Description
The number of occurrences of the pattern UDU in a Dyck path. The number of Dyck paths with statistic value 0 are counted by the Motzkin numbers [1].
Matching statistic: St000441
Mp00103: Dyck paths peeling mapDyck paths
Mp00101: Dyck paths decomposition reverseDyck paths
Mp00025: Dyck paths to 132-avoiding permutationPermutations
St000441: Permutations ⟶ ℤResult quality: 68% values known / values provided: 68%distinct values known / distinct values provided: 91%
Values
[1,0]
=> [1,0]
=> [1,0]
=> [1] => 0 = 1 - 1
[1,0,1,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> [1,2] => 1 = 2 - 1
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> [1,2] => 1 = 2 - 1
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,2,3] => 2 = 3 - 1
[1,0,1,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,2,3] => 2 = 3 - 1
[1,1,0,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,2,3] => 2 = 3 - 1
[1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,2,3] => 2 = 3 - 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,2,3] => 2 = 3 - 1
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 3 = 4 - 1
[1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 3 = 4 - 1
[1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 3 = 4 - 1
[1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 3 = 4 - 1
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 3 = 4 - 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 3 = 4 - 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 3 = 4 - 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 3 = 4 - 1
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 3 = 4 - 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 3 = 4 - 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 3 = 4 - 1
[1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 3 = 4 - 1
[1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 3 = 4 - 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => 1 = 2 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 4 = 5 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 4 = 5 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 4 = 5 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 4 = 5 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 4 = 5 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 4 = 5 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 4 = 5 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 4 = 5 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 4 = 5 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 4 = 5 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 4 = 5 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 4 = 5 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 4 = 5 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [3,1,2,4,5] => 2 = 3 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 4 = 5 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 4 = 5 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 4 = 5 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 4 = 5 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 4 = 5 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 4 = 5 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 4 = 5 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 4 = 5 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 4 = 5 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 4 = 5 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 4 = 5 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 4 = 5 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 4 = 5 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [3,1,2,4,5] => 2 = 3 - 1
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [4,3,1,2,5,6,7] => ? = 4 - 1
[1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [4,3,1,2,5,6,7] => ? = 4 - 1
[1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [4,3,1,2,5,6,7] => ? = 4 - 1
[1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,0]
=> [5,3,1,2,4,6,7] => ? = 3 - 1
[1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [4,5,1,2,3,6,7] => ? = 5 - 1
[1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [4,5,1,2,3,6,7] => ? = 5 - 1
[1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [4,5,1,2,3,6,7] => ? = 5 - 1
[1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> [3,4,5,1,2,6,7] => ? = 5 - 1
[1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,1,0,0,0,0]
=> [4,3,5,1,2,6,7] => ? = 3 - 1
[1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [5,4,1,2,3,6,7] => ? = 4 - 1
[1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [5,4,1,2,3,6,7] => ? = 4 - 1
[1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [5,4,1,2,3,6,7] => ? = 4 - 1
[1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,1,0,0,0]
=> [5,3,4,1,2,6,7] => ? = 4 - 1
[1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,1,0,0,0,0]
=> [4,5,3,1,2,6,7] => ? = 4 - 1
[1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> [5,4,3,1,2,6,7] => ? = 3 - 1
[1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [4,3,1,2,5,6,7] => ? = 4 - 1
[1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [4,3,1,2,5,6,7] => ? = 4 - 1
[1,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [4,3,1,2,5,6,7] => ? = 4 - 1
[1,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,0]
=> [5,3,1,2,4,6,7] => ? = 3 - 1
[1,1,0,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [4,5,1,2,3,6,7] => ? = 5 - 1
[1,1,0,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [4,5,1,2,3,6,7] => ? = 5 - 1
[1,1,0,1,1,1,0,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [4,5,1,2,3,6,7] => ? = 5 - 1
[1,1,0,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> [3,4,5,1,2,6,7] => ? = 5 - 1
[1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,1,0,0,0,0]
=> [4,3,5,1,2,6,7] => ? = 3 - 1
[1,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [5,4,1,2,3,6,7] => ? = 4 - 1
[1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [5,4,1,2,3,6,7] => ? = 4 - 1
[1,1,0,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [5,4,1,2,3,6,7] => ? = 4 - 1
[1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,1,0,0,0]
=> [5,3,4,1,2,6,7] => ? = 4 - 1
[1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,1,0,0,0,0]
=> [4,5,3,1,2,6,7] => ? = 4 - 1
[1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> [5,4,3,1,2,6,7] => ? = 3 - 1
[1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [4,3,1,2,5,6,7] => ? = 4 - 1
[1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [4,3,1,2,5,6,7] => ? = 4 - 1
[1,1,1,0,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,0]
=> [5,3,1,2,4,6,7] => ? = 3 - 1
[1,1,1,0,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [4,5,1,2,3,6,7] => ? = 5 - 1
[1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [4,5,1,2,3,6,7] => ? = 5 - 1
[1,1,1,0,1,1,0,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [4,5,1,2,3,6,7] => ? = 5 - 1
[1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> [3,4,5,1,2,6,7] => ? = 5 - 1
[1,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,1,0,0,0,0]
=> [4,3,5,1,2,6,7] => ? = 3 - 1
[1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [5,4,1,2,3,6,7] => ? = 4 - 1
[1,1,1,0,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [5,4,1,2,3,6,7] => ? = 4 - 1
[1,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [5,4,1,2,3,6,7] => ? = 4 - 1
[1,1,1,0,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,1,0,0,0]
=> [5,3,4,1,2,6,7] => ? = 4 - 1
[1,1,1,0,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,1,0,0,0,0]
=> [4,5,3,1,2,6,7] => ? = 4 - 1
[1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> [5,4,3,1,2,6,7] => ? = 3 - 1
[1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> [6,3,1,2,4,5,7] => ? = 3 - 1
[1,1,1,1,0,0,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> [6,3,1,2,4,5,7] => ? = 3 - 1
[1,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,0]
=> [6,4,1,2,3,5,7] => ? = 3 - 1
[1,1,1,1,0,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,0]
=> [6,4,1,2,3,5,7] => ? = 3 - 1
[1,1,1,1,0,0,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,0]
=> [6,4,1,2,3,5,7] => ? = 3 - 1
[1,1,1,1,0,0,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,1,0,0]
=> [6,3,4,1,2,5,7] => ? = 3 - 1
Description
The number of successions of a permutation. A succession of a permutation $\pi$ is an index $i$ such that $\pi(i)+1 = \pi(i+1)$. Successions are also known as ''small ascents'' or ''1-rises''.
Mp00103: Dyck paths peeling mapDyck paths
Mp00101: Dyck paths decomposition reverseDyck paths
Mp00031: Dyck paths to 312-avoiding permutationPermutations
St000215: Permutations ⟶ ℤResult quality: 63% values known / values provided: 63%distinct values known / distinct values provided: 91%
Values
[1,0]
=> [1,0]
=> [1,0]
=> [1] => 1
[1,0,1,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> [2,1] => 2
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> [2,1] => 2
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => 3
[1,0,1,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => 3
[1,1,0,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => 3
[1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => 3
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => 3
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 4
[1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 4
[1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 4
[1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 4
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 4
[1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 4
[1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 4
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 4
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 4
[1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 4
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 4
[1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 4
[1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 4
[1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 5
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 5
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 5
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 5
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 5
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 5
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 5
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 5
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 5
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 5
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 5
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 5
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [4,3,5,2,1] => 3
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 5
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 5
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 5
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 5
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 5
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 5
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 5
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 5
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 5
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 5
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 5
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 5
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 5
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [4,3,5,2,1] => 3
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [6,5,7,4,3,2,1] => ? = 5
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [6,5,7,4,3,2,1] => ? = 5
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [6,5,7,4,3,2,1] => ? = 5
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [6,5,4,7,3,2,1] => ? = 5
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [6,5,4,7,3,2,1] => ? = 5
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [6,5,4,7,3,2,1] => ? = 5
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [5,4,7,6,3,2,1] => ? = 5
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [5,4,6,7,3,2,1] => ? = 4
[1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [6,5,7,4,3,2,1] => ? = 5
[1,0,1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [6,5,7,4,3,2,1] => ? = 5
[1,0,1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [6,5,7,4,3,2,1] => ? = 5
[1,0,1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [6,5,4,7,3,2,1] => ? = 5
[1,0,1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [6,5,4,7,3,2,1] => ? = 5
[1,0,1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [6,5,4,7,3,2,1] => ? = 5
[1,0,1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [5,4,7,6,3,2,1] => ? = 5
[1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [5,4,6,7,3,2,1] => ? = 4
[1,0,1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [6,5,7,4,3,2,1] => ? = 5
[1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [6,5,7,4,3,2,1] => ? = 5
[1,0,1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [6,5,4,7,3,2,1] => ? = 5
[1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [6,5,4,7,3,2,1] => ? = 5
[1,0,1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [6,5,4,7,3,2,1] => ? = 5
[1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [5,4,7,6,3,2,1] => ? = 5
[1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [5,4,6,7,3,2,1] => ? = 4
[1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [6,5,4,3,7,2,1] => ? = 5
[1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [6,5,4,3,7,2,1] => ? = 5
[1,0,1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [6,5,4,3,7,2,1] => ? = 5
[1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [6,5,4,3,7,2,1] => ? = 5
[1,0,1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [6,5,4,3,7,2,1] => ? = 5
[1,0,1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [6,5,4,3,7,2,1] => ? = 5
[1,0,1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [6,5,4,3,7,2,1] => ? = 5
[1,0,1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [6,5,4,3,7,2,1] => ? = 5
[1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,0]
=> [5,4,6,3,7,2,1] => ? = 3
[1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [5,4,3,7,6,2,1] => ? = 5
[1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [5,4,3,7,6,2,1] => ? = 5
[1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [5,4,3,7,6,2,1] => ? = 5
[1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> [4,3,7,6,5,2,1] => ? = 5
[1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,1,0,0,0,0]
=> [4,3,6,7,5,2,1] => ? = 3
[1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [5,4,3,6,7,2,1] => ? = 4
[1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [5,4,3,6,7,2,1] => ? = 4
[1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [5,4,3,6,7,2,1] => ? = 4
[1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,1,0,0,0]
=> [4,3,6,5,7,2,1] => ? = 4
[1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,1,0,0,0,0]
=> [4,3,5,7,6,2,1] => ? = 4
[1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> [4,3,5,6,7,2,1] => ? = 3
[1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [6,5,7,4,3,2,1] => ? = 5
[1,1,0,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [6,5,7,4,3,2,1] => ? = 5
[1,1,0,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [6,5,7,4,3,2,1] => ? = 5
[1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [6,5,4,7,3,2,1] => ? = 5
[1,1,0,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [6,5,4,7,3,2,1] => ? = 5
[1,1,0,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [6,5,4,7,3,2,1] => ? = 5
[1,1,0,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [5,4,7,6,3,2,1] => ? = 5
Description
The number of adjacencies of a permutation, zero appended. An adjacency is a descent of the form $(e+1,e)$ in the word corresponding to the permutation in one-line notation. This statistic, $\operatorname{adj_0}$, counts adjacencies in the word with a zero appended. $(\operatorname{adj_0}, \operatorname{des})$ and $(\operatorname{fix}, \operatorname{exc})$ are equidistributed, see [1].
Mp00103: Dyck paths peeling mapDyck paths
Mp00101: Dyck paths decomposition reverseDyck paths
Mp00031: Dyck paths to 312-avoiding permutationPermutations
St000214: Permutations ⟶ ℤResult quality: 63% values known / values provided: 63%distinct values known / distinct values provided: 91%
Values
[1,0]
=> [1,0]
=> [1,0]
=> [1] => 0 = 1 - 1
[1,0,1,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> [2,1] => 1 = 2 - 1
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> [2,1] => 1 = 2 - 1
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => 2 = 3 - 1
[1,0,1,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => 2 = 3 - 1
[1,1,0,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => 2 = 3 - 1
[1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => 2 = 3 - 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => 2 = 3 - 1
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 3 = 4 - 1
[1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 3 = 4 - 1
[1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 3 = 4 - 1
[1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 3 = 4 - 1
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 3 = 4 - 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 3 = 4 - 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 3 = 4 - 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 3 = 4 - 1
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 3 = 4 - 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 3 = 4 - 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 3 = 4 - 1
[1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 3 = 4 - 1
[1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 3 = 4 - 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 1 = 2 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 4 = 5 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 4 = 5 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 4 = 5 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 4 = 5 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 4 = 5 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 4 = 5 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 4 = 5 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 4 = 5 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 4 = 5 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 4 = 5 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 4 = 5 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 4 = 5 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 4 = 5 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [4,3,5,2,1] => 2 = 3 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 4 = 5 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 4 = 5 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 4 = 5 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 4 = 5 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 4 = 5 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 4 = 5 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 4 = 5 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 4 = 5 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 4 = 5 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 4 = 5 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 4 = 5 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 4 = 5 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 4 = 5 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [4,3,5,2,1] => 2 = 3 - 1
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [6,5,7,4,3,2,1] => ? = 5 - 1
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [6,5,7,4,3,2,1] => ? = 5 - 1
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [6,5,7,4,3,2,1] => ? = 5 - 1
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [6,5,4,7,3,2,1] => ? = 5 - 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [6,5,4,7,3,2,1] => ? = 5 - 1
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [6,5,4,7,3,2,1] => ? = 5 - 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [5,4,7,6,3,2,1] => ? = 5 - 1
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [5,4,6,7,3,2,1] => ? = 4 - 1
[1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [6,5,7,4,3,2,1] => ? = 5 - 1
[1,0,1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [6,5,7,4,3,2,1] => ? = 5 - 1
[1,0,1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [6,5,7,4,3,2,1] => ? = 5 - 1
[1,0,1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [6,5,4,7,3,2,1] => ? = 5 - 1
[1,0,1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [6,5,4,7,3,2,1] => ? = 5 - 1
[1,0,1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [6,5,4,7,3,2,1] => ? = 5 - 1
[1,0,1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [5,4,7,6,3,2,1] => ? = 5 - 1
[1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [5,4,6,7,3,2,1] => ? = 4 - 1
[1,0,1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [6,5,7,4,3,2,1] => ? = 5 - 1
[1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [6,5,7,4,3,2,1] => ? = 5 - 1
[1,0,1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [6,5,4,7,3,2,1] => ? = 5 - 1
[1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [6,5,4,7,3,2,1] => ? = 5 - 1
[1,0,1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [6,5,4,7,3,2,1] => ? = 5 - 1
[1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [5,4,7,6,3,2,1] => ? = 5 - 1
[1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [5,4,6,7,3,2,1] => ? = 4 - 1
[1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [6,5,4,3,7,2,1] => ? = 5 - 1
[1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [6,5,4,3,7,2,1] => ? = 5 - 1
[1,0,1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [6,5,4,3,7,2,1] => ? = 5 - 1
[1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [6,5,4,3,7,2,1] => ? = 5 - 1
[1,0,1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [6,5,4,3,7,2,1] => ? = 5 - 1
[1,0,1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [6,5,4,3,7,2,1] => ? = 5 - 1
[1,0,1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [6,5,4,3,7,2,1] => ? = 5 - 1
[1,0,1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [6,5,4,3,7,2,1] => ? = 5 - 1
[1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,0]
=> [5,4,6,3,7,2,1] => ? = 3 - 1
[1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [5,4,3,7,6,2,1] => ? = 5 - 1
[1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [5,4,3,7,6,2,1] => ? = 5 - 1
[1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [5,4,3,7,6,2,1] => ? = 5 - 1
[1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> [4,3,7,6,5,2,1] => ? = 5 - 1
[1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,1,0,0,0,0]
=> [4,3,6,7,5,2,1] => ? = 3 - 1
[1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [5,4,3,6,7,2,1] => ? = 4 - 1
[1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [5,4,3,6,7,2,1] => ? = 4 - 1
[1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [5,4,3,6,7,2,1] => ? = 4 - 1
[1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,1,0,0,0]
=> [4,3,6,5,7,2,1] => ? = 4 - 1
[1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,1,0,0,0,0]
=> [4,3,5,7,6,2,1] => ? = 4 - 1
[1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> [4,3,5,6,7,2,1] => ? = 3 - 1
[1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [6,5,7,4,3,2,1] => ? = 5 - 1
[1,1,0,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [6,5,7,4,3,2,1] => ? = 5 - 1
[1,1,0,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [6,5,7,4,3,2,1] => ? = 5 - 1
[1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [6,5,4,7,3,2,1] => ? = 5 - 1
[1,1,0,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [6,5,4,7,3,2,1] => ? = 5 - 1
[1,1,0,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [6,5,4,7,3,2,1] => ? = 5 - 1
[1,1,0,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [5,4,7,6,3,2,1] => ? = 5 - 1
Description
The number of adjacencies of a permutation. An adjacency of a permutation $\pi$ is an index $i$ such that $\pi(i)-1 = \pi(i+1)$. Adjacencies are also known as ''small descents''. This can be also described as an occurrence of the bivincular pattern ([2,1], {((0,1),(1,0),(1,1),(1,2),(2,1)}), i.e., the middle row and the middle column are shaded, see [3].
Matching statistic: St000248
Mp00103: Dyck paths peeling mapDyck paths
Mp00101: Dyck paths decomposition reverseDyck paths
Mp00138: Dyck paths to noncrossing partitionSet partitions
St000248: Set partitions ⟶ ℤResult quality: 62% values known / values provided: 62%distinct values known / distinct values provided: 64%
Values
[1,0]
=> [1,0]
=> [1,0]
=> {{1}}
=> ? = 1
[1,0,1,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> {{1,2}}
=> 2
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> {{1,2}}
=> 2
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> {{1,2,3}}
=> 3
[1,0,1,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> {{1,2,3}}
=> 3
[1,1,0,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> {{1,2,3}}
=> 3
[1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> {{1,2,3}}
=> 3
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> {{1,2,3}}
=> 3
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 4
[1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 4
[1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 4
[1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 4
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 4
[1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 4
[1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 4
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 4
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 4
[1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 4
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 4
[1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 4
[1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 4
[1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> {{1,4},{2,3}}
=> 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 5
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 5
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 5
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 5
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 5
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 5
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 5
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 5
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 5
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 5
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 5
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 5
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> {{1,2,5},{3,4}}
=> 3
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 5
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 5
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 5
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 5
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 5
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 5
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 5
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 5
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 5
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 5
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 5
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 5
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 5
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> {{1,2,5},{3,4}}
=> 3
[1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 5
[1,0,1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> {{1,2,3,4,8},{5,6,7}}
=> ? = 6
[1,0,1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> {{1,2,3,4,8},{5,6,7}}
=> ? = 6
[1,0,1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> {{1,2,3,4,8},{5,6,7}}
=> ? = 6
[1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,1,0,0,0,0,0]
=> {{1,2,3,4,8},{5,6},{7}}
=> ? = 5
[1,0,1,0,1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> {{1,2,3,4,8},{5,6,7}}
=> ? = 6
[1,0,1,0,1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> {{1,2,3,4,8},{5,6,7}}
=> ? = 6
[1,0,1,0,1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> {{1,2,3,4,8},{5,6,7}}
=> ? = 6
[1,0,1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,1,0,0,0,0,0]
=> {{1,2,3,4,8},{5,6},{7}}
=> ? = 5
[1,0,1,0,1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> {{1,2,3,4,8},{5,6,7}}
=> ? = 6
[1,0,1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> {{1,2,3,4,8},{5,6,7}}
=> ? = 6
[1,0,1,0,1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> {{1,2,3,4,8},{5,6,7}}
=> ? = 6
[1,0,1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,1,0,0,0,0,0]
=> {{1,2,3,4,8},{5,6},{7}}
=> ? = 5
[1,0,1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> {{1,2,3,8},{4,5,6,7}}
=> ? = 6
[1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> {{1,2,3,8},{4,5,6,7}}
=> ? = 6
[1,0,1,0,1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> {{1,2,3,8},{4,5,6,7}}
=> ? = 6
[1,0,1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> {{1,2,3,8},{4,5,6,7}}
=> ? = 6
[1,0,1,0,1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> {{1,2,3,8},{4,5,6,7}}
=> ? = 6
[1,0,1,0,1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> {{1,2,3,8},{4,5,6,7}}
=> ? = 6
[1,0,1,0,1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> {{1,2,3,8},{4,5,6,7}}
=> ? = 6
[1,0,1,0,1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> {{1,2,3,8},{4,5,6,7}}
=> ? = 6
[1,0,1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,1,0,0,0,0]
=> {{1,2,3,8},{4,7},{5,6}}
=> ? = 4
[1,0,1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,1,0,0,0,0,0]
=> {{1,2,3,7,8},{4,5,6}}
=> ? = 6
[1,0,1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,1,0,0,0,0,0]
=> {{1,2,3,7,8},{4,5,6}}
=> ? = 6
[1,0,1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,1,0,0,0,0,0]
=> {{1,2,3,7,8},{4,5,6}}
=> ? = 6
[1,0,1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,1,0,1,0,0,0,0,0]
=> {{1,2,3,6,8},{4,5},{7}}
=> ? = 4
[1,0,1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,1,0,0,0,0]
=> {{1,2,3,8},{4,5,6},{7}}
=> ? = 5
[1,0,1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,1,0,0,0,0]
=> {{1,2,3,8},{4,5,6},{7}}
=> ? = 5
[1,0,1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,1,0,0,0,0]
=> {{1,2,3,8},{4,5,6},{7}}
=> ? = 5
[1,0,1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,1,0,0,1,0,0,0,0]
=> {{1,2,3,8},{4,5},{6,7}}
=> ? = 5
[1,0,1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,1,1,0,0,0,0,0]
=> {{1,2,3,7,8},{4,5},{6}}
=> ? = 5
[1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,1,0,1,0,0,0,0]
=> {{1,2,3,8},{4,5},{6},{7}}
=> ? = 4
[1,0,1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> {{1,2,3,4,8},{5,6,7}}
=> ? = 6
[1,0,1,1,0,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> {{1,2,3,4,8},{5,6,7}}
=> ? = 6
[1,0,1,1,0,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> {{1,2,3,4,8},{5,6,7}}
=> ? = 6
[1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,1,0,0,0,0,0]
=> {{1,2,3,4,8},{5,6},{7}}
=> ? = 5
[1,0,1,1,0,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> {{1,2,3,4,8},{5,6,7}}
=> ? = 6
[1,0,1,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> {{1,2,3,4,8},{5,6,7}}
=> ? = 6
[1,0,1,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> {{1,2,3,4,8},{5,6,7}}
=> ? = 6
[1,0,1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,1,0,0,0,0,0]
=> {{1,2,3,4,8},{5,6},{7}}
=> ? = 5
[1,0,1,1,0,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> {{1,2,3,4,8},{5,6,7}}
=> ? = 6
[1,0,1,1,0,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> {{1,2,3,4,8},{5,6,7}}
=> ? = 6
[1,0,1,1,0,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> {{1,2,3,4,8},{5,6,7}}
=> ? = 6
[1,0,1,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,1,0,0,0,0,0]
=> {{1,2,3,4,8},{5,6},{7}}
=> ? = 5
[1,0,1,1,0,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> {{1,2,3,8},{4,5,6,7}}
=> ? = 6
[1,0,1,1,0,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> {{1,2,3,8},{4,5,6,7}}
=> ? = 6
[1,0,1,1,0,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> {{1,2,3,8},{4,5,6,7}}
=> ? = 6
[1,0,1,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> {{1,2,3,8},{4,5,6,7}}
=> ? = 6
[1,0,1,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> {{1,2,3,8},{4,5,6,7}}
=> ? = 6
[1,0,1,1,0,1,1,1,0,0,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> {{1,2,3,8},{4,5,6,7}}
=> ? = 6
Description
The number of anti-singletons of a set partition. An anti-singleton of a set partition $S$ is an index $i$ such that $i$ and $i+1$ (considered cyclically) are both in the same block of $S$. For noncrossing set partitions, this is also the number of singletons of the image of $S$ under the Kreweras complement.
Matching statistic: St000502
Mp00103: Dyck paths peeling mapDyck paths
Mp00101: Dyck paths decomposition reverseDyck paths
Mp00138: Dyck paths to noncrossing partitionSet partitions
St000502: Set partitions ⟶ ℤResult quality: 62% values known / values provided: 62%distinct values known / distinct values provided: 64%
Values
[1,0]
=> [1,0]
=> [1,0]
=> {{1}}
=> ? = 1 - 1
[1,0,1,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> {{1,2}}
=> 1 = 2 - 1
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> {{1,2}}
=> 1 = 2 - 1
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> {{1,2,3}}
=> 2 = 3 - 1
[1,0,1,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> {{1,2,3}}
=> 2 = 3 - 1
[1,1,0,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> {{1,2,3}}
=> 2 = 3 - 1
[1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> {{1,2,3}}
=> 2 = 3 - 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> {{1,2,3}}
=> 2 = 3 - 1
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 3 = 4 - 1
[1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 3 = 4 - 1
[1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 3 = 4 - 1
[1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 3 = 4 - 1
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 3 = 4 - 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 3 = 4 - 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 3 = 4 - 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 3 = 4 - 1
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 3 = 4 - 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 3 = 4 - 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 3 = 4 - 1
[1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 3 = 4 - 1
[1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 3 = 4 - 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> {{1,4},{2,3}}
=> 1 = 2 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 4 = 5 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 4 = 5 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 4 = 5 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 4 = 5 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 4 = 5 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 4 = 5 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 4 = 5 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 4 = 5 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 4 = 5 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 4 = 5 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 4 = 5 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 4 = 5 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 4 = 5 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> {{1,2,5},{3,4}}
=> 2 = 3 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 4 = 5 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 4 = 5 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 4 = 5 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 4 = 5 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 4 = 5 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 4 = 5 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 4 = 5 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 4 = 5 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 4 = 5 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 4 = 5 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 4 = 5 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 4 = 5 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 4 = 5 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> {{1,2,5},{3,4}}
=> 2 = 3 - 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 4 = 5 - 1
[1,0,1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> {{1,2,3,4,8},{5,6,7}}
=> ? = 6 - 1
[1,0,1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> {{1,2,3,4,8},{5,6,7}}
=> ? = 6 - 1
[1,0,1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> {{1,2,3,4,8},{5,6,7}}
=> ? = 6 - 1
[1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,1,0,0,0,0,0]
=> {{1,2,3,4,8},{5,6},{7}}
=> ? = 5 - 1
[1,0,1,0,1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> {{1,2,3,4,8},{5,6,7}}
=> ? = 6 - 1
[1,0,1,0,1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> {{1,2,3,4,8},{5,6,7}}
=> ? = 6 - 1
[1,0,1,0,1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> {{1,2,3,4,8},{5,6,7}}
=> ? = 6 - 1
[1,0,1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,1,0,0,0,0,0]
=> {{1,2,3,4,8},{5,6},{7}}
=> ? = 5 - 1
[1,0,1,0,1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> {{1,2,3,4,8},{5,6,7}}
=> ? = 6 - 1
[1,0,1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> {{1,2,3,4,8},{5,6,7}}
=> ? = 6 - 1
[1,0,1,0,1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> {{1,2,3,4,8},{5,6,7}}
=> ? = 6 - 1
[1,0,1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,1,0,0,0,0,0]
=> {{1,2,3,4,8},{5,6},{7}}
=> ? = 5 - 1
[1,0,1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> {{1,2,3,8},{4,5,6,7}}
=> ? = 6 - 1
[1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> {{1,2,3,8},{4,5,6,7}}
=> ? = 6 - 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> {{1,2,3,8},{4,5,6,7}}
=> ? = 6 - 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> {{1,2,3,8},{4,5,6,7}}
=> ? = 6 - 1
[1,0,1,0,1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> {{1,2,3,8},{4,5,6,7}}
=> ? = 6 - 1
[1,0,1,0,1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> {{1,2,3,8},{4,5,6,7}}
=> ? = 6 - 1
[1,0,1,0,1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> {{1,2,3,8},{4,5,6,7}}
=> ? = 6 - 1
[1,0,1,0,1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> {{1,2,3,8},{4,5,6,7}}
=> ? = 6 - 1
[1,0,1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,1,0,0,0,0]
=> {{1,2,3,8},{4,7},{5,6}}
=> ? = 4 - 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,1,0,0,0,0,0]
=> {{1,2,3,7,8},{4,5,6}}
=> ? = 6 - 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,1,0,0,0,0,0]
=> {{1,2,3,7,8},{4,5,6}}
=> ? = 6 - 1
[1,0,1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,1,0,0,0,0,0]
=> {{1,2,3,7,8},{4,5,6}}
=> ? = 6 - 1
[1,0,1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,1,0,1,0,0,0,0,0]
=> {{1,2,3,6,8},{4,5},{7}}
=> ? = 4 - 1
[1,0,1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,1,0,0,0,0]
=> {{1,2,3,8},{4,5,6},{7}}
=> ? = 5 - 1
[1,0,1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,1,0,0,0,0]
=> {{1,2,3,8},{4,5,6},{7}}
=> ? = 5 - 1
[1,0,1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,1,0,0,0,0]
=> {{1,2,3,8},{4,5,6},{7}}
=> ? = 5 - 1
[1,0,1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,1,0,0,1,0,0,0,0]
=> {{1,2,3,8},{4,5},{6,7}}
=> ? = 5 - 1
[1,0,1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,1,1,0,0,0,0,0]
=> {{1,2,3,7,8},{4,5},{6}}
=> ? = 5 - 1
[1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,1,0,1,0,0,0,0]
=> {{1,2,3,8},{4,5},{6},{7}}
=> ? = 4 - 1
[1,0,1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> {{1,2,3,4,8},{5,6,7}}
=> ? = 6 - 1
[1,0,1,1,0,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> {{1,2,3,4,8},{5,6,7}}
=> ? = 6 - 1
[1,0,1,1,0,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> {{1,2,3,4,8},{5,6,7}}
=> ? = 6 - 1
[1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,1,0,0,0,0,0]
=> {{1,2,3,4,8},{5,6},{7}}
=> ? = 5 - 1
[1,0,1,1,0,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> {{1,2,3,4,8},{5,6,7}}
=> ? = 6 - 1
[1,0,1,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> {{1,2,3,4,8},{5,6,7}}
=> ? = 6 - 1
[1,0,1,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> {{1,2,3,4,8},{5,6,7}}
=> ? = 6 - 1
[1,0,1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,1,0,0,0,0,0]
=> {{1,2,3,4,8},{5,6},{7}}
=> ? = 5 - 1
[1,0,1,1,0,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> {{1,2,3,4,8},{5,6,7}}
=> ? = 6 - 1
[1,0,1,1,0,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> {{1,2,3,4,8},{5,6,7}}
=> ? = 6 - 1
[1,0,1,1,0,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> {{1,2,3,4,8},{5,6,7}}
=> ? = 6 - 1
[1,0,1,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,1,0,0,0,0,0]
=> {{1,2,3,4,8},{5,6},{7}}
=> ? = 5 - 1
[1,0,1,1,0,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> {{1,2,3,8},{4,5,6,7}}
=> ? = 6 - 1
[1,0,1,1,0,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> {{1,2,3,8},{4,5,6,7}}
=> ? = 6 - 1
[1,0,1,1,0,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> {{1,2,3,8},{4,5,6,7}}
=> ? = 6 - 1
[1,0,1,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> {{1,2,3,8},{4,5,6,7}}
=> ? = 6 - 1
[1,0,1,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> {{1,2,3,8},{4,5,6,7}}
=> ? = 6 - 1
[1,0,1,1,0,1,1,1,0,0,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> {{1,2,3,8},{4,5,6,7}}
=> ? = 6 - 1
Description
The number of successions of a set partitions. This is the number of indices $i$ such that $i$ and $i+1$ belonging to the same block.
Matching statistic: St001484
Mp00103: Dyck paths peeling mapDyck paths
Mp00027: Dyck paths to partitionInteger partitions
St001484: Integer partitions ⟶ ℤResult quality: 60% values known / values provided: 60%distinct values known / distinct values provided: 91%
Values
[1,0]
=> [1,0]
=> []
=> 0 = 1 - 1
[1,0,1,0]
=> [1,0,1,0]
=> [1]
=> 1 = 2 - 1
[1,1,0,0]
=> [1,0,1,0]
=> [1]
=> 1 = 2 - 1
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [2,1]
=> 2 = 3 - 1
[1,0,1,1,0,0]
=> [1,0,1,0,1,0]
=> [2,1]
=> 2 = 3 - 1
[1,1,0,0,1,0]
=> [1,0,1,0,1,0]
=> [2,1]
=> 2 = 3 - 1
[1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [2,1]
=> 2 = 3 - 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [2,1]
=> 2 = 3 - 1
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 3 = 4 - 1
[1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 3 = 4 - 1
[1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 3 = 4 - 1
[1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 3 = 4 - 1
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 3 = 4 - 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 3 = 4 - 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 3 = 4 - 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 3 = 4 - 1
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 3 = 4 - 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 3 = 4 - 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 3 = 4 - 1
[1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 3 = 4 - 1
[1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 3 = 4 - 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> 1 = 2 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> 4 = 5 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> 4 = 5 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> 4 = 5 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> 4 = 5 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> 4 = 5 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> 4 = 5 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> 4 = 5 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> 4 = 5 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> 4 = 5 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> 4 = 5 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> 4 = 5 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> 4 = 5 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> 4 = 5 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> 2 = 3 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> 4 = 5 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> 4 = 5 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> 4 = 5 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> 4 = 5 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> 4 = 5 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> 4 = 5 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> 4 = 5 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> 4 = 5 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> 4 = 5 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> 4 = 5 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> 4 = 5 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> 4 = 5 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> 4 = 5 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> 2 = 3 - 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [6,4,3,3,2,1]
=> ? = 5 - 1
[1,0,1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [6,4,3,3,2,1]
=> ? = 5 - 1
[1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [6,4,3,3,2,1]
=> ? = 5 - 1
[1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,2,1]
=> ? = 5 - 1
[1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,2,1]
=> ? = 5 - 1
[1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,2,1]
=> ? = 5 - 1
[1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [6,4,3,2,2,1]
=> ? = 5 - 1
[1,1,0,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [6,4,3,3,2,1]
=> ? = 5 - 1
[1,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [6,4,3,3,2,1]
=> ? = 5 - 1
[1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [6,4,3,3,2,1]
=> ? = 5 - 1
[1,1,0,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,2,1]
=> ? = 5 - 1
[1,1,0,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,2,1]
=> ? = 5 - 1
[1,1,0,1,1,1,0,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,2,1]
=> ? = 5 - 1
[1,1,0,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [6,4,3,2,2,1]
=> ? = 5 - 1
[1,1,1,0,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [6,4,3,3,2,1]
=> ? = 5 - 1
[1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [6,4,3,3,2,1]
=> ? = 5 - 1
[1,1,1,0,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,2,1]
=> ? = 5 - 1
[1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,2,1]
=> ? = 5 - 1
[1,1,1,0,1,1,0,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,2,1]
=> ? = 5 - 1
[1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [6,4,3,2,2,1]
=> ? = 5 - 1
[1,1,1,1,0,0,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [6,4,3,3,1,1]
=> ? = 3 - 1
[1,1,1,1,0,1,0,0,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,1,1]
=> ? = 5 - 1
[1,1,1,1,0,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,1,1]
=> ? = 5 - 1
[1,1,1,1,0,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,1,1]
=> ? = 5 - 1
[1,1,1,1,0,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,1,1]
=> ? = 5 - 1
[1,1,1,1,0,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,1,1]
=> ? = 5 - 1
[1,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,1,1]
=> ? = 5 - 1
[1,1,1,1,0,1,0,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,1,1]
=> ? = 5 - 1
[1,1,1,1,0,1,0,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,1,1]
=> ? = 5 - 1
[1,1,1,1,0,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0,1,0]
=> [6,4,4,2,1,1]
=> ? = 3 - 1
[1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,1,1]
=> ? = 5 - 1
[1,1,1,1,0,1,0,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,1,1]
=> ? = 5 - 1
[1,1,1,1,0,1,0,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,1,1]
=> ? = 5 - 1
[1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [7,5,5,4,3,2,1]
=> ? = 6 - 1
[1,0,1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [7,5,5,4,3,2,1]
=> ? = 6 - 1
[1,0,1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [7,5,5,4,3,2,1]
=> ? = 6 - 1
[1,0,1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [7,6,4,4,3,2,1]
=> ? = 6 - 1
[1,0,1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [7,6,4,4,3,2,1]
=> ? = 6 - 1
[1,0,1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [7,6,4,4,3,2,1]
=> ? = 6 - 1
[1,0,1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [7,5,4,4,3,2,1]
=> ? = 6 - 1
[1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [7,4,4,4,3,2,1]
=> ? = 5 - 1
[1,0,1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [7,5,5,4,3,2,1]
=> ? = 6 - 1
[1,0,1,0,1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [7,5,5,4,3,2,1]
=> ? = 6 - 1
[1,0,1,0,1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [7,5,5,4,3,2,1]
=> ? = 6 - 1
[1,0,1,0,1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [7,6,4,4,3,2,1]
=> ? = 6 - 1
[1,0,1,0,1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [7,6,4,4,3,2,1]
=> ? = 6 - 1
[1,0,1,0,1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [7,6,4,4,3,2,1]
=> ? = 6 - 1
[1,0,1,0,1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [7,5,4,4,3,2,1]
=> ? = 6 - 1
[1,0,1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [7,4,4,4,3,2,1]
=> ? = 5 - 1
[1,0,1,0,1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [7,5,5,4,3,2,1]
=> ? = 6 - 1
Description
The number of singletons of an integer partition. A singleton in an integer partition is a part that appear precisely once.
Mp00103: Dyck paths peeling mapDyck paths
Mp00201: Dyck paths RingelPermutations
Mp00086: Permutations first fundamental transformationPermutations
St000731: Permutations ⟶ ℤResult quality: 51% values known / values provided: 51%distinct values known / distinct values provided: 91%
Values
[1,0]
=> [1,0]
=> [2,1] => [2,1] => 0 = 1 - 1
[1,0,1,0]
=> [1,0,1,0]
=> [3,1,2] => [2,3,1] => 1 = 2 - 1
[1,1,0,0]
=> [1,0,1,0]
=> [3,1,2] => [2,3,1] => 1 = 2 - 1
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => [2,3,4,1] => 2 = 3 - 1
[1,0,1,1,0,0]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => [2,3,4,1] => 2 = 3 - 1
[1,1,0,0,1,0]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => [2,3,4,1] => 2 = 3 - 1
[1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => [2,3,4,1] => 2 = 3 - 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => [2,3,4,1] => 2 = 3 - 1
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [2,3,4,5,1] => 3 = 4 - 1
[1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [2,3,4,5,1] => 3 = 4 - 1
[1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [2,3,4,5,1] => 3 = 4 - 1
[1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [2,3,4,5,1] => 3 = 4 - 1
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [2,3,4,5,1] => 3 = 4 - 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [2,3,4,5,1] => 3 = 4 - 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [2,3,4,5,1] => 3 = 4 - 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [2,3,4,5,1] => 3 = 4 - 1
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [2,3,4,5,1] => 3 = 4 - 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [2,3,4,5,1] => 3 = 4 - 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [2,3,4,5,1] => 3 = 4 - 1
[1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [2,3,4,5,1] => 3 = 4 - 1
[1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [2,3,4,5,1] => 3 = 4 - 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [3,4,1,5,2] => 1 = 2 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [2,3,4,5,6,1] => 4 = 5 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [2,3,4,5,6,1] => 4 = 5 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [2,3,4,5,6,1] => 4 = 5 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [2,3,4,5,6,1] => 4 = 5 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [2,3,4,5,6,1] => 4 = 5 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [2,3,4,5,6,1] => 4 = 5 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [2,3,4,5,6,1] => 4 = 5 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [2,3,4,5,6,1] => 4 = 5 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [2,3,4,5,6,1] => 4 = 5 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [2,3,4,5,6,1] => 4 = 5 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [2,3,4,5,6,1] => 4 = 5 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [2,3,4,5,6,1] => 4 = 5 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [2,3,4,5,6,1] => 4 = 5 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => [2,4,5,1,6,3] => 2 = 3 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [2,3,4,5,6,1] => 4 = 5 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [2,3,4,5,6,1] => 4 = 5 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [2,3,4,5,6,1] => 4 = 5 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [2,3,4,5,6,1] => 4 = 5 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [2,3,4,5,6,1] => 4 = 5 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [2,3,4,5,6,1] => 4 = 5 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [2,3,4,5,6,1] => 4 = 5 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [2,3,4,5,6,1] => 4 = 5 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [2,3,4,5,6,1] => 4 = 5 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [2,3,4,5,6,1] => 4 = 5 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [2,3,4,5,6,1] => 4 = 5 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [2,3,4,5,6,1] => 4 = 5 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [2,3,4,5,6,1] => 4 = 5 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => [2,4,5,1,6,3] => 2 = 3 - 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,1,2,3,7,4,6] => [2,3,5,6,1,7,4] => ? = 4 - 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,1,2,3,7,4,6] => [2,3,5,6,1,7,4] => ? = 4 - 1
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,1,2,3,7,4,6] => [2,3,5,6,1,7,4] => ? = 4 - 1
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [4,1,2,7,3,5,6] => [2,4,5,1,6,7,3] => ? = 4 - 1
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [4,1,2,7,3,5,6] => [2,4,5,1,6,7,3] => ? = 4 - 1
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [4,1,2,7,3,5,6] => [2,4,5,1,6,7,3] => ? = 4 - 1
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [7,1,2,5,3,4,6] => [2,5,4,6,3,7,1] => ? = 4 - 1
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [4,1,2,5,7,3,6] => [2,4,6,1,5,7,3] => ? = 3 - 1
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,1,2,3,7,4,6] => [2,3,5,6,1,7,4] => ? = 4 - 1
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,1,2,3,7,4,6] => [2,3,5,6,1,7,4] => ? = 4 - 1
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,1,2,3,7,4,6] => [2,3,5,6,1,7,4] => ? = 4 - 1
[1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [4,1,2,7,3,5,6] => [2,4,5,1,6,7,3] => ? = 4 - 1
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [4,1,2,7,3,5,6] => [2,4,5,1,6,7,3] => ? = 4 - 1
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [4,1,2,7,3,5,6] => [2,4,5,1,6,7,3] => ? = 4 - 1
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [7,1,2,5,3,4,6] => [2,5,4,6,3,7,1] => ? = 4 - 1
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [4,1,2,5,7,3,6] => [2,4,6,1,5,7,3] => ? = 3 - 1
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,1,2,3,7,4,6] => [2,3,5,6,1,7,4] => ? = 4 - 1
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,1,2,3,7,4,6] => [2,3,5,6,1,7,4] => ? = 4 - 1
[1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [4,1,2,7,3,5,6] => [2,4,5,1,6,7,3] => ? = 4 - 1
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [4,1,2,7,3,5,6] => [2,4,5,1,6,7,3] => ? = 4 - 1
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [4,1,2,7,3,5,6] => [2,4,5,1,6,7,3] => ? = 4 - 1
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [7,1,2,5,3,4,6] => [2,5,4,6,3,7,1] => ? = 4 - 1
[1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [4,1,2,5,7,3,6] => [2,4,6,1,5,7,3] => ? = 3 - 1
[1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [3,1,7,2,4,5,6] => [3,4,1,5,6,7,2] => ? = 4 - 1
[1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [3,1,7,2,4,5,6] => [3,4,1,5,6,7,2] => ? = 4 - 1
[1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [3,1,7,2,4,5,6] => [3,4,1,5,6,7,2] => ? = 4 - 1
[1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [3,1,7,2,4,5,6] => [3,4,1,5,6,7,2] => ? = 4 - 1
[1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [3,1,7,2,4,5,6] => [3,4,1,5,6,7,2] => ? = 4 - 1
[1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [3,1,7,2,4,5,6] => [3,4,1,5,6,7,2] => ? = 4 - 1
[1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [3,1,7,2,4,5,6] => [3,4,1,5,6,7,2] => ? = 4 - 1
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [3,1,7,2,4,5,6] => [3,4,1,5,6,7,2] => ? = 4 - 1
[1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,7,4,6] => [3,5,1,6,2,7,4] => ? = 2 - 1
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [7,1,5,2,3,4,6] => [5,3,4,6,2,7,1] => ? = 4 - 1
[1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> [5,1,4,2,7,3,6] => [4,5,6,2,1,7,3] => ? = 2 - 1
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [3,1,4,7,2,5,6] => [3,5,1,4,6,7,2] => ? = 3 - 1
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [3,1,4,7,2,5,6] => [3,5,1,4,6,7,2] => ? = 3 - 1
[1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [3,1,4,7,2,5,6] => [3,5,1,4,6,7,2] => ? = 3 - 1
[1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [3,1,7,5,2,4,6] => [3,4,1,6,2,7,5] => ? = 3 - 1
[1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> [7,1,4,5,2,3,6] => [4,3,6,5,2,7,1] => ? = 3 - 1
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [3,1,4,5,7,2,6] => [3,6,1,4,5,7,2] => ? = 2 - 1
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [6,1,2,3,4,8,5,7] => [2,3,4,6,7,1,8,5] => ? = 5 - 1
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [6,1,2,3,4,8,5,7] => [2,3,4,6,7,1,8,5] => ? = 5 - 1
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [6,1,2,3,4,8,5,7] => [2,3,4,6,7,1,8,5] => ? = 5 - 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [8,1,2,3,6,4,5,7] => [2,3,6,5,7,4,8,1] => ? = 5 - 1
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [5,1,2,3,6,8,4,7] => [2,3,5,7,1,6,8,4] => ? = 4 - 1
[1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [6,1,2,3,4,8,5,7] => [2,3,4,6,7,1,8,5] => ? = 5 - 1
[1,0,1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [6,1,2,3,4,8,5,7] => [2,3,4,6,7,1,8,5] => ? = 5 - 1
[1,0,1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [6,1,2,3,4,8,5,7] => [2,3,4,6,7,1,8,5] => ? = 5 - 1
[1,0,1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [8,1,2,3,6,4,5,7] => [2,3,6,5,7,4,8,1] => ? = 5 - 1
[1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [5,1,2,3,6,8,4,7] => [2,3,5,7,1,6,8,4] => ? = 4 - 1
Description
The number of double exceedences of a permutation. A double exceedence is an index $\sigma(i)$ such that $i < \sigma(i) < \sigma(\sigma(i))$.
Mp00103: Dyck paths peeling mapDyck paths
Mp00120: Dyck paths Lalanne-Kreweras involutionDyck paths
Mp00201: Dyck paths RingelPermutations
St000028: Permutations ⟶ ℤResult quality: 50% values known / values provided: 50%distinct values known / distinct values provided: 91%
Values
[1,0]
=> [1,0]
=> [1,0]
=> [2,1] => 1
[1,0,1,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> [2,3,1] => 2
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> [2,3,1] => 2
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [2,3,4,1] => 3
[1,0,1,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [2,3,4,1] => 3
[1,1,0,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [2,3,4,1] => 3
[1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [2,3,4,1] => 3
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [2,3,4,1] => 3
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 4
[1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 4
[1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 4
[1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 4
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 4
[1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 4
[1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 4
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 4
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 4
[1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 4
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 4
[1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 4
[1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 4
[1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => 5
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => 5
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => 5
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => 5
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => 5
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => 5
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => 5
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => 5
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => 5
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => 5
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => 5
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => 5
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => 3
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => 5
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => 5
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => 5
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => 5
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => 5
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => 5
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => 5
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => 5
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => 5
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => 5
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => 5
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => 5
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => 5
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => 3
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ? = 4
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ? = 4
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ? = 4
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [2,3,6,5,1,7,4] => ? = 4
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,3,6,1,4,7,5] => ? = 3
[1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ? = 4
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ? = 4
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ? = 4
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [2,3,6,5,1,7,4] => ? = 4
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,3,6,1,4,7,5] => ? = 3
[1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ? = 4
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ? = 4
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ? = 4
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [2,3,6,5,1,7,4] => ? = 4
[1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,3,6,1,4,7,5] => ? = 3
[1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,4,1,5,6,7,3] => ? = 4
[1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,4,1,5,6,7,3] => ? = 4
[1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,4,1,5,6,7,3] => ? = 4
[1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,4,1,5,6,7,3] => ? = 4
[1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,4,1,5,6,7,3] => ? = 4
[1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,4,1,5,6,7,3] => ? = 4
[1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,4,1,5,6,7,3] => ? = 4
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,4,1,5,6,7,3] => ? = 4
[1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => ? = 2
[1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [2,5,4,1,6,7,3] => ? = 4
[1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [2,5,4,1,6,7,3] => ? = 4
[1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [2,5,4,1,6,7,3] => ? = 4
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [2,6,4,5,1,7,3] => ? = 4
[1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [2,6,4,1,3,7,5] => ? = 2
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,5,1,3,6,7,4] => ? = 3
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,5,1,3,6,7,4] => ? = 3
[1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,5,1,3,6,7,4] => ? = 3
[1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> [2,6,1,5,3,7,4] => ? = 3
[1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [2,6,5,1,3,7,4] => ? = 3
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,6,1,3,4,7,5] => ? = 2
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [2,3,4,5,7,1,8,6] => ? = 5
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [2,3,4,5,7,1,8,6] => ? = 5
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [2,3,4,5,7,1,8,6] => ? = 5
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [2,3,4,6,1,7,8,5] => ? = 5
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [2,3,4,6,1,7,8,5] => ? = 5
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [2,3,4,6,1,7,8,5] => ? = 5
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> [2,3,4,7,6,1,8,5] => ? = 5
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [2,3,4,7,1,5,8,6] => ? = 4
[1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [2,3,4,5,7,1,8,6] => ? = 5
[1,0,1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [2,3,4,5,7,1,8,6] => ? = 5
[1,0,1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [2,3,4,5,7,1,8,6] => ? = 5
[1,0,1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [2,3,4,6,1,7,8,5] => ? = 5
[1,0,1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [2,3,4,6,1,7,8,5] => ? = 5
[1,0,1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [2,3,4,6,1,7,8,5] => ? = 5
[1,0,1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> [2,3,4,7,6,1,8,5] => ? = 5
Description
The number of stack-sorts needed to sort a permutation. A permutation is (West) $t$-stack sortable if it is sortable using $t$ stacks in series. Let $W_t(n,k)$ be the number of permutations of size $n$ with $k$ descents which are $t$-stack sortable. Then the polynomials $W_{n,t}(x) = \sum_{k=0}^n W_t(n,k)x^k$ are symmetric and unimodal. We have $W_{n,1}(x) = A_n(x)$, the Eulerian polynomials. One can show that $W_{n,1}(x)$ and $W_{n,2}(x)$ are real-rooted. Precisely the permutations that avoid the pattern $231$ have statistic at most $1$, see [3]. These are counted by $\frac{1}{n+1}\binom{2n}{n}$ ([[OEIS:A000108]]). Precisely the permutations that avoid the pattern $2341$ and the barred pattern $3\bar 5241$ have statistic at most $2$, see [4]. These are counted by $\frac{2(3n)!}{(n+1)!(2n+1)!}$ ([[OEIS:A000139]]).
The following 68 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000237The number of small exceedances. St000931The number of occurrences of the pattern UUU in a Dyck path. St001126Number of simple module that are 1-regular in the corresponding Nakayama algebra. St001067The number of simple modules of dominant dimension at least two in the corresponding Nakayama algebra. St000247The number of singleton blocks of a set partition. St001189The number of simple modules with dominant and codominant dimension equal to zero in the Nakayama algebra corresponding to the Dyck path. St001640The number of ascent tops in the permutation such that all smaller elements appear before. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001644The dimension of a graph. St001330The hat guessing number of a graph. St001223Number of indecomposable projective non-injective modules P such that the modules X and Y in a an Auslander-Reiten sequence ending at P are torsionless. St001233The number of indecomposable 2-dimensional modules with projective dimension one. St000732The number of double deficiencies of a permutation. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St001820The size of the image of the pop stack sorting operator. St000308The height of the tree associated to a permutation. St000454The largest eigenvalue of a graph if it is integral. St001623The number of doubly irreducible elements of a lattice. St001626The number of maximal proper sublattices of a lattice. St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path. St000141The maximum drop size of a permutation. St000239The number of small weak excedances. St000337The lec statistic, the sum of the inversion numbers of the hook factors of a permutation. St000374The number of exclusive right-to-left minima of a permutation. St000703The number of deficiencies of a permutation. St000887The maximal number of nonzero entries on a diagonal of a permutation matrix. St000996The number of exclusive left-to-right maxima of a permutation. St001052The length of the exterior of a permutation. St001096The size of the overlap set of a permutation. St001216The number of indecomposable injective modules in the corresponding Nakayama algebra that have non-vanishing second Ext-group with the regular module. St001238The number of simple modules S such that the Auslander-Reiten translate of S is isomorphic to the Nakayama functor applied to the second syzygy of S. St001589The nesting number of a perfect matching. St000451The length of the longest pattern of the form k 1 2. St001290The first natural number n such that the tensor product of n copies of D(A) is zero for the corresponding Nakayama algebra A. St001294The maximal torsionfree index of a simple non-projective module in the corresponding Nakayama algebra. St001180Number of indecomposable injective modules with projective dimension at most 1. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001948The number of augmented double ascents of a permutation. St001615The number of join prime elements of a lattice. St001617The dimension of the space of valuations of a lattice. St000528The height of a poset. St001637The number of (upper) dissectors of a poset. St001668The number of points of the poset minus the width of the poset. St001812The biclique partition number of a graph. St000080The rank of the poset. St000906The length of the shortest maximal chain in a poset. St001636The number of indecomposable injective modules with projective dimension at most one in the incidence algebra of the poset. St000643The size of the largest orbit of antichains under Panyushev complementation. St001782The order of rowmotion on the set of order ideals of a poset. St001884The number of borders of a binary word. St001414Half the length of the longest odd length palindromic prefix of a binary word. St000689The maximal n such that the minimal generator-cogenerator module in the LNakayama algebra of a Dyck path is n-rigid. St001000Number of indecomposable modules with projective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001267The length of the Lyndon factorization of the binary word. St001355Number of non-empty prefixes of a binary word that contain equally many 0's and 1's. St001420Half the length of a longest factor which is its own reverse-complement of a binary word. St001421Half the length of a longest factor which is its own reverse-complement and begins with a one of a binary word. St001424The number of distinct squares in a binary word. St001437The flex of a binary word. St001462The number of factors of a standard tableaux under concatenation. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St000044The number of vertices of the unicellular map given by a perfect matching. St001875The number of simple modules with projective dimension at most 1. St001960The number of descents of a permutation minus one if its first entry is not one. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St001684The reduced word complexity of a permutation. St001555The order of a signed permutation.