searching the database
Your data matches 5 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000451
Mp00080: Set partitions —to permutation⟶ Permutations
Mp00066: Permutations —inverse⟶ Permutations
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
St000451: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00066: Permutations —inverse⟶ Permutations
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
St000451: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => [1] => [1] => 1
{{1,2}}
=> [2,1] => [2,1] => [2,1] => 2
{{1},{2}}
=> [1,2] => [1,2] => [1,2] => 1
{{1,2,3}}
=> [2,3,1] => [3,1,2] => [3,2,1] => 2
{{1,2},{3}}
=> [2,1,3] => [2,1,3] => [2,1,3] => 2
{{1,3},{2}}
=> [3,2,1] => [3,2,1] => [2,3,1] => 2
{{1},{2,3}}
=> [1,3,2] => [1,3,2] => [1,3,2] => 2
{{1},{2},{3}}
=> [1,2,3] => [1,2,3] => [1,2,3] => 1
{{1,2,3,4}}
=> [2,3,4,1] => [4,1,2,3] => [4,3,2,1] => 2
{{1,2,3},{4}}
=> [2,3,1,4] => [3,1,2,4] => [3,2,1,4] => 2
{{1,2,4},{3}}
=> [2,4,3,1] => [4,1,3,2] => [3,4,2,1] => 2
{{1,2},{3,4}}
=> [2,1,4,3] => [2,1,4,3] => [2,1,4,3] => 2
{{1,2},{3},{4}}
=> [2,1,3,4] => [2,1,3,4] => [2,1,3,4] => 2
{{1,3,4},{2}}
=> [3,2,4,1] => [4,2,1,3] => [2,4,3,1] => 2
{{1,3},{2,4}}
=> [3,4,1,2] => [3,4,1,2] => [3,1,4,2] => 3
{{1,3},{2},{4}}
=> [3,2,1,4] => [3,2,1,4] => [2,3,1,4] => 2
{{1,4},{2,3}}
=> [4,3,2,1] => [4,3,2,1] => [3,2,4,1] => 2
{{1},{2,3,4}}
=> [1,3,4,2] => [1,4,2,3] => [1,4,3,2] => 2
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,3,2,4] => [1,3,2,4] => 2
{{1,4},{2},{3}}
=> [4,2,3,1] => [4,2,3,1] => [2,3,4,1] => 2
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,4,3,2] => [1,3,4,2] => 2
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,2,4,3] => [1,2,4,3] => 2
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 1
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [5,1,2,3,4] => [5,4,3,2,1] => 2
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [4,1,2,3,5] => [4,3,2,1,5] => 2
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [5,1,2,4,3] => [4,5,3,2,1] => 2
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [3,1,2,5,4] => [3,2,1,5,4] => 2
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [3,1,2,4,5] => [3,2,1,4,5] => 2
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [5,1,3,2,4] => [3,5,4,2,1] => 2
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [4,1,5,2,3] => [4,2,1,5,3] => 3
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [4,1,3,2,5] => [3,4,2,1,5] => 2
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [5,1,4,3,2] => [4,3,5,2,1] => 2
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [2,1,5,3,4] => [2,1,5,4,3] => 2
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [2,1,4,3,5] => [2,1,4,3,5] => 2
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [5,1,3,4,2] => [3,4,5,2,1] => 2
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [2,1,5,4,3] => [2,1,4,5,3] => 2
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [2,1,3,5,4] => [2,1,3,5,4] => 2
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [2,1,3,4,5] => [2,1,3,4,5] => 2
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [5,2,1,3,4] => [2,5,4,3,1] => 2
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [4,5,1,3,2] => [4,3,1,5,2] => 3
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [4,2,1,3,5] => [2,4,3,1,5] => 2
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [5,4,1,2,3] => [4,2,5,3,1] => 3
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [3,5,1,2,4] => [3,1,5,4,2] => 3
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [3,4,1,2,5] => [3,1,4,2,5] => 3
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [5,2,1,4,3] => [2,4,5,3,1] => 2
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [3,5,1,4,2] => [3,1,4,5,2] => 3
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [3,2,1,5,4] => [2,3,1,5,4] => 2
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [3,2,1,4,5] => [2,3,1,4,5] => 2
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [5,3,2,1,4] => [3,2,5,4,1] => 2
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [4,5,2,1,3] => [4,1,5,3,2] => 3
Description
The length of the longest pattern of the form k 1 2...(k-1).
Matching statistic: St000253
(load all 66 compositions to match this statistic)
(load all 66 compositions to match this statistic)
Mp00112: Set partitions —complement⟶ Set partitions
Mp00091: Set partitions —rotate increasing⟶ Set partitions
St000253: Set partitions ⟶ ℤResult quality: 68% ●values known / values provided: 68%●distinct values known / distinct values provided: 80%
Mp00091: Set partitions —rotate increasing⟶ Set partitions
St000253: Set partitions ⟶ ℤResult quality: 68% ●values known / values provided: 68%●distinct values known / distinct values provided: 80%
Values
{{1}}
=> {{1}}
=> {{1}}
=> ? = 1 - 1
{{1,2}}
=> {{1,2}}
=> {{1,2}}
=> 1 = 2 - 1
{{1},{2}}
=> {{1},{2}}
=> {{1},{2}}
=> 0 = 1 - 1
{{1,2,3}}
=> {{1,2,3}}
=> {{1,2,3}}
=> 1 = 2 - 1
{{1,2},{3}}
=> {{1},{2,3}}
=> {{1,3},{2}}
=> 1 = 2 - 1
{{1,3},{2}}
=> {{1,3},{2}}
=> {{1,2},{3}}
=> 1 = 2 - 1
{{1},{2,3}}
=> {{1,2},{3}}
=> {{1},{2,3}}
=> 1 = 2 - 1
{{1},{2},{3}}
=> {{1},{2},{3}}
=> {{1},{2},{3}}
=> 0 = 1 - 1
{{1,2,3,4}}
=> {{1,2,3,4}}
=> {{1,2,3,4}}
=> 1 = 2 - 1
{{1,2,3},{4}}
=> {{1},{2,3,4}}
=> {{1,3,4},{2}}
=> 1 = 2 - 1
{{1,2,4},{3}}
=> {{1,3,4},{2}}
=> {{1,2,4},{3}}
=> 1 = 2 - 1
{{1,2},{3,4}}
=> {{1,2},{3,4}}
=> {{1,4},{2,3}}
=> 1 = 2 - 1
{{1,2},{3},{4}}
=> {{1},{2},{3,4}}
=> {{1,4},{2},{3}}
=> 1 = 2 - 1
{{1,3,4},{2}}
=> {{1,2,4},{3}}
=> {{1,2,3},{4}}
=> 1 = 2 - 1
{{1,3},{2,4}}
=> {{1,3},{2,4}}
=> {{1,3},{2,4}}
=> 2 = 3 - 1
{{1,3},{2},{4}}
=> {{1},{2,4},{3}}
=> {{1,3},{2},{4}}
=> 1 = 2 - 1
{{1,4},{2,3}}
=> {{1,4},{2,3}}
=> {{1,2},{3,4}}
=> 1 = 2 - 1
{{1},{2,3,4}}
=> {{1,2,3},{4}}
=> {{1},{2,3,4}}
=> 1 = 2 - 1
{{1},{2,3},{4}}
=> {{1},{2,3},{4}}
=> {{1},{2},{3,4}}
=> 1 = 2 - 1
{{1,4},{2},{3}}
=> {{1,4},{2},{3}}
=> {{1,2},{3},{4}}
=> 1 = 2 - 1
{{1},{2,4},{3}}
=> {{1,3},{2},{4}}
=> {{1},{2,4},{3}}
=> 1 = 2 - 1
{{1},{2},{3,4}}
=> {{1,2},{3},{4}}
=> {{1},{2,3},{4}}
=> 1 = 2 - 1
{{1},{2},{3},{4}}
=> {{1},{2},{3},{4}}
=> {{1},{2},{3},{4}}
=> 0 = 1 - 1
{{1,2,3,4,5}}
=> {{1,2,3,4,5}}
=> {{1,2,3,4,5}}
=> 1 = 2 - 1
{{1,2,3,4},{5}}
=> {{1},{2,3,4,5}}
=> {{1,3,4,5},{2}}
=> 1 = 2 - 1
{{1,2,3,5},{4}}
=> {{1,3,4,5},{2}}
=> {{1,2,4,5},{3}}
=> 1 = 2 - 1
{{1,2,3},{4,5}}
=> {{1,2},{3,4,5}}
=> {{1,4,5},{2,3}}
=> 1 = 2 - 1
{{1,2,3},{4},{5}}
=> {{1},{2},{3,4,5}}
=> {{1,4,5},{2},{3}}
=> 1 = 2 - 1
{{1,2,4,5},{3}}
=> {{1,2,4,5},{3}}
=> {{1,2,3,5},{4}}
=> 1 = 2 - 1
{{1,2,4},{3,5}}
=> {{1,3},{2,4,5}}
=> {{1,3,5},{2,4}}
=> 2 = 3 - 1
{{1,2,4},{3},{5}}
=> {{1},{2,4,5},{3}}
=> {{1,3,5},{2},{4}}
=> 1 = 2 - 1
{{1,2,5},{3,4}}
=> {{1,4,5},{2,3}}
=> {{1,2,5},{3,4}}
=> 1 = 2 - 1
{{1,2},{3,4,5}}
=> {{1,2,3},{4,5}}
=> {{1,5},{2,3,4}}
=> 1 = 2 - 1
{{1,2},{3,4},{5}}
=> {{1},{2,3},{4,5}}
=> {{1,5},{2},{3,4}}
=> 1 = 2 - 1
{{1,2,5},{3},{4}}
=> {{1,4,5},{2},{3}}
=> {{1,2,5},{3},{4}}
=> 1 = 2 - 1
{{1,2},{3,5},{4}}
=> {{1,3},{2},{4,5}}
=> {{1,5},{2,4},{3}}
=> 1 = 2 - 1
{{1,2},{3},{4,5}}
=> {{1,2},{3},{4,5}}
=> {{1,5},{2,3},{4}}
=> 1 = 2 - 1
{{1,2},{3},{4},{5}}
=> {{1},{2},{3},{4,5}}
=> {{1,5},{2},{3},{4}}
=> 1 = 2 - 1
{{1,3,4,5},{2}}
=> {{1,2,3,5},{4}}
=> {{1,2,3,4},{5}}
=> 1 = 2 - 1
{{1,3,4},{2,5}}
=> {{1,4},{2,3,5}}
=> {{1,3,4},{2,5}}
=> 2 = 3 - 1
{{1,3,4},{2},{5}}
=> {{1},{2,3,5},{4}}
=> {{1,3,4},{2},{5}}
=> 1 = 2 - 1
{{1,3,5},{2,4}}
=> {{1,3,5},{2,4}}
=> {{1,2,4},{3,5}}
=> 2 = 3 - 1
{{1,3},{2,4,5}}
=> {{1,2,4},{3,5}}
=> {{1,4},{2,3,5}}
=> 2 = 3 - 1
{{1,3},{2,4},{5}}
=> {{1},{2,4},{3,5}}
=> {{1,4},{2},{3,5}}
=> 2 = 3 - 1
{{1,3,5},{2},{4}}
=> {{1,3,5},{2},{4}}
=> {{1,2,4},{3},{5}}
=> 1 = 2 - 1
{{1,3},{2,5},{4}}
=> {{1,4},{2},{3,5}}
=> {{1,4},{2,5},{3}}
=> 2 = 3 - 1
{{1,3},{2},{4,5}}
=> {{1,2},{3,5},{4}}
=> {{1,4},{2,3},{5}}
=> 1 = 2 - 1
{{1,3},{2},{4},{5}}
=> {{1},{2},{3,5},{4}}
=> {{1,4},{2},{3},{5}}
=> 1 = 2 - 1
{{1,4,5},{2,3}}
=> {{1,2,5},{3,4}}
=> {{1,2,3},{4,5}}
=> 1 = 2 - 1
{{1,4},{2,3,5}}
=> {{1,3,4},{2,5}}
=> {{1,3},{2,4,5}}
=> 2 = 3 - 1
{{1,4},{2,3},{5}}
=> {{1},{2,5},{3,4}}
=> {{1,3},{2},{4,5}}
=> 1 = 2 - 1
{{1,2},{3,4},{5,6},{7,8}}
=> {{1,2},{3,4},{5,6},{7,8}}
=> {{1,8},{2,3},{4,5},{6,7}}
=> ? = 2 - 1
{{1,3},{2,4},{5,6},{7,8}}
=> {{1,2},{3,4},{5,7},{6,8}}
=> {{1,7},{2,3},{4,5},{6,8}}
=> ? = 3 - 1
{{1,4},{2,3},{5,6},{7,8}}
=> {{1,2},{3,4},{5,8},{6,7}}
=> {{1,6},{2,3},{4,5},{7,8}}
=> ? = 2 - 1
{{1,5},{2,3},{4,6},{7,8}}
=> {{1,2},{3,5},{4,8},{6,7}}
=> {{1,5},{2,3},{4,6},{7,8}}
=> ? = 3 - 1
{{1,6},{2,3},{4,5},{7,8}}
=> {{1,2},{3,8},{4,5},{6,7}}
=> {{1,4},{2,3},{5,6},{7,8}}
=> ? = 2 - 1
{{1,7},{2,3},{4,5},{6,8}}
=> {{1,3},{2,8},{4,5},{6,7}}
=> {{1,3},{2,4},{5,6},{7,8}}
=> ? = 3 - 1
{{1,8},{2,3},{4,5},{6,7}}
=> {{1,8},{2,3},{4,5},{6,7}}
=> {{1,2},{3,4},{5,6},{7,8}}
=> ? = 2 - 1
{{1,8},{2,4},{3,5},{6,7}}
=> {{1,8},{2,3},{4,6},{5,7}}
=> {{1,2},{3,4},{5,7},{6,8}}
=> ? = 3 - 1
{{1,7},{2,4},{3,5},{6,8}}
=> {{1,3},{2,8},{4,6},{5,7}}
=> {{1,3},{2,4},{5,7},{6,8}}
=> ? = 3 - 1
{{1,6},{2,4},{3,5},{7,8}}
=> {{1,2},{3,8},{4,6},{5,7}}
=> {{1,4},{2,3},{5,7},{6,8}}
=> ? = 3 - 1
{{1,5},{2,4},{3,6},{7,8}}
=> {{1,2},{3,6},{4,8},{5,7}}
=> {{1,5},{2,3},{4,7},{6,8}}
=> ? = 3 - 1
{{1,4},{2,5},{3,6},{7,8}}
=> {{1,2},{3,6},{4,7},{5,8}}
=> {{1,6},{2,3},{4,7},{5,8}}
=> ? = 4 - 1
{{1,3},{2,5},{4,6},{7,8}}
=> {{1,2},{3,5},{4,7},{6,8}}
=> {{1,7},{2,3},{4,6},{5,8}}
=> ? = 3 - 1
{{1,2},{3,5},{4,6},{7,8}}
=> {{1,2},{3,5},{4,6},{7,8}}
=> {{1,8},{2,3},{4,6},{5,7}}
=> ? = 3 - 1
{{1,2},{3,6},{4,5},{7,8}}
=> {{1,2},{3,6},{4,5},{7,8}}
=> {{1,8},{2,3},{4,7},{5,6}}
=> ? = 2 - 1
{{1,3},{2,6},{4,5},{7,8}}
=> {{1,2},{3,7},{4,5},{6,8}}
=> {{1,7},{2,3},{4,8},{5,6}}
=> ? = 3 - 1
{{1,4},{2,6},{3,5},{7,8}}
=> {{1,2},{3,7},{4,6},{5,8}}
=> {{1,6},{2,3},{4,8},{5,7}}
=> ? = 3 - 1
{{1,5},{2,6},{3,4},{7,8}}
=> {{1,2},{3,7},{4,8},{5,6}}
=> {{1,5},{2,3},{4,8},{6,7}}
=> ? = 3 - 1
{{1,6},{2,5},{3,4},{7,8}}
=> {{1,2},{3,8},{4,7},{5,6}}
=> {{1,4},{2,3},{5,8},{6,7}}
=> ? = 2 - 1
{{1,7},{2,5},{3,4},{6,8}}
=> {{1,3},{2,8},{4,7},{5,6}}
=> {{1,3},{2,4},{5,8},{6,7}}
=> ? = 3 - 1
{{1,8},{2,5},{3,4},{6,7}}
=> {{1,8},{2,3},{4,7},{5,6}}
=> {{1,2},{3,4},{5,8},{6,7}}
=> ? = 2 - 1
{{1,8},{2,6},{3,4},{5,7}}
=> {{1,8},{2,4},{3,7},{5,6}}
=> {{1,2},{3,5},{4,8},{6,7}}
=> ? = 3 - 1
{{1,7},{2,6},{3,4},{5,8}}
=> {{1,4},{2,8},{3,7},{5,6}}
=> {{1,3},{2,5},{4,8},{6,7}}
=> ? = 3 - 1
{{1,6},{2,7},{3,4},{5,8}}
=> {{1,4},{2,7},{3,8},{5,6}}
=> {{1,4},{2,5},{3,8},{6,7}}
=> ? = 4 - 1
{{1,5},{2,7},{3,4},{6,8}}
=> {{1,3},{2,7},{4,8},{5,6}}
=> {{1,5},{2,4},{3,8},{6,7}}
=> ? = 3 - 1
{{1,4},{2,7},{3,5},{6,8}}
=> {{1,3},{2,7},{4,6},{5,8}}
=> {{1,6},{2,4},{3,8},{5,7}}
=> ? = 3 - 1
{{1,3},{2,7},{4,5},{6,8}}
=> {{1,3},{2,7},{4,5},{6,8}}
=> {{1,7},{2,4},{3,8},{5,6}}
=> ? = 3 - 1
{{1,2},{3,7},{4,5},{6,8}}
=> {{1,3},{2,6},{4,5},{7,8}}
=> {{1,8},{2,4},{3,7},{5,6}}
=> ? = 3 - 1
{{1,2},{3,8},{4,5},{6,7}}
=> {{1,6},{2,3},{4,5},{7,8}}
=> {{1,8},{2,7},{3,4},{5,6}}
=> ? = 2 - 1
{{1,3},{2,8},{4,5},{6,7}}
=> {{1,7},{2,3},{4,5},{6,8}}
=> {{1,7},{2,8},{3,4},{5,6}}
=> ? = 3 - 1
{{1,4},{2,8},{3,5},{6,7}}
=> {{1,7},{2,3},{4,6},{5,8}}
=> {{1,6},{2,8},{3,4},{5,7}}
=> ? = 3 - 1
{{1,5},{2,8},{3,4},{6,7}}
=> {{1,7},{2,3},{4,8},{5,6}}
=> {{1,5},{2,8},{3,4},{6,7}}
=> ? = 3 - 1
{{1,6},{2,8},{3,4},{5,7}}
=> {{1,7},{2,4},{3,8},{5,6}}
=> {{1,4},{2,8},{3,5},{6,7}}
=> ? = 3 - 1
{{1,7},{2,8},{3,4},{5,6}}
=> {{1,7},{2,8},{3,4},{5,6}}
=> {{1,3},{2,8},{4,5},{6,7}}
=> ? = 3 - 1
{{1,8},{2,7},{3,4},{5,6}}
=> {{1,8},{2,7},{3,4},{5,6}}
=> {{1,2},{3,8},{4,5},{6,7}}
=> ? = 2 - 1
{{1,8},{2,7},{3,5},{4,6}}
=> {{1,8},{2,7},{3,5},{4,6}}
=> {{1,2},{3,8},{4,6},{5,7}}
=> ? = 3 - 1
{{1,7},{2,8},{3,5},{4,6}}
=> {{1,7},{2,8},{3,5},{4,6}}
=> {{1,3},{2,8},{4,6},{5,7}}
=> ? = 3 - 1
{{1,6},{2,8},{3,5},{4,7}}
=> {{1,7},{2,5},{3,8},{4,6}}
=> {{1,4},{2,8},{3,6},{5,7}}
=> ? = 3 - 1
{{1,5},{2,8},{3,6},{4,7}}
=> {{1,7},{2,5},{3,6},{4,8}}
=> {{1,5},{2,8},{3,6},{4,7}}
=> ? = 4 - 1
{{1,4},{2,8},{3,6},{5,7}}
=> {{1,7},{2,4},{3,6},{5,8}}
=> {{1,6},{2,8},{3,5},{4,7}}
=> ? = 3 - 1
{{1,3},{2,8},{4,6},{5,7}}
=> {{1,7},{2,4},{3,5},{6,8}}
=> {{1,7},{2,8},{3,5},{4,6}}
=> ? = 3 - 1
{{1,2},{3,8},{4,6},{5,7}}
=> {{1,6},{2,4},{3,5},{7,8}}
=> {{1,8},{2,7},{3,5},{4,6}}
=> ? = 3 - 1
{{1,2},{3,7},{4,6},{5,8}}
=> {{1,4},{2,6},{3,5},{7,8}}
=> {{1,8},{2,5},{3,7},{4,6}}
=> ? = 3 - 1
{{1,3},{2,7},{4,6},{5,8}}
=> {{1,4},{2,7},{3,5},{6,8}}
=> {{1,7},{2,5},{3,8},{4,6}}
=> ? = 3 - 1
{{1,4},{2,7},{3,6},{5,8}}
=> {{1,4},{2,7},{3,6},{5,8}}
=> {{1,6},{2,5},{3,8},{4,7}}
=> ? = 3 - 1
{{1,5},{2,7},{3,6},{4,8}}
=> {{1,5},{2,7},{3,6},{4,8}}
=> {{1,5},{2,6},{3,8},{4,7}}
=> ? = 4 - 1
{{1,6},{2,7},{3,5},{4,8}}
=> {{1,5},{2,7},{3,8},{4,6}}
=> {{1,4},{2,6},{3,8},{5,7}}
=> ? = 4 - 1
{{1,7},{2,6},{3,5},{4,8}}
=> {{1,5},{2,8},{3,7},{4,6}}
=> {{1,3},{2,6},{4,8},{5,7}}
=> ? = 3 - 1
{{1,8},{2,6},{3,5},{4,7}}
=> {{1,8},{2,5},{3,7},{4,6}}
=> {{1,2},{3,6},{4,8},{5,7}}
=> ? = 3 - 1
Description
The crossing number of a set partition.
This is the maximal number of chords in the standard representation of a set partition, that mutually cross.
Matching statistic: St000254
(load all 51 compositions to match this statistic)
(load all 51 compositions to match this statistic)
Mp00176: Set partitions —rotate decreasing⟶ Set partitions
Mp00217: Set partitions —Wachs-White-rho ⟶ Set partitions
Mp00216: Set partitions —inverse Wachs-White⟶ Set partitions
St000254: Set partitions ⟶ ℤResult quality: 68% ●values known / values provided: 68%●distinct values known / distinct values provided: 80%
Mp00217: Set partitions —Wachs-White-rho ⟶ Set partitions
Mp00216: Set partitions —inverse Wachs-White⟶ Set partitions
St000254: Set partitions ⟶ ℤResult quality: 68% ●values known / values provided: 68%●distinct values known / distinct values provided: 80%
Values
{{1}}
=> {{1}}
=> {{1}}
=> {{1}}
=> ? = 1 - 1
{{1,2}}
=> {{1,2}}
=> {{1,2}}
=> {{1,2}}
=> 1 = 2 - 1
{{1},{2}}
=> {{1},{2}}
=> {{1},{2}}
=> {{1},{2}}
=> 0 = 1 - 1
{{1,2,3}}
=> {{1,2,3}}
=> {{1,2,3}}
=> {{1,2,3}}
=> 1 = 2 - 1
{{1,2},{3}}
=> {{1,3},{2}}
=> {{1,3},{2}}
=> {{1,3},{2}}
=> 1 = 2 - 1
{{1,3},{2}}
=> {{1},{2,3}}
=> {{1},{2,3}}
=> {{1,2},{3}}
=> 1 = 2 - 1
{{1},{2,3}}
=> {{1,2},{3}}
=> {{1,2},{3}}
=> {{1},{2,3}}
=> 1 = 2 - 1
{{1},{2},{3}}
=> {{1},{2},{3}}
=> {{1},{2},{3}}
=> {{1},{2},{3}}
=> 0 = 1 - 1
{{1,2,3,4}}
=> {{1,2,3,4}}
=> {{1,2,3,4}}
=> {{1,2,3,4}}
=> 1 = 2 - 1
{{1,2,3},{4}}
=> {{1,2,4},{3}}
=> {{1,2,4},{3}}
=> {{1,3,4},{2}}
=> 1 = 2 - 1
{{1,2,4},{3}}
=> {{1,3,4},{2}}
=> {{1,3,4},{2}}
=> {{1,3},{2,4}}
=> 1 = 2 - 1
{{1,2},{3,4}}
=> {{1,4},{2,3}}
=> {{1,3},{2,4}}
=> {{1,2,4},{3}}
=> 1 = 2 - 1
{{1,2},{3},{4}}
=> {{1,4},{2},{3}}
=> {{1,4},{2},{3}}
=> {{1,4},{2},{3}}
=> 1 = 2 - 1
{{1,3,4},{2}}
=> {{1},{2,3,4}}
=> {{1},{2,3,4}}
=> {{1,2,3},{4}}
=> 1 = 2 - 1
{{1,3},{2,4}}
=> {{1,3},{2,4}}
=> {{1,4},{2,3}}
=> {{1,4},{2,3}}
=> 2 = 3 - 1
{{1,3},{2},{4}}
=> {{1},{2,4},{3}}
=> {{1},{2,4},{3}}
=> {{1,3},{2},{4}}
=> 1 = 2 - 1
{{1,4},{2,3}}
=> {{1,2},{3,4}}
=> {{1,2},{3,4}}
=> {{1,2},{3,4}}
=> 1 = 2 - 1
{{1},{2,3,4}}
=> {{1,2,3},{4}}
=> {{1,2,3},{4}}
=> {{1},{2,3,4}}
=> 1 = 2 - 1
{{1},{2,3},{4}}
=> {{1,2},{3},{4}}
=> {{1,2},{3},{4}}
=> {{1},{2},{3,4}}
=> 1 = 2 - 1
{{1,4},{2},{3}}
=> {{1},{2},{3,4}}
=> {{1},{2},{3,4}}
=> {{1,2},{3},{4}}
=> 1 = 2 - 1
{{1},{2,4},{3}}
=> {{1,3},{2},{4}}
=> {{1,3},{2},{4}}
=> {{1},{2,4},{3}}
=> 1 = 2 - 1
{{1},{2},{3,4}}
=> {{1},{2,3},{4}}
=> {{1},{2,3},{4}}
=> {{1},{2,3},{4}}
=> 1 = 2 - 1
{{1},{2},{3},{4}}
=> {{1},{2},{3},{4}}
=> {{1},{2},{3},{4}}
=> {{1},{2},{3},{4}}
=> 0 = 1 - 1
{{1,2,3,4,5}}
=> {{1,2,3,4,5}}
=> {{1,2,3,4,5}}
=> {{1,2,3,4,5}}
=> 1 = 2 - 1
{{1,2,3,4},{5}}
=> {{1,2,3,5},{4}}
=> {{1,2,3,5},{4}}
=> {{1,3,4,5},{2}}
=> 1 = 2 - 1
{{1,2,3,5},{4}}
=> {{1,2,4,5},{3}}
=> {{1,2,4,5},{3}}
=> {{1,3},{2,4,5}}
=> 1 = 2 - 1
{{1,2,3},{4,5}}
=> {{1,2,5},{3,4}}
=> {{1,2,4},{3,5}}
=> {{1,2,4,5},{3}}
=> 1 = 2 - 1
{{1,2,3},{4},{5}}
=> {{1,2,5},{3},{4}}
=> {{1,2,5},{3},{4}}
=> {{1,4,5},{2},{3}}
=> 1 = 2 - 1
{{1,2,4,5},{3}}
=> {{1,3,4,5},{2}}
=> {{1,3,4,5},{2}}
=> {{1,3,5},{2,4}}
=> 1 = 2 - 1
{{1,2,4},{3,5}}
=> {{1,3,5},{2,4}}
=> {{1,5},{2,3,4}}
=> {{1,5},{2,3,4}}
=> 2 = 3 - 1
{{1,2,4},{3},{5}}
=> {{1,3,5},{2},{4}}
=> {{1,3,5},{2},{4}}
=> {{1,4},{2},{3,5}}
=> 1 = 2 - 1
{{1,2,5},{3,4}}
=> {{1,4,5},{2,3}}
=> {{1,3},{2,4,5}}
=> {{1,2,3,5},{4}}
=> 1 = 2 - 1
{{1,2},{3,4,5}}
=> {{1,5},{2,3,4}}
=> {{1,3,4},{2,5}}
=> {{1,2,4},{3,5}}
=> 1 = 2 - 1
{{1,2},{3,4},{5}}
=> {{1,5},{2,3},{4}}
=> {{1,3},{2,5},{4}}
=> {{1,3,5},{2},{4}}
=> 1 = 2 - 1
{{1,2,5},{3},{4}}
=> {{1,4,5},{2},{3}}
=> {{1,4,5},{2},{3}}
=> {{1,4},{2,5},{3}}
=> 1 = 2 - 1
{{1,2},{3,5},{4}}
=> {{1,5},{2,4},{3}}
=> {{1,4},{2,5},{3}}
=> {{1,3},{2,5},{4}}
=> 1 = 2 - 1
{{1,2},{3},{4,5}}
=> {{1,5},{2},{3,4}}
=> {{1,4},{2},{3,5}}
=> {{1,2,5},{3},{4}}
=> 1 = 2 - 1
{{1,2},{3},{4},{5}}
=> {{1,5},{2},{3},{4}}
=> {{1,5},{2},{3},{4}}
=> {{1,5},{2},{3},{4}}
=> 1 = 2 - 1
{{1,3,4,5},{2}}
=> {{1},{2,3,4,5}}
=> {{1},{2,3,4,5}}
=> {{1,2,3,4},{5}}
=> 1 = 2 - 1
{{1,3,4},{2,5}}
=> {{1,4},{2,3,5}}
=> {{1,3,5},{2,4}}
=> {{1,4},{2,3,5}}
=> 2 = 3 - 1
{{1,3,4},{2},{5}}
=> {{1},{2,3,5},{4}}
=> {{1},{2,3,5},{4}}
=> {{1,3,4},{2},{5}}
=> 1 = 2 - 1
{{1,3,5},{2,4}}
=> {{1,3},{2,4,5}}
=> {{1,4,5},{2,3}}
=> {{1,3,4},{2,5}}
=> 2 = 3 - 1
{{1,3},{2,4,5}}
=> {{1,3,4},{2,5}}
=> {{1,4},{2,3,5}}
=> {{1,2,5},{3,4}}
=> 2 = 3 - 1
{{1,3},{2,4},{5}}
=> {{1,3},{2,5},{4}}
=> {{1,5},{2,3},{4}}
=> {{1,5},{2},{3,4}}
=> 2 = 3 - 1
{{1,3,5},{2},{4}}
=> {{1},{2,4,5},{3}}
=> {{1},{2,4,5},{3}}
=> {{1,3},{2,4},{5}}
=> 1 = 2 - 1
{{1,3},{2,5},{4}}
=> {{1,4},{2,5},{3}}
=> {{1,5},{2,4},{3}}
=> {{1,5},{2,4},{3}}
=> 2 = 3 - 1
{{1,3},{2},{4,5}}
=> {{1},{2,5},{3,4}}
=> {{1},{2,4},{3,5}}
=> {{1,2,4},{3},{5}}
=> 1 = 2 - 1
{{1,3},{2},{4},{5}}
=> {{1},{2,5},{3},{4}}
=> {{1},{2,5},{3},{4}}
=> {{1,4},{2},{3},{5}}
=> 1 = 2 - 1
{{1,4,5},{2,3}}
=> {{1,2},{3,4,5}}
=> {{1,2},{3,4,5}}
=> {{1,2,3},{4,5}}
=> 1 = 2 - 1
{{1,4},{2,3,5}}
=> {{1,2,4},{3,5}}
=> {{1,2,5},{3,4}}
=> {{1,4,5},{2,3}}
=> 2 = 3 - 1
{{1,4},{2,3},{5}}
=> {{1,2},{3,5},{4}}
=> {{1,2},{3,5},{4}}
=> {{1,3},{2},{4,5}}
=> 1 = 2 - 1
{{1,2},{3,4},{5,6},{7,8}}
=> {{1,8},{2,3},{4,5},{6,7}}
=> {{1,3},{2,5},{4,7},{6,8}}
=> {{1,2,4,6,8},{3},{5},{7}}
=> ? = 2 - 1
{{1,3},{2,4},{5,6},{7,8}}
=> {{1,3},{2,8},{4,5},{6,7}}
=> {{1,5},{2,3},{4,7},{6,8}}
=> {{1,2,4,8},{3},{5},{6,7}}
=> ? = 3 - 1
{{1,4},{2,3},{5,6},{7,8}}
=> {{1,2},{3,8},{4,5},{6,7}}
=> {{1,2},{3,5},{4,7},{6,8}}
=> {{1,2,4,6},{3},{5},{7,8}}
=> ? = 2 - 1
{{1,5},{2,3},{4,6},{7,8}}
=> {{1,2},{3,5},{4,8},{6,7}}
=> {{1,2},{3,7},{4,5},{6,8}}
=> {{1,2,6},{3},{4,5},{7,8}}
=> ? = 3 - 1
{{1,6},{2,3},{4,5},{7,8}}
=> {{1,2},{3,4},{5,8},{6,7}}
=> {{1,2},{3,4},{5,7},{6,8}}
=> {{1,2,4},{3},{5,6},{7,8}}
=> ? = 2 - 1
{{1,7},{2,3},{4,5},{6,8}}
=> {{1,2},{3,4},{5,7},{6,8}}
=> {{1,2},{3,4},{5,8},{6,7}}
=> {{1,4},{2,3},{5,6},{7,8}}
=> ? = 3 - 1
{{1,8},{2,3},{4,5},{6,7}}
=> {{1,2},{3,4},{5,6},{7,8}}
=> {{1,2},{3,4},{5,6},{7,8}}
=> {{1,2},{3,4},{5,6},{7,8}}
=> ? = 2 - 1
{{1,8},{2,4},{3,5},{6,7}}
=> {{1,3},{2,4},{5,6},{7,8}}
=> {{1,4},{2,3},{5,6},{7,8}}
=> {{1,2},{3,4},{5,8},{6,7}}
=> ? = 3 - 1
{{1,7},{2,4},{3,5},{6,8}}
=> {{1,3},{2,4},{5,7},{6,8}}
=> {{1,4},{2,3},{5,8},{6,7}}
=> {{1,4},{2,3},{5,8},{6,7}}
=> ? = 3 - 1
{{1,6},{2,4},{3,5},{7,8}}
=> {{1,3},{2,4},{5,8},{6,7}}
=> {{1,4},{2,3},{5,7},{6,8}}
=> {{1,2,4},{3},{5,8},{6,7}}
=> ? = 3 - 1
{{1,5},{2,4},{3,6},{7,8}}
=> {{1,3},{2,5},{4,8},{6,7}}
=> {{1,7},{2,3},{4,5},{6,8}}
=> {{1,2,8},{3},{4,5},{6,7}}
=> ? = 3 - 1
{{1,4},{2,5},{3,6},{7,8}}
=> {{1,4},{2,5},{3,8},{6,7}}
=> {{1,7},{2,5},{3,4},{6,8}}
=> {{1,2,8},{3},{4,7},{5,6}}
=> ? = 4 - 1
{{1,3},{2,5},{4,6},{7,8}}
=> {{1,4},{2,8},{3,5},{6,7}}
=> {{1,5},{2,7},{3,4},{6,8}}
=> {{1,2,5,6},{3},{4,8},{7}}
=> ? = 3 - 1
{{1,2},{3,5},{4,6},{7,8}}
=> {{1,8},{2,4},{3,5},{6,7}}
=> {{1,5},{2,4},{3,7},{6,8}}
=> {{1,2,4,8},{3},{5,7},{6}}
=> ? = 3 - 1
{{1,2},{3,6},{4,5},{7,8}}
=> {{1,8},{2,5},{3,4},{6,7}}
=> {{1,4},{2,5},{3,7},{6,8}}
=> {{1,2,4,6},{3},{5,8},{7}}
=> ? = 2 - 1
{{1,3},{2,6},{4,5},{7,8}}
=> {{1,5},{2,8},{3,4},{6,7}}
=> {{1,4},{2,7},{3,5},{6,8}}
=> {{1,2,6},{3},{4,5,8},{7}}
=> ? = 3 - 1
{{1,4},{2,6},{3,5},{7,8}}
=> {{1,5},{2,4},{3,8},{6,7}}
=> {{1,7},{2,4},{3,5},{6,8}}
=> {{1,2,8},{3},{4,5,7},{6}}
=> ? = 3 - 1
{{1,5},{2,6},{3,4},{7,8}}
=> {{1,5},{2,3},{4,8},{6,7}}
=> {{1,3},{2,7},{4,5},{6,8}}
=> {{1,2,6,8},{3},{4,5},{7}}
=> ? = 3 - 1
{{1,6},{2,5},{3,4},{7,8}}
=> {{1,4},{2,3},{5,8},{6,7}}
=> {{1,3},{2,4},{5,7},{6,8}}
=> {{1,2,4},{3},{5,6,8},{7}}
=> ? = 2 - 1
{{1,7},{2,5},{3,4},{6,8}}
=> {{1,4},{2,3},{5,7},{6,8}}
=> {{1,3},{2,4},{5,8},{6,7}}
=> {{1,4},{2,3},{5,6,8},{7}}
=> ? = 3 - 1
{{1,8},{2,5},{3,4},{6,7}}
=> {{1,4},{2,3},{5,6},{7,8}}
=> {{1,3},{2,4},{5,6},{7,8}}
=> {{1,2},{3,4},{5,6,8},{7}}
=> ? = 2 - 1
{{1,8},{2,6},{3,4},{5,7}}
=> {{1,5},{2,3},{4,6},{7,8}}
=> {{1,3},{2,6},{4,5},{7,8}}
=> {{1,2},{3,6,8},{4,5},{7}}
=> ? = 3 - 1
{{1,7},{2,6},{3,4},{5,8}}
=> {{1,5},{2,3},{4,7},{6,8}}
=> {{1,3},{2,8},{4,5},{6,7}}
=> {{1,6,8},{2,3},{4,5},{7}}
=> ? = 3 - 1
{{1,6},{2,7},{3,4},{5,8}}
=> {{1,6},{2,3},{4,7},{5,8}}
=> {{1,3},{2,8},{4,7},{5,6}}
=> {{1,6,8},{2,5},{3,4},{7}}
=> ? = 4 - 1
{{1,5},{2,7},{3,4},{6,8}}
=> {{1,6},{2,3},{4,8},{5,7}}
=> {{1,3},{2,7},{4,8},{5,6}}
=> {{1,3,4},{2,6,8},{5},{7}}
=> ? = 3 - 1
{{1,4},{2,7},{3,5},{6,8}}
=> {{1,6},{2,4},{3,8},{5,7}}
=> {{1,7},{2,4},{3,8},{5,6}}
=> {{1,3,4},{2,8},{5,7},{6}}
=> ? = 3 - 1
{{1,3},{2,7},{4,5},{6,8}}
=> {{1,6},{2,8},{3,4},{5,7}}
=> {{1,4},{2,7},{3,8},{5,6}}
=> {{1,3,4},{2,6},{5,8},{7}}
=> ? = 3 - 1
{{1,2},{3,7},{4,5},{6,8}}
=> {{1,8},{2,6},{3,4},{5,7}}
=> {{1,4},{2,7},{3,6},{5,8}}
=> {{1,2,6},{3,5,8},{4},{7}}
=> ? = 3 - 1
{{1,2},{3,8},{4,5},{6,7}}
=> {{1,8},{2,7},{3,4},{5,6}}
=> {{1,4},{2,6},{3,7},{5,8}}
=> {{1,2,4},{3,6},{5,8},{7}}
=> ? = 2 - 1
{{1,3},{2,8},{4,5},{6,7}}
=> {{1,7},{2,8},{3,4},{5,6}}
=> {{1,4},{2,6},{3,8},{5,7}}
=> {{1,4},{2,3,6},{5,8},{7}}
=> ? = 3 - 1
{{1,4},{2,8},{3,5},{6,7}}
=> {{1,7},{2,4},{3,8},{5,6}}
=> {{1,6},{2,4},{3,8},{5,7}}
=> {{1,4},{2,3,8},{5,7},{6}}
=> ? = 3 - 1
{{1,5},{2,8},{3,4},{6,7}}
=> {{1,7},{2,3},{4,8},{5,6}}
=> {{1,3},{2,6},{4,8},{5,7}}
=> {{1,4},{2,3,6,8},{5},{7}}
=> ? = 3 - 1
{{1,6},{2,8},{3,4},{5,7}}
=> {{1,7},{2,3},{4,6},{5,8}}
=> {{1,3},{2,8},{4,6},{5,7}}
=> {{1,6,8},{2,3,5},{4},{7}}
=> ? = 3 - 1
{{1,7},{2,8},{3,4},{5,6}}
=> {{1,7},{2,3},{4,5},{6,8}}
=> {{1,3},{2,5},{4,8},{6,7}}
=> {{1,4,6,8},{2,3},{5},{7}}
=> ? = 3 - 1
{{1,8},{2,7},{3,4},{5,6}}
=> {{1,6},{2,3},{4,5},{7,8}}
=> {{1,3},{2,5},{4,6},{7,8}}
=> {{1,2},{3,4,6,8},{5},{7}}
=> ? = 2 - 1
{{1,8},{2,7},{3,5},{4,6}}
=> {{1,6},{2,4},{3,5},{7,8}}
=> {{1,5},{2,4},{3,6},{7,8}}
=> {{1,2},{3,4,8},{5,7},{6}}
=> ? = 3 - 1
{{1,7},{2,8},{3,5},{4,6}}
=> {{1,7},{2,4},{3,5},{6,8}}
=> {{1,5},{2,4},{3,8},{6,7}}
=> {{1,4,8},{2,3},{5,7},{6}}
=> ? = 3 - 1
{{1,6},{2,8},{3,5},{4,7}}
=> {{1,7},{2,4},{3,6},{5,8}}
=> {{1,8},{2,4},{3,6},{5,7}}
=> {{1,8},{2,3,5,7},{4},{6}}
=> ? = 3 - 1
{{1,5},{2,8},{3,6},{4,7}}
=> {{1,7},{2,5},{3,6},{4,8}}
=> {{1,8},{2,6},{3,5},{4,7}}
=> {{1,8},{2,3,7},{4,6},{5}}
=> ? = 4 - 1
{{1,4},{2,8},{3,6},{5,7}}
=> {{1,7},{2,5},{3,8},{4,6}}
=> {{1,6},{2,8},{3,5},{4,7}}
=> {{1,5},{2,3,8},{4,6},{7}}
=> ? = 3 - 1
{{1,3},{2,8},{4,6},{5,7}}
=> {{1,7},{2,8},{3,5},{4,6}}
=> {{1,6},{2,5},{3,8},{4,7}}
=> {{1,4,7},{2,3,8},{5},{6}}
=> ? = 3 - 1
{{1,2},{3,8},{4,6},{5,7}}
=> {{1,8},{2,7},{3,5},{4,6}}
=> {{1,6},{2,5},{3,7},{4,8}}
=> {{1,2,4,7},{3,8},{5},{6}}
=> ? = 3 - 1
{{1,2},{3,7},{4,6},{5,8}}
=> {{1,8},{2,6},{3,5},{4,7}}
=> {{1,7},{2,5},{3,6},{4,8}}
=> {{1,2,8},{3,5},{4,7},{6}}
=> ? = 3 - 1
{{1,3},{2,7},{4,6},{5,8}}
=> {{1,6},{2,8},{3,5},{4,7}}
=> {{1,7},{2,5},{3,8},{4,6}}
=> {{1,3,4,7},{2,8},{5},{6}}
=> ? = 3 - 1
{{1,4},{2,7},{3,6},{5,8}}
=> {{1,6},{2,5},{3,8},{4,7}}
=> {{1,7},{2,8},{3,5},{4,6}}
=> {{1,5},{2,8},{3,4,6},{7}}
=> ? = 3 - 1
{{1,5},{2,7},{3,6},{4,8}}
=> {{1,6},{2,5},{3,7},{4,8}}
=> {{1,8},{2,7},{3,5},{4,6}}
=> {{1,8},{2,7},{3,4,6},{5}}
=> ? = 4 - 1
{{1,6},{2,7},{3,5},{4,8}}
=> {{1,6},{2,4},{3,7},{5,8}}
=> {{1,8},{2,4},{3,7},{5,6}}
=> {{1,8},{2,5,7},{3,4},{6}}
=> ? = 4 - 1
{{1,7},{2,6},{3,5},{4,8}}
=> {{1,5},{2,4},{3,7},{6,8}}
=> {{1,8},{2,4},{3,5},{6,7}}
=> {{1,8},{2,3},{4,5,7},{6}}
=> ? = 3 - 1
{{1,8},{2,6},{3,5},{4,7}}
=> {{1,5},{2,4},{3,6},{7,8}}
=> {{1,6},{2,4},{3,5},{7,8}}
=> {{1,2},{3,8},{4,5,7},{6}}
=> ? = 3 - 1
Description
The nesting number of a set partition.
This is the maximal number of chords in the standard representation of a set partition that mutually nest.
Matching statistic: St000455
Mp00128: Set partitions —to composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00203: Graphs —cone⟶ Graphs
St000455: Graphs ⟶ ℤResult quality: 9% ●values known / values provided: 9%●distinct values known / distinct values provided: 40%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00203: Graphs —cone⟶ Graphs
St000455: Graphs ⟶ ℤResult quality: 9% ●values known / values provided: 9%●distinct values known / distinct values provided: 40%
Values
{{1}}
=> [1] => ([],1)
=> ([(0,1)],2)
=> -1 = 1 - 2
{{1,2}}
=> [2] => ([],2)
=> ([(0,2),(1,2)],3)
=> 0 = 2 - 2
{{1},{2}}
=> [1,1] => ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> -1 = 1 - 2
{{1,2,3}}
=> [3] => ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 0 = 2 - 2
{{1,2},{3}}
=> [2,1] => ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
{{1,3},{2}}
=> [2,1] => ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
{{1},{2,3}}
=> [1,2] => ([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 - 2
{{1},{2},{3}}
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> -1 = 1 - 2
{{1,2,3,4}}
=> [4] => ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 2 - 2
{{1,2,3},{4}}
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
{{1,2,4},{3}}
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
{{1,2},{3,4}}
=> [2,2] => ([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
{{1,2},{3},{4}}
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
{{1,3,4},{2}}
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
{{1,3},{2,4}}
=> [2,2] => ([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 - 2
{{1,3},{2},{4}}
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
{{1,4},{2,3}}
=> [2,2] => ([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
{{1},{2,3,4}}
=> [1,3] => ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
{{1},{2,3},{4}}
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
{{1,4},{2},{3}}
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 2 - 2
{{1},{2,4},{3}}
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
{{1},{2},{3,4}}
=> [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 2
{{1},{2},{3},{4}}
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1 = 1 - 2
{{1,2,3,4,5}}
=> [5] => ([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 2 - 2
{{1,2,3,4},{5}}
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
{{1,2,3,5},{4}}
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
{{1,2,3},{4,5}}
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
{{1,2,3},{4},{5}}
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
{{1,2,4,5},{3}}
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
{{1,2,4},{3,5}}
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 2
{{1,2,4},{3},{5}}
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
{{1,2,5},{3,4}}
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
{{1,2},{3,4,5}}
=> [2,3] => ([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
{{1,2},{3,4},{5}}
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
{{1,2,5},{3},{4}}
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
{{1,2},{3,5},{4}}
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
{{1,2},{3},{4,5}}
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
{{1,2},{3},{4},{5}}
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
{{1,3,4,5},{2}}
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
{{1,3,4},{2,5}}
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 2
{{1,3,4},{2},{5}}
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
{{1,3,5},{2,4}}
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 2
{{1,3},{2,4,5}}
=> [2,3] => ([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 2
{{1,3},{2,4},{5}}
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 2
{{1,3,5},{2},{4}}
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
{{1,3},{2,5},{4}}
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 2
{{1,3},{2},{4,5}}
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
{{1,3},{2},{4},{5}}
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
{{1,4,5},{2,3}}
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
{{1,4},{2,3,5}}
=> [2,3] => ([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 2
{{1,4},{2,3},{5}}
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
{{1,5},{2,3,4}}
=> [2,3] => ([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
{{1},{2,3,4,5}}
=> [1,4] => ([(3,4)],5)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
{{1},{2,3,4},{5}}
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
{{1,5},{2,3},{4}}
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
{{1},{2,3,5},{4}}
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
{{1},{2,3},{4,5}}
=> [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
{{1},{2,3},{4},{5}}
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
{{1,4,5},{2},{3}}
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
{{1,4},{2,5},{3}}
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 2
{{1,4},{2},{3,5}}
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 2
{{1,4},{2},{3},{5}}
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
{{1,5},{2,4},{3}}
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
{{1},{2,4,5},{3}}
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
{{1},{2,4},{3,5}}
=> [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 2
{{1},{2,4},{3},{5}}
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
{{1,5},{2},{3,4}}
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
{{1},{2,5},{3,4}}
=> [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
{{1},{2},{3,4,5}}
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
{{1},{2},{3,4},{5}}
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
{{1,5},{2},{3},{4}}
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 2 - 2
{{1},{2,5},{3},{4}}
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
{{1},{2},{3,5},{4}}
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
{{1},{2},{3},{4,5}}
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 2
{{1},{2},{3},{4},{5}}
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> -1 = 1 - 2
{{1,2,3,4,5,6}}
=> [6] => ([],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 0 = 2 - 2
{{1,2,3,4,5},{6}}
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 2 - 2
{{1,2,3,4,6},{5}}
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 2 - 2
{{1,2,3,4},{5,6}}
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 - 2
{{1,2,3,4},{5},{6}}
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 2 - 2
{{1,2,3,5,6},{4}}
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 2 - 2
{{1,2,3,5},{4,6}}
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 2
{{1,2,3,5},{4},{6}}
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 2 - 2
{{1,2,3,6},{4,5}}
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 - 2
{{1,2,3},{4,5,6}}
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 - 2
{{1,2,3},{4,5},{6}}
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 - 2
{{1,2,3,6},{4},{5}}
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 2 - 2
{{1,2,3},{4,6},{5}}
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 - 2
{{1,2,3},{4},{5},{6}}
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 2 - 2
{{1,2,4,5,6},{3}}
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 2 - 2
{{1,2,4,5},{3},{6}}
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 2 - 2
{{1,2,4,6},{3},{5}}
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 2 - 2
{{1,2,4},{3},{5},{6}}
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 2 - 2
{{1,2,5,6},{3},{4}}
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 2 - 2
{{1,2,5},{3},{4},{6}}
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 2 - 2
{{1,2,6},{3},{4},{5}}
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 2 - 2
{{1,2},{3},{4},{5},{6}}
=> [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 2 - 2
{{1,3,4,5,6},{2}}
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 2 - 2
{{1,3,4,5},{2},{6}}
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 2 - 2
{{1,3,4,6},{2},{5}}
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 2 - 2
Description
The second largest eigenvalue of a graph if it is integral.
This statistic is undefined if the second largest eigenvalue of the graph is not integral.
Chapter 4 of [1] provides lots of context.
Matching statistic: St001624
Mp00080: Set partitions —to permutation⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
Mp00195: Posets —order ideals⟶ Lattices
St001624: Lattices ⟶ ℤResult quality: 3% ●values known / values provided: 3%●distinct values known / distinct values provided: 40%
Mp00065: Permutations —permutation poset⟶ Posets
Mp00195: Posets —order ideals⟶ Lattices
St001624: Lattices ⟶ ℤResult quality: 3% ●values known / values provided: 3%●distinct values known / distinct values provided: 40%
Values
{{1}}
=> [1] => ([],1)
=> ([(0,1)],2)
=> 1
{{1,2}}
=> [2,1] => ([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
{{1},{2}}
=> [1,2] => ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 1
{{1,2,3}}
=> [2,3,1] => ([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
{{1,2},{3}}
=> [2,1,3] => ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
{{1,3},{2}}
=> [3,2,1] => ([],3)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 2
{{1},{2,3}}
=> [1,3,2] => ([(0,1),(0,2)],3)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2
{{1},{2},{3}}
=> [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
{{1,2,3,4}}
=> [2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2
{{1,2,3},{4}}
=> [2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 2
{{1,2,4},{3}}
=> [2,4,3,1] => ([(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? = 2
{{1,2},{3,4}}
=> [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> 2
{{1,2},{3},{4}}
=> [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 2
{{1,3,4},{2}}
=> [3,2,4,1] => ([(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ? = 2
{{1,3},{2,4}}
=> [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 3
{{1,3},{2},{4}}
=> [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> ? = 2
{{1,4},{2,3}}
=> [4,3,2,1] => ([],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 2
{{1},{2,3,4}}
=> [1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> 2
{{1},{2,3},{4}}
=> [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 2
{{1,4},{2},{3}}
=> [4,2,3,1] => ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? = 2
{{1},{2,4},{3}}
=> [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([(0,4),(1,6),(1,7),(2,5),(2,7),(3,5),(3,6),(4,1),(4,2),(4,3),(5,8),(6,8),(7,8)],9)
=> ? = 2
{{1},{2},{3,4}}
=> [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 2
{{1},{2},{3},{4}}
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
{{1,2,3,4,5}}
=> [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 2
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 2
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => ([(1,4),(4,2),(4,3)],5)
=> ([(0,3),(0,4),(1,6),(1,9),(2,6),(2,8),(3,7),(4,5),(4,7),(5,1),(5,2),(5,10),(6,11),(7,10),(8,11),(9,11),(10,8),(10,9)],12)
=> ? = 2
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,1),(5,7),(7,8),(8,2),(8,3)],9)
=> ? = 2
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 2
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => ([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,9),(1,10),(2,8),(2,10),(3,7),(4,6),(5,1),(5,2),(5,6),(6,8),(6,9),(8,11),(9,11),(10,3),(10,11),(11,7)],12)
=> ? = 2
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => ([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,5),(1,7),(2,8),(3,10),(4,2),(4,6),(5,4),(5,10),(6,7),(6,8),(7,9),(8,9),(10,1),(10,6)],11)
=> ? = 3
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,7),(2,9),(3,7),(3,8),(4,6),(5,2),(5,3),(5,6),(6,8),(6,9),(7,10),(8,10),(9,10),(10,1)],11)
=> ? = 2
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => ([(1,2),(1,3),(1,4)],5)
=> ([(0,1),(0,2),(1,12),(2,3),(2,4),(2,5),(2,12),(3,8),(3,10),(3,11),(4,7),(4,9),(4,11),(5,6),(5,9),(5,10),(6,13),(6,14),(7,13),(7,15),(8,14),(8,15),(9,13),(9,16),(10,14),(10,16),(11,15),(11,16),(12,6),(12,7),(12,8),(13,17),(14,17),(15,17),(16,17)],18)
=> ? = 2
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,3),(0,4),(1,7),(2,6),(3,8),(4,8),(5,1),(5,6),(6,7),(8,2),(8,5)],9)
=> ? = 2
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,4),(0,5),(1,6),(2,6),(4,7),(5,7),(6,3),(7,1),(7,2)],8)
=> ? = 2
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => ([(1,3),(1,4),(4,2)],5)
=> ([(0,1),(0,2),(1,11),(2,3),(2,4),(2,11),(3,8),(3,10),(4,5),(4,9),(4,10),(5,6),(5,7),(6,13),(7,13),(8,12),(9,7),(9,12),(10,6),(10,12),(11,8),(11,9),(12,13)],14)
=> ? = 2
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,4),(0,5),(1,7),(1,8),(2,6),(2,8),(3,6),(3,7),(4,9),(5,9),(6,10),(7,10),(8,10),(9,1),(9,2),(9,3)],11)
=> ? = 2
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => ([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(7,5)],8)
=> ? = 2
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 2
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => ([(1,4),(2,4),(4,3)],5)
=> ([(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(3,7),(3,8),(4,6),(4,8),(5,1),(5,9),(6,11),(7,11),(8,5),(8,11),(9,10),(11,9)],12)
=> ? = 2
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => ([(0,4),(1,2),(1,3)],5)
=> ([(0,2),(0,3),(1,11),(2,1),(2,12),(3,4),(3,5),(3,12),(4,8),(4,10),(5,8),(5,9),(6,14),(7,14),(8,13),(9,6),(9,13),(10,7),(10,13),(11,6),(11,7),(12,9),(12,10),(12,11),(13,14)],15)
=> ? = 3
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> ? = 2
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => ([(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,6),(1,7),(2,1),(2,9),(2,10),(3,8),(3,12),(4,8),(4,11),(5,2),(5,11),(5,12),(6,14),(7,14),(8,13),(9,6),(9,15),(10,7),(10,15),(11,9),(11,13),(12,10),(12,13),(13,15),(15,14)],16)
=> ? = 3
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => ([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,4),(0,5),(1,10),(2,7),(3,8),(4,3),(4,6),(5,1),(5,6),(6,8),(6,10),(8,9),(9,7),(10,2),(10,9)],11)
=> ? = 3
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 3
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,6),(1,8),(2,6),(2,7),(3,10),(3,11),(4,9),(4,11),(5,9),(5,10),(6,12),(7,12),(8,12),(9,13),(10,13),(11,1),(11,2),(11,13),(13,7),(13,8)],14)
=> ? = 2
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => ([(0,3),(0,4),(1,2),(1,4)],5)
=> ([(0,3),(0,4),(1,11),(2,10),(3,2),(3,9),(4,1),(4,9),(5,7),(5,8),(6,12),(7,12),(8,12),(9,5),(9,10),(9,11),(10,6),(10,7),(11,6),(11,8)],13)
=> ? = 3
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(3,9),(4,7),(4,9),(5,7),(5,8),(7,10),(8,10),(9,10),(10,1),(10,2)],11)
=> ? = 2
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,2),(0,3),(0,4),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,1),(6,9),(7,9),(8,9),(9,5)],10)
=> ? = 2
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,6),(2,7),(2,8),(2,9),(3,9),(3,11),(3,12),(4,8),(4,10),(4,12),(5,7),(5,10),(5,11),(7,13),(7,14),(8,13),(8,15),(9,14),(9,15),(10,13),(10,16),(11,14),(11,16),(12,15),(12,16),(13,17),(14,17),(15,17),(16,1),(16,17),(17,6)],18)
=> ? = 2
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => ([(0,4),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,10),(2,7),(2,8),(3,9),(3,12),(4,9),(4,11),(5,2),(5,11),(5,12),(7,14),(8,14),(9,1),(9,13),(10,6),(11,7),(11,13),(12,8),(12,13),(13,10),(13,14),(14,6)],15)
=> ? = 3
{{1,4},{2,3},{5}}
=> [4,3,2,1,5] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(2,9),(2,10),(2,11),(3,7),(3,8),(3,11),(4,6),(4,8),(4,10),(5,6),(5,7),(5,9),(6,12),(6,15),(7,12),(7,13),(8,12),(8,14),(9,13),(9,15),(10,14),(10,15),(11,13),(11,14),(12,16),(13,16),(14,16),(15,16),(16,1)],17)
=> ? = 2
{{1,5},{2,3,4}}
=> [5,3,4,2,1] => ([(3,4)],5)
=> ?
=> ? = 2
{{1},{2,3,4,5}}
=> [1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ? = 2
{{1},{2,3,4},{5}}
=> [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 2
{{1,5},{2,3},{4}}
=> [5,3,2,4,1] => ([(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,6),(1,7),(2,11),(2,12),(2,13),(3,9),(3,10),(3,13),(4,8),(4,10),(4,12),(5,8),(5,9),(5,11),(6,16),(7,16),(8,1),(8,17),(8,18),(9,14),(9,17),(10,15),(10,17),(11,14),(11,18),(12,15),(12,18),(13,14),(13,15),(14,19),(15,19),(17,6),(17,19),(18,7),(18,19),(19,16)],20)
=> ? = 2
{{1},{2,3,5},{4}}
=> [1,3,5,4,2] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,2),(4,3),(4,6),(5,1),(5,4),(6,8),(6,9),(7,10),(8,10),(9,10)],11)
=> ? = 2
{{1},{2,3},{4,5}}
=> [1,3,2,5,4] => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8)
=> ? = 2
{{1},{2,3},{4},{5}}
=> [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> 2
{{1,4,5},{2},{3}}
=> [4,2,3,5,1] => ([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,8),(2,6),(2,7),(3,9),(3,10),(4,9),(4,11),(5,2),(5,10),(5,11),(6,13),(7,1),(7,13),(9,12),(10,6),(10,12),(11,7),(11,12),(12,13),(13,8)],14)
=> ? = 2
{{1,4},{2,5},{3}}
=> [4,5,3,1,2] => ([(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,8),(1,10),(2,7),(2,9),(3,11),(3,12),(4,2),(4,11),(4,13),(5,1),(5,12),(5,13),(6,17),(7,15),(8,16),(9,6),(9,15),(10,6),(10,16),(11,7),(11,14),(12,8),(12,14),(13,9),(13,10),(13,14),(14,15),(14,16),(15,17),(16,17)],18)
=> ? = 3
{{1,4},{2},{3,5}}
=> [4,2,5,1,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,11),(2,10),(3,8),(3,9),(4,7),(4,8),(5,7),(5,9),(7,12),(8,2),(8,12),(9,1),(9,12),(10,6),(11,6),(12,10),(12,11)],13)
=> ? = 3
{{1,4},{2},{3},{5}}
=> [4,2,3,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(2,10),(3,6),(3,8),(4,6),(4,7),(5,2),(5,7),(5,8),(6,11),(7,9),(7,11),(8,10),(8,11),(9,12),(10,12),(11,12),(12,1)],13)
=> ? = 2
{{1,5},{2,4},{3}}
=> [5,4,3,2,1] => ([],5)
=> ?
=> ? = 2
{{1},{2,4,5},{3}}
=> [1,4,3,5,2] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,5),(1,8),(2,7),(2,9),(3,6),(3,9),(4,6),(4,7),(5,2),(5,3),(5,4),(6,10),(7,10),(9,1),(9,10),(10,8)],11)
=> ? = 2
{{1},{2,4},{3,5}}
=> [1,4,5,2,3] => ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 3
{{1},{2,4},{3},{5}}
=> [1,4,3,2,5] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
=> ? = 2
{{1},{2},{3,4},{5}}
=> [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> 2
{{1},{2},{3},{4,5}}
=> [1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> 2
{{1},{2},{3},{4},{5}}
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
{{1},{2},{3},{4},{5},{6}}
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1
Description
The breadth of a lattice.
The '''breadth''' of a lattice is the least integer $b$ such that any join $x_1\vee x_2\vee\cdots\vee x_n$, with $n > b$, can be expressed as a join over a proper subset of $\{x_1,x_2,\ldots,x_n\}$.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!