searching the database
Your data matches 17 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000454
(load all 9 compositions to match this statistic)
(load all 9 compositions to match this statistic)
Mp00207: Standard tableaux —horizontal strip sizes⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00117: Graphs —Ore closure⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00117: Graphs —Ore closure⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[1]]
=> [1] => ([],1)
=> ([],1)
=> 0
[[1,2]]
=> [2] => ([],2)
=> ([],2)
=> 0
[[1],[2]]
=> [1,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,2,3]]
=> [3] => ([],3)
=> ([],3)
=> 0
[[1,3],[2]]
=> [1,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> 1
[[1],[2],[3]]
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[[1,2,3,4]]
=> [4] => ([],4)
=> ([],4)
=> 0
[[1,3,4],[2]]
=> [1,3] => ([(2,3)],4)
=> ([(2,3)],4)
=> 1
[[1,4],[2],[3]]
=> [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[[1,2],[3],[4]]
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[1],[2],[3],[4]]
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[1,2,3,4,5]]
=> [5] => ([],5)
=> ([],5)
=> 0
[[1,3,4,5],[2]]
=> [1,4] => ([(3,4)],5)
=> ([(3,4)],5)
=> 1
[[1,2,3,4],[5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[[1,4,5],[2],[3]]
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 2
[[1,2,5],[3],[4]]
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,2,3],[4],[5]]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,2],[3,5],[4]]
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,3],[2,4],[5]]
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,5],[2],[3],[4]]
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,3],[2],[4],[5]]
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,2],[3],[4],[5]]
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1],[2],[3],[4],[5]]
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,2,3,4,5,6]]
=> [6] => ([],6)
=> ([],6)
=> 0
[[1,3,4,5,6],[2]]
=> [1,5] => ([(4,5)],6)
=> ([(4,5)],6)
=> 1
[[1,2,3,4,6],[5]]
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,2,3,4],[5,6]]
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,4,5,6],[2],[3]]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> 2
[[1,2,5,6],[3],[4]]
=> [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,2,3,6],[4],[5]]
=> [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,2,6],[3,5],[4]]
=> [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,3,6],[2,4],[5]]
=> [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[1,2,3],[4,6],[5]]
=> [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,2,4],[3,5],[6]]
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[[1,5,6],[2],[3],[4]]
=> [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,3,6],[2],[4],[5]]
=> [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[1,2,6],[3],[4],[5]]
=> [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[1,2,4],[3],[5],[6]]
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[[1,2,3],[4],[5],[6]]
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[[1,3],[2,4],[5,6]]
=> [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[1,3],[2,6],[4],[5]]
=> [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[1,2],[3,6],[4],[5]]
=> [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[1,4],[2,5],[3],[6]]
=> [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[[1,3],[2,4],[5],[6]]
=> [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[[1,2],[3,4],[5],[6]]
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[[1,6],[2],[3],[4],[5]]
=> [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[1,4],[2],[3],[5],[6]]
=> [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[[1,3],[2],[4],[5],[6]]
=> [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[[1,2],[3],[4],[5],[6]]
=> [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[[1],[2],[3],[4],[5],[6]]
=> [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
Description
The largest eigenvalue of a graph if it is integral.
If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree.
This statistic is undefined if the largest eigenvalue of the graph is not integral.
Matching statistic: St001644
Mp00207: Standard tableaux —horizontal strip sizes⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00117: Graphs —Ore closure⟶ Graphs
St001644: Graphs ⟶ ℤResult quality: 95% ●values known / values provided: 95%●distinct values known / distinct values provided: 100%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00117: Graphs —Ore closure⟶ Graphs
St001644: Graphs ⟶ ℤResult quality: 95% ●values known / values provided: 95%●distinct values known / distinct values provided: 100%
Values
[[1]]
=> [1] => ([],1)
=> ([],1)
=> 0
[[1,2]]
=> [2] => ([],2)
=> ([],2)
=> 0
[[1],[2]]
=> [1,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,2,3]]
=> [3] => ([],3)
=> ([],3)
=> 0
[[1,3],[2]]
=> [1,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> 1
[[1],[2],[3]]
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[[1,2,3,4]]
=> [4] => ([],4)
=> ([],4)
=> 0
[[1,3,4],[2]]
=> [1,3] => ([(2,3)],4)
=> ([(2,3)],4)
=> 1
[[1,4],[2],[3]]
=> [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[[1,2],[3],[4]]
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[1],[2],[3],[4]]
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[1,2,3,4,5]]
=> [5] => ([],5)
=> ([],5)
=> 0
[[1,3,4,5],[2]]
=> [1,4] => ([(3,4)],5)
=> ([(3,4)],5)
=> 1
[[1,2,3,4],[5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[[1,4,5],[2],[3]]
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 2
[[1,2,5],[3],[4]]
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,2,3],[4],[5]]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3
[[1,2],[3,5],[4]]
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,3],[2,4],[5]]
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,5],[2],[3],[4]]
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,3],[2],[4],[5]]
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,2],[3],[4],[5]]
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1],[2],[3],[4],[5]]
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,2,3,4,5,6]]
=> [6] => ([],6)
=> ([],6)
=> 0
[[1,3,4,5,6],[2]]
=> [1,5] => ([(4,5)],6)
=> ([(4,5)],6)
=> 1
[[1,2,3,4,6],[5]]
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,2,3,4],[5,6]]
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,4,5,6],[2],[3]]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> 2
[[1,2,5,6],[3],[4]]
=> [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,2,3,6],[4],[5]]
=> [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
[[1,2,6],[3,5],[4]]
=> [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,3,6],[2,4],[5]]
=> [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[1,2,3],[4,6],[5]]
=> [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
[[1,2,4],[3,5],[6]]
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[[1,5,6],[2],[3],[4]]
=> [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,3,6],[2],[4],[5]]
=> [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[1,2,6],[3],[4],[5]]
=> [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[1,2,4],[3],[5],[6]]
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[[1,2,3],[4],[5],[6]]
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[[1,3],[2,4],[5,6]]
=> [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[1,3],[2,6],[4],[5]]
=> [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[1,2],[3,6],[4],[5]]
=> [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[1,4],[2,5],[3],[6]]
=> [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[[1,3],[2,4],[5],[6]]
=> [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[[1,2],[3,4],[5],[6]]
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[[1,6],[2],[3],[4],[5]]
=> [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[1,4],[2],[3],[5],[6]]
=> [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[[1,3],[2],[4],[5],[6]]
=> [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[[1,2],[3],[4],[5],[6]]
=> [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[[1],[2],[3],[4],[5],[6]]
=> [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[[1,2,3,4,5,6,7]]
=> [7] => ([],7)
=> ([],7)
=> 0
[[1,3,4,5,6,7],[2]]
=> [1,6] => ([(5,6)],7)
=> ([(5,6)],7)
=> 1
[[1,2,3,4,6,7],[5]]
=> [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> ([(2,6),(3,6),(4,6),(5,6)],7)
=> 2
[[1,2,3,6,7],[4],[5]]
=> [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[[1,2,3,7],[4,6],[5]]
=> [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[[1,2,3],[4,6,7],[5]]
=> [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
Description
The dimension of a graph.
The dimension of a graph is the least integer $n$ such that there exists a representation of the graph in the Euclidean space of dimension $n$ with all vertices distinct and all edges having unit length. Edges are allowed to intersect, however.
Matching statistic: St001270
Mp00207: Standard tableaux —horizontal strip sizes⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00117: Graphs —Ore closure⟶ Graphs
St001270: Graphs ⟶ ℤResult quality: 61% ●values known / values provided: 61%●distinct values known / distinct values provided: 86%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00117: Graphs —Ore closure⟶ Graphs
St001270: Graphs ⟶ ℤResult quality: 61% ●values known / values provided: 61%●distinct values known / distinct values provided: 86%
Values
[[1]]
=> [1] => ([],1)
=> ([],1)
=> 0
[[1,2]]
=> [2] => ([],2)
=> ([],2)
=> 0
[[1],[2]]
=> [1,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,2,3]]
=> [3] => ([],3)
=> ([],3)
=> 0
[[1,3],[2]]
=> [1,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> 1
[[1],[2],[3]]
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[[1,2,3,4]]
=> [4] => ([],4)
=> ([],4)
=> 0
[[1,3,4],[2]]
=> [1,3] => ([(2,3)],4)
=> ([(2,3)],4)
=> 1
[[1,4],[2],[3]]
=> [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[[1,2],[3],[4]]
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[1],[2],[3],[4]]
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[1,2,3,4,5]]
=> [5] => ([],5)
=> ([],5)
=> 0
[[1,3,4,5],[2]]
=> [1,4] => ([(3,4)],5)
=> ([(3,4)],5)
=> 1
[[1,2,3,4],[5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[[1,4,5],[2],[3]]
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 2
[[1,2,5],[3],[4]]
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,2,3],[4],[5]]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,2],[3,5],[4]]
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,3],[2,4],[5]]
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,5],[2],[3],[4]]
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,3],[2],[4],[5]]
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,2],[3],[4],[5]]
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1],[2],[3],[4],[5]]
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,2,3,4,5,6]]
=> [6] => ([],6)
=> ([],6)
=> 0
[[1,3,4,5,6],[2]]
=> [1,5] => ([(4,5)],6)
=> ([(4,5)],6)
=> 1
[[1,2,3,4,6],[5]]
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,2,3,4],[5,6]]
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,4,5,6],[2],[3]]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> 2
[[1,2,5,6],[3],[4]]
=> [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,2,3,6],[4],[5]]
=> [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,2,6],[3,5],[4]]
=> [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,3,6],[2,4],[5]]
=> [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[1,2,3],[4,6],[5]]
=> [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,2,4],[3,5],[6]]
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[[1,5,6],[2],[3],[4]]
=> [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,3,6],[2],[4],[5]]
=> [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[1,2,6],[3],[4],[5]]
=> [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[1,2,4],[3],[5],[6]]
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[[1,2,3],[4],[5],[6]]
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[[1,3],[2,4],[5,6]]
=> [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[1,3],[2,6],[4],[5]]
=> [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[1,2],[3,6],[4],[5]]
=> [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[1,4],[2,5],[3],[6]]
=> [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[[1,3],[2,4],[5],[6]]
=> [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[[1,2],[3,4],[5],[6]]
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[[1,6],[2],[3],[4],[5]]
=> [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[1,4],[2],[3],[5],[6]]
=> [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[[1,3],[2],[4],[5],[6]]
=> [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[[1,2],[3],[4],[5],[6]]
=> [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[[1],[2],[3],[4],[5],[6]]
=> [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[[1,2,4,7],[3,5],[6]]
=> [2,2,1,2] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,2,4,7],[3],[5],[6]]
=> [2,2,1,2] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,2,3,7],[4],[5],[6]]
=> [3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,2,4],[3,5,7],[6]]
=> [2,2,1,2] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,3,5],[2,4,6],[7]]
=> [1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2,4],[3,5],[6,7]]
=> [2,2,1,2] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,4,7],[2,5],[3],[6]]
=> [1,1,2,1,2] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,3,7],[2,4],[5],[6]]
=> [1,2,1,1,2] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,2,7],[3,4],[5],[6]]
=> [2,2,1,2] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,2,4],[3,7],[5],[6]]
=> [2,2,1,2] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,2,3],[4,7],[5],[6]]
=> [3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,3,5],[2,6],[4],[7]]
=> [1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2,5],[3,6],[4],[7]]
=> [2,1,2,1,1] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,3,5],[2,4],[6],[7]]
=> [1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,3,4],[2,5],[6],[7]]
=> [1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2,4],[3,5],[6],[7]]
=> [2,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,4,7],[2],[3],[5],[6]]
=> [1,1,2,1,2] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,3,7],[2],[4],[5],[6]]
=> [1,2,1,1,2] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,2,7],[3],[4],[5],[6]]
=> [2,1,1,1,2] => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,3,5],[2],[4],[6],[7]]
=> [1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2,5],[3],[4],[6],[7]]
=> [2,1,2,1,1] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,3,4],[2],[5],[6],[7]]
=> [1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2,4],[3],[5],[6],[7]]
=> [2,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2,3],[4],[5],[6],[7]]
=> [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,4],[2,5],[3,7],[6]]
=> [1,1,2,1,2] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,3],[2,4],[5,7],[6]]
=> [1,2,1,1,2] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,2],[3,4],[5,7],[6]]
=> [2,2,1,2] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,3],[2,5],[4,6],[7]]
=> [1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2],[3,5],[4,6],[7]]
=> [2,1,2,1,1] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,4],[2,7],[3],[5],[6]]
=> [1,1,2,1,2] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,3],[2,7],[4],[5],[6]]
=> [1,2,1,1,2] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,2],[3,7],[4],[5],[6]]
=> [2,1,1,1,2] => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,5],[2,6],[3],[4],[7]]
=> [1,1,1,2,1,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,4],[2,5],[3],[6],[7]]
=> [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,3],[2,5],[4],[6],[7]]
=> [1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2],[3,5],[4],[6],[7]]
=> [2,1,2,1,1] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,3],[2,4],[5],[6],[7]]
=> [1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2],[3,4],[5],[6],[7]]
=> [2,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,7],[2],[3],[4],[5],[6]]
=> [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,5],[2],[3],[4],[6],[7]]
=> [1,1,1,2,1,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,4],[2],[3],[5],[6],[7]]
=> [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,3],[2],[4],[5],[6],[7]]
=> [1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2],[3],[4],[5],[6],[7]]
=> [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1],[2],[3],[4],[5],[6],[7]]
=> [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
Description
The bandwidth of a graph.
The bandwidth of a graph is the smallest number $k$ such that the vertices of the graph can be
ordered as $v_1,\dots,v_n$ with $k \cdot d(v_i,v_j) \geq |i-j|$.
We adopt the convention that the singleton graph has bandwidth $0$, consistent with the bandwith of the complete graph on $n$ vertices having bandwidth $n-1$, but in contrast to any path graph on more than one vertex having bandwidth $1$. The bandwidth of a disconnected graph is the maximum of the bandwidths of the connected components.
Matching statistic: St001962
Mp00207: Standard tableaux —horizontal strip sizes⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00117: Graphs —Ore closure⟶ Graphs
St001962: Graphs ⟶ ℤResult quality: 61% ●values known / values provided: 61%●distinct values known / distinct values provided: 86%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00117: Graphs —Ore closure⟶ Graphs
St001962: Graphs ⟶ ℤResult quality: 61% ●values known / values provided: 61%●distinct values known / distinct values provided: 86%
Values
[[1]]
=> [1] => ([],1)
=> ([],1)
=> 0
[[1,2]]
=> [2] => ([],2)
=> ([],2)
=> 0
[[1],[2]]
=> [1,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,2,3]]
=> [3] => ([],3)
=> ([],3)
=> 0
[[1,3],[2]]
=> [1,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> 1
[[1],[2],[3]]
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[[1,2,3,4]]
=> [4] => ([],4)
=> ([],4)
=> 0
[[1,3,4],[2]]
=> [1,3] => ([(2,3)],4)
=> ([(2,3)],4)
=> 1
[[1,4],[2],[3]]
=> [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[[1,2],[3],[4]]
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[1],[2],[3],[4]]
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[1,2,3,4,5]]
=> [5] => ([],5)
=> ([],5)
=> 0
[[1,3,4,5],[2]]
=> [1,4] => ([(3,4)],5)
=> ([(3,4)],5)
=> 1
[[1,2,3,4],[5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[[1,4,5],[2],[3]]
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 2
[[1,2,5],[3],[4]]
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,2,3],[4],[5]]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,2],[3,5],[4]]
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,3],[2,4],[5]]
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,5],[2],[3],[4]]
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,3],[2],[4],[5]]
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,2],[3],[4],[5]]
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1],[2],[3],[4],[5]]
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,2,3,4,5,6]]
=> [6] => ([],6)
=> ([],6)
=> 0
[[1,3,4,5,6],[2]]
=> [1,5] => ([(4,5)],6)
=> ([(4,5)],6)
=> 1
[[1,2,3,4,6],[5]]
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,2,3,4],[5,6]]
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[[1,4,5,6],[2],[3]]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> 2
[[1,2,5,6],[3],[4]]
=> [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,2,3,6],[4],[5]]
=> [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,2,6],[3,5],[4]]
=> [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,3,6],[2,4],[5]]
=> [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[1,2,3],[4,6],[5]]
=> [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,2,4],[3,5],[6]]
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[[1,5,6],[2],[3],[4]]
=> [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,3,6],[2],[4],[5]]
=> [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[1,2,6],[3],[4],[5]]
=> [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[1,2,4],[3],[5],[6]]
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[[1,2,3],[4],[5],[6]]
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[[1,3],[2,4],[5,6]]
=> [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[1,3],[2,6],[4],[5]]
=> [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[1,2],[3,6],[4],[5]]
=> [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[1,4],[2,5],[3],[6]]
=> [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[[1,3],[2,4],[5],[6]]
=> [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[[1,2],[3,4],[5],[6]]
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[[1,6],[2],[3],[4],[5]]
=> [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[1,4],[2],[3],[5],[6]]
=> [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[[1,3],[2],[4],[5],[6]]
=> [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[[1,2],[3],[4],[5],[6]]
=> [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[[1],[2],[3],[4],[5],[6]]
=> [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[[1,2,4,7],[3,5],[6]]
=> [2,2,1,2] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,2,4,7],[3],[5],[6]]
=> [2,2,1,2] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,2,3,7],[4],[5],[6]]
=> [3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,2,4],[3,5,7],[6]]
=> [2,2,1,2] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,3,5],[2,4,6],[7]]
=> [1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2,4],[3,5],[6,7]]
=> [2,2,1,2] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,4,7],[2,5],[3],[6]]
=> [1,1,2,1,2] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,3,7],[2,4],[5],[6]]
=> [1,2,1,1,2] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,2,7],[3,4],[5],[6]]
=> [2,2,1,2] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,2,4],[3,7],[5],[6]]
=> [2,2,1,2] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,2,3],[4,7],[5],[6]]
=> [3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,3,5],[2,6],[4],[7]]
=> [1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2,5],[3,6],[4],[7]]
=> [2,1,2,1,1] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,3,5],[2,4],[6],[7]]
=> [1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,3,4],[2,5],[6],[7]]
=> [1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2,4],[3,5],[6],[7]]
=> [2,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,4,7],[2],[3],[5],[6]]
=> [1,1,2,1,2] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,3,7],[2],[4],[5],[6]]
=> [1,2,1,1,2] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,2,7],[3],[4],[5],[6]]
=> [2,1,1,1,2] => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,3,5],[2],[4],[6],[7]]
=> [1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2,5],[3],[4],[6],[7]]
=> [2,1,2,1,1] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,3,4],[2],[5],[6],[7]]
=> [1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2,4],[3],[5],[6],[7]]
=> [2,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2,3],[4],[5],[6],[7]]
=> [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,4],[2,5],[3,7],[6]]
=> [1,1,2,1,2] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,3],[2,4],[5,7],[6]]
=> [1,2,1,1,2] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,2],[3,4],[5,7],[6]]
=> [2,2,1,2] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,3],[2,5],[4,6],[7]]
=> [1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2],[3,5],[4,6],[7]]
=> [2,1,2,1,1] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,4],[2,7],[3],[5],[6]]
=> [1,1,2,1,2] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,3],[2,7],[4],[5],[6]]
=> [1,2,1,1,2] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,2],[3,7],[4],[5],[6]]
=> [2,1,1,1,2] => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,5],[2,6],[3],[4],[7]]
=> [1,1,1,2,1,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,4],[2,5],[3],[6],[7]]
=> [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,3],[2,5],[4],[6],[7]]
=> [1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2],[3,5],[4],[6],[7]]
=> [2,1,2,1,1] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,3],[2,4],[5],[6],[7]]
=> [1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2],[3,4],[5],[6],[7]]
=> [2,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,7],[2],[3],[4],[5],[6]]
=> [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,5],[2],[3],[4],[6],[7]]
=> [1,1,1,2,1,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,4],[2],[3],[5],[6],[7]]
=> [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,3],[2],[4],[5],[6],[7]]
=> [1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2],[3],[4],[5],[6],[7]]
=> [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1],[2],[3],[4],[5],[6],[7]]
=> [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
Description
The proper pathwidth of a graph.
The proper pathwidth $\operatorname{ppw}(G)$ was introduced in [1] as the minimum width of a proper-path-decomposition. Barioli et al. [2] showed that if $G$ has at least one edge, then $\operatorname{ppw}(G)$ is the minimum $k$ for which $G$ is a minor of the Cartesian product $K_k \square P$ of a complete graph on $k$ vertices with a path; and further that $\operatorname{ppw}(G)$ is the minor monotone floor $\lfloor \operatorname{Z} \rfloor(G) := \min\{\operatorname{Z}(H) \mid G \preceq H\}$ of the [[St000482|zero forcing number]] $\operatorname{Z}(G)$. It can be shown [3, Corollary 9.130] that only the spanning supergraphs need to be considered for $H$ in this definition, i.e. $\lfloor \operatorname{Z} \rfloor(G) = \min\{\operatorname{Z}(H) \mid G \le H,\; V(H) = V(G)\}$.
The minimum degree $\delta$, treewidth $\operatorname{tw}$, and pathwidth $\operatorname{pw}$ satisfy
$$\delta \le \operatorname{tw} \le \operatorname{pw} \le \operatorname{ppw} = \lfloor \operatorname{Z} \rfloor \le \operatorname{pw} + 1.$$
Note that [4] uses a different notion of proper pathwidth, which is equal to bandwidth.
Matching statistic: St001645
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00207: Standard tableaux —horizontal strip sizes⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00117: Graphs —Ore closure⟶ Graphs
St001645: Graphs ⟶ ℤResult quality: 38% ●values known / values provided: 38%●distinct values known / distinct values provided: 100%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00117: Graphs —Ore closure⟶ Graphs
St001645: Graphs ⟶ ℤResult quality: 38% ●values known / values provided: 38%●distinct values known / distinct values provided: 100%
Values
[[1]]
=> [1] => ([],1)
=> ([],1)
=> 1 = 0 + 1
[[1,2]]
=> [2] => ([],2)
=> ([],2)
=> ? = 0 + 1
[[1],[2]]
=> [1,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
[[1,2,3]]
=> [3] => ([],3)
=> ([],3)
=> ? = 0 + 1
[[1,3],[2]]
=> [1,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 1 + 1
[[1],[2],[3]]
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[[1,2,3,4]]
=> [4] => ([],4)
=> ([],4)
=> ? = 0 + 1
[[1,3,4],[2]]
=> [1,3] => ([(2,3)],4)
=> ([(2,3)],4)
=> ? = 1 + 1
[[1,4],[2],[3]]
=> [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 2 + 1
[[1,2],[3],[4]]
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[[1],[2],[3],[4]]
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[[1,2,3,4,5]]
=> [5] => ([],5)
=> ([],5)
=> ? = 0 + 1
[[1,3,4,5],[2]]
=> [1,4] => ([(3,4)],5)
=> ([(3,4)],5)
=> ? = 1 + 1
[[1,2,3,4],[5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 2 + 1
[[1,4,5],[2],[3]]
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
[[1,2,5],[3],[4]]
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[[1,2,3],[4],[5]]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[[1,2],[3,5],[4]]
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[[1,3],[2,4],[5]]
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[[1,5],[2],[3],[4]]
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[[1,3],[2],[4],[5]]
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[[1,2],[3],[4],[5]]
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[[1],[2],[3],[4],[5]]
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[[1,2,3,4,5,6]]
=> [6] => ([],6)
=> ([],6)
=> ? = 0 + 1
[[1,3,4,5,6],[2]]
=> [1,5] => ([(4,5)],6)
=> ([(4,5)],6)
=> ? = 1 + 1
[[1,2,3,4,6],[5]]
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2 + 1
[[1,2,3,4],[5,6]]
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2 + 1
[[1,4,5,6],[2],[3]]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
[[1,2,5,6],[3],[4]]
=> [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
[[1,2,3,6],[4],[5]]
=> [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
[[1,2,6],[3,5],[4]]
=> [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
[[1,3,6],[2,4],[5]]
=> [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[[1,2,3],[4,6],[5]]
=> [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
[[1,2,4],[3,5],[6]]
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[1,5,6],[2],[3],[4]]
=> [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
[[1,3,6],[2],[4],[5]]
=> [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[[1,2,6],[3],[4],[5]]
=> [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[[1,2,4],[3],[5],[6]]
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[1,2,3],[4],[5],[6]]
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[1,3],[2,4],[5,6]]
=> [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[[1,3],[2,6],[4],[5]]
=> [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[[1,2],[3,6],[4],[5]]
=> [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[[1,4],[2,5],[3],[6]]
=> [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[1,3],[2,4],[5],[6]]
=> [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[1,2],[3,4],[5],[6]]
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[1,6],[2],[3],[4],[5]]
=> [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[[1,4],[2],[3],[5],[6]]
=> [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[1,3],[2],[4],[5],[6]]
=> [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[1,2],[3],[4],[5],[6]]
=> [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[1],[2],[3],[4],[5],[6]]
=> [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[1,2,3,4,5,6,7]]
=> [7] => ([],7)
=> ([],7)
=> ? = 0 + 1
[[1,3,4,5,6,7],[2]]
=> [1,6] => ([(5,6)],7)
=> ([(5,6)],7)
=> ? = 1 + 1
[[1,2,3,4,6,7],[5]]
=> [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> ([(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 2 + 1
[[1,2,3,4,7],[5,6]]
=> [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> ([(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 2 + 1
[[1,4,5,6,7],[2],[3]]
=> [1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> ([(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
[[1,2,5,6,7],[3],[4]]
=> [2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 + 1
[[1,2,3,6,7],[4],[5]]
=> [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 + 1
[[1,2,3,4],[5,6,7]]
=> [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> ([(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 2 + 1
[[1,2,6,7],[3,5],[4]]
=> [2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 + 1
[[1,3,6,7],[2,4],[5]]
=> [1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 + 1
[[1,2,3,7],[4,6],[5]]
=> [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 + 1
[[1,2,4,7],[3,5],[6]]
=> [2,2,1,2] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 + 1
[[1,5,6,7],[2],[3],[4]]
=> [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 + 1
[[1,3,6,7],[2],[4],[5]]
=> [1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 + 1
[[1,2,6,7],[3],[4],[5]]
=> [2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 + 1
[[1,2,4,7],[3],[5],[6]]
=> [2,2,1,2] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 + 1
[[1,2,3,7],[4],[5],[6]]
=> [3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 + 1
[[1,2,3],[4,6,7],[5]]
=> [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 + 1
[[1,2,4],[3,5,7],[6]]
=> [2,2,1,2] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 + 1
[[1,3,5],[2,4,6],[7]]
=> [1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 6 + 1
[[1,3,5],[2,6],[4],[7]]
=> [1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 6 + 1
[[1,2,5],[3,6],[4],[7]]
=> [2,1,2,1,1] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 6 + 1
[[1,3,5],[2,4],[6],[7]]
=> [1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 6 + 1
[[1,3,4],[2,5],[6],[7]]
=> [1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 6 + 1
[[1,2,4],[3,5],[6],[7]]
=> [2,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 6 + 1
[[1,3,5],[2],[4],[6],[7]]
=> [1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 6 + 1
[[1,2,5],[3],[4],[6],[7]]
=> [2,1,2,1,1] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 6 + 1
[[1,3,4],[2],[5],[6],[7]]
=> [1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 6 + 1
[[1,2,4],[3],[5],[6],[7]]
=> [2,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 6 + 1
[[1,2,3],[4],[5],[6],[7]]
=> [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 6 + 1
[[1,3],[2,5],[4,6],[7]]
=> [1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 6 + 1
[[1,2],[3,5],[4,6],[7]]
=> [2,1,2,1,1] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 6 + 1
[[1,5],[2,6],[3],[4],[7]]
=> [1,1,1,2,1,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 6 + 1
[[1,4],[2,5],[3],[6],[7]]
=> [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 6 + 1
[[1,3],[2,5],[4],[6],[7]]
=> [1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 6 + 1
[[1,2],[3,5],[4],[6],[7]]
=> [2,1,2,1,1] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 6 + 1
[[1,3],[2,4],[5],[6],[7]]
=> [1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 6 + 1
[[1,2],[3,4],[5],[6],[7]]
=> [2,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 6 + 1
[[1,5],[2],[3],[4],[6],[7]]
=> [1,1,1,2,1,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 6 + 1
[[1,4],[2],[3],[5],[6],[7]]
=> [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 6 + 1
[[1,3],[2],[4],[5],[6],[7]]
=> [1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 6 + 1
[[1,2],[3],[4],[5],[6],[7]]
=> [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 6 + 1
[[1],[2],[3],[4],[5],[6],[7]]
=> [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 6 + 1
Description
The pebbling number of a connected graph.
Matching statistic: St001861
(load all 13 compositions to match this statistic)
(load all 13 compositions to match this statistic)
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
Mp00325: Permutations —ones to leading⟶ Permutations
Mp00170: Permutations —to signed permutation⟶ Signed permutations
St001861: Signed permutations ⟶ ℤResult quality: 14% ●values known / values provided: 14%●distinct values known / distinct values provided: 57%
Mp00325: Permutations —ones to leading⟶ Permutations
Mp00170: Permutations —to signed permutation⟶ Signed permutations
St001861: Signed permutations ⟶ ℤResult quality: 14% ●values known / values provided: 14%●distinct values known / distinct values provided: 57%
Values
[[1]]
=> [1] => [1] => [1] => 0
[[1,2]]
=> [1,2] => [1,2] => [1,2] => 0
[[1],[2]]
=> [2,1] => [2,1] => [2,1] => 1
[[1,2,3]]
=> [1,2,3] => [1,2,3] => [1,2,3] => 0
[[1,3],[2]]
=> [2,1,3] => [1,3,2] => [1,3,2] => 1
[[1],[2],[3]]
=> [3,2,1] => [3,2,1] => [3,2,1] => 2
[[1,2,3,4]]
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0
[[1,3,4],[2]]
=> [2,1,3,4] => [1,3,2,4] => [1,3,2,4] => 1
[[1,4],[2],[3]]
=> [3,2,1,4] => [1,4,3,2] => [1,4,3,2] => 2
[[1,2],[3],[4]]
=> [4,3,1,2] => [4,2,1,3] => [4,2,1,3] => 3
[[1],[2],[3],[4]]
=> [4,3,2,1] => [4,3,1,2] => [4,3,1,2] => 3
[[1,2,3,4,5]]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[[1,3,4,5],[2]]
=> [2,1,3,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => 1
[[1,2,3,4],[5]]
=> [5,1,2,3,4] => [5,1,4,2,3] => [5,1,4,2,3] => ? = 2
[[1,4,5],[2],[3]]
=> [3,2,1,4,5] => [1,4,3,2,5] => [1,4,3,2,5] => 2
[[1,2,5],[3],[4]]
=> [4,3,1,2,5] => [1,4,5,3,2] => [1,4,5,3,2] => 3
[[1,2,3],[4],[5]]
=> [5,4,1,2,3] => [5,2,1,4,3] => [5,2,1,4,3] => ? = 3
[[1,2],[3,5],[4]]
=> [4,3,5,1,2] => [3,1,4,5,2] => [3,1,4,5,2] => ? = 3
[[1,3],[2,4],[5]]
=> [5,2,4,1,3] => [5,3,2,4,1] => [5,3,2,4,1] => ? = 4
[[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => [1,5,4,3,2] => [1,5,4,3,2] => 3
[[1,3],[2],[4],[5]]
=> [5,4,2,1,3] => [5,3,1,4,2] => [5,3,1,4,2] => ? = 4
[[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => [5,3,1,2,4] => [5,3,1,2,4] => ? = 4
[[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => [5,4,1,2,3] => [5,4,1,2,3] => ? = 4
[[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ? = 0
[[1,3,4,5,6],[2]]
=> [2,1,3,4,5,6] => [1,3,2,4,5,6] => [1,3,2,4,5,6] => ? = 1
[[1,2,3,4,6],[5]]
=> [5,1,2,3,4,6] => [1,3,4,5,6,2] => [1,3,4,5,6,2] => ? = 2
[[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => [5,1,6,4,2,3] => [5,1,6,4,2,3] => ? = 2
[[1,4,5,6],[2],[3]]
=> [3,2,1,4,5,6] => [1,4,3,2,5,6] => [1,4,3,2,5,6] => ? = 2
[[1,2,5,6],[3],[4]]
=> [4,3,1,2,5,6] => [1,4,5,3,2,6] => [1,4,5,3,2,6] => ? = 3
[[1,2,3,6],[4],[5]]
=> [5,4,1,2,3,6] => [1,4,5,6,3,2] => [1,4,5,6,3,2] => ? = 3
[[1,2,6],[3,5],[4]]
=> [4,3,5,1,2,6] => [1,5,6,3,2,4] => [1,5,6,3,2,4] => ? = 3
[[1,3,6],[2,4],[5]]
=> [5,2,4,1,3,6] => [1,5,3,6,4,2] => [1,5,3,6,4,2] => ? = 4
[[1,2,3],[4,6],[5]]
=> [5,4,6,1,2,3] => [4,1,5,6,3,2] => [4,1,5,6,3,2] => ? = 3
[[1,2,4],[3,5],[6]]
=> [6,3,5,1,2,4] => [6,3,2,5,4,1] => [6,3,2,5,4,1] => ? = 5
[[1,5,6],[2],[3],[4]]
=> [4,3,2,1,5,6] => [1,5,4,3,2,6] => [1,5,4,3,2,6] => ? = 3
[[1,3,6],[2],[4],[5]]
=> [5,4,2,1,3,6] => [1,5,4,6,3,2] => [1,5,4,6,3,2] => ? = 4
[[1,2,6],[3],[4],[5]]
=> [5,4,3,1,2,6] => [1,5,6,4,3,2] => [1,5,6,4,3,2] => ? = 4
[[1,2,4],[3],[5],[6]]
=> [6,5,3,1,2,4] => [6,3,1,5,4,2] => [6,3,1,5,4,2] => ? = 5
[[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => [6,3,1,2,5,4] => [6,3,1,2,5,4] => ? = 5
[[1,3],[2,4],[5,6]]
=> [5,6,2,4,1,3] => [5,3,6,2,4,1] => [5,3,6,2,4,1] => ? = 4
[[1,3],[2,6],[4],[5]]
=> [5,4,2,6,1,3] => [3,1,4,5,2,6] => [3,1,4,5,2,6] => ? = 4
[[1,2],[3,6],[4],[5]]
=> [5,4,3,6,1,2] => [3,1,4,5,6,2] => [3,1,4,5,6,2] => ? = 4
[[1,4],[2,5],[3],[6]]
=> [6,3,2,5,1,4] => [6,4,3,5,2,1] => [6,4,3,5,2,1] => ? = 5
[[1,3],[2,4],[5],[6]]
=> [6,5,2,4,1,3] => [6,4,1,3,5,2] => [6,4,1,3,5,2] => ? = 5
[[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => [6,4,1,3,2,5] => [6,4,1,3,2,5] => ? = 5
[[1,6],[2],[3],[4],[5]]
=> [5,4,3,2,1,6] => [1,6,5,4,3,2] => [1,6,5,4,3,2] => ? = 4
[[1,4],[2],[3],[5],[6]]
=> [6,5,3,2,1,4] => [6,4,1,5,3,2] => [6,4,1,5,3,2] => ? = 5
[[1,3],[2],[4],[5],[6]]
=> [6,5,4,2,1,3] => [6,4,1,2,5,3] => [6,4,1,2,5,3] => ? = 5
[[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => [6,4,1,2,3,5] => [6,4,1,2,3,5] => ? = 5
[[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => [6,5,1,2,3,4] => [6,5,1,2,3,4] => ? = 5
[[1,2,3,4,5,6,7]]
=> [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 0
[[1,3,4,5,6,7],[2]]
=> [2,1,3,4,5,6,7] => [1,3,2,4,5,6,7] => [1,3,2,4,5,6,7] => ? = 1
[[1,2,3,4,6,7],[5]]
=> [5,1,2,3,4,6,7] => [1,3,4,5,6,2,7] => [1,3,4,5,6,2,7] => ? = 2
[[1,2,3,4,7],[5,6]]
=> [5,6,1,2,3,4,7] => [1,4,5,6,7,2,3] => [1,4,5,6,7,2,3] => ? = 2
[[1,4,5,6,7],[2],[3]]
=> [3,2,1,4,5,6,7] => [1,4,3,2,5,6,7] => [1,4,3,2,5,6,7] => ? = 2
[[1,2,5,6,7],[3],[4]]
=> [4,3,1,2,5,6,7] => [1,4,5,3,2,6,7] => [1,4,5,3,2,6,7] => ? = 3
[[1,2,3,6,7],[4],[5]]
=> [5,4,1,2,3,6,7] => [1,4,5,6,3,2,7] => [1,4,5,6,3,2,7] => ? = 3
[[1,2,3,4],[5,6,7]]
=> [5,6,7,1,2,3,4] => [5,1,7,6,4,2,3] => [5,1,7,6,4,2,3] => ? = 2
[[1,2,6,7],[3,5],[4]]
=> [4,3,5,1,2,6,7] => [1,5,6,3,2,4,7] => [1,5,6,3,2,4,7] => ? = 3
[[1,3,6,7],[2,4],[5]]
=> [5,2,4,1,3,6,7] => [1,5,3,6,4,2,7] => [1,5,3,6,4,2,7] => ? = 4
[[1,2,3,7],[4,6],[5]]
=> [5,4,6,1,2,3,7] => [1,5,6,7,3,2,4] => [1,5,6,7,3,2,4] => ? = 3
[[1,2,4,7],[3,5],[6]]
=> [6,3,5,1,2,4,7] => [1,5,6,3,7,4,2] => [1,5,6,3,7,4,2] => ? = 5
[[1,5,6,7],[2],[3],[4]]
=> [4,3,2,1,5,6,7] => [1,5,4,3,2,6,7] => [1,5,4,3,2,6,7] => ? = 3
[[1,3,6,7],[2],[4],[5]]
=> [5,4,2,1,3,6,7] => [1,5,4,6,3,2,7] => [1,5,4,6,3,2,7] => ? = 4
[[1,2,6,7],[3],[4],[5]]
=> [5,4,3,1,2,6,7] => [1,5,6,4,3,2,7] => [1,5,6,4,3,2,7] => ? = 4
[[1,2,4,7],[3],[5],[6]]
=> [6,5,3,1,2,4,7] => [1,5,6,4,7,3,2] => [1,5,6,4,7,3,2] => ? = 5
Description
The number of Bruhat lower covers of a permutation.
This is, for a signed permutation $\pi$, the number of signed permutations $\tau$ having a reduced word which is obtained by deleting a letter from a reduced word from $\pi$.
Matching statistic: St001882
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
Mp00170: Permutations —to signed permutation⟶ Signed permutations
Mp00281: Signed permutations —rowmotion⟶ Signed permutations
St001882: Signed permutations ⟶ ℤResult quality: 14% ●values known / values provided: 14%●distinct values known / distinct values provided: 71%
Mp00170: Permutations —to signed permutation⟶ Signed permutations
Mp00281: Signed permutations —rowmotion⟶ Signed permutations
St001882: Signed permutations ⟶ ℤResult quality: 14% ●values known / values provided: 14%●distinct values known / distinct values provided: 71%
Values
[[1]]
=> [1] => [1] => [-1] => 0
[[1,2]]
=> [1,2] => [1,2] => [-2,1] => 0
[[1],[2]]
=> [2,1] => [2,1] => [1,-2] => 1
[[1,2,3]]
=> [1,2,3] => [1,2,3] => [-3,1,2] => 0
[[1,3],[2]]
=> [2,1,3] => [2,1,3] => [1,-3,2] => 1
[[1],[2],[3]]
=> [3,2,1] => [3,2,1] => [1,2,-3] => 2
[[1,2,3,4]]
=> [1,2,3,4] => [1,2,3,4] => [-4,1,2,3] => 0
[[1,3,4],[2]]
=> [2,1,3,4] => [2,1,3,4] => [1,-4,2,3] => 1
[[1,4],[2],[3]]
=> [3,2,1,4] => [3,2,1,4] => [1,2,-4,3] => 2
[[1,2],[3],[4]]
=> [4,3,1,2] => [4,3,1,2] => [2,3,-4,1] => 3
[[1],[2],[3],[4]]
=> [4,3,2,1] => [4,3,2,1] => [1,2,3,-4] => 3
[[1,2,3,4,5]]
=> [1,2,3,4,5] => [1,2,3,4,5] => [-5,1,2,3,4] => ? = 0
[[1,3,4,5],[2]]
=> [2,1,3,4,5] => [2,1,3,4,5] => [1,-5,2,3,4] => 1
[[1,2,3,4],[5]]
=> [5,1,2,3,4] => [5,1,2,3,4] => [4,-5,1,2,3] => ? = 2
[[1,4,5],[2],[3]]
=> [3,2,1,4,5] => [3,2,1,4,5] => [1,2,-5,3,4] => 2
[[1,2,5],[3],[4]]
=> [4,3,1,2,5] => [4,3,1,2,5] => [2,3,-5,1,4] => ? = 3
[[1,2,3],[4],[5]]
=> [5,4,1,2,3] => [5,4,1,2,3] => [3,4,-5,1,2] => ? = 3
[[1,2],[3,5],[4]]
=> [4,3,5,1,2] => [4,3,5,1,2] => [2,4,3,-5,1] => ? = 3
[[1,3],[2,4],[5]]
=> [5,2,4,1,3] => [5,2,4,1,3] => [3,4,1,-5,2] => ? = 4
[[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => [4,3,2,1,5] => [1,2,3,-5,4] => 3
[[1,3],[2],[4],[5]]
=> [5,4,2,1,3] => [5,4,2,1,3] => [1,3,4,-5,2] => 4
[[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => [5,4,3,1,2] => [2,3,4,-5,1] => ? = 4
[[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => [5,4,3,2,1] => [1,2,3,4,-5] => 4
[[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => [-6,1,2,3,4,5] => ? = 0
[[1,3,4,5,6],[2]]
=> [2,1,3,4,5,6] => [2,1,3,4,5,6] => [1,-6,2,3,4,5] => ? = 1
[[1,2,3,4,6],[5]]
=> [5,1,2,3,4,6] => [5,1,2,3,4,6] => [4,-6,1,2,3,5] => ? = 2
[[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => [5,6,1,2,3,4] => [5,4,-6,1,2,3] => ? = 2
[[1,4,5,6],[2],[3]]
=> [3,2,1,4,5,6] => [3,2,1,4,5,6] => [1,2,-6,3,4,5] => ? = 2
[[1,2,5,6],[3],[4]]
=> [4,3,1,2,5,6] => [4,3,1,2,5,6] => [2,3,-6,1,4,5] => ? = 3
[[1,2,3,6],[4],[5]]
=> [5,4,1,2,3,6] => [5,4,1,2,3,6] => [3,4,-6,1,2,5] => ? = 3
[[1,2,6],[3,5],[4]]
=> [4,3,5,1,2,6] => [4,3,5,1,2,6] => [2,4,3,-6,1,5] => ? = 3
[[1,3,6],[2,4],[5]]
=> [5,2,4,1,3,6] => [5,2,4,1,3,6] => [3,4,1,-6,2,5] => ? = 4
[[1,2,3],[4,6],[5]]
=> [5,4,6,1,2,3] => [5,4,6,1,2,3] => [3,5,4,-6,1,2] => ? = 3
[[1,2,4],[3,5],[6]]
=> [6,3,5,1,2,4] => [6,3,5,1,2,4] => [4,5,2,-6,1,3] => ? = 5
[[1,5,6],[2],[3],[4]]
=> [4,3,2,1,5,6] => [4,3,2,1,5,6] => [1,2,3,-6,4,5] => ? = 3
[[1,3,6],[2],[4],[5]]
=> [5,4,2,1,3,6] => [5,4,2,1,3,6] => [1,3,4,-6,2,5] => ? = 4
[[1,2,6],[3],[4],[5]]
=> [5,4,3,1,2,6] => [5,4,3,1,2,6] => [2,3,4,-6,1,5] => ? = 4
[[1,2,4],[3],[5],[6]]
=> [6,5,3,1,2,4] => [6,5,3,1,2,4] => [2,4,5,-6,1,3] => ? = 5
[[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => [6,5,4,1,2,3] => [3,4,5,-6,1,2] => ? = 5
[[1,3],[2,4],[5,6]]
=> [5,6,2,4,1,3] => [5,6,2,4,1,3] => [4,3,5,1,-6,2] => ? = 4
[[1,3],[2,6],[4],[5]]
=> [5,4,2,6,1,3] => [5,4,2,6,1,3] => [1,3,5,4,-6,2] => ? = 4
[[1,2],[3,6],[4],[5]]
=> [5,4,3,6,1,2] => [5,4,3,6,1,2] => [2,3,5,4,-6,1] => ? = 4
[[1,4],[2,5],[3],[6]]
=> [6,3,2,5,1,4] => [6,3,2,5,1,4] => [1,4,5,2,-6,3] => ? = 5
[[1,3],[2,4],[5],[6]]
=> [6,5,2,4,1,3] => [6,5,2,4,1,3] => [3,4,5,1,-6,2] => ? = 5
[[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => [6,5,3,4,1,2] => [3,4,5,2,-6,1] => ? = 5
[[1,6],[2],[3],[4],[5]]
=> [5,4,3,2,1,6] => [5,4,3,2,1,6] => [1,2,3,4,-6,5] => ? = 4
[[1,4],[2],[3],[5],[6]]
=> [6,5,3,2,1,4] => [6,5,3,2,1,4] => [1,2,4,5,-6,3] => ? = 5
[[1,3],[2],[4],[5],[6]]
=> [6,5,4,2,1,3] => [6,5,4,2,1,3] => [1,3,4,5,-6,2] => ? = 5
[[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => [6,5,4,3,1,2] => [2,3,4,5,-6,1] => ? = 5
[[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => [6,5,4,3,2,1] => [1,2,3,4,5,-6] => ? = 5
[[1,2,3,4,5,6,7]]
=> [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? => ? = 0
[[1,3,4,5,6,7],[2]]
=> [2,1,3,4,5,6,7] => [2,1,3,4,5,6,7] => ? => ? = 1
[[1,2,3,4,6,7],[5]]
=> [5,1,2,3,4,6,7] => [5,1,2,3,4,6,7] => ? => ? = 2
[[1,2,3,4,7],[5,6]]
=> [5,6,1,2,3,4,7] => [5,6,1,2,3,4,7] => ? => ? = 2
[[1,4,5,6,7],[2],[3]]
=> [3,2,1,4,5,6,7] => [3,2,1,4,5,6,7] => ? => ? = 2
[[1,2,5,6,7],[3],[4]]
=> [4,3,1,2,5,6,7] => [4,3,1,2,5,6,7] => ? => ? = 3
[[1,2,3,6,7],[4],[5]]
=> [5,4,1,2,3,6,7] => [5,4,1,2,3,6,7] => ? => ? = 3
[[1,2,3,4],[5,6,7]]
=> [5,6,7,1,2,3,4] => [5,6,7,1,2,3,4] => ? => ? = 2
[[1,2,6,7],[3,5],[4]]
=> [4,3,5,1,2,6,7] => [4,3,5,1,2,6,7] => ? => ? = 3
[[1,3,6,7],[2,4],[5]]
=> [5,2,4,1,3,6,7] => [5,2,4,1,3,6,7] => ? => ? = 4
[[1,2,3,7],[4,6],[5]]
=> [5,4,6,1,2,3,7] => [5,4,6,1,2,3,7] => ? => ? = 3
[[1,2,4,7],[3,5],[6]]
=> [6,3,5,1,2,4,7] => [6,3,5,1,2,4,7] => ? => ? = 5
[[1,5,6,7],[2],[3],[4]]
=> [4,3,2,1,5,6,7] => [4,3,2,1,5,6,7] => ? => ? = 3
[[1,3,6,7],[2],[4],[5]]
=> [5,4,2,1,3,6,7] => [5,4,2,1,3,6,7] => ? => ? = 4
[[1,2,6,7],[3],[4],[5]]
=> [5,4,3,1,2,6,7] => [5,4,3,1,2,6,7] => ? => ? = 4
[[1,2,4,7],[3],[5],[6]]
=> [6,5,3,1,2,4,7] => [6,5,3,1,2,4,7] => ? => ? = 5
Description
The number of occurrences of a type-B 231 pattern in a signed permutation.
For a signed permutation $\pi\in\mathfrak H_n$, a triple $-n \leq i < j < k\leq n$ is an occurrence of the type-B $231$ pattern, if $1 \leq j < k$, $\pi(i) < \pi(j)$ and $\pi(i)$ is one larger than $\pi(k)$, i.e., $\pi(i) = \pi(k) + 1$ if $\pi(k) \neq -1$ and $\pi(i) = 1$ otherwise.
Matching statistic: St001232
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
St001232: Dyck paths ⟶ ℤResult quality: 12% ●values known / values provided: 12%●distinct values known / distinct values provided: 29%
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
St001232: Dyck paths ⟶ ℤResult quality: 12% ●values known / values provided: 12%●distinct values known / distinct values provided: 29%
Values
[[1]]
=> [1] => [1,0]
=> [1,0]
=> 0
[[1,2]]
=> [1,2] => [1,0,1,0]
=> [1,1,0,0]
=> 0
[[1],[2]]
=> [2,1] => [1,1,0,0]
=> [1,0,1,0]
=> 1
[[1,2,3]]
=> [1,2,3] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0
[[1,3],[2]]
=> [2,1,3] => [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 1
[[1],[2],[3]]
=> [3,2,1] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? = 2
[[1,2,3,4]]
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[[1,3,4],[2]]
=> [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 1
[[1,4],[2],[3]]
=> [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> ? = 2
[[1,2],[3],[4]]
=> [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 3
[[1],[2],[3],[4]]
=> [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 3
[[1,2,3,4,5]]
=> [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[[1,3,4,5],[2]]
=> [2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
[[1,2,3,4],[5]]
=> [5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 2
[[1,4,5],[2],[3]]
=> [3,2,1,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ? = 2
[[1,2,5],[3],[4]]
=> [4,3,1,2,5] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> ? = 3
[[1,2,3],[4],[5]]
=> [5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 3
[[1,2],[3,5],[4]]
=> [4,3,5,1,2] => [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> ? = 3
[[1,3],[2,4],[5]]
=> [5,2,4,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 4
[[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> ? = 3
[[1,3],[2],[4],[5]]
=> [5,4,2,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 4
[[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 4
[[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 4
[[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[[1,3,4,5,6],[2]]
=> [2,1,3,4,5,6] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1
[[1,2,3,4,6],[5]]
=> [5,1,2,3,4,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 2
[[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[[1,4,5,6],[2],[3]]
=> [3,2,1,4,5,6] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 2
[[1,2,5,6],[3],[4]]
=> [4,3,1,2,5,6] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 3
[[1,2,3,6],[4],[5]]
=> [5,4,1,2,3,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 3
[[1,2,6],[3,5],[4]]
=> [4,3,5,1,2,6] => [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> ? = 3
[[1,3,6],[2,4],[5]]
=> [5,2,4,1,3,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 4
[[1,2,3],[4,6],[5]]
=> [5,4,6,1,2,3] => [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 3
[[1,2,4],[3,5],[6]]
=> [6,3,5,1,2,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 5
[[1,5,6],[2],[3],[4]]
=> [4,3,2,1,5,6] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 3
[[1,3,6],[2],[4],[5]]
=> [5,4,2,1,3,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 4
[[1,2,6],[3],[4],[5]]
=> [5,4,3,1,2,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 4
[[1,2,4],[3],[5],[6]]
=> [6,5,3,1,2,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 5
[[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 5
[[1,3],[2,4],[5,6]]
=> [5,6,2,4,1,3] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 4
[[1,3],[2,6],[4],[5]]
=> [5,4,2,6,1,3] => [1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 4
[[1,2],[3,6],[4],[5]]
=> [5,4,3,6,1,2] => [1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 4
[[1,4],[2,5],[3],[6]]
=> [6,3,2,5,1,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 5
[[1,3],[2,4],[5],[6]]
=> [6,5,2,4,1,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 5
[[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 5
[[1,6],[2],[3],[4],[5]]
=> [5,4,3,2,1,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 4
[[1,4],[2],[3],[5],[6]]
=> [6,5,3,2,1,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 5
[[1,3],[2],[4],[5],[6]]
=> [6,5,4,2,1,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 5
[[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 5
[[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 5
[[1,2,3,4,5,6,7]]
=> [1,2,3,4,5,6,7] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> 0
[[1,3,4,5,6,7],[2]]
=> [2,1,3,4,5,6,7] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> 1
[[1,2,3,4,6,7],[5]]
=> [5,1,2,3,4,6,7] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 2
[[1,2,3,4,7],[5,6]]
=> [5,6,1,2,3,4,7] => [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[[1,4,5,6,7],[2],[3]]
=> [3,2,1,4,5,6,7] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 2
[[1,2,5,6,7],[3],[4]]
=> [4,3,1,2,5,6,7] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 3
[[1,2,3,6,7],[4],[5]]
=> [5,4,1,2,3,6,7] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 3
[[1,2,3,4],[5,6,7]]
=> [5,6,7,1,2,3,4] => [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 2
[[1,2,6,7],[3,5],[4]]
=> [4,3,5,1,2,6,7] => [1,1,1,1,0,0,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> ? = 3
[[1,3,6,7],[2,4],[5]]
=> [5,2,4,1,3,6,7] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 4
[[1,2,3,7],[4,6],[5]]
=> [5,4,6,1,2,3,7] => [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 3
[[1,2,4,7],[3,5],[6]]
=> [6,3,5,1,2,4,7] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 5
[[1,5,6,7],[2],[3],[4]]
=> [4,3,2,1,5,6,7] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 3
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Matching statistic: St001892
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
Mp00170: Permutations —to signed permutation⟶ Signed permutations
Mp00190: Signed permutations —Foata-Han⟶ Signed permutations
St001892: Signed permutations ⟶ ℤResult quality: 12% ●values known / values provided: 12%●distinct values known / distinct values provided: 57%
Mp00170: Permutations —to signed permutation⟶ Signed permutations
Mp00190: Signed permutations —Foata-Han⟶ Signed permutations
St001892: Signed permutations ⟶ ℤResult quality: 12% ●values known / values provided: 12%●distinct values known / distinct values provided: 57%
Values
[[1]]
=> [1] => [1] => [1] => 0
[[1,2]]
=> [1,2] => [1,2] => [1,2] => 0
[[1],[2]]
=> [2,1] => [2,1] => [-2,1] => 1
[[1,2,3]]
=> [1,2,3] => [1,2,3] => [1,2,3] => 0
[[1,3],[2]]
=> [2,1,3] => [2,1,3] => [-2,1,3] => 1
[[1],[2],[3]]
=> [3,2,1] => [3,2,1] => [-2,-3,1] => 2
[[1,2,3,4]]
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0
[[1,3,4],[2]]
=> [2,1,3,4] => [2,1,3,4] => [-2,1,3,4] => 1
[[1,4],[2],[3]]
=> [3,2,1,4] => [3,2,1,4] => [-2,-3,1,4] => 2
[[1,2],[3],[4]]
=> [4,3,1,2] => [4,3,1,2] => [-4,3,1,2] => 3
[[1],[2],[3],[4]]
=> [4,3,2,1] => [4,3,2,1] => [-2,-3,-4,1] => 3
[[1,2,3,4,5]]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[[1,3,4,5],[2]]
=> [2,1,3,4,5] => [2,1,3,4,5] => [-2,1,3,4,5] => ? = 1
[[1,2,3,4],[5]]
=> [5,1,2,3,4] => [5,1,2,3,4] => [1,2,5,3,4] => 2
[[1,4,5],[2],[3]]
=> [3,2,1,4,5] => [3,2,1,4,5] => [-2,-3,1,4,5] => ? = 2
[[1,2,5],[3],[4]]
=> [4,3,1,2,5] => [4,3,1,2,5] => [-4,3,1,2,5] => ? = 3
[[1,2,3],[4],[5]]
=> [5,4,1,2,3] => [5,4,1,2,3] => [5,1,4,2,3] => ? = 3
[[1,2],[3,5],[4]]
=> [4,3,5,1,2] => [4,3,5,1,2] => [-4,3,5,1,2] => ? = 3
[[1,3],[2,4],[5]]
=> [5,2,4,1,3] => [5,2,4,1,3] => [-5,2,4,1,3] => ? = 4
[[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => [4,3,2,1,5] => [-2,-3,-4,1,5] => ? = 3
[[1,3],[2],[4],[5]]
=> [5,4,2,1,3] => [5,4,2,1,3] => [-4,-5,-2,1,3] => ? = 4
[[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => [5,4,3,1,2] => [-4,-5,3,1,2] => ? = 4
[[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => [5,4,3,2,1] => [-2,-3,-4,-5,1] => ? = 4
[[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ? = 0
[[1,3,4,5,6],[2]]
=> [2,1,3,4,5,6] => [2,1,3,4,5,6] => [-2,1,3,4,5,6] => ? = 1
[[1,2,3,4,6],[5]]
=> [5,1,2,3,4,6] => [5,1,2,3,4,6] => [1,2,5,3,4,6] => ? = 2
[[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => [5,6,1,2,3,4] => [1,2,5,6,3,4] => ? = 2
[[1,4,5,6],[2],[3]]
=> [3,2,1,4,5,6] => [3,2,1,4,5,6] => [-2,-3,1,4,5,6] => ? = 2
[[1,2,5,6],[3],[4]]
=> [4,3,1,2,5,6] => [4,3,1,2,5,6] => [-4,3,1,2,5,6] => ? = 3
[[1,2,3,6],[4],[5]]
=> [5,4,1,2,3,6] => [5,4,1,2,3,6] => [5,1,4,2,3,6] => ? = 3
[[1,2,6],[3,5],[4]]
=> [4,3,5,1,2,6] => [4,3,5,1,2,6] => [-4,3,5,1,2,6] => ? = 3
[[1,3,6],[2,4],[5]]
=> [5,2,4,1,3,6] => [5,2,4,1,3,6] => [-5,2,4,1,3,6] => ? = 4
[[1,2,3],[4,6],[5]]
=> [5,4,6,1,2,3] => [5,4,6,1,2,3] => [5,1,4,6,2,3] => ? = 3
[[1,2,4],[3,5],[6]]
=> [6,3,5,1,2,4] => [6,3,5,1,2,4] => [3,6,1,5,2,4] => ? = 5
[[1,5,6],[2],[3],[4]]
=> [4,3,2,1,5,6] => [4,3,2,1,5,6] => [-2,-3,-4,1,5,6] => ? = 3
[[1,3,6],[2],[4],[5]]
=> [5,4,2,1,3,6] => [5,4,2,1,3,6] => [-4,-5,-2,1,3,6] => ? = 4
[[1,2,6],[3],[4],[5]]
=> [5,4,3,1,2,6] => [5,4,3,1,2,6] => [-4,-5,3,1,2,6] => ? = 4
[[1,2,4],[3],[5],[6]]
=> [6,5,3,1,2,4] => [6,5,3,1,2,4] => [-6,5,3,1,2,4] => ? = 5
[[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => [6,5,4,1,2,3] => [-6,5,1,4,2,3] => ? = 5
[[1,3],[2,4],[5,6]]
=> [5,6,2,4,1,3] => [5,6,2,4,1,3] => [2,-5,6,4,1,3] => ? = 4
[[1,3],[2,6],[4],[5]]
=> [5,4,2,6,1,3] => [5,4,2,6,1,3] => [-4,-5,-2,6,1,3] => ? = 4
[[1,2],[3,6],[4],[5]]
=> [5,4,3,6,1,2] => [5,4,3,6,1,2] => [-4,-5,3,6,1,2] => ? = 4
[[1,4],[2,5],[3],[6]]
=> [6,3,2,5,1,4] => [6,3,2,5,1,4] => [-6,-2,-3,5,1,4] => ? = 5
[[1,3],[2,4],[5],[6]]
=> [6,5,2,4,1,3] => [6,5,2,4,1,3] => [5,-6,2,4,1,3] => ? = 5
[[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => [6,5,3,4,1,2] => [-6,5,3,4,1,2] => ? = 5
[[1,6],[2],[3],[4],[5]]
=> [5,4,3,2,1,6] => [5,4,3,2,1,6] => [-2,-3,-4,-5,1,6] => ? = 4
[[1,4],[2],[3],[5],[6]]
=> [6,5,3,2,1,4] => [6,5,3,2,1,4] => [-2,-5,-6,-3,1,4] => ? = 5
[[1,3],[2],[4],[5],[6]]
=> [6,5,4,2,1,3] => [6,5,4,2,1,3] => [-4,-5,-6,-2,1,3] => ? = 5
[[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => [6,5,4,3,1,2] => [-4,-5,-6,3,1,2] => ? = 5
[[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => [6,5,4,3,2,1] => [-2,-3,-4,-5,-6,1] => ? = 5
[[1,2,3,4,5,6,7]]
=> [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 0
[[1,3,4,5,6,7],[2]]
=> [2,1,3,4,5,6,7] => [2,1,3,4,5,6,7] => [-2,1,3,4,5,6,7] => ? = 1
[[1,2,3,4,6,7],[5]]
=> [5,1,2,3,4,6,7] => [5,1,2,3,4,6,7] => [1,2,5,3,4,6,7] => ? = 2
[[1,2,3,4,7],[5,6]]
=> [5,6,1,2,3,4,7] => [5,6,1,2,3,4,7] => [1,2,5,6,3,4,7] => ? = 2
[[1,4,5,6,7],[2],[3]]
=> [3,2,1,4,5,6,7] => [3,2,1,4,5,6,7] => [-2,-3,1,4,5,6,7] => ? = 2
[[1,2,5,6,7],[3],[4]]
=> [4,3,1,2,5,6,7] => [4,3,1,2,5,6,7] => [-4,3,1,2,5,6,7] => ? = 3
[[1,2,3,6,7],[4],[5]]
=> [5,4,1,2,3,6,7] => [5,4,1,2,3,6,7] => [5,1,4,2,3,6,7] => ? = 3
[[1,2,3,4],[5,6,7]]
=> [5,6,7,1,2,3,4] => [5,6,7,1,2,3,4] => [1,2,5,6,7,3,4] => ? = 2
[[1,2,6,7],[3,5],[4]]
=> [4,3,5,1,2,6,7] => [4,3,5,1,2,6,7] => [-4,3,5,1,2,6,7] => ? = 3
[[1,3,6,7],[2,4],[5]]
=> [5,2,4,1,3,6,7] => [5,2,4,1,3,6,7] => ? => ? = 4
[[1,2,3,7],[4,6],[5]]
=> [5,4,6,1,2,3,7] => [5,4,6,1,2,3,7] => [5,1,4,6,2,3,7] => ? = 3
[[1,2,4,7],[3,5],[6]]
=> [6,3,5,1,2,4,7] => [6,3,5,1,2,4,7] => ? => ? = 5
[[1,5,6,7],[2],[3],[4]]
=> [4,3,2,1,5,6,7] => [4,3,2,1,5,6,7] => [-2,-3,-4,1,5,6,7] => ? = 3
Description
The flag excedance statistic of a signed permutation.
This is the number of negative entries plus twice the number of excedances of the signed permutation. That is,
$$fexc(\sigma) = 2exc(\sigma) + neg(\sigma),$$
where
$$exc(\sigma) = |\{i \in [n-1] \,:\, \sigma(i) > i\}|$$
$$neg(\sigma) = |\{i \in [n] \,:\, \sigma(i) < 0\}|$$
It has the same distribution as the flag descent statistic.
Matching statistic: St001893
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
Mp00170: Permutations —to signed permutation⟶ Signed permutations
Mp00194: Signed permutations —Foata-Han inverse⟶ Signed permutations
St001893: Signed permutations ⟶ ℤResult quality: 12% ●values known / values provided: 12%●distinct values known / distinct values provided: 57%
Mp00170: Permutations —to signed permutation⟶ Signed permutations
Mp00194: Signed permutations —Foata-Han inverse⟶ Signed permutations
St001893: Signed permutations ⟶ ℤResult quality: 12% ●values known / values provided: 12%●distinct values known / distinct values provided: 57%
Values
[[1]]
=> [1] => [1] => [1] => 0
[[1,2]]
=> [1,2] => [1,2] => [1,2] => 0
[[1],[2]]
=> [2,1] => [2,1] => [-2,1] => 1
[[1,2,3]]
=> [1,2,3] => [1,2,3] => [1,2,3] => 0
[[1,3],[2]]
=> [2,1,3] => [2,1,3] => [-2,1,3] => 1
[[1],[2],[3]]
=> [3,2,1] => [3,2,1] => [2,-3,1] => 2
[[1,2,3,4]]
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0
[[1,3,4],[2]]
=> [2,1,3,4] => [2,1,3,4] => [-2,1,3,4] => 1
[[1,4],[2],[3]]
=> [3,2,1,4] => [3,2,1,4] => [2,-3,1,4] => 2
[[1,2],[3],[4]]
=> [4,3,1,2] => [4,3,1,2] => [-4,3,1,2] => 3
[[1],[2],[3],[4]]
=> [4,3,2,1] => [4,3,2,1] => [-3,2,-4,1] => 3
[[1,2,3,4,5]]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[[1,3,4,5],[2]]
=> [2,1,3,4,5] => [2,1,3,4,5] => [-2,1,3,4,5] => ? = 1
[[1,2,3,4],[5]]
=> [5,1,2,3,4] => [5,1,2,3,4] => [1,5,2,3,4] => 2
[[1,4,5],[2],[3]]
=> [3,2,1,4,5] => [3,2,1,4,5] => [2,-3,1,4,5] => ? = 2
[[1,2,5],[3],[4]]
=> [4,3,1,2,5] => [4,3,1,2,5] => [-4,3,1,2,5] => ? = 3
[[1,2,3],[4],[5]]
=> [5,4,1,2,3] => [5,4,1,2,3] => [4,1,-5,2,3] => ? = 3
[[1,2],[3,5],[4]]
=> [4,3,5,1,2] => [4,3,5,1,2] => [-4,3,5,1,2] => ? = 3
[[1,3],[2,4],[5]]
=> [5,2,4,1,3] => [5,2,4,1,3] => [4,2,-5,1,3] => ? = 4
[[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => [4,3,2,1,5] => [-3,2,-4,1,5] => ? = 3
[[1,3],[2],[4],[5]]
=> [5,4,2,1,3] => [5,4,2,1,3] => [2,-4,-5,1,3] => ? = 4
[[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => [5,4,3,1,2] => [4,-5,3,1,2] => ? = 4
[[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => [5,4,3,2,1] => [3,-4,2,-5,1] => ? = 4
[[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ? = 0
[[1,3,4,5,6],[2]]
=> [2,1,3,4,5,6] => [2,1,3,4,5,6] => [-2,1,3,4,5,6] => ? = 1
[[1,2,3,4,6],[5]]
=> [5,1,2,3,4,6] => [5,1,2,3,4,6] => [1,5,2,3,4,6] => ? = 2
[[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => [5,6,1,2,3,4] => [5,1,6,2,3,4] => ? = 2
[[1,4,5,6],[2],[3]]
=> [3,2,1,4,5,6] => [3,2,1,4,5,6] => [2,-3,1,4,5,6] => ? = 2
[[1,2,5,6],[3],[4]]
=> [4,3,1,2,5,6] => [4,3,1,2,5,6] => [-4,3,1,2,5,6] => ? = 3
[[1,2,3,6],[4],[5]]
=> [5,4,1,2,3,6] => [5,4,1,2,3,6] => [4,1,-5,2,3,6] => ? = 3
[[1,2,6],[3,5],[4]]
=> [4,3,5,1,2,6] => [4,3,5,1,2,6] => [-4,3,5,1,2,6] => ? = 3
[[1,3,6],[2,4],[5]]
=> [5,2,4,1,3,6] => [5,2,4,1,3,6] => [4,2,-5,1,3,6] => ? = 4
[[1,2,3],[4,6],[5]]
=> [5,4,6,1,2,3] => [5,4,6,1,2,3] => [6,-4,1,-5,2,3] => ? = 3
[[1,2,4],[3,5],[6]]
=> [6,3,5,1,2,4] => [6,3,5,1,2,4] => [-5,-6,3,1,2,4] => ? = 5
[[1,5,6],[2],[3],[4]]
=> [4,3,2,1,5,6] => [4,3,2,1,5,6] => [-3,2,-4,1,5,6] => ? = 3
[[1,3,6],[2],[4],[5]]
=> [5,4,2,1,3,6] => [5,4,2,1,3,6] => [2,-4,-5,1,3,6] => ? = 4
[[1,2,6],[3],[4],[5]]
=> [5,4,3,1,2,6] => [5,4,3,1,2,6] => [4,-5,3,1,2,6] => ? = 4
[[1,2,4],[3],[5],[6]]
=> [6,5,3,1,2,4] => [6,5,3,1,2,4] => [-6,5,3,1,2,4] => ? = 5
[[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => [6,5,4,1,2,3] => [-5,4,1,-6,2,3] => ? = 5
[[1,3],[2,4],[5,6]]
=> [5,6,2,4,1,3] => [5,6,2,4,1,3] => [-4,-6,2,-5,1,3] => ? = 4
[[1,3],[2,6],[4],[5]]
=> [5,4,2,6,1,3] => [5,4,2,6,1,3] => [6,-4,2,-5,1,3] => ? = 4
[[1,2],[3,6],[4],[5]]
=> [5,4,3,6,1,2] => [5,4,3,6,1,2] => [4,-5,3,6,1,2] => ? = 4
[[1,4],[2,5],[3],[6]]
=> [6,3,2,5,1,4] => [6,3,2,5,1,4] => [5,-3,2,-6,1,4] => ? = 5
[[1,3],[2,4],[5],[6]]
=> [6,5,2,4,1,3] => [6,5,2,4,1,3] => [-5,4,2,-6,1,3] => ? = 5
[[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => [6,5,3,4,1,2] => [-6,5,3,4,1,2] => ? = 5
[[1,6],[2],[3],[4],[5]]
=> [5,4,3,2,1,6] => [5,4,3,2,1,6] => [3,-4,2,-5,1,6] => ? = 4
[[1,4],[2],[3],[5],[6]]
=> [6,5,3,2,1,4] => [6,5,3,2,1,4] => [-5,3,2,-6,1,4] => ? = 5
[[1,3],[2],[4],[5],[6]]
=> [6,5,4,2,1,3] => [6,5,4,2,1,3] => [-4,2,-5,-6,1,3] => ? = 5
[[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => [6,5,4,3,1,2] => [-5,4,-6,3,1,2] => ? = 5
[[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => [6,5,4,3,2,1] => [-4,3,-5,2,-6,1] => ? = 5
[[1,2,3,4,5,6,7]]
=> [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 0
[[1,3,4,5,6,7],[2]]
=> [2,1,3,4,5,6,7] => [2,1,3,4,5,6,7] => [-2,1,3,4,5,6,7] => ? = 1
[[1,2,3,4,6,7],[5]]
=> [5,1,2,3,4,6,7] => [5,1,2,3,4,6,7] => [1,5,2,3,4,6,7] => ? = 2
[[1,2,3,4,7],[5,6]]
=> [5,6,1,2,3,4,7] => [5,6,1,2,3,4,7] => [5,1,6,2,3,4,7] => ? = 2
[[1,4,5,6,7],[2],[3]]
=> [3,2,1,4,5,6,7] => [3,2,1,4,5,6,7] => [2,-3,1,4,5,6,7] => ? = 2
[[1,2,5,6,7],[3],[4]]
=> [4,3,1,2,5,6,7] => [4,3,1,2,5,6,7] => [-4,3,1,2,5,6,7] => ? = 3
[[1,2,3,6,7],[4],[5]]
=> [5,4,1,2,3,6,7] => [5,4,1,2,3,6,7] => [4,1,-5,2,3,6,7] => ? = 3
[[1,2,3,4],[5,6,7]]
=> [5,6,7,1,2,3,4] => [5,6,7,1,2,3,4] => [5,6,1,7,2,3,4] => ? = 2
[[1,2,6,7],[3,5],[4]]
=> [4,3,5,1,2,6,7] => [4,3,5,1,2,6,7] => [-4,3,5,1,2,6,7] => ? = 3
[[1,3,6,7],[2,4],[5]]
=> [5,2,4,1,3,6,7] => [5,2,4,1,3,6,7] => ? => ? = 4
[[1,2,3,7],[4,6],[5]]
=> [5,4,6,1,2,3,7] => [5,4,6,1,2,3,7] => [6,-4,1,-5,2,3,7] => ? = 3
[[1,2,4,7],[3,5],[6]]
=> [6,3,5,1,2,4,7] => [6,3,5,1,2,4,7] => ? => ? = 5
[[1,5,6,7],[2],[3],[4]]
=> [4,3,2,1,5,6,7] => [4,3,2,1,5,6,7] => [-3,2,-4,1,5,6,7] => ? = 3
Description
The flag descent of a signed permutation.
$$ fdes(\sigma) = 2 \lvert \{ i \in [n-1] \mid \sigma(i) > \sigma(i+1) \} \rvert + \chi( \sigma(1) < 0 ) $$
It has the same distribution as the flag excedance statistic.
The following 7 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001330The hat guessing number of a graph. St001769The reflection length of a signed permutation. St001894The depth of a signed permutation. St001896The number of right descents of a signed permutations. St001821The sorting index of a signed permutation. St001823The Stasinski-Voll length of a signed permutation. St001946The number of descents in a parking function.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!