searching the database
Your data matches 15 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000454
Mp00134: Standard tableaux —descent word⟶ Binary words
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[1,2]]
=> 0 => [1] => ([],1)
=> 0
[[1],[2]]
=> 1 => [1] => ([],1)
=> 0
[[1,2,3]]
=> 00 => [2] => ([],2)
=> 0
[[1,3],[2]]
=> 10 => [1,1] => ([(0,1)],2)
=> 1
[[1,2],[3]]
=> 01 => [1,1] => ([(0,1)],2)
=> 1
[[1],[2],[3]]
=> 11 => [2] => ([],2)
=> 0
[[1,2,3,4]]
=> 000 => [3] => ([],3)
=> 0
[[1,3,4],[2]]
=> 100 => [1,2] => ([(1,2)],3)
=> 1
[[1,2,4],[3]]
=> 010 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[[1,3],[2,4]]
=> 101 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[[1,2],[3,4]]
=> 010 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[[1,3],[2],[4]]
=> 101 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[[1,2],[3],[4]]
=> 011 => [1,2] => ([(1,2)],3)
=> 1
[[1],[2],[3],[4]]
=> 111 => [3] => ([],3)
=> 0
[[1,2,3,4,5]]
=> 0000 => [4] => ([],4)
=> 0
[[1,3,4,5],[2]]
=> 1000 => [1,3] => ([(2,3)],4)
=> 1
[[1,2,4,5],[3]]
=> 0100 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
[[1,3,5],[2,4]]
=> 1010 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[1,2,5],[3,4]]
=> 0100 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
[[1,2,4],[3,5]]
=> 0101 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[1,3,5],[2],[4]]
=> 1010 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[1,2,4],[3],[5]]
=> 0101 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[1,3],[2,5],[4]]
=> 1010 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[1,3],[2,4],[5]]
=> 1011 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
[[1,2],[3,4],[5]]
=> 0101 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[1,3],[2],[4],[5]]
=> 1011 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
[[1,2],[3],[4],[5]]
=> 0111 => [1,3] => ([(2,3)],4)
=> 1
[[1],[2],[3],[4],[5]]
=> 1111 => [4] => ([],4)
=> 0
[[1,2,3,4,5,6]]
=> 00000 => [5] => ([],5)
=> 0
[[1,3,4,5,6],[2]]
=> 10000 => [1,4] => ([(3,4)],5)
=> 1
[[1,2,4,5,6],[3]]
=> 01000 => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
[[1,2,3,4,6],[5]]
=> 00010 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,2,3,4,5],[6]]
=> 00001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[[1,3,5,6],[2,4]]
=> 10100 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,2,5,6],[3,4]]
=> 01000 => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
[[1,2,4,6],[3,5]]
=> 01010 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,2,3,4],[5,6]]
=> 00010 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,3,5,6],[2],[4]]
=> 10100 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,2,4,6],[3],[5]]
=> 01010 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,3,5],[2,4,6]]
=> 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,2,4],[3,5,6]]
=> 01010 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,3,6],[2,5],[4]]
=> 10100 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,2,6],[3,4],[5]]
=> 01010 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,3,5],[2,6],[4]]
=> 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,2,4],[3,6],[5]]
=> 01010 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,3,5],[2,4],[6]]
=> 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,2,4],[3,5],[6]]
=> 01011 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,3,5],[2],[4],[6]]
=> 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,2,4],[3],[5],[6]]
=> 01011 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,3],[2,5],[4,6]]
=> 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
Description
The largest eigenvalue of a graph if it is integral.
If a graph is d-regular, then its largest eigenvalue equals d. One can show that the largest eigenvalue always lies between the average degree and the maximal degree.
This statistic is undefined if the largest eigenvalue of the graph is not integral.
Matching statistic: St001644
Mp00134: Standard tableaux —descent word⟶ Binary words
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001644: Graphs ⟶ ℤResult quality: 92% ●values known / values provided: 92%●distinct values known / distinct values provided: 100%
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001644: Graphs ⟶ ℤResult quality: 92% ●values known / values provided: 92%●distinct values known / distinct values provided: 100%
Values
[[1,2]]
=> 0 => [1] => ([],1)
=> 0
[[1],[2]]
=> 1 => [1] => ([],1)
=> 0
[[1,2,3]]
=> 00 => [2] => ([],2)
=> 0
[[1,3],[2]]
=> 10 => [1,1] => ([(0,1)],2)
=> 1
[[1,2],[3]]
=> 01 => [1,1] => ([(0,1)],2)
=> 1
[[1],[2],[3]]
=> 11 => [2] => ([],2)
=> 0
[[1,2,3,4]]
=> 000 => [3] => ([],3)
=> 0
[[1,3,4],[2]]
=> 100 => [1,2] => ([(1,2)],3)
=> 1
[[1,2,4],[3]]
=> 010 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[[1,3],[2,4]]
=> 101 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[[1,2],[3,4]]
=> 010 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[[1,3],[2],[4]]
=> 101 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[[1,2],[3],[4]]
=> 011 => [1,2] => ([(1,2)],3)
=> 1
[[1],[2],[3],[4]]
=> 111 => [3] => ([],3)
=> 0
[[1,2,3,4,5]]
=> 0000 => [4] => ([],4)
=> 0
[[1,3,4,5],[2]]
=> 1000 => [1,3] => ([(2,3)],4)
=> 1
[[1,2,4,5],[3]]
=> 0100 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
[[1,3,5],[2,4]]
=> 1010 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[1,2,5],[3,4]]
=> 0100 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
[[1,2,4],[3,5]]
=> 0101 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[1,3,5],[2],[4]]
=> 1010 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[1,2,4],[3],[5]]
=> 0101 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[1,3],[2,5],[4]]
=> 1010 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[1,3],[2,4],[5]]
=> 1011 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
[[1,2],[3,4],[5]]
=> 0101 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[1,3],[2],[4],[5]]
=> 1011 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
[[1,2],[3],[4],[5]]
=> 0111 => [1,3] => ([(2,3)],4)
=> 1
[[1],[2],[3],[4],[5]]
=> 1111 => [4] => ([],4)
=> 0
[[1,2,3,4,5,6]]
=> 00000 => [5] => ([],5)
=> 0
[[1,3,4,5,6],[2]]
=> 10000 => [1,4] => ([(3,4)],5)
=> 1
[[1,2,4,5,6],[3]]
=> 01000 => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
[[1,2,3,4,6],[5]]
=> 00010 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3
[[1,2,3,4,5],[6]]
=> 00001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[[1,3,5,6],[2,4]]
=> 10100 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,2,5,6],[3,4]]
=> 01000 => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
[[1,2,4,6],[3,5]]
=> 01010 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,2,3,4],[5,6]]
=> 00010 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3
[[1,3,5,6],[2],[4]]
=> 10100 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,2,4,6],[3],[5]]
=> 01010 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,3,5],[2,4,6]]
=> 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,2,4],[3,5,6]]
=> 01010 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,3,6],[2,5],[4]]
=> 10100 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,2,6],[3,4],[5]]
=> 01010 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,3,5],[2,6],[4]]
=> 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,2,4],[3,6],[5]]
=> 01010 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,3,5],[2,4],[6]]
=> 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,2,4],[3,5],[6]]
=> 01011 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,3,5],[2],[4],[6]]
=> 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,2,4],[3],[5],[6]]
=> 01011 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,3],[2,5],[4,6]]
=> 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,2],[3,4],[5,6]]
=> 01010 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,5],[2,6],[3],[4]]
=> 11101 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3
[[1,3],[2,5],[4],[6]]
=> 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,5],[2],[3],[4],[6]]
=> 11101 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3
[[1,2,3,4,6,7],[5]]
=> 000100 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
[[1,2,3,4,7],[5,6]]
=> 000100 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
[[1,2,3,4],[5,6,7]]
=> 000100 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
[[1,5],[2,6],[3,7],[4]]
=> 111011 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
[[1,5],[2,6],[3],[4],[7]]
=> 111011 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
[[1,5],[2],[3],[4],[6],[7]]
=> 111011 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
[[1,2,3,4,6,7,8],[5]]
=> 0001000 => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[[1,2,3,4,7,8],[5,6]]
=> 0001000 => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[[1,2,3,4,8],[5,6,7]]
=> 0001000 => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[[1,2,3,4],[5,6,7,8]]
=> 0001000 => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[[1,5],[2,6],[3,7],[4,8]]
=> 1110111 => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[[1,5],[2,6],[3,7],[4],[8]]
=> 1110111 => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[[1,5],[2,6],[3],[4],[7],[8]]
=> 1110111 => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[[1,5],[2],[3],[4],[6],[7],[8]]
=> 1110111 => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
Description
The dimension of a graph.
The dimension of a graph is the least integer n such that there exists a representation of the graph in the Euclidean space of dimension n with all vertices distinct and all edges having unit length. Edges are allowed to intersect, however.
Matching statistic: St001270
Mp00134: Standard tableaux —descent word⟶ Binary words
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001270: Graphs ⟶ ℤResult quality: 68% ●values known / values provided: 68%●distinct values known / distinct values provided: 86%
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001270: Graphs ⟶ ℤResult quality: 68% ●values known / values provided: 68%●distinct values known / distinct values provided: 86%
Values
[[1,2]]
=> 0 => [1] => ([],1)
=> 0
[[1],[2]]
=> 1 => [1] => ([],1)
=> 0
[[1,2,3]]
=> 00 => [2] => ([],2)
=> 0
[[1,3],[2]]
=> 10 => [1,1] => ([(0,1)],2)
=> 1
[[1,2],[3]]
=> 01 => [1,1] => ([(0,1)],2)
=> 1
[[1],[2],[3]]
=> 11 => [2] => ([],2)
=> 0
[[1,2,3,4]]
=> 000 => [3] => ([],3)
=> 0
[[1,3,4],[2]]
=> 100 => [1,2] => ([(1,2)],3)
=> 1
[[1,2,4],[3]]
=> 010 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[[1,3],[2,4]]
=> 101 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[[1,2],[3,4]]
=> 010 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[[1,3],[2],[4]]
=> 101 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[[1,2],[3],[4]]
=> 011 => [1,2] => ([(1,2)],3)
=> 1
[[1],[2],[3],[4]]
=> 111 => [3] => ([],3)
=> 0
[[1,2,3,4,5]]
=> 0000 => [4] => ([],4)
=> 0
[[1,3,4,5],[2]]
=> 1000 => [1,3] => ([(2,3)],4)
=> 1
[[1,2,4,5],[3]]
=> 0100 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
[[1,3,5],[2,4]]
=> 1010 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[1,2,5],[3,4]]
=> 0100 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
[[1,2,4],[3,5]]
=> 0101 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[1,3,5],[2],[4]]
=> 1010 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[1,2,4],[3],[5]]
=> 0101 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[1,3],[2,5],[4]]
=> 1010 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[1,3],[2,4],[5]]
=> 1011 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
[[1,2],[3,4],[5]]
=> 0101 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[1,3],[2],[4],[5]]
=> 1011 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
[[1,2],[3],[4],[5]]
=> 0111 => [1,3] => ([(2,3)],4)
=> 1
[[1],[2],[3],[4],[5]]
=> 1111 => [4] => ([],4)
=> 0
[[1,2,3,4,5,6]]
=> 00000 => [5] => ([],5)
=> 0
[[1,3,4,5,6],[2]]
=> 10000 => [1,4] => ([(3,4)],5)
=> 1
[[1,2,4,5,6],[3]]
=> 01000 => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
[[1,2,3,4,6],[5]]
=> 00010 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,2,3,4,5],[6]]
=> 00001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[[1,3,5,6],[2,4]]
=> 10100 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,2,5,6],[3,4]]
=> 01000 => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
[[1,2,4,6],[3,5]]
=> 01010 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,2,3,4],[5,6]]
=> 00010 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,3,5,6],[2],[4]]
=> 10100 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,2,4,6],[3],[5]]
=> 01010 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,3,5],[2,4,6]]
=> 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,2,4],[3,5,6]]
=> 01010 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,3,6],[2,5],[4]]
=> 10100 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,2,6],[3,4],[5]]
=> 01010 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,3,5],[2,6],[4]]
=> 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,2,4],[3,6],[5]]
=> 01010 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,3,5],[2,4],[6]]
=> 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,2,4],[3,5],[6]]
=> 01011 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,3,5],[2],[4],[6]]
=> 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,2,4],[3],[5],[6]]
=> 01011 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,3],[2,5],[4,6]]
=> 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,3,5,7,8],[2,4,6]]
=> 1010100 => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,2,4,6,8],[3,5,7]]
=> 0101010 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,3,5,7,8],[2,6],[4]]
=> 1010100 => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,3,5,7,8],[2,4],[6]]
=> 1010100 => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,2,4,6,8],[3,7],[5]]
=> 0101010 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2,4,6,8],[3,5],[7]]
=> 0101010 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,3,5,7,8],[2],[4],[6]]
=> 1010100 => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,2,4,6,8],[3],[5],[7]]
=> 0101010 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,3,5,7],[2,4,6,8]]
=> 1010101 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2,4,6],[3,5,7,8]]
=> 0101010 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2,6,8],[3,4,7],[5]]
=> 0101010 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,3,5,8],[2,6,7],[4]]
=> 1010100 => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,3,5,8],[2,4,7],[6]]
=> 1010100 => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,2,4,8],[3,5,6],[7]]
=> 0101010 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,3,5,7],[2,6,8],[4]]
=> 1010101 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,3,5,7],[2,4,8],[6]]
=> 1010101 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2,4,6],[3,7,8],[5]]
=> 0101010 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2,4,6],[3,5,8],[7]]
=> 0101010 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,3,5,7],[2,4,6],[8]]
=> 1010101 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2,4,6],[3,5,7],[8]]
=> 0101011 => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,3,7,8],[2,5],[4,6]]
=> 1010100 => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,2,6,8],[3,4],[5,7]]
=> 0101010 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2,4,8],[3,6],[5,7]]
=> 0101010 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,3,5,8],[2,4],[6,7]]
=> 1010100 => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,3,5,7],[2,6],[4,8]]
=> 1010101 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,3,5,7],[2,4],[6,8]]
=> 1010101 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2,4,6],[3,7],[5,8]]
=> 0101011 => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,2,4,6],[3,5],[7,8]]
=> 0101010 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,3,7,8],[2,5],[4],[6]]
=> 1010100 => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,3,5,8],[2,7],[4],[6]]
=> 1010100 => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,2,6,8],[3,4],[5],[7]]
=> 0101010 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2,4,8],[3,6],[5],[7]]
=> 0101010 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,3,5,7],[2,8],[4],[6]]
=> 1010101 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2,4,6],[3,8],[5],[7]]
=> 0101010 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,3,5,7],[2,6],[4],[8]]
=> 1010101 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,3,5,7],[2,4],[6],[8]]
=> 1010101 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2,4,6],[3,7],[5],[8]]
=> 0101011 => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,2,4,6],[3,5],[7],[8]]
=> 0101011 => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,3,5,7],[2],[4],[6],[8]]
=> 1010101 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2,4,6],[3],[5],[7],[8]]
=> 0101011 => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,3,7],[2,5,8],[4,6]]
=> 1010101 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2,6],[3,4,8],[5,7]]
=> 0101010 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2,4],[3,6,8],[5,7]]
=> 0101010 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,3,5],[2,4,8],[6,7]]
=> 1010100 => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,2,6],[3,4,7],[5,8]]
=> 0101011 => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,3,5],[2,6,7],[4,8]]
=> 1010101 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,3,5],[2,4,7],[6,8]]
=> 1010101 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2,4],[3,5,6],[7,8]]
=> 0101010 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,3,7],[2,5,8],[4],[6]]
=> 1010101 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,3,5],[2,7,8],[4],[6]]
=> 1010100 => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
Description
The bandwidth of a graph.
The bandwidth of a graph is the smallest number k such that the vertices of the graph can be
ordered as v1,…,vn with k⋅d(vi,vj)≥|i−j|.
We adopt the convention that the singleton graph has bandwidth 0, consistent with the bandwith of the complete graph on n vertices having bandwidth n−1, but in contrast to any path graph on more than one vertex having bandwidth 1. The bandwidth of a disconnected graph is the maximum of the bandwidths of the connected components.
Matching statistic: St001962
Mp00134: Standard tableaux —descent word⟶ Binary words
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001962: Graphs ⟶ ℤResult quality: 68% ●values known / values provided: 68%●distinct values known / distinct values provided: 86%
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001962: Graphs ⟶ ℤResult quality: 68% ●values known / values provided: 68%●distinct values known / distinct values provided: 86%
Values
[[1,2]]
=> 0 => [1] => ([],1)
=> 0
[[1],[2]]
=> 1 => [1] => ([],1)
=> 0
[[1,2,3]]
=> 00 => [2] => ([],2)
=> 0
[[1,3],[2]]
=> 10 => [1,1] => ([(0,1)],2)
=> 1
[[1,2],[3]]
=> 01 => [1,1] => ([(0,1)],2)
=> 1
[[1],[2],[3]]
=> 11 => [2] => ([],2)
=> 0
[[1,2,3,4]]
=> 000 => [3] => ([],3)
=> 0
[[1,3,4],[2]]
=> 100 => [1,2] => ([(1,2)],3)
=> 1
[[1,2,4],[3]]
=> 010 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[[1,3],[2,4]]
=> 101 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[[1,2],[3,4]]
=> 010 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[[1,3],[2],[4]]
=> 101 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[[1,2],[3],[4]]
=> 011 => [1,2] => ([(1,2)],3)
=> 1
[[1],[2],[3],[4]]
=> 111 => [3] => ([],3)
=> 0
[[1,2,3,4,5]]
=> 0000 => [4] => ([],4)
=> 0
[[1,3,4,5],[2]]
=> 1000 => [1,3] => ([(2,3)],4)
=> 1
[[1,2,4,5],[3]]
=> 0100 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
[[1,3,5],[2,4]]
=> 1010 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[1,2,5],[3,4]]
=> 0100 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
[[1,2,4],[3,5]]
=> 0101 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[1,3,5],[2],[4]]
=> 1010 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[1,2,4],[3],[5]]
=> 0101 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[1,3],[2,5],[4]]
=> 1010 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[1,3],[2,4],[5]]
=> 1011 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
[[1,2],[3,4],[5]]
=> 0101 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[1,3],[2],[4],[5]]
=> 1011 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
[[1,2],[3],[4],[5]]
=> 0111 => [1,3] => ([(2,3)],4)
=> 1
[[1],[2],[3],[4],[5]]
=> 1111 => [4] => ([],4)
=> 0
[[1,2,3,4,5,6]]
=> 00000 => [5] => ([],5)
=> 0
[[1,3,4,5,6],[2]]
=> 10000 => [1,4] => ([(3,4)],5)
=> 1
[[1,2,4,5,6],[3]]
=> 01000 => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
[[1,2,3,4,6],[5]]
=> 00010 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,2,3,4,5],[6]]
=> 00001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[[1,3,5,6],[2,4]]
=> 10100 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,2,5,6],[3,4]]
=> 01000 => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
[[1,2,4,6],[3,5]]
=> 01010 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,2,3,4],[5,6]]
=> 00010 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,3,5,6],[2],[4]]
=> 10100 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,2,4,6],[3],[5]]
=> 01010 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,3,5],[2,4,6]]
=> 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,2,4],[3,5,6]]
=> 01010 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,3,6],[2,5],[4]]
=> 10100 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,2,6],[3,4],[5]]
=> 01010 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,3,5],[2,6],[4]]
=> 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,2,4],[3,6],[5]]
=> 01010 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,3,5],[2,4],[6]]
=> 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,2,4],[3,5],[6]]
=> 01011 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,3,5],[2],[4],[6]]
=> 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,2,4],[3],[5],[6]]
=> 01011 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,3],[2,5],[4,6]]
=> 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,3,5,7,8],[2,4,6]]
=> 1010100 => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,2,4,6,8],[3,5,7]]
=> 0101010 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,3,5,7,8],[2,6],[4]]
=> 1010100 => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,3,5,7,8],[2,4],[6]]
=> 1010100 => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,2,4,6,8],[3,7],[5]]
=> 0101010 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2,4,6,8],[3,5],[7]]
=> 0101010 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,3,5,7,8],[2],[4],[6]]
=> 1010100 => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,2,4,6,8],[3],[5],[7]]
=> 0101010 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,3,5,7],[2,4,6,8]]
=> 1010101 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2,4,6],[3,5,7,8]]
=> 0101010 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2,6,8],[3,4,7],[5]]
=> 0101010 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,3,5,8],[2,6,7],[4]]
=> 1010100 => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,3,5,8],[2,4,7],[6]]
=> 1010100 => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,2,4,8],[3,5,6],[7]]
=> 0101010 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,3,5,7],[2,6,8],[4]]
=> 1010101 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,3,5,7],[2,4,8],[6]]
=> 1010101 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2,4,6],[3,7,8],[5]]
=> 0101010 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2,4,6],[3,5,8],[7]]
=> 0101010 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,3,5,7],[2,4,6],[8]]
=> 1010101 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2,4,6],[3,5,7],[8]]
=> 0101011 => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,3,7,8],[2,5],[4,6]]
=> 1010100 => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,2,6,8],[3,4],[5,7]]
=> 0101010 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2,4,8],[3,6],[5,7]]
=> 0101010 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,3,5,8],[2,4],[6,7]]
=> 1010100 => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,3,5,7],[2,6],[4,8]]
=> 1010101 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,3,5,7],[2,4],[6,8]]
=> 1010101 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2,4,6],[3,7],[5,8]]
=> 0101011 => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,2,4,6],[3,5],[7,8]]
=> 0101010 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,3,7,8],[2,5],[4],[6]]
=> 1010100 => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,3,5,8],[2,7],[4],[6]]
=> 1010100 => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,2,6,8],[3,4],[5],[7]]
=> 0101010 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2,4,8],[3,6],[5],[7]]
=> 0101010 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,3,5,7],[2,8],[4],[6]]
=> 1010101 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2,4,6],[3,8],[5],[7]]
=> 0101010 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,3,5,7],[2,6],[4],[8]]
=> 1010101 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,3,5,7],[2,4],[6],[8]]
=> 1010101 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2,4,6],[3,7],[5],[8]]
=> 0101011 => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,2,4,6],[3,5],[7],[8]]
=> 0101011 => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,3,5,7],[2],[4],[6],[8]]
=> 1010101 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2,4,6],[3],[5],[7],[8]]
=> 0101011 => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,3,7],[2,5,8],[4,6]]
=> 1010101 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2,6],[3,4,8],[5,7]]
=> 0101010 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2,4],[3,6,8],[5,7]]
=> 0101010 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,3,5],[2,4,8],[6,7]]
=> 1010100 => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,2,6],[3,4,7],[5,8]]
=> 0101011 => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[[1,3,5],[2,6,7],[4,8]]
=> 1010101 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,3,5],[2,4,7],[6,8]]
=> 1010101 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,2,4],[3,5,6],[7,8]]
=> 0101010 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,3,7],[2,5,8],[4],[6]]
=> 1010101 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6
[[1,3,5],[2,7,8],[4],[6]]
=> 1010100 => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
Description
The proper pathwidth of a graph.
The proper pathwidth ppw(G) was introduced in [1] as the minimum width of a proper-path-decomposition. Barioli et al. [2] showed that if G has at least one edge, then ppw(G) is the minimum k for which G is a minor of the Cartesian product Kk◻P of a complete graph on k vertices with a path; and further that ppw(G) is the minor monotone floor ⌊Z⌋(G):=min of the [[St000482|zero forcing number]] \operatorname{Z}(G). It can be shown [3, Corollary 9.130] that only the spanning supergraphs need to be considered for H in this definition, i.e. \lfloor \operatorname{Z} \rfloor(G) = \min\{\operatorname{Z}(H) \mid G \le H,\; V(H) = V(G)\}.
The minimum degree \delta, treewidth \operatorname{tw}, and pathwidth \operatorname{pw} satisfy
\delta \le \operatorname{tw} \le \operatorname{pw} \le \operatorname{ppw} = \lfloor \operatorname{Z} \rfloor \le \operatorname{pw} + 1.
Note that [4] uses a different notion of proper pathwidth, which is equal to bandwidth.
Matching statistic: St001645
Mp00134: Standard tableaux —descent word⟶ Binary words
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001645: Graphs ⟶ ℤResult quality: 42% ●values known / values provided: 42%●distinct values known / distinct values provided: 100%
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001645: Graphs ⟶ ℤResult quality: 42% ●values known / values provided: 42%●distinct values known / distinct values provided: 100%
Values
[[1,2]]
=> 0 => [1] => ([],1)
=> 1 = 0 + 1
[[1],[2]]
=> 1 => [1] => ([],1)
=> 1 = 0 + 1
[[1,2,3]]
=> 00 => [2] => ([],2)
=> ? = 0 + 1
[[1,3],[2]]
=> 10 => [1,1] => ([(0,1)],2)
=> 2 = 1 + 1
[[1,2],[3]]
=> 01 => [1,1] => ([(0,1)],2)
=> 2 = 1 + 1
[[1],[2],[3]]
=> 11 => [2] => ([],2)
=> ? = 0 + 1
[[1,2,3,4]]
=> 000 => [3] => ([],3)
=> ? = 0 + 1
[[1,3,4],[2]]
=> 100 => [1,2] => ([(1,2)],3)
=> ? = 1 + 1
[[1,2,4],[3]]
=> 010 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[[1,3],[2,4]]
=> 101 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[[1,2],[3,4]]
=> 010 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[[1,3],[2],[4]]
=> 101 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[[1,2],[3],[4]]
=> 011 => [1,2] => ([(1,2)],3)
=> ? = 1 + 1
[[1],[2],[3],[4]]
=> 111 => [3] => ([],3)
=> ? = 0 + 1
[[1,2,3,4,5]]
=> 0000 => [4] => ([],4)
=> ? = 0 + 1
[[1,3,4,5],[2]]
=> 1000 => [1,3] => ([(2,3)],4)
=> ? = 1 + 1
[[1,2,4,5],[3]]
=> 0100 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 2 + 1
[[1,3,5],[2,4]]
=> 1010 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[[1,2,5],[3,4]]
=> 0100 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 2 + 1
[[1,2,4],[3,5]]
=> 0101 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[[1,3,5],[2],[4]]
=> 1010 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[[1,2,4],[3],[5]]
=> 0101 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[[1,3],[2,5],[4]]
=> 1010 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[[1,3],[2,4],[5]]
=> 1011 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 2 + 1
[[1,2],[3,4],[5]]
=> 0101 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[[1,3],[2],[4],[5]]
=> 1011 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 2 + 1
[[1,2],[3],[4],[5]]
=> 0111 => [1,3] => ([(2,3)],4)
=> ? = 1 + 1
[[1],[2],[3],[4],[5]]
=> 1111 => [4] => ([],4)
=> ? = 0 + 1
[[1,2,3,4,5,6]]
=> 00000 => [5] => ([],5)
=> ? = 0 + 1
[[1,3,4,5,6],[2]]
=> 10000 => [1,4] => ([(3,4)],5)
=> ? = 1 + 1
[[1,2,4,5,6],[3]]
=> 01000 => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
[[1,2,3,4,6],[5]]
=> 00010 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[[1,2,3,4,5],[6]]
=> 00001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 2 + 1
[[1,3,5,6],[2,4]]
=> 10100 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[[1,2,5,6],[3,4]]
=> 01000 => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
[[1,2,4,6],[3,5]]
=> 01010 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[[1,2,3,4],[5,6]]
=> 00010 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[[1,3,5,6],[2],[4]]
=> 10100 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[[1,2,4,6],[3],[5]]
=> 01010 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[[1,3,5],[2,4,6]]
=> 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[[1,2,4],[3,5,6]]
=> 01010 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[[1,3,6],[2,5],[4]]
=> 10100 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[[1,2,6],[3,4],[5]]
=> 01010 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[[1,3,5],[2,6],[4]]
=> 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[[1,2,4],[3,6],[5]]
=> 01010 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[[1,3,5],[2,4],[6]]
=> 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[[1,2,4],[3,5],[6]]
=> 01011 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[[1,3,5],[2],[4],[6]]
=> 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[[1,2,4],[3],[5],[6]]
=> 01011 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[[1,3],[2,5],[4,6]]
=> 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[[1,2],[3,4],[5,6]]
=> 01010 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[[1,5],[2,6],[3],[4]]
=> 11101 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[[1,3],[2,5],[4],[6]]
=> 10101 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
[[1,3],[2,4],[5],[6]]
=> 10111 => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
[[1,2],[3,4],[5],[6]]
=> 01011 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[[1,6],[2],[3],[4],[5]]
=> 11110 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 2 + 1
[[1,5],[2],[3],[4],[6]]
=> 11101 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[[1,3],[2],[4],[5],[6]]
=> 10111 => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
[[1,2],[3],[4],[5],[6]]
=> 01111 => [1,4] => ([(3,4)],5)
=> ? = 1 + 1
[[1],[2],[3],[4],[5],[6]]
=> 11111 => [5] => ([],5)
=> ? = 0 + 1
[[1,2,3,4,5,6,7]]
=> 000000 => [6] => ([],6)
=> ? = 0 + 1
[[1,3,4,5,6,7],[2]]
=> 100000 => [1,5] => ([(4,5)],6)
=> ? = 1 + 1
[[1,2,4,5,6,7],[3]]
=> 010000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
[[1,2,3,4,6,7],[5]]
=> 000100 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
[[1,3,5,6,7],[2,4]]
=> 101000 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
[[1,2,5,6,7],[3,4]]
=> 010000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
[[1,2,4,6,7],[3,5]]
=> 010100 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[[1,2,3,4,7],[5,6]]
=> 000100 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
[[1,3,5,6,7],[2],[4]]
=> 101000 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
[[1,2,4,6,7],[3],[5]]
=> 010100 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[[1,2,3,4,5],[6],[7]]
=> 000011 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2 + 1
[[1,3,5,7],[2,4,6]]
=> 101010 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[1,2,4,7],[3,5,6]]
=> 010100 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[[1,2,4,6],[3,5,7]]
=> 010101 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[1,2,3,4],[5,6,7]]
=> 000100 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
[[1,3,6,7],[2,5],[4]]
=> 101000 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
[[1,2,6,7],[3,4],[5]]
=> 010100 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[[1,3,5,7],[2,6],[4]]
=> 101010 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[1,2,4,7],[3,6],[5]]
=> 010100 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[[1,3,5,7],[2,4],[6]]
=> 101010 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[1,2,4,6],[3,7],[5]]
=> 010101 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[1,2,4,6],[3,5],[7]]
=> 010101 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[1,3,5,7],[2],[4],[6]]
=> 101010 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[1,2,4,6],[3],[5],[7]]
=> 010101 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[1,2,6],[3,4,7],[5]]
=> 010101 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[1,3,5],[2,6,7],[4]]
=> 101010 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[1,3,5],[2,4,7],[6]]
=> 101010 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[1,2,4],[3,5,6],[7]]
=> 010101 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[1,3,7],[2,5],[4,6]]
=> 101010 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[1,2,6],[3,4],[5,7]]
=> 010101 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[1,2,4],[3,6],[5,7]]
=> 010101 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[1,3,5],[2,4],[6,7]]
=> 101010 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[1,3,7],[2,5],[4],[6]]
=> 101010 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[1,3,5],[2,7],[4],[6]]
=> 101010 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[1,2,6],[3,4],[5],[7]]
=> 010101 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[1,2,4],[3,6],[5],[7]]
=> 010101 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[1,3],[2,5],[4,7],[6]]
=> 101010 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[1,2],[3,4],[5,6],[7]]
=> 010101 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[1,2,4,6,8],[3,5,7]]
=> 0101010 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 6 + 1
[[1,2,4,6,8],[3,7],[5]]
=> 0101010 => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 6 + 1
Description
The pebbling number of a connected graph.
Matching statistic: St001488
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
Mp00207: Standard tableaux —horizontal strip sizes⟶ Integer compositions
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
St001488: Skew partitions ⟶ ℤResult quality: 12% ●values known / values provided: 12%●distinct values known / distinct values provided: 57%
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
St001488: Skew partitions ⟶ ℤResult quality: 12% ●values known / values provided: 12%●distinct values known / distinct values provided: 57%
Values
[[1,2]]
=> [2] => [[2],[]]
=> 2 = 0 + 2
[[1],[2]]
=> [1,1] => [[1,1],[]]
=> 2 = 0 + 2
[[1,2,3]]
=> [3] => [[3],[]]
=> 2 = 0 + 2
[[1,3],[2]]
=> [1,2] => [[2,1],[]]
=> 3 = 1 + 2
[[1,2],[3]]
=> [2,1] => [[2,2],[1]]
=> 3 = 1 + 2
[[1],[2],[3]]
=> [1,1,1] => [[1,1,1],[]]
=> 2 = 0 + 2
[[1,2,3,4]]
=> [4] => [[4],[]]
=> 2 = 0 + 2
[[1,3,4],[2]]
=> [1,3] => [[3,1],[]]
=> 3 = 1 + 2
[[1,2,4],[3]]
=> [2,2] => [[3,2],[1]]
=> 4 = 2 + 2
[[1,3],[2,4]]
=> [1,2,1] => [[2,2,1],[1]]
=> 4 = 2 + 2
[[1,2],[3,4]]
=> [2,2] => [[3,2],[1]]
=> 4 = 2 + 2
[[1,3],[2],[4]]
=> [1,2,1] => [[2,2,1],[1]]
=> 4 = 2 + 2
[[1,2],[3],[4]]
=> [2,1,1] => [[2,2,2],[1,1]]
=> 3 = 1 + 2
[[1],[2],[3],[4]]
=> [1,1,1,1] => [[1,1,1,1],[]]
=> 2 = 0 + 2
[[1,2,3,4,5]]
=> [5] => [[5],[]]
=> 2 = 0 + 2
[[1,3,4,5],[2]]
=> [1,4] => [[4,1],[]]
=> 3 = 1 + 2
[[1,2,4,5],[3]]
=> [2,3] => [[4,2],[1]]
=> 4 = 2 + 2
[[1,3,5],[2,4]]
=> [1,2,2] => [[3,2,1],[1]]
=> 5 = 3 + 2
[[1,2,5],[3,4]]
=> [2,3] => [[4,2],[1]]
=> 4 = 2 + 2
[[1,2,4],[3,5]]
=> [2,2,1] => [[3,3,2],[2,1]]
=> 5 = 3 + 2
[[1,3,5],[2],[4]]
=> [1,2,2] => [[3,2,1],[1]]
=> 5 = 3 + 2
[[1,2,4],[3],[5]]
=> [2,2,1] => [[3,3,2],[2,1]]
=> 5 = 3 + 2
[[1,3],[2,5],[4]]
=> [1,2,2] => [[3,2,1],[1]]
=> 5 = 3 + 2
[[1,3],[2,4],[5]]
=> [1,2,1,1] => [[2,2,2,1],[1,1]]
=> 4 = 2 + 2
[[1,2],[3,4],[5]]
=> [2,2,1] => [[3,3,2],[2,1]]
=> 5 = 3 + 2
[[1,3],[2],[4],[5]]
=> [1,2,1,1] => [[2,2,2,1],[1,1]]
=> 4 = 2 + 2
[[1,2],[3],[4],[5]]
=> [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> 3 = 1 + 2
[[1],[2],[3],[4],[5]]
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> 2 = 0 + 2
[[1,2,3,4,5,6]]
=> [6] => [[6],[]]
=> ? = 0 + 2
[[1,3,4,5,6],[2]]
=> [1,5] => [[5,1],[]]
=> ? = 1 + 2
[[1,2,4,5,6],[3]]
=> [2,4] => [[5,2],[1]]
=> ? = 2 + 2
[[1,2,3,4,6],[5]]
=> [4,2] => [[5,4],[3]]
=> ? = 3 + 2
[[1,2,3,4,5],[6]]
=> [5,1] => [[5,5],[4]]
=> ? = 2 + 2
[[1,3,5,6],[2,4]]
=> [1,2,3] => [[4,2,1],[1]]
=> ? = 3 + 2
[[1,2,5,6],[3,4]]
=> [2,4] => [[5,2],[1]]
=> ? = 2 + 2
[[1,2,4,6],[3,5]]
=> [2,2,2] => [[4,3,2],[2,1]]
=> ? = 4 + 2
[[1,2,3,4],[5,6]]
=> [4,2] => [[5,4],[3]]
=> ? = 3 + 2
[[1,3,5,6],[2],[4]]
=> [1,2,3] => [[4,2,1],[1]]
=> ? = 3 + 2
[[1,2,4,6],[3],[5]]
=> [2,2,2] => [[4,3,2],[2,1]]
=> ? = 4 + 2
[[1,3,5],[2,4,6]]
=> [1,2,2,1] => [[3,3,2,1],[2,1]]
=> ? = 4 + 2
[[1,2,4],[3,5,6]]
=> [2,2,2] => [[4,3,2],[2,1]]
=> ? = 4 + 2
[[1,3,6],[2,5],[4]]
=> [1,2,3] => [[4,2,1],[1]]
=> ? = 3 + 2
[[1,2,6],[3,4],[5]]
=> [2,2,2] => [[4,3,2],[2,1]]
=> ? = 4 + 2
[[1,3,5],[2,6],[4]]
=> [1,2,2,1] => [[3,3,2,1],[2,1]]
=> ? = 4 + 2
[[1,2,4],[3,6],[5]]
=> [2,2,2] => [[4,3,2],[2,1]]
=> ? = 4 + 2
[[1,3,5],[2,4],[6]]
=> [1,2,2,1] => [[3,3,2,1],[2,1]]
=> ? = 4 + 2
[[1,2,4],[3,5],[6]]
=> [2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> ? = 3 + 2
[[1,3,5],[2],[4],[6]]
=> [1,2,2,1] => [[3,3,2,1],[2,1]]
=> ? = 4 + 2
[[1,2,4],[3],[5],[6]]
=> [2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> ? = 3 + 2
[[1,3],[2,5],[4,6]]
=> [1,2,2,1] => [[3,3,2,1],[2,1]]
=> ? = 4 + 2
[[1,2],[3,4],[5,6]]
=> [2,2,2] => [[4,3,2],[2,1]]
=> ? = 4 + 2
[[1,5],[2,6],[3],[4]]
=> [1,1,1,2,1] => [[2,2,1,1,1],[1]]
=> ? = 3 + 2
[[1,3],[2,5],[4],[6]]
=> [1,2,2,1] => [[3,3,2,1],[2,1]]
=> ? = 4 + 2
[[1,3],[2,4],[5],[6]]
=> [1,2,1,1,1] => [[2,2,2,2,1],[1,1,1]]
=> ? = 2 + 2
[[1,2],[3,4],[5],[6]]
=> [2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> ? = 3 + 2
[[1,6],[2],[3],[4],[5]]
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> ? = 2 + 2
[[1,5],[2],[3],[4],[6]]
=> [1,1,1,2,1] => [[2,2,1,1,1],[1]]
=> ? = 3 + 2
[[1,3],[2],[4],[5],[6]]
=> [1,2,1,1,1] => [[2,2,2,2,1],[1,1,1]]
=> ? = 2 + 2
[[1,2],[3],[4],[5],[6]]
=> [2,1,1,1,1] => [[2,2,2,2,2],[1,1,1,1]]
=> ? = 1 + 2
[[1],[2],[3],[4],[5],[6]]
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> ? = 0 + 2
[[1,2,3,4,5,6,7]]
=> [7] => [[7],[]]
=> ? = 0 + 2
[[1,3,4,5,6,7],[2]]
=> [1,6] => [[6,1],[]]
=> ? = 1 + 2
[[1,2,4,5,6,7],[3]]
=> [2,5] => [[6,2],[1]]
=> ? = 2 + 2
[[1,2,3,4,6,7],[5]]
=> [4,3] => [[6,4],[3]]
=> ? = 3 + 2
[[1,3,5,6,7],[2,4]]
=> [1,2,4] => [[5,2,1],[1]]
=> ? = 3 + 2
[[1,2,5,6,7],[3,4]]
=> [2,5] => [[6,2],[1]]
=> ? = 2 + 2
[[1,2,4,6,7],[3,5]]
=> [2,2,3] => [[5,3,2],[2,1]]
=> ? = 4 + 2
[[1,2,3,4,7],[5,6]]
=> [4,3] => [[6,4],[3]]
=> ? = 3 + 2
[[1,3,5,6,7],[2],[4]]
=> [1,2,4] => [[5,2,1],[1]]
=> ? = 3 + 2
[[1,2,4,6,7],[3],[5]]
=> [2,2,3] => [[5,3,2],[2,1]]
=> ? = 4 + 2
[[1,2,3,4,5],[6],[7]]
=> [5,1,1] => [[5,5,5],[4,4]]
=> ? = 2 + 2
[[1,3,5,7],[2,4,6]]
=> [1,2,2,2] => [[4,3,2,1],[2,1]]
=> ? = 5 + 2
[[1,2,4,7],[3,5,6]]
=> [2,2,3] => [[5,3,2],[2,1]]
=> ? = 4 + 2
[[1,2,4,6],[3,5,7]]
=> [2,2,2,1] => [[4,4,3,2],[3,2,1]]
=> ? = 5 + 2
[[1,2,3,4],[5,6,7]]
=> [4,3] => [[6,4],[3]]
=> ? = 3 + 2
[[1,3,6,7],[2,5],[4]]
=> [1,2,4] => [[5,2,1],[1]]
=> ? = 3 + 2
[[1,2,6,7],[3,4],[5]]
=> [2,2,3] => [[5,3,2],[2,1]]
=> ? = 4 + 2
[[1,3,5,7],[2,6],[4]]
=> [1,2,2,2] => [[4,3,2,1],[2,1]]
=> ? = 5 + 2
Description
The number of corners of a skew partition.
This is also known as the number of removable cells of the skew partition.
Matching statistic: St001537
Mp00207: Standard tableaux —horizontal strip sizes⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
St001537: Permutations ⟶ ℤResult quality: 12% ●values known / values provided: 12%●distinct values known / distinct values provided: 57%
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
St001537: Permutations ⟶ ℤResult quality: 12% ●values known / values provided: 12%●distinct values known / distinct values provided: 57%
Values
[[1,2]]
=> [2] => [1,1,0,0]
=> [2,3,1] => 0
[[1],[2]]
=> [1,1] => [1,0,1,0]
=> [3,1,2] => 0
[[1,2,3]]
=> [3] => [1,1,1,0,0,0]
=> [2,3,4,1] => 0
[[1,3],[2]]
=> [1,2] => [1,0,1,1,0,0]
=> [3,1,4,2] => 1
[[1,2],[3]]
=> [2,1] => [1,1,0,0,1,0]
=> [2,4,1,3] => 1
[[1],[2],[3]]
=> [1,1,1] => [1,0,1,0,1,0]
=> [4,1,2,3] => 0
[[1,2,3,4]]
=> [4] => [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 0
[[1,3,4],[2]]
=> [1,3] => [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => 1
[[1,2,4],[3]]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => 2
[[1,3],[2,4]]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 2
[[1,2],[3,4]]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => 2
[[1,3],[2],[4]]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 2
[[1,2],[3],[4]]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => 1
[[1],[2],[3],[4]]
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => 0
[[1,2,3,4,5]]
=> [5] => [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => 0
[[1,3,4,5],[2]]
=> [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => 1
[[1,2,4,5],[3]]
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => 2
[[1,3,5],[2,4]]
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => 3
[[1,2,5],[3,4]]
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => 2
[[1,2,4],[3,5]]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => 3
[[1,3,5],[2],[4]]
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => 3
[[1,2,4],[3],[5]]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => 3
[[1,3],[2,5],[4]]
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => 3
[[1,3],[2,4],[5]]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => 2
[[1,2],[3,4],[5]]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => 3
[[1,3],[2],[4],[5]]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => 2
[[1,2],[3],[4],[5]]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => 1
[[1],[2],[3],[4],[5]]
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => 0
[[1,2,3,4,5,6]]
=> [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,4,5,6,7,1] => ? = 0
[[1,3,4,5,6],[2]]
=> [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [3,1,4,5,6,7,2] => ? = 1
[[1,2,4,5,6],[3]]
=> [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,4,1,5,6,7,3] => ? = 2
[[1,2,3,4,6],[5]]
=> [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,3,4,6,1,7,5] => ? = 3
[[1,2,3,4,5],[6]]
=> [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,3,4,5,7,1,6] => ? = 2
[[1,3,5,6],[2,4]]
=> [1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [3,1,5,2,6,7,4] => ? = 3
[[1,2,5,6],[3,4]]
=> [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,4,1,5,6,7,3] => ? = 2
[[1,2,4,6],[3,5]]
=> [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => ? = 4
[[1,2,3,4],[5,6]]
=> [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,3,4,6,1,7,5] => ? = 3
[[1,3,5,6],[2],[4]]
=> [1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [3,1,5,2,6,7,4] => ? = 3
[[1,2,4,6],[3],[5]]
=> [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => ? = 4
[[1,3,5],[2,4,6]]
=> [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,7,4,6] => ? = 4
[[1,2,4],[3,5,6]]
=> [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => ? = 4
[[1,3,6],[2,5],[4]]
=> [1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [3,1,5,2,6,7,4] => ? = 3
[[1,2,6],[3,4],[5]]
=> [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => ? = 4
[[1,3,5],[2,6],[4]]
=> [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,7,4,6] => ? = 4
[[1,2,4],[3,6],[5]]
=> [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => ? = 4
[[1,3,5],[2,4],[6]]
=> [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,7,4,6] => ? = 4
[[1,2,4],[3,5],[6]]
=> [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,4,1,7,3,5,6] => ? = 3
[[1,3,5],[2],[4],[6]]
=> [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,7,4,6] => ? = 4
[[1,2,4],[3],[5],[6]]
=> [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,4,1,7,3,5,6] => ? = 3
[[1,3],[2,5],[4,6]]
=> [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,7,4,6] => ? = 4
[[1,2],[3,4],[5,6]]
=> [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => ? = 4
[[1,5],[2,6],[3],[4]]
=> [1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,1,2,3,7,4,6] => ? = 3
[[1,3],[2,5],[4],[6]]
=> [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,7,4,6] => ? = 4
[[1,3],[2,4],[5],[6]]
=> [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [3,1,7,2,4,5,6] => ? = 2
[[1,2],[3,4],[5],[6]]
=> [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,4,1,7,3,5,6] => ? = 3
[[1,6],[2],[3],[4],[5]]
=> [1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,1,2,3,4,7,5] => ? = 2
[[1,5],[2],[3],[4],[6]]
=> [1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,1,2,3,7,4,6] => ? = 3
[[1,3],[2],[4],[5],[6]]
=> [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [3,1,7,2,4,5,6] => ? = 2
[[1,2],[3],[4],[5],[6]]
=> [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,7,1,3,4,5,6] => ? = 1
[[1],[2],[3],[4],[5],[6]]
=> [1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,1,2,3,4,5,6] => ? = 0
[[1,2,3,4,5,6,7]]
=> [7] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,8,1] => ? = 0
[[1,3,4,5,6,7],[2]]
=> [1,6] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [3,1,4,5,6,7,8,2] => ? = 1
[[1,2,4,5,6,7],[3]]
=> [2,5] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [2,4,1,5,6,7,8,3] => ? = 2
[[1,2,3,4,6,7],[5]]
=> [4,3] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [2,3,4,6,1,7,8,5] => ? = 3
[[1,3,5,6,7],[2,4]]
=> [1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [3,1,5,2,6,7,8,4] => ? = 3
[[1,2,5,6,7],[3,4]]
=> [2,5] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [2,4,1,5,6,7,8,3] => ? = 2
[[1,2,4,6,7],[3,5]]
=> [2,2,3] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,6,3,7,8,5] => ? = 4
[[1,2,3,4,7],[5,6]]
=> [4,3] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [2,3,4,6,1,7,8,5] => ? = 3
[[1,3,5,6,7],[2],[4]]
=> [1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [3,1,5,2,6,7,8,4] => ? = 3
[[1,2,4,6,7],[3],[5]]
=> [2,2,3] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,6,3,7,8,5] => ? = 4
[[1,2,3,4,5],[6],[7]]
=> [5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [2,3,4,5,8,1,6,7] => ? = 2
[[1,3,5,7],[2,4,6]]
=> [1,2,2,2] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,7,4,8,6] => ? = 5
[[1,2,4,7],[3,5,6]]
=> [2,2,3] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,6,3,7,8,5] => ? = 4
[[1,2,4,6],[3,5,7]]
=> [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,8,5,7] => ? = 5
[[1,2,3,4],[5,6,7]]
=> [4,3] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [2,3,4,6,1,7,8,5] => ? = 3
[[1,3,6,7],[2,5],[4]]
=> [1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [3,1,5,2,6,7,8,4] => ? = 3
[[1,2,6,7],[3,4],[5]]
=> [2,2,3] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,6,3,7,8,5] => ? = 4
[[1,3,5,7],[2,6],[4]]
=> [1,2,2,2] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,7,4,8,6] => ? = 5
Description
The number of cyclic crossings of a permutation.
The pair (i,j) is a cyclic crossing of a permutation \pi if i, \pi(j), \pi(i), j are cyclically ordered and all distinct, see Section 5 of [1].
Matching statistic: St001575
Mp00207: Standard tableaux —horizontal strip sizes⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00203: Graphs —cone⟶ Graphs
St001575: Graphs ⟶ ℤResult quality: 12% ●values known / values provided: 12%●distinct values known / distinct values provided: 57%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00203: Graphs —cone⟶ Graphs
St001575: Graphs ⟶ ℤResult quality: 12% ●values known / values provided: 12%●distinct values known / distinct values provided: 57%
Values
[[1,2]]
=> [2] => ([],2)
=> ([(0,2),(1,2)],3)
=> 0
[[1],[2]]
=> [1,1] => ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[[1,2,3]]
=> [3] => ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
[[1,3],[2]]
=> [1,2] => ([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[1,2],[3]]
=> [2,1] => ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[1],[2],[3]]
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[[1,2,3,4]]
=> [4] => ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
[[1,3,4],[2]]
=> [1,3] => ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[1,2,4],[3]]
=> [2,2] => ([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[1,3],[2,4]]
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[1,2],[3,4]]
=> [2,2] => ([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[1,3],[2],[4]]
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[1,2],[3],[4]]
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[1],[2],[3],[4]]
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[[1,2,3,4,5]]
=> [5] => ([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0
[[1,3,4,5],[2]]
=> [1,4] => ([(3,4)],5)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,2,4,5],[3]]
=> [2,3] => ([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,3,5],[2,4]]
=> [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,2,5],[3,4]]
=> [2,3] => ([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,2,4],[3,5]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,3,5],[2],[4]]
=> [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,2,4],[3],[5]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,3],[2,5],[4]]
=> [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,3],[2,4],[5]]
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,2],[3,4],[5]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,3],[2],[4],[5]]
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,2],[3],[4],[5]]
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1],[2],[3],[4],[5]]
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
[[1,2,3,4,5,6]]
=> [6] => ([],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 0
[[1,3,4,5,6],[2]]
=> [1,5] => ([(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[1,2,4,5,6],[3]]
=> [2,4] => ([(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[[1,2,3,4,6],[5]]
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[[1,2,3,4,5],[6]]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[[1,3,5,6],[2,4]]
=> [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[[1,2,5,6],[3,4]]
=> [2,4] => ([(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[[1,2,4,6],[3,5]]
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[[1,2,3,4],[5,6]]
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[[1,3,5,6],[2],[4]]
=> [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[[1,2,4,6],[3],[5]]
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[[1,3,5],[2,4,6]]
=> [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[[1,2,4],[3,5,6]]
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[[1,3,6],[2,5],[4]]
=> [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[[1,2,6],[3,4],[5]]
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[[1,3,5],[2,6],[4]]
=> [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[[1,2,4],[3,6],[5]]
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[[1,3,5],[2,4],[6]]
=> [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[[1,2,4],[3,5],[6]]
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[[1,3,5],[2],[4],[6]]
=> [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[[1,2,4],[3],[5],[6]]
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[[1,3],[2,5],[4,6]]
=> [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[[1,2],[3,4],[5,6]]
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[[1,5],[2,6],[3],[4]]
=> [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[[1,3],[2,5],[4],[6]]
=> [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[[1,3],[2,4],[5],[6]]
=> [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[[1,2],[3,4],[5],[6]]
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[[1,6],[2],[3],[4],[5]]
=> [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[[1,5],[2],[3],[4],[6]]
=> [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[[1,3],[2],[4],[5],[6]]
=> [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[[1,2],[3],[4],[5],[6]]
=> [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[1],[2],[3],[4],[5],[6]]
=> [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[[1,2,3,4,5,6,7]]
=> [7] => ([],7)
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 0
[[1,3,4,5,6,7],[2]]
=> [1,6] => ([(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[[1,2,4,5,6,7],[3]]
=> [2,5] => ([(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[[1,2,3,4,6,7],[5]]
=> [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[[1,3,5,6,7],[2,4]]
=> [1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[[1,2,5,6,7],[3,4]]
=> [2,5] => ([(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[[1,2,4,6,7],[3,5]]
=> [2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[[1,2,3,4,7],[5,6]]
=> [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[[1,3,5,6,7],[2],[4]]
=> [1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[[1,2,4,6,7],[3],[5]]
=> [2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[[1,2,3,4,5],[6],[7]]
=> [5,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[[1,3,5,7],[2,4,6]]
=> [1,2,2,2] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
[[1,2,4,7],[3,5,6]]
=> [2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[[1,2,4,6],[3,5,7]]
=> [2,2,2,1] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(0,7),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
[[1,2,3,4],[5,6,7]]
=> [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[[1,3,6,7],[2,5],[4]]
=> [1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[[1,2,6,7],[3,4],[5]]
=> [2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[[1,3,5,7],[2,6],[4]]
=> [1,2,2,2] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
Description
The minimal number of edges to add or remove to make a graph edge transitive.
A graph is edge transitive, if for any two edges, there is an automorphism that maps one edge to the other.
Matching statistic: St001685
Mp00207: Standard tableaux —horizontal strip sizes⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
St001685: Permutations ⟶ ℤResult quality: 12% ●values known / values provided: 12%●distinct values known / distinct values provided: 57%
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
St001685: Permutations ⟶ ℤResult quality: 12% ●values known / values provided: 12%●distinct values known / distinct values provided: 57%
Values
[[1,2]]
=> [2] => [1,1,0,0]
=> [2,3,1] => 0
[[1],[2]]
=> [1,1] => [1,0,1,0]
=> [3,1,2] => 0
[[1,2,3]]
=> [3] => [1,1,1,0,0,0]
=> [2,3,4,1] => 0
[[1,3],[2]]
=> [1,2] => [1,0,1,1,0,0]
=> [3,1,4,2] => 1
[[1,2],[3]]
=> [2,1] => [1,1,0,0,1,0]
=> [2,4,1,3] => 1
[[1],[2],[3]]
=> [1,1,1] => [1,0,1,0,1,0]
=> [4,1,2,3] => 0
[[1,2,3,4]]
=> [4] => [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 0
[[1,3,4],[2]]
=> [1,3] => [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => 1
[[1,2,4],[3]]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => 2
[[1,3],[2,4]]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 2
[[1,2],[3,4]]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => 2
[[1,3],[2],[4]]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 2
[[1,2],[3],[4]]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => 1
[[1],[2],[3],[4]]
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => 0
[[1,2,3,4,5]]
=> [5] => [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => 0
[[1,3,4,5],[2]]
=> [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => 1
[[1,2,4,5],[3]]
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => 2
[[1,3,5],[2,4]]
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => 3
[[1,2,5],[3,4]]
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => 2
[[1,2,4],[3,5]]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => 3
[[1,3,5],[2],[4]]
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => 3
[[1,2,4],[3],[5]]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => 3
[[1,3],[2,5],[4]]
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => 3
[[1,3],[2,4],[5]]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => 2
[[1,2],[3,4],[5]]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => 3
[[1,3],[2],[4],[5]]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => 2
[[1,2],[3],[4],[5]]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => 1
[[1],[2],[3],[4],[5]]
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => 0
[[1,2,3,4,5,6]]
=> [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,4,5,6,7,1] => ? = 0
[[1,3,4,5,6],[2]]
=> [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [3,1,4,5,6,7,2] => ? = 1
[[1,2,4,5,6],[3]]
=> [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,4,1,5,6,7,3] => ? = 2
[[1,2,3,4,6],[5]]
=> [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,3,4,6,1,7,5] => ? = 3
[[1,2,3,4,5],[6]]
=> [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,3,4,5,7,1,6] => ? = 2
[[1,3,5,6],[2,4]]
=> [1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [3,1,5,2,6,7,4] => ? = 3
[[1,2,5,6],[3,4]]
=> [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,4,1,5,6,7,3] => ? = 2
[[1,2,4,6],[3,5]]
=> [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => ? = 4
[[1,2,3,4],[5,6]]
=> [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,3,4,6,1,7,5] => ? = 3
[[1,3,5,6],[2],[4]]
=> [1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [3,1,5,2,6,7,4] => ? = 3
[[1,2,4,6],[3],[5]]
=> [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => ? = 4
[[1,3,5],[2,4,6]]
=> [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,7,4,6] => ? = 4
[[1,2,4],[3,5,6]]
=> [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => ? = 4
[[1,3,6],[2,5],[4]]
=> [1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [3,1,5,2,6,7,4] => ? = 3
[[1,2,6],[3,4],[5]]
=> [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => ? = 4
[[1,3,5],[2,6],[4]]
=> [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,7,4,6] => ? = 4
[[1,2,4],[3,6],[5]]
=> [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => ? = 4
[[1,3,5],[2,4],[6]]
=> [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,7,4,6] => ? = 4
[[1,2,4],[3,5],[6]]
=> [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,4,1,7,3,5,6] => ? = 3
[[1,3,5],[2],[4],[6]]
=> [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,7,4,6] => ? = 4
[[1,2,4],[3],[5],[6]]
=> [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,4,1,7,3,5,6] => ? = 3
[[1,3],[2,5],[4,6]]
=> [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,7,4,6] => ? = 4
[[1,2],[3,4],[5,6]]
=> [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,4,1,6,3,7,5] => ? = 4
[[1,5],[2,6],[3],[4]]
=> [1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,1,2,3,7,4,6] => ? = 3
[[1,3],[2,5],[4],[6]]
=> [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,7,4,6] => ? = 4
[[1,3],[2,4],[5],[6]]
=> [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [3,1,7,2,4,5,6] => ? = 2
[[1,2],[3,4],[5],[6]]
=> [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,4,1,7,3,5,6] => ? = 3
[[1,6],[2],[3],[4],[5]]
=> [1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,1,2,3,4,7,5] => ? = 2
[[1,5],[2],[3],[4],[6]]
=> [1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,1,2,3,7,4,6] => ? = 3
[[1,3],[2],[4],[5],[6]]
=> [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [3,1,7,2,4,5,6] => ? = 2
[[1,2],[3],[4],[5],[6]]
=> [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,7,1,3,4,5,6] => ? = 1
[[1],[2],[3],[4],[5],[6]]
=> [1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,1,2,3,4,5,6] => ? = 0
[[1,2,3,4,5,6,7]]
=> [7] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,8,1] => ? = 0
[[1,3,4,5,6,7],[2]]
=> [1,6] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [3,1,4,5,6,7,8,2] => ? = 1
[[1,2,4,5,6,7],[3]]
=> [2,5] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [2,4,1,5,6,7,8,3] => ? = 2
[[1,2,3,4,6,7],[5]]
=> [4,3] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [2,3,4,6,1,7,8,5] => ? = 3
[[1,3,5,6,7],[2,4]]
=> [1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [3,1,5,2,6,7,8,4] => ? = 3
[[1,2,5,6,7],[3,4]]
=> [2,5] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [2,4,1,5,6,7,8,3] => ? = 2
[[1,2,4,6,7],[3,5]]
=> [2,2,3] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,6,3,7,8,5] => ? = 4
[[1,2,3,4,7],[5,6]]
=> [4,3] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [2,3,4,6,1,7,8,5] => ? = 3
[[1,3,5,6,7],[2],[4]]
=> [1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [3,1,5,2,6,7,8,4] => ? = 3
[[1,2,4,6,7],[3],[5]]
=> [2,2,3] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,6,3,7,8,5] => ? = 4
[[1,2,3,4,5],[6],[7]]
=> [5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [2,3,4,5,8,1,6,7] => ? = 2
[[1,3,5,7],[2,4,6]]
=> [1,2,2,2] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,7,4,8,6] => ? = 5
[[1,2,4,7],[3,5,6]]
=> [2,2,3] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,6,3,7,8,5] => ? = 4
[[1,2,4,6],[3,5,7]]
=> [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,8,5,7] => ? = 5
[[1,2,3,4],[5,6,7]]
=> [4,3] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [2,3,4,6,1,7,8,5] => ? = 3
[[1,3,6,7],[2,5],[4]]
=> [1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [3,1,5,2,6,7,8,4] => ? = 3
[[1,2,6,7],[3,4],[5]]
=> [2,2,3] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,6,3,7,8,5] => ? = 4
[[1,3,5,7],[2,6],[4]]
=> [1,2,2,2] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,7,4,8,6] => ? = 5
Description
The number of distinct positions of the pattern letter 1 in occurrences of 132 in a permutation.
Matching statistic: St001514
Mp00207: Standard tableaux —horizontal strip sizes⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
St001514: Dyck paths ⟶ ℤResult quality: 12% ●values known / values provided: 12%●distinct values known / distinct values provided: 57%
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
St001514: Dyck paths ⟶ ℤResult quality: 12% ●values known / values provided: 12%●distinct values known / distinct values provided: 57%
Values
[[1,2]]
=> [2] => [1,1,0,0]
=> [1,0,1,0]
=> 1 = 0 + 1
[[1],[2]]
=> [1,1] => [1,0,1,0]
=> [1,1,0,0]
=> 1 = 0 + 1
[[1,2,3]]
=> [3] => [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 1 = 0 + 1
[[1,3],[2]]
=> [1,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 2 = 1 + 1
[[1,2],[3]]
=> [2,1] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 2 = 1 + 1
[[1],[2],[3]]
=> [1,1,1] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 1 = 0 + 1
[[1,2,3,4]]
=> [4] => [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1 = 0 + 1
[[1,3,4],[2]]
=> [1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[[1,2,4],[3]]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 3 = 2 + 1
[[1,3],[2,4]]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 3 = 2 + 1
[[1,2],[3,4]]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 3 = 2 + 1
[[1,3],[2],[4]]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 3 = 2 + 1
[[1,2],[3],[4]]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[[1],[2],[3],[4]]
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[[1,2,3,4,5]]
=> [5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1 = 0 + 1
[[1,3,4,5],[2]]
=> [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 2 = 1 + 1
[[1,2,4,5],[3]]
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 3 = 2 + 1
[[1,3,5],[2,4]]
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 4 = 3 + 1
[[1,2,5],[3,4]]
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 3 = 2 + 1
[[1,2,4],[3,5]]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 4 = 3 + 1
[[1,3,5],[2],[4]]
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 4 = 3 + 1
[[1,2,4],[3],[5]]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 4 = 3 + 1
[[1,3],[2,5],[4]]
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 4 = 3 + 1
[[1,3],[2,4],[5]]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[[1,2],[3,4],[5]]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 4 = 3 + 1
[[1,3],[2],[4],[5]]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[[1,2],[3],[4],[5]]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[[1],[2],[3],[4],[5]]
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 1 = 0 + 1
[[1,2,3,4,5,6]]
=> [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 0 + 1
[[1,3,4,5,6],[2]]
=> [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> ? = 1 + 1
[[1,2,4,5,6],[3]]
=> [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> ? = 2 + 1
[[1,2,3,4,6],[5]]
=> [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> ? = 3 + 1
[[1,2,3,4,5],[6]]
=> [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> ? = 2 + 1
[[1,3,5,6],[2,4]]
=> [1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> ? = 3 + 1
[[1,2,5,6],[3,4]]
=> [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> ? = 2 + 1
[[1,2,4,6],[3,5]]
=> [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 4 + 1
[[1,2,3,4],[5,6]]
=> [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> ? = 3 + 1
[[1,3,5,6],[2],[4]]
=> [1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> ? = 3 + 1
[[1,2,4,6],[3],[5]]
=> [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 4 + 1
[[1,3,5],[2,4,6]]
=> [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 4 + 1
[[1,2,4],[3,5,6]]
=> [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 4 + 1
[[1,3,6],[2,5],[4]]
=> [1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> ? = 3 + 1
[[1,2,6],[3,4],[5]]
=> [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 4 + 1
[[1,3,5],[2,6],[4]]
=> [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 4 + 1
[[1,2,4],[3,6],[5]]
=> [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 4 + 1
[[1,3,5],[2,4],[6]]
=> [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 4 + 1
[[1,2,4],[3,5],[6]]
=> [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 3 + 1
[[1,3,5],[2],[4],[6]]
=> [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 4 + 1
[[1,2,4],[3],[5],[6]]
=> [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 3 + 1
[[1,3],[2,5],[4,6]]
=> [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 4 + 1
[[1,2],[3,4],[5,6]]
=> [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 4 + 1
[[1,5],[2,6],[3],[4]]
=> [1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> ? = 3 + 1
[[1,3],[2,5],[4],[6]]
=> [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 4 + 1
[[1,3],[2,4],[5],[6]]
=> [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> ? = 2 + 1
[[1,2],[3,4],[5],[6]]
=> [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 3 + 1
[[1,6],[2],[3],[4],[5]]
=> [1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 2 + 1
[[1,5],[2],[3],[4],[6]]
=> [1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> ? = 3 + 1
[[1,3],[2],[4],[5],[6]]
=> [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> ? = 2 + 1
[[1,2],[3],[4],[5],[6]]
=> [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[[1],[2],[3],[4],[5],[6]]
=> [1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 0 + 1
[[1,2,3,4,5,6,7]]
=> [7] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ? = 0 + 1
[[1,3,4,5,6,7],[2]]
=> [1,6] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> ? = 1 + 1
[[1,2,4,5,6,7],[3]]
=> [2,5] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> ? = 2 + 1
[[1,2,3,4,6,7],[5]]
=> [4,3] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,1,0,0]
=> ? = 3 + 1
[[1,3,5,6,7],[2,4]]
=> [1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,1,0,0,0]
=> ? = 3 + 1
[[1,2,5,6,7],[3,4]]
=> [2,5] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> ? = 2 + 1
[[1,2,4,6,7],[3,5]]
=> [2,2,3] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> ? = 4 + 1
[[1,2,3,4,7],[5,6]]
=> [4,3] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,1,0,0]
=> ? = 3 + 1
[[1,3,5,6,7],[2],[4]]
=> [1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,1,0,0,0]
=> ? = 3 + 1
[[1,2,4,6,7],[3],[5]]
=> [2,2,3] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> ? = 4 + 1
[[1,2,3,4,5],[6],[7]]
=> [5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> ? = 2 + 1
[[1,3,5,7],[2,4,6]]
=> [1,2,2,2] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 5 + 1
[[1,2,4,7],[3,5,6]]
=> [2,2,3] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> ? = 4 + 1
[[1,2,4,6],[3,5,7]]
=> [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 5 + 1
[[1,2,3,4],[5,6,7]]
=> [4,3] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,1,0,0]
=> ? = 3 + 1
[[1,3,6,7],[2,5],[4]]
=> [1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,1,0,0,0]
=> ? = 3 + 1
[[1,2,6,7],[3,4],[5]]
=> [2,2,3] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> ? = 4 + 1
[[1,3,5,7],[2,6],[4]]
=> [1,2,2,2] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 5 + 1
Description
The dimension of the top of the Auslander-Reiten translate of the regular modules as a bimodule.
The following 5 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000824The sum of the number of descents and the number of recoils of a permutation. St000831The number of indices that are either descents or recoils. St001760The number of prefix or suffix reversals needed to sort a permutation. St000632The jump number of the poset. St000307The number of rowmotion orbits of a poset.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!