Processing math: 100%

Your data matches 18 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St001596: Skew partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[2],[]]
=> 0 = 1 - 1
[[1,1],[]]
=> 0 = 1 - 1
[[3],[]]
=> 0 = 1 - 1
[[2,1],[]]
=> 0 = 1 - 1
[[2,2],[1]]
=> 0 = 1 - 1
[[1,1,1],[]]
=> 0 = 1 - 1
[[4],[]]
=> 0 = 1 - 1
[[3,1],[]]
=> 0 = 1 - 1
[[2,2],[]]
=> 1 = 2 - 1
[[3,2],[1]]
=> 0 = 1 - 1
[[2,1,1],[]]
=> 0 = 1 - 1
[[3,3],[2]]
=> 0 = 1 - 1
[[2,2,1],[1]]
=> 0 = 1 - 1
[[2,2,2],[1,1]]
=> 0 = 1 - 1
[[1,1,1,1],[]]
=> 0 = 1 - 1
[[5],[]]
=> 0 = 1 - 1
[[4,1],[]]
=> 0 = 1 - 1
[[3,2],[]]
=> 1 = 2 - 1
[[4,2],[1]]
=> 0 = 1 - 1
[[3,1,1],[]]
=> 0 = 1 - 1
[[3,3],[1]]
=> 1 = 2 - 1
[[4,3],[2]]
=> 0 = 1 - 1
[[2,2,1],[]]
=> 1 = 2 - 1
[[3,2,1],[1]]
=> 0 = 1 - 1
[[3,2,2],[1,1]]
=> 0 = 1 - 1
[[2,1,1,1],[]]
=> 0 = 1 - 1
[[4,4],[3]]
=> 0 = 1 - 1
[[3,3,1],[2]]
=> 0 = 1 - 1
[[2,2,2],[1]]
=> 1 = 2 - 1
[[3,3,2],[2,1]]
=> 0 = 1 - 1
[[2,2,1,1],[1]]
=> 0 = 1 - 1
[[3,3,3],[2,2]]
=> 0 = 1 - 1
[[2,2,2,1],[1,1]]
=> 0 = 1 - 1
[[2,2,2,2],[1,1,1]]
=> 0 = 1 - 1
[[1,1,1,1,1],[]]
=> 0 = 1 - 1
[[6],[]]
=> 0 = 1 - 1
[[5,1],[]]
=> 0 = 1 - 1
[[4,2],[]]
=> 1 = 2 - 1
[[5,2],[1]]
=> 0 = 1 - 1
[[4,1,1],[]]
=> 0 = 1 - 1
[[3,3],[]]
=> 2 = 3 - 1
[[4,3],[1]]
=> 1 = 2 - 1
[[5,3],[2]]
=> 0 = 1 - 1
[[3,2,1],[]]
=> 1 = 2 - 1
[[4,2,1],[1]]
=> 0 = 1 - 1
[[4,2,2],[1,1]]
=> 0 = 1 - 1
[[3,1,1,1],[]]
=> 0 = 1 - 1
[[4,4],[2]]
=> 1 = 2 - 1
[[5,4],[3]]
=> 0 = 1 - 1
[[3,3,1],[1]]
=> 1 = 2 - 1
Description
The number of two-by-two squares inside a skew partition. This is, the number of cells (i,j) in a skew partition for which the box (i+1,j+1) is also a cell inside the skew partition.
Matching statistic: St000456
Mp00185: Skew partitions cell posetPosets
Mp00074: Posets to graphGraphs
St000456: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[2],[]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,1],[]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[3],[]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 1
[[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
[[2,2],[1]]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
[[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 1
[[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[[2,2],[]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[[3,2],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[[3,3],[2]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[[2,2,1],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[[2,2,2],[1,1]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[[5],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[[4,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[[3,2],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[[4,2],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[[3,1,1],[]]
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[[3,3],[1]]
=> ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[[4,3],[2]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[[2,2,1],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[[3,2,1],[1]]
=> ([(0,3),(0,4),(1,2),(1,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[[3,2,2],[1,1]]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[[2,1,1,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[[4,4],[3]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[[3,3,1],[2]]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[[2,2,2],[1]]
=> ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[[3,3,2],[2,1]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[[2,2,1,1],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[[3,3,3],[2,2]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[[2,2,2,1],[1,1]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[[2,2,2,2],[1,1,1]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[[1,1,1,1,1],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[[6],[]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 1
[[5,1],[]]
=> ([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 1
[[4,2],[]]
=> ([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> 2
[[5,2],[1]]
=> ([(0,5),(1,4),(1,5),(3,2),(4,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 1
[[4,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 1
[[3,3],[]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 3
[[4,3],[1]]
=> ([(0,4),(1,2),(1,4),(2,3),(2,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[[5,3],[2]]
=> ([(0,3),(1,4),(1,5),(3,5),(4,2)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 1
[[3,2,1],[]]
=> ([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[[4,2,1],[1]]
=> ([(0,3),(0,5),(1,4),(1,5),(4,2)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 1
[[4,2,2],[1,1]]
=> ([(0,5),(1,3),(1,4),(3,5),(4,2)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 1
[[3,1,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 1
[[4,4],[2]]
=> ([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> 2
[[5,4],[3]]
=> ([(0,4),(1,3),(1,5),(2,5),(4,2)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 1
[[3,3,1],[1]]
=> ([(0,2),(0,4),(1,3),(1,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> 2
Description
The monochromatic index of a connected graph. This is the maximal number of colours such that there is a colouring of the edges where any two vertices can be joined by a monochromatic path. For example, a circle graph other than the triangle can be coloured with at most two colours: one edge blue, all the others red.
Mp00185: Skew partitions cell posetPosets
Mp00074: Posets to graphGraphs
St001271: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[2],[]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[1,1],[]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[3],[]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 1
[[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
[[2,2],[1]]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
[[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 1
[[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[[2,2],[]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[[3,2],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[[3,3],[2]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[[2,2,1],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[[2,2,2],[1,1]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[[5],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[[4,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[[3,2],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[[4,2],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[[3,1,1],[]]
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[[3,3],[1]]
=> ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[[4,3],[2]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[[2,2,1],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[[3,2,1],[1]]
=> ([(0,3),(0,4),(1,2),(1,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[[3,2,2],[1,1]]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[[2,1,1,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[[4,4],[3]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[[3,3,1],[2]]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[[2,2,2],[1]]
=> ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[[3,3,2],[2,1]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[[2,2,1,1],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[[3,3,3],[2,2]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[[2,2,2,1],[1,1]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[[2,2,2,2],[1,1,1]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[[1,1,1,1,1],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[[6],[]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 1
[[5,1],[]]
=> ([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 1
[[4,2],[]]
=> ([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> 2
[[5,2],[1]]
=> ([(0,5),(1,4),(1,5),(3,2),(4,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 1
[[4,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 1
[[3,3],[]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 3
[[4,3],[1]]
=> ([(0,4),(1,2),(1,4),(2,3),(2,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[[5,3],[2]]
=> ([(0,3),(1,4),(1,5),(3,5),(4,2)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 1
[[3,2,1],[]]
=> ([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[[4,2,1],[1]]
=> ([(0,3),(0,5),(1,4),(1,5),(4,2)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 1
[[4,2,2],[1,1]]
=> ([(0,5),(1,3),(1,4),(3,5),(4,2)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 1
[[3,1,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 1
[[4,4],[2]]
=> ([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> 2
[[5,4],[3]]
=> ([(0,4),(1,3),(1,5),(2,5),(4,2)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 1
[[3,3,1],[1]]
=> ([(0,2),(0,4),(1,3),(1,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> 2
Description
The competition number of a graph. The competition graph of a digraph D is a (simple undirected) graph which has the same vertex set as D and has an edge between x and y if and only if there exists a vertex v in D such that (x,v) and (y,v) are arcs of D. For any graph, G together with sufficiently many isolated vertices is the competition graph of some acyclic digraph. The competition number k(G) is the smallest number of such isolated vertices.
Mp00185: Skew partitions cell posetPosets
Mp00074: Posets to graphGraphs
St001305: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[2],[]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0 = 1 - 1
[[1,1],[]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0 = 1 - 1
[[3],[]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
[[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
[[2,2],[1]]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
[[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
[[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 0 = 1 - 1
[[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 0 = 1 - 1
[[2,2],[]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 1 = 2 - 1
[[3,2],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 0 = 1 - 1
[[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 0 = 1 - 1
[[3,3],[2]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 0 = 1 - 1
[[2,2,1],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 0 = 1 - 1
[[2,2,2],[1,1]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 0 = 1 - 1
[[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 0 = 1 - 1
[[5],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[4,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[3,2],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[[4,2],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[3,1,1],[]]
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[3,3],[1]]
=> ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[[4,3],[2]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[2,2,1],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[[3,2,1],[1]]
=> ([(0,3),(0,4),(1,2),(1,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[3,2,2],[1,1]]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[2,1,1,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[4,4],[3]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[3,3,1],[2]]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[2,2,2],[1]]
=> ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[[3,3,2],[2,1]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[2,2,1,1],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[3,3,3],[2,2]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[2,2,2,1],[1,1]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[2,2,2,2],[1,1,1]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[1,1,1,1,1],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[6],[]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 0 = 1 - 1
[[5,1],[]]
=> ([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 0 = 1 - 1
[[4,2],[]]
=> ([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> 1 = 2 - 1
[[5,2],[1]]
=> ([(0,5),(1,4),(1,5),(3,2),(4,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 0 = 1 - 1
[[4,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 0 = 1 - 1
[[3,3],[]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[4,3],[1]]
=> ([(0,4),(1,2),(1,4),(2,3),(2,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 1 = 2 - 1
[[5,3],[2]]
=> ([(0,3),(1,4),(1,5),(3,5),(4,2)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 0 = 1 - 1
[[3,2,1],[]]
=> ([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 1 = 2 - 1
[[4,2,1],[1]]
=> ([(0,3),(0,5),(1,4),(1,5),(4,2)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 0 = 1 - 1
[[4,2,2],[1,1]]
=> ([(0,5),(1,3),(1,4),(3,5),(4,2)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 0 = 1 - 1
[[3,1,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 0 = 1 - 1
[[4,4],[2]]
=> ([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> 1 = 2 - 1
[[5,4],[3]]
=> ([(0,4),(1,3),(1,5),(2,5),(4,2)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 0 = 1 - 1
[[3,3,1],[1]]
=> ([(0,2),(0,4),(1,3),(1,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> 1 = 2 - 1
Description
The number of induced cycles on four vertices in a graph.
Matching statistic: St001311
Mp00185: Skew partitions cell posetPosets
Mp00074: Posets to graphGraphs
St001311: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[2],[]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0 = 1 - 1
[[1,1],[]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0 = 1 - 1
[[3],[]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
[[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
[[2,2],[1]]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
[[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
[[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 0 = 1 - 1
[[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 0 = 1 - 1
[[2,2],[]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 1 = 2 - 1
[[3,2],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 0 = 1 - 1
[[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 0 = 1 - 1
[[3,3],[2]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 0 = 1 - 1
[[2,2,1],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 0 = 1 - 1
[[2,2,2],[1,1]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 0 = 1 - 1
[[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 0 = 1 - 1
[[5],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[4,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[3,2],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[[4,2],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[3,1,1],[]]
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[3,3],[1]]
=> ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[[4,3],[2]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[2,2,1],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[[3,2,1],[1]]
=> ([(0,3),(0,4),(1,2),(1,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[3,2,2],[1,1]]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[2,1,1,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[4,4],[3]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[3,3,1],[2]]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[2,2,2],[1]]
=> ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[[3,3,2],[2,1]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[2,2,1,1],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[3,3,3],[2,2]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[2,2,2,1],[1,1]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[2,2,2,2],[1,1,1]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[1,1,1,1,1],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[6],[]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 0 = 1 - 1
[[5,1],[]]
=> ([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 0 = 1 - 1
[[4,2],[]]
=> ([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> 1 = 2 - 1
[[5,2],[1]]
=> ([(0,5),(1,4),(1,5),(3,2),(4,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 0 = 1 - 1
[[4,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 0 = 1 - 1
[[3,3],[]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[4,3],[1]]
=> ([(0,4),(1,2),(1,4),(2,3),(2,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 1 = 2 - 1
[[5,3],[2]]
=> ([(0,3),(1,4),(1,5),(3,5),(4,2)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 0 = 1 - 1
[[3,2,1],[]]
=> ([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 1 = 2 - 1
[[4,2,1],[1]]
=> ([(0,3),(0,5),(1,4),(1,5),(4,2)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 0 = 1 - 1
[[4,2,2],[1,1]]
=> ([(0,5),(1,3),(1,4),(3,5),(4,2)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 0 = 1 - 1
[[3,1,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 0 = 1 - 1
[[4,4],[2]]
=> ([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> 1 = 2 - 1
[[5,4],[3]]
=> ([(0,4),(1,3),(1,5),(2,5),(4,2)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 0 = 1 - 1
[[3,3,1],[1]]
=> ([(0,2),(0,4),(1,3),(1,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> 1 = 2 - 1
Description
The cyclomatic number of a graph. This is the minimum number of edges that must be removed from the graph so that the result is a forest. This is also the first Betti number of the graph. It can be computed as c+mn, where c is the number of connected components, m is the number of edges and n is the number of vertices.
Matching statistic: St001317
Mp00185: Skew partitions cell posetPosets
Mp00074: Posets to graphGraphs
St001317: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[2],[]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0 = 1 - 1
[[1,1],[]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0 = 1 - 1
[[3],[]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
[[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
[[2,2],[1]]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
[[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
[[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 0 = 1 - 1
[[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 0 = 1 - 1
[[2,2],[]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 1 = 2 - 1
[[3,2],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 0 = 1 - 1
[[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 0 = 1 - 1
[[3,3],[2]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 0 = 1 - 1
[[2,2,1],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 0 = 1 - 1
[[2,2,2],[1,1]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 0 = 1 - 1
[[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 0 = 1 - 1
[[5],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[4,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[3,2],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[[4,2],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[3,1,1],[]]
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[3,3],[1]]
=> ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[[4,3],[2]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[2,2,1],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[[3,2,1],[1]]
=> ([(0,3),(0,4),(1,2),(1,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[3,2,2],[1,1]]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[2,1,1,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[4,4],[3]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[3,3,1],[2]]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[2,2,2],[1]]
=> ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[[3,3,2],[2,1]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[2,2,1,1],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[3,3,3],[2,2]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[2,2,2,1],[1,1]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[2,2,2,2],[1,1,1]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[1,1,1,1,1],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[6],[]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 0 = 1 - 1
[[5,1],[]]
=> ([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 0 = 1 - 1
[[4,2],[]]
=> ([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> 1 = 2 - 1
[[5,2],[1]]
=> ([(0,5),(1,4),(1,5),(3,2),(4,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 0 = 1 - 1
[[4,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 0 = 1 - 1
[[3,3],[]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[4,3],[1]]
=> ([(0,4),(1,2),(1,4),(2,3),(2,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 1 = 2 - 1
[[5,3],[2]]
=> ([(0,3),(1,4),(1,5),(3,5),(4,2)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 0 = 1 - 1
[[3,2,1],[]]
=> ([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 1 = 2 - 1
[[4,2,1],[1]]
=> ([(0,3),(0,5),(1,4),(1,5),(4,2)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 0 = 1 - 1
[[4,2,2],[1,1]]
=> ([(0,5),(1,3),(1,4),(3,5),(4,2)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 0 = 1 - 1
[[3,1,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 0 = 1 - 1
[[4,4],[2]]
=> ([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> 1 = 2 - 1
[[5,4],[3]]
=> ([(0,4),(1,3),(1,5),(2,5),(4,2)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 0 = 1 - 1
[[3,3,1],[1]]
=> ([(0,2),(0,4),(1,3),(1,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> 1 = 2 - 1
Description
The minimal number of occurrences of the forest-pattern in a linear ordering of the vertices of the graph. A graph is a forest if and only if in any linear ordering of its vertices, there are no three vertices a<b<c such that (a,c) and (b,c) are edges. This statistic is the minimal number of occurrences of this pattern, in the set of all linear orderings of the vertices.
Mp00185: Skew partitions cell posetPosets
Mp00074: Posets to graphGraphs
St001324: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[2],[]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0 = 1 - 1
[[1,1],[]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0 = 1 - 1
[[3],[]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
[[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
[[2,2],[1]]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
[[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
[[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 0 = 1 - 1
[[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 0 = 1 - 1
[[2,2],[]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 1 = 2 - 1
[[3,2],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 0 = 1 - 1
[[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 0 = 1 - 1
[[3,3],[2]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 0 = 1 - 1
[[2,2,1],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 0 = 1 - 1
[[2,2,2],[1,1]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 0 = 1 - 1
[[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 0 = 1 - 1
[[5],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[4,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[3,2],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[[4,2],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[3,1,1],[]]
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[3,3],[1]]
=> ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[[4,3],[2]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[2,2,1],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[[3,2,1],[1]]
=> ([(0,3),(0,4),(1,2),(1,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[3,2,2],[1,1]]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[2,1,1,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[4,4],[3]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[3,3,1],[2]]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[2,2,2],[1]]
=> ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[[3,3,2],[2,1]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[2,2,1,1],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[3,3,3],[2,2]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[2,2,2,1],[1,1]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[2,2,2,2],[1,1,1]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[1,1,1,1,1],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[6],[]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 0 = 1 - 1
[[5,1],[]]
=> ([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 0 = 1 - 1
[[4,2],[]]
=> ([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> 1 = 2 - 1
[[5,2],[1]]
=> ([(0,5),(1,4),(1,5),(3,2),(4,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 0 = 1 - 1
[[4,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 0 = 1 - 1
[[3,3],[]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[4,3],[1]]
=> ([(0,4),(1,2),(1,4),(2,3),(2,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 1 = 2 - 1
[[5,3],[2]]
=> ([(0,3),(1,4),(1,5),(3,5),(4,2)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 0 = 1 - 1
[[3,2,1],[]]
=> ([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 1 = 2 - 1
[[4,2,1],[1]]
=> ([(0,3),(0,5),(1,4),(1,5),(4,2)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 0 = 1 - 1
[[4,2,2],[1,1]]
=> ([(0,5),(1,3),(1,4),(3,5),(4,2)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 0 = 1 - 1
[[3,1,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 0 = 1 - 1
[[4,4],[2]]
=> ([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> 1 = 2 - 1
[[5,4],[3]]
=> ([(0,4),(1,3),(1,5),(2,5),(4,2)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 0 = 1 - 1
[[3,3,1],[1]]
=> ([(0,2),(0,4),(1,3),(1,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> 1 = 2 - 1
Description
The minimal number of occurrences of the chordal-pattern in a linear ordering of the vertices of the graph. A graph is chordal if and only if in any linear ordering of its vertices, there are no three vertices a<b<c such that (a,c) and (b,c) are edges and (a,b) is not an edge. This statistic is the minimal number of occurrences of this pattern, in the set of all linear orderings of the vertices.
Mp00185: Skew partitions cell posetPosets
Mp00074: Posets to graphGraphs
St001326: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[2],[]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0 = 1 - 1
[[1,1],[]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0 = 1 - 1
[[3],[]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
[[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
[[2,2],[1]]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
[[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
[[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 0 = 1 - 1
[[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 0 = 1 - 1
[[2,2],[]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 1 = 2 - 1
[[3,2],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 0 = 1 - 1
[[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 0 = 1 - 1
[[3,3],[2]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 0 = 1 - 1
[[2,2,1],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 0 = 1 - 1
[[2,2,2],[1,1]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 0 = 1 - 1
[[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 0 = 1 - 1
[[5],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[4,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[3,2],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[[4,2],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[3,1,1],[]]
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[3,3],[1]]
=> ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[[4,3],[2]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[2,2,1],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[[3,2,1],[1]]
=> ([(0,3),(0,4),(1,2),(1,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[3,2,2],[1,1]]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[2,1,1,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[4,4],[3]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[3,3,1],[2]]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[2,2,2],[1]]
=> ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[[3,3,2],[2,1]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[2,2,1,1],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[3,3,3],[2,2]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[2,2,2,1],[1,1]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[2,2,2,2],[1,1,1]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[1,1,1,1,1],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[6],[]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 0 = 1 - 1
[[5,1],[]]
=> ([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 0 = 1 - 1
[[4,2],[]]
=> ([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> 1 = 2 - 1
[[5,2],[1]]
=> ([(0,5),(1,4),(1,5),(3,2),(4,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 0 = 1 - 1
[[4,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 0 = 1 - 1
[[3,3],[]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
[[4,3],[1]]
=> ([(0,4),(1,2),(1,4),(2,3),(2,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 1 = 2 - 1
[[5,3],[2]]
=> ([(0,3),(1,4),(1,5),(3,5),(4,2)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 0 = 1 - 1
[[3,2,1],[]]
=> ([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 1 = 2 - 1
[[4,2,1],[1]]
=> ([(0,3),(0,5),(1,4),(1,5),(4,2)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 0 = 1 - 1
[[4,2,2],[1,1]]
=> ([(0,5),(1,3),(1,4),(3,5),(4,2)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 0 = 1 - 1
[[3,1,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 0 = 1 - 1
[[4,4],[2]]
=> ([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> 1 = 2 - 1
[[5,4],[3]]
=> ([(0,4),(1,3),(1,5),(2,5),(4,2)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 0 = 1 - 1
[[3,3,1],[1]]
=> ([(0,2),(0,4),(1,3),(1,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> 1 = 2 - 1
Description
The minimal number of occurrences of the interval-pattern in a linear ordering of the vertices of the graph. A graph is an interval graph if and only if in any linear ordering of its vertices, there are no three vertices a<b<c such that (a,c) is an edge and (a,b) is not an edge. This statistic is the minimal number of occurrences of this pattern, in the set of all linear orderings of the vertices.
Matching statistic: St001883
Mp00185: Skew partitions cell posetPosets
Mp00074: Posets to graphGraphs
St001883: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[2],[]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
[[1,1],[]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
[[3],[]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[[2,2],[1]]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[[2,2],[]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 3 = 2 + 1
[[3,2],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[[3,3],[2]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[[2,2,1],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[[2,2,2],[1,1]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[[5],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[[4,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[[3,2],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[[4,2],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[[3,1,1],[]]
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[[3,3],[1]]
=> ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[[4,3],[2]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[[2,2,1],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[[3,2,1],[1]]
=> ([(0,3),(0,4),(1,2),(1,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[[3,2,2],[1,1]]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[[2,1,1,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[[4,4],[3]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[[3,3,1],[2]]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[[2,2,2],[1]]
=> ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[[3,3,2],[2,1]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[[2,2,1,1],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[[3,3,3],[2,2]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[[2,2,2,1],[1,1]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[[2,2,2,2],[1,1,1]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[[1,1,1,1,1],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[[6],[]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 1 + 1
[[5,1],[]]
=> ([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 1 + 1
[[4,2],[]]
=> ([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> 3 = 2 + 1
[[5,2],[1]]
=> ([(0,5),(1,4),(1,5),(3,2),(4,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 1 + 1
[[4,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 1 + 1
[[3,3],[]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 4 = 3 + 1
[[4,3],[1]]
=> ([(0,4),(1,2),(1,4),(2,3),(2,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 3 = 2 + 1
[[5,3],[2]]
=> ([(0,3),(1,4),(1,5),(3,5),(4,2)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 1 + 1
[[3,2,1],[]]
=> ([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 3 = 2 + 1
[[4,2,1],[1]]
=> ([(0,3),(0,5),(1,4),(1,5),(4,2)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 1 + 1
[[4,2,2],[1,1]]
=> ([(0,5),(1,3),(1,4),(3,5),(4,2)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 1 + 1
[[3,1,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 1 + 1
[[4,4],[2]]
=> ([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> 3 = 2 + 1
[[5,4],[3]]
=> ([(0,4),(1,3),(1,5),(2,5),(4,2)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 1 + 1
[[3,3,1],[1]]
=> ([(0,2),(0,4),(1,3),(1,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> 3 = 2 + 1
Description
The mutual visibility number of a graph. This is the largest cardinality of a subset P of vertices of a graph G, such that for each pair of vertices in P there is a shortest path in G which contains no other point in P. In particular, the mutual visibility number of the disjoint union of two graphs is the maximum of their mutual visibility numbers.
Matching statistic: St001330
Mp00185: Skew partitions cell posetPosets
Mp00074: Posets to graphGraphs
St001330: Graphs ⟶ ℤResult quality: 67% values known / values provided: 68%distinct values known / distinct values provided: 67%
Values
[[2],[]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
[[1,1],[]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
[[3],[]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[[2,2],[1]]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[[2,2],[]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 3 = 2 + 1
[[3,2],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[[3,3],[2]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[[2,2,1],[1]]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[[2,2,2],[1,1]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[[5],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[[4,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[[3,2],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? = 2 + 1
[[4,2],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[[3,1,1],[]]
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[[3,3],[1]]
=> ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? = 2 + 1
[[4,3],[2]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[[2,2,1],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? = 2 + 1
[[3,2,1],[1]]
=> ([(0,3),(0,4),(1,2),(1,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[[3,2,2],[1,1]]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[[2,1,1,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[[4,4],[3]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[[3,3,1],[2]]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[[2,2,2],[1]]
=> ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? = 2 + 1
[[3,3,2],[2,1]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[[2,2,1,1],[1]]
=> ([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[[3,3,3],[2,2]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[[2,2,2,1],[1,1]]
=> ([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[[2,2,2,2],[1,1,1]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[[1,1,1,1,1],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[[6],[]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 1 + 1
[[5,1],[]]
=> ([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 1 + 1
[[4,2],[]]
=> ([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ? = 2 + 1
[[5,2],[1]]
=> ([(0,5),(1,4),(1,5),(3,2),(4,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 1 + 1
[[4,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 1 + 1
[[3,3],[]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ? = 3 + 1
[[4,3],[1]]
=> ([(0,4),(1,2),(1,4),(2,3),(2,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 2 + 1
[[5,3],[2]]
=> ([(0,3),(1,4),(1,5),(3,5),(4,2)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 1 + 1
[[3,2,1],[]]
=> ([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 2 + 1
[[4,2,1],[1]]
=> ([(0,3),(0,5),(1,4),(1,5),(4,2)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 1 + 1
[[4,2,2],[1,1]]
=> ([(0,5),(1,3),(1,4),(3,5),(4,2)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 1 + 1
[[3,1,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 1 + 1
[[4,4],[2]]
=> ([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ? = 2 + 1
[[5,4],[3]]
=> ([(0,4),(1,3),(1,5),(2,5),(4,2)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 1 + 1
[[3,3,1],[1]]
=> ([(0,2),(0,4),(1,3),(1,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ? = 2 + 1
[[4,3,1],[2]]
=> ([(0,4),(0,5),(1,2),(1,3),(3,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 1 + 1
[[2,2,2],[]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ? = 3 + 1
[[3,3,2],[1,1]]
=> ([(0,4),(1,2),(1,3),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ? = 2 + 1
[[3,2,2],[1]]
=> ([(0,2),(0,4),(1,3),(1,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ? = 2 + 1
[[4,3,2],[2,1]]
=> ([(0,4),(1,4),(1,5),(2,3),(2,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 1 + 1
[[2,2,1,1],[]]
=> ([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ? = 2 + 1
[[3,2,1,1],[1]]
=> ([(0,3),(0,5),(1,4),(1,5),(4,2)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 1 + 1
[[4,3,3],[2,2]]
=> ([(0,4),(1,2),(1,3),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 1 + 1
[[3,2,2,1],[1,1]]
=> ([(0,4),(0,5),(1,2),(1,3),(3,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 1 + 1
[[3,2,2,2],[1,1,1]]
=> ([(0,5),(1,2),(1,4),(3,5),(4,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 1 + 1
[[2,1,1,1,1],[]]
=> ([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 1 + 1
[[5,5],[4]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 1 + 1
[[4,4,1],[3]]
=> ([(0,5),(1,2),(1,4),(3,5),(4,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 1 + 1
[[3,3,2],[2]]
=> ([(0,4),(1,2),(1,3),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ? = 2 + 1
[[4,4,2],[3,1]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 1 + 1
[[3,3,3],[2,1]]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 2 + 1
[[2,2,2,1],[1]]
=> ([(0,4),(1,2),(1,4),(2,3),(2,5),(4,5)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 2 + 1
[[2,2,2,2],[1,1]]
=> ([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ? = 2 + 1
[[5,2],[]]
=> ([(0,2),(0,5),(2,6),(3,4),(4,1),(5,3),(5,6)],7)
=> ([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ? = 2 + 1
[[4,3],[]]
=> ([(0,2),(0,4),(2,5),(3,1),(3,6),(4,3),(4,5),(5,6)],7)
=> ([(0,6),(1,2),(1,4),(2,5),(3,4),(3,6),(4,5),(5,6)],7)
=> ? = 3 + 1
[[5,3],[1]]
=> ([(0,6),(1,4),(1,6),(3,2),(4,3),(4,5),(6,5)],7)
=> ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
=> ? = 2 + 1
[[4,2,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(4,6),(5,1),(5,6)],7)
=> ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
=> ? = 2 + 1
[[4,4],[1]]
=> ([(0,6),(1,3),(1,6),(2,4),(3,2),(3,5),(5,4),(6,5)],7)
=> ([(0,6),(1,2),(1,4),(2,5),(3,4),(3,6),(4,5),(5,6)],7)
=> ? = 3 + 1
[[5,4],[2]]
=> ([(0,3),(1,4),(1,6),(3,6),(4,2),(4,5),(6,5)],7)
=> ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
=> ? = 2 + 1
[[3,3,1],[]]
=> ([(0,3),(0,4),(2,6),(3,1),(3,5),(4,2),(4,5),(5,6)],7)
=> ([(0,6),(1,2),(1,4),(2,5),(3,4),(3,6),(4,5),(5,6)],7)
=> ? = 3 + 1
[[4,3,1],[1]]
=> ([(0,3),(0,6),(1,4),(1,6),(4,2),(4,5),(6,5)],7)
=> ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
=> ? = 2 + 1
[[3,2,2],[]]
=> ([(0,3),(0,4),(2,6),(3,1),(3,5),(4,2),(4,5),(5,6)],7)
=> ([(0,6),(1,2),(1,4),(2,5),(3,4),(3,6),(4,5),(5,6)],7)
=> ? = 3 + 1
[[4,3,2],[1,1]]
=> ([(0,6),(1,3),(1,4),(3,5),(3,6),(4,2),(4,5)],7)
=> ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
=> ? = 2 + 1
[[4,2,2],[1]]
=> ([(0,3),(0,6),(1,4),(1,6),(3,5),(4,2),(6,5)],7)
=> ([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ? = 2 + 1
[[3,2,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(4,6),(5,1),(5,6)],7)
=> ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
=> ? = 2 + 1
[[5,5],[3]]
=> ([(0,3),(0,6),(1,4),(2,6),(3,5),(4,2),(6,5)],7)
=> ([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ? = 2 + 1
[[4,4,1],[2]]
=> ([(0,4),(0,6),(1,2),(1,3),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ? = 2 + 1
[[3,3,2],[1]]
=> ([(0,3),(0,6),(1,2),(1,6),(2,4),(3,5),(6,4),(6,5)],7)
=> ([(0,4),(0,5),(1,2),(1,3),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 3 + 1
[[4,4,2],[2,1]]
=> ([(0,4),(1,4),(1,5),(2,3),(2,5),(3,6),(5,6)],7)
=> ([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ? = 2 + 1
[[4,3,2],[2]]
=> ([(0,4),(0,6),(1,2),(1,3),(2,5),(3,5),(3,6)],7)
=> ([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ? = 2 + 1
[[3,3,1,1],[1]]
=> ([(0,3),(0,6),(1,4),(1,6),(3,5),(4,2),(6,5)],7)
=> ([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ? = 2 + 1
[[3,3,3],[1,1]]
=> ([(0,2),(0,3),(1,5),(2,6),(3,5),(3,6),(5,4),(6,4)],7)
=> ([(0,6),(1,2),(1,4),(2,5),(3,4),(3,6),(4,5),(5,6)],7)
=> ? = 3 + 1
[[4,4,3],[2,2]]
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(3,6),(4,6)],7)
=> ([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ? = 2 + 1
[[4,3,3],[2,1]]
=> ([(0,4),(1,4),(1,5),(2,3),(2,5),(4,6),(5,6)],7)
=> ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
=> ? = 2 + 1
[[2,2,2,1],[]]
=> ([(0,2),(0,4),(2,5),(3,1),(3,6),(4,3),(4,5),(5,6)],7)
=> ([(0,6),(1,2),(1,4),(2,5),(3,4),(3,6),(4,5),(5,6)],7)
=> ? = 3 + 1
[[3,3,2,1],[1,1]]
=> ([(0,4),(0,6),(1,2),(1,3),(2,5),(3,5),(3,6)],7)
=> ([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ? = 2 + 1
[[3,2,2,1],[1]]
=> ([(0,3),(0,6),(1,4),(1,6),(4,2),(4,5),(6,5)],7)
=> ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
=> ? = 2 + 1
[[3,3,2,2],[1,1,1]]
=> ([(0,6),(1,3),(1,4),(2,6),(3,5),(4,2),(4,5)],7)
=> ([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ? = 2 + 1
[[2,2,1,1,1],[]]
=> ([(0,2),(0,5),(2,6),(3,4),(4,1),(5,3),(5,6)],7)
=> ([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ? = 2 + 1
[[3,2,2,2],[1,1]]
=> ([(0,4),(0,6),(1,2),(1,3),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ? = 2 + 1
[[4,4,2],[3]]
=> ([(0,6),(1,3),(1,4),(2,6),(3,5),(4,2),(4,5)],7)
=> ([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ? = 2 + 1
[[3,3,3],[2]]
=> ([(0,2),(0,3),(1,5),(2,6),(3,5),(3,6),(5,4),(6,4)],7)
=> ([(0,6),(1,2),(1,4),(2,5),(3,4),(3,6),(4,5),(5,6)],7)
=> ? = 3 + 1
[[4,4,3],[3,1]]
=> ([(0,4),(1,5),(2,3),(2,4),(3,5),(3,6),(4,6)],7)
=> ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
=> ? = 2 + 1
[[3,3,2,1],[2]]
=> ([(0,6),(1,3),(1,4),(3,5),(3,6),(4,2),(4,5)],7)
=> ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
=> ? = 2 + 1
[[4,4,4],[3,2]]
=> ([(0,4),(1,4),(1,6),(2,3),(3,6),(4,5),(6,5)],7)
=> ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
=> ? = 2 + 1
Description
The hat guessing number of a graph. Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of q possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number HG(G) of a graph G is the largest integer q such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of q possible colors. Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
The following 8 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001633The number of simple modules with projective dimension two in the incidence algebra of the poset. St000450The number of edges minus the number of vertices plus 2 of a graph. St001642The Prague dimension of a graph. St001871The number of triconnected components of a graph. St000822The Hadwiger number of the graph. St000455The second largest eigenvalue of a graph if it is integral. St000741The Colin de Verdière graph invariant. St001644The dimension of a graph.