Your data matches 1 statistic following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000456
Mp00072: Permutations binary search tree: left to rightBinary trees
Mp00017: Binary trees to 312-avoiding permutationPermutations
Mp00160: Permutations graph of inversionsGraphs
St000456: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,2] => [.,[.,.]]
=> [2,1] => ([(0,1)],2)
=> 1
[1,2,3] => [.,[.,[.,.]]]
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[1,3,2] => [.,[[.,.],.]]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> 1
[1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[1,2,4,3] => [.,[.,[[.,.],.]]]
=> [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,3,2,4] => [.,[[.,.],[.,.]]]
=> [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,3,4,2] => [.,[[.,.],[.,.]]]
=> [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,4,2,3] => [.,[[.,[.,.]],.]]
=> [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,4,3,2] => [.,[[[.,.],.],.]]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 10
[1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 8
[1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
[1,2,4,5,3] => [.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
[1,2,5,3,4] => [.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
[1,2,5,4,3] => [.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[1,3,2,4,5] => [.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,3,2,5,4] => [.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,3,4,2,5] => [.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,3,4,5,2] => [.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,3,5,2,4] => [.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,3,5,4,2] => [.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,4,2,3,5] => [.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 3
[1,4,2,5,3] => [.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 3
[1,4,3,2,5] => [.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,4,3,5,2] => [.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,4,5,2,3] => [.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 3
[1,4,5,3,2] => [.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,5,2,3,4] => [.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,5,2,4,3] => [.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,5,3,2,4] => [.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,5,3,4,2] => [.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,5,4,2,3] => [.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,2,3,4,5,6] => [.,[.,[.,[.,[.,[.,.]]]]]]
=> [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 15
[1,2,3,4,6,5] => [.,[.,[.,[.,[[.,.],.]]]]]
=> [5,6,4,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 13
[1,2,3,5,4,6] => [.,[.,[.,[[.,.],[.,.]]]]]
=> [4,6,5,3,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 11
[1,2,3,5,6,4] => [.,[.,[.,[[.,.],[.,.]]]]]
=> [4,6,5,3,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 11
[1,2,3,6,4,5] => [.,[.,[.,[[.,[.,.]],.]]]]
=> [5,4,6,3,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 11
[1,2,3,6,5,4] => [.,[.,[.,[[[.,.],.],.]]]]
=> [4,5,6,3,2,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 10
[1,2,4,3,5,6] => [.,[.,[[.,.],[.,[.,.]]]]]
=> [3,6,5,4,2,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 9
[1,2,4,3,6,5] => [.,[.,[[.,.],[[.,.],.]]]]
=> [3,5,6,4,2,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 8
[1,2,4,5,3,6] => [.,[.,[[.,.],[.,[.,.]]]]]
=> [3,6,5,4,2,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 9
[1,2,4,5,6,3] => [.,[.,[[.,.],[.,[.,.]]]]]
=> [3,6,5,4,2,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 9
[1,2,4,6,3,5] => [.,[.,[[.,.],[[.,.],.]]]]
=> [3,5,6,4,2,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 8
[1,2,4,6,5,3] => [.,[.,[[.,.],[[.,.],.]]]]
=> [3,5,6,4,2,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 8
[1,2,5,3,4,6] => [.,[.,[[.,[.,.]],[.,.]]]]
=> [4,3,6,5,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 8
[1,2,5,3,6,4] => [.,[.,[[.,[.,.]],[.,.]]]]
=> [4,3,6,5,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 8
[1,2,5,4,3,6] => [.,[.,[[[.,.],.],[.,.]]]]
=> [3,4,6,5,2,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 7
[1,2,5,4,6,3] => [.,[.,[[[.,.],.],[.,.]]]]
=> [3,4,6,5,2,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 7
[1,2,5,6,3,4] => [.,[.,[[.,[.,.]],[.,.]]]]
=> [4,3,6,5,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 8
Description
The monochromatic index of a connected graph. This is the maximal number of colours such that there is a colouring of the edges where any two vertices can be joined by a monochromatic path. For example, a circle graph other than the triangle can be coloured with at most two colours: one edge blue, all the others red.