Your data matches 1 statistic following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000456
Mp00207: Standard tableaux horizontal strip sizesInteger compositions
Mp00173: Integer compositions rotate front to backInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000456: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1],[2]]
=> [1,1] => [1,1] => ([(0,1)],2)
=> 1
[[1,3],[2]]
=> [1,2] => [2,1] => ([(0,2),(1,2)],3)
=> 1
[[1],[2],[3]]
=> [1,1,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[[1,3,4],[2]]
=> [1,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[[1,3],[2,4]]
=> [1,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[[1,4],[2],[3]]
=> [1,1,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[[1,3],[2],[4]]
=> [1,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[[1],[2],[3],[4]]
=> [1,1,1,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[[1,3,4,5],[2]]
=> [1,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[[1,3,5],[2,4]]
=> [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,3,4],[2,5]]
=> [1,3,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[[1,4,5],[2],[3]]
=> [1,1,3] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[1,3,5],[2],[4]]
=> [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,3,4],[2],[5]]
=> [1,3,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[[1,4],[2,5],[3]]
=> [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
[[1,3],[2,5],[4]]
=> [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,3],[2,4],[5]]
=> [1,2,1,1] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 8
[[1,5],[2],[3],[4]]
=> [1,1,1,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,4],[2],[3],[5]]
=> [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
[[1,3],[2],[4],[5]]
=> [1,2,1,1] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 8
[[1],[2],[3],[4],[5]]
=> [1,1,1,1,1] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 10
[[1,3,4,5,6],[2]]
=> [1,5] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1
[[1,3,5,6],[2,4]]
=> [1,2,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,3,4,6],[2,5]]
=> [1,3,2] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[1,3,4,5],[2,6]]
=> [1,4,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[[1,4,5,6],[2],[3]]
=> [1,1,4] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,3,5,6],[2],[4]]
=> [1,2,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,3,4,6],[2],[5]]
=> [1,3,2] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[1,3,4,5],[2],[6]]
=> [1,4,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[[1,3,5],[2,4,6]]
=> [1,2,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 8
[[1,3,4],[2,5,6]]
=> [1,3,2] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[1,4,6],[2,5],[3]]
=> [1,1,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[[1,3,6],[2,5],[4]]
=> [1,2,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,3,6],[2,4],[5]]
=> [1,2,1,2] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[[1,4,5],[2,6],[3]]
=> [1,1,3,1] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 7
[[1,3,5],[2,6],[4]]
=> [1,2,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 8
[[1,3,4],[2,6],[5]]
=> [1,3,2] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[1,3,5],[2,4],[6]]
=> [1,2,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 8
[[1,3,4],[2,5],[6]]
=> [1,3,1,1] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 10
[[1,5,6],[2],[3],[4]]
=> [1,1,1,3] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[1,4,6],[2],[3],[5]]
=> [1,1,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[[1,3,6],[2],[4],[5]]
=> [1,2,1,2] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[[1,4,5],[2],[3],[6]]
=> [1,1,3,1] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 7
[[1,3,5],[2],[4],[6]]
=> [1,2,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 8
[[1,3,4],[2],[5],[6]]
=> [1,3,1,1] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 10
[[1,4],[2,5],[3,6]]
=> [1,1,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[[1,3],[2,5],[4,6]]
=> [1,2,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 8
[[1,3],[2,4],[5,6]]
=> [1,2,1,2] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[[1,5],[2,6],[3],[4]]
=> [1,1,1,2,1] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 9
[[1,4],[2,6],[3],[5]]
=> [1,1,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
Description
The monochromatic index of a connected graph. This is the maximal number of colours such that there is a colouring of the edges where any two vertices can be joined by a monochromatic path. For example, a circle graph other than the triangle can be coloured with at most two colours: one edge blue, all the others red.