Your data matches 2 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00233: Dyck paths skew partitionSkew partitions
Mp00183: Skew partitions inner shapeInteger partitions
St000460: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,1,0,0,1,0]
=> [[2,2],[1]]
=> [1]
=> 1
[1,0,1,1,0,0,1,0]
=> [[2,2,1],[1]]
=> [1]
=> 1
[1,1,0,0,1,0,1,0]
=> [[2,2,2],[1,1]]
=> [1,1]
=> 2
[1,1,0,0,1,1,0,0]
=> [[3,2],[1]]
=> [1]
=> 1
[1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> [2]
=> 2
[1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [1]
=> 1
[1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> [1]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [[2,2,1,1],[1]]
=> [1]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1],[1,1]]
=> [1,1]
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1],[1]]
=> [1]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1],[2]]
=> [2]
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1],[1]]
=> [1]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1],[1]]
=> [1]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 3
[1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2],[1,1]]
=> [1,1]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2],[2,1]]
=> [2,1]
=> 3
[1,1,0,0,1,1,0,1,0,0]
=> [[4,2],[1]]
=> [1]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2],[1,1]]
=> [1,1]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3],[2,2]]
=> [2,2]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [[4,3],[2]]
=> [2]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [[4,4],[3]]
=> [3]
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> [[4,4],[2]]
=> [2]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3],[2,1]]
=> [2,1]
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [[4,3],[1]]
=> [1]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3],[1,1]]
=> [1,1]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [[4,4],[1]]
=> [1]
=> 1
[1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> [1,1]
=> 2
[1,1,1,0,0,0,1,1,0,0]
=> [[3,2,2],[1]]
=> [1]
=> 1
[1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> [2]
=> 2
[1,1,1,0,0,1,1,0,0,0]
=> [[3,3,2],[1]]
=> [1]
=> 1
[1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2],[1]]
=> [1]
=> 1
[1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> [2]
=> 2
[1,1,1,1,0,0,1,0,0,0]
=> [[3,3,3],[1]]
=> [1]
=> 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [[2,2,1,1,1],[1]]
=> [1]
=> 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 2
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1,1],[1]]
=> [1]
=> 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1,1],[2]]
=> [2]
=> 2
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1,1],[1]]
=> [1]
=> 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1,1],[1]]
=> [1]
=> 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2,1],[1,1,1]]
=> [1,1,1]
=> 3
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2,1],[1,1]]
=> [1,1]
=> 2
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2,1],[2,1]]
=> [2,1]
=> 3
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [[4,2,1],[1]]
=> [1]
=> 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2,1],[1,1]]
=> [1,1]
=> 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3,1],[2,2]]
=> [2,2]
=> 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [[4,3,1],[2]]
=> [2]
=> 2
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [[4,4,1],[3]]
=> [3]
=> 3
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [[4,4,1],[2]]
=> [2]
=> 2
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3,1],[2,1]]
=> [2,1]
=> 3
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [[4,3,1],[1]]
=> [1]
=> 1
Description
The hook length of the last cell along the main diagonal of an integer partition.
Matching statistic: St001207
Mp00027: Dyck paths to partitionInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
St001207: Permutations ⟶ ℤResult quality: 5% values known / values provided: 5%distinct values known / distinct values provided: 25%
Values
[1,1,0,0,1,0]
=> [2]
=> [1,1,0,0,1,0]
=> [1,3,2] => 1
[1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => 1
[1,1,0,0,1,0,1,0]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,3,4,2] => 2
[1,1,0,0,1,1,0,0]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 1
[1,1,0,1,0,0,1,0]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [3,1,4,2] => 2
[1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> [2,1,3] => 1
[1,1,1,0,0,0,1,0]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [1,2,4,3] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> [1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => ? = 1
[1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => ? = 2
[1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => ? = 1
[1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => ? = 2
[1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => ? = 1
[1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => ? = 1
[1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => ? = 3
[1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => ? = 2
[1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => ? = 3
[1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => ? = 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => ? = 2
[1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => ? = 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => ? = 2
[1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => ? = 3
[1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 2
[1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => ? = 3
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [2,4,1,3] => 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [2,1,3,4] => 1
[1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,5,3] => ? = 2
[1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => ? = 1
[1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,4,2,5,3] => ? = 2
[1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 1
[1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1,2,5,3] => ? = 1
[1,1,1,1,0,0,0,0,1,0]
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,2,3,5,4] => ? = 2
[1,1,1,1,0,0,1,0,0,0]
=> [2]
=> [1,1,0,0,1,0]
=> [1,3,2] => 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [2,3,4,1,6,5] => ? = 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,2,1]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [2,3,1,5,6,4] => ? = 2
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,4,2,2,1]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,3,1,5,4,6] => ? = 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [2,3,5,1,6,4] => ? = 2
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [3,3,2,2,1]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> [2,3,5,1,4,6] => ? = 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [5,2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [2,3,1,4,6,5] => ? = 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,1]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [2,1,4,5,6,3] => ? = 3
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [4,4,3,1,1]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,1,4,5,3,6] => ? = 2
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [5,3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,6,5] => ? = 3
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [4,3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,6,3,5] => ? = 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [3,3,3,1,1]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [2,1,4,3,5,6] => ? = 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [2,4,1,5,6,3] => ? = 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [4,4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> [2,4,1,5,3,6] => ? = 2
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [2,4,5,1,6,3] => ? = 3
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [3,3,2,1,1]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> [2,4,5,1,3,6] => ? = 2
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [5,2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,6,5] => ? = 3
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [4,2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,6,3,5] => ? = 1
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [3,2,2,1,1]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> [2,4,6,1,3,5] => ? = 2
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [2,4,1,3,5,6] => ? = 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [2,1,3,5,6,4] => ? = 2
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [4,4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [2,1,3,5,4,6] => ? = 1
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [2,1,5,3,6,4] => ? = 2
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [3,3,1,1,1]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> [2,1,5,3,4,6] => ? = 1
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> [2,5,1,3,6,4] => ? = 1
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [5,1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [2,1,3,4,6,5] => ? = 2
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [2,1,6,3,4,5] => ? = 1
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,3,4,5,6,2] => ? = 4
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [4,4,3,2]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,3,4,5,2,6] => ? = 3
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [5,3,3,2]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,3,4,2,6,5] => ? = 4
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [4,3,3,2]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,3,4,6,2,5] => ? = 2
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => 1
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,3,4,2] => 2
[1,1,1,1,0,0,1,1,0,0,0,0]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 1
[1,1,1,1,0,1,0,0,1,0,0,0]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [3,1,4,2] => 2
[1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> [2,1,3] => 1
[1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [1,2,4,3] => 1
[1,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 2
[1,1,1,1,0,1,1,0,0,1,0,0,0,0]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => 1
[1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [2,4,1,3] => 2
[1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [2,1,3,4] => 1
[1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 1
[1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [2]
=> [1,1,0,0,1,0]
=> [1,3,2] => 1
Description
The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$.