Your data matches 1 statistic following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000466: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> 0
([(0,1)],2)
=> 1
([(0,2),(1,2)],3)
=> 6
([(0,1),(0,2),(1,2)],3)
=> 12
([(0,3),(1,3),(2,3)],4)
=> 15
([(0,3),(1,2),(2,3)],4)
=> 19
([(0,3),(1,2),(1,3),(2,3)],4)
=> 27
([(0,2),(0,3),(1,2),(1,3)],4)
=> 32
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 41
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 54
([(0,4),(1,4),(2,4),(3,4)],5)
=> 28
([(0,4),(1,4),(2,3),(3,4)],5)
=> 36
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 46
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 57
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 50
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 66
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 78
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 88
([(0,4),(1,3),(2,3),(2,4)],5)
=> 44
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 58
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 72
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 60
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 77
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 93
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 72
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 85
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 113
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 99
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 120
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 138
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 160
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 45
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 57
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 69
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 73
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 61
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 86
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 77
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 95
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 94
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 115
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 99
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 123
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 144
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 153
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 69
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 85
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 101
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 90
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> 95
Description
The Gutman (or modified Schultz) index of a connected graph. This is $$\sum_{\{u,v\}\subseteq V} d(u)d(v)d(u,v)$$ where $d(u)$ is the degree of vertex $u$ and $d(u,v)$ is the distance between vertices $u$ and $v$. For trees on $n$ vertices, the modified Schultz index is related to the Wiener index via $S^\ast(T)=4W(T)-(n-1)(2n-1)$ [1].