searching the database
Your data matches 1 statistic following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000479
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
([],1)
=> 1
([],2)
=> 2
([(0,1)],2)
=> 2
([],3)
=> 3
([(1,2)],3)
=> 3
([(0,2),(1,2)],3)
=> 3
([(0,1),(0,2),(1,2)],3)
=> 6
([],4)
=> 4
([(2,3)],4)
=> 4
([(1,3),(2,3)],4)
=> 4
([(0,3),(1,3),(2,3)],4)
=> 6
([(0,3),(1,2)],4)
=> 5
([(0,3),(1,2),(2,3)],4)
=> 5
([(1,2),(1,3),(2,3)],4)
=> 6
([(0,3),(1,2),(1,3),(2,3)],4)
=> 7
([(0,2),(0,3),(1,2),(1,3)],4)
=> 6
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 10
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 18
([],5)
=> 5
([(3,4)],5)
=> 5
([(2,4),(3,4)],5)
=> 5
([(1,4),(2,4),(3,4)],5)
=> 6
([(0,4),(1,4),(2,4),(3,4)],5)
=> 7
([(1,4),(2,3)],5)
=> 5
([(1,4),(2,3),(3,4)],5)
=> 5
([(0,1),(2,4),(3,4)],5)
=> 6
([(2,3),(2,4),(3,4)],5)
=> 6
([(0,4),(1,4),(2,3),(3,4)],5)
=> 6
([(1,4),(2,3),(2,4),(3,4)],5)
=> 7
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 9
([(1,3),(1,4),(2,3),(2,4)],5)
=> 6
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 6
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 10
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 9
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 10
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 10
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 14
([(0,4),(1,3),(2,3),(2,4)],5)
=> 6
([(0,1),(2,3),(2,4),(3,4)],5)
=> 7
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 9
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 9
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 9
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 9
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 10
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 10
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 18
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 18
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 18
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 10
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 15
Description
The Ramsey number of a graph.
This is the smallest integer $n$ such that every two-colouring of the edges of the complete graph $K_n$ contains a (not necessarily induced) monochromatic copy of the given graph. [1]
Thus, the Ramsey number of the complete graph $K_n$ is the ordinary Ramsey number $R(n,n)$. Very few of these numbers are known, in particular, it is only known that $43\leq R(5,5)\leq 48$. [2,3,4,5]
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!