Your data matches 433 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00201: Dyck paths RingelPermutations
St000488: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,1,0,0]
=> [2,3,1] => 0
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [4,3,1,2] => 0
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [2,3,4,1] => 0
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => 1
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => 0
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => 0
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => 0
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 0
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => 0
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => 0
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => 0
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [2,6,5,1,3,4] => 1
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => 0
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [6,3,5,1,2,4] => 0
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [6,5,4,1,2,3] => 1
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [5,3,4,1,6,2] => 0
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [2,3,6,5,1,4] => 0
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [2,6,4,5,1,3] => 0
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [6,3,4,5,1,2] => 0
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => 0
[]
=> [1,0]
=> [2,1] => 1
Description
The number of cycles of a permutation of length at most 2.
Matching statistic: St000513
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00201: Dyck paths RingelPermutations
Mp00108: Permutations cycle typeInteger partitions
St000513: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,1,0,0]
=> [2,3,1] => [3]
=> 0
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [4,3,1,2] => [4]
=> 0
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [2,3,4,1] => [4]
=> 0
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [3,2]
=> 1
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => [5]
=> 0
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [5]
=> 0
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [5]
=> 0
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [3,3]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => [4,2]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => [6]
=> 0
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => [3,3]
=> 0
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => [6]
=> 0
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [2,6,5,1,3,4] => [4,2]
=> 1
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => [6]
=> 0
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [6,3,5,1,2,4] => [3,3]
=> 0
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [6,5,4,1,2,3] => [4,2]
=> 1
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [5,3,4,1,6,2] => [6]
=> 0
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [2,3,6,5,1,4] => [6]
=> 0
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [2,6,4,5,1,3] => [6]
=> 0
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [6,3,4,5,1,2] => [6]
=> 0
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [6]
=> 0
[]
=> [1,0]
=> [2,1] => [2]
=> 1
Description
The number of invariant subsets of size 2 when acting with a permutation of given cycle type.
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00201: Dyck paths RingelPermutations
Mp00108: Permutations cycle typeInteger partitions
St001657: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,1,0,0]
=> [2,3,1] => [3]
=> 0
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [4,3,1,2] => [4]
=> 0
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [2,3,4,1] => [4]
=> 0
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [3,2]
=> 1
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => [5]
=> 0
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [5]
=> 0
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [5]
=> 0
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [3,3]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => [4,2]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => [6]
=> 0
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => [3,3]
=> 0
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => [6]
=> 0
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [2,6,5,1,3,4] => [4,2]
=> 1
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => [6]
=> 0
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [6,3,5,1,2,4] => [3,3]
=> 0
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [6,5,4,1,2,3] => [4,2]
=> 1
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [5,3,4,1,6,2] => [6]
=> 0
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [2,3,6,5,1,4] => [6]
=> 0
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [2,6,4,5,1,3] => [6]
=> 0
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [6,3,4,5,1,2] => [6]
=> 0
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [6]
=> 0
[]
=> [1,0]
=> [2,1] => [2]
=> 1
Description
The number of twos in an integer partition. The total number of twos in all partitions of $n$ is equal to the total number of singletons [[St001484]] in all partitions of $n-1$, see [1].
St001137: Dyck paths ⟶ ℤResult quality: 96% values known / values provided: 96%distinct values known / distinct values provided: 100%
Values
[1,0]
=> 0
[1,0,1,0]
=> 0
[1,1,0,0]
=> 0
[1,0,1,0,1,0]
=> 1
[1,0,1,1,0,0]
=> 0
[1,1,0,0,1,0]
=> 0
[1,1,0,1,0,0]
=> 0
[1,1,1,0,0,0]
=> 0
[1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> 0
[1,0,1,1,0,1,0,0]
=> 0
[1,0,1,1,1,0,0,0]
=> 0
[1,1,0,0,1,0,1,0]
=> 1
[1,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,0,0,1,0]
=> 0
[1,1,0,1,0,1,0,0]
=> 1
[1,1,0,1,1,0,0,0]
=> 0
[1,1,1,0,0,0,1,0]
=> 0
[1,1,1,0,0,1,0,0]
=> 0
[1,1,1,0,1,0,0,0]
=> 0
[1,1,1,1,0,0,0,0]
=> 0
[]
=> ? = 1
Description
Number of simple modules that are 3-regular in the corresponding Nakayama algebra.
Matching statistic: St000360
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
Mp00086: Permutations first fundamental transformationPermutations
Mp00254: Permutations Inverse fireworks mapPermutations
St000360: Permutations ⟶ ℤResult quality: 96% values known / values provided: 96%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => [1] => 0
[1,0,1,0]
=> [2,1] => [2,1] => [2,1] => 0
[1,1,0,0]
=> [1,2] => [1,2] => [1,2] => 0
[1,0,1,0,1,0]
=> [2,3,1] => [3,2,1] => [3,2,1] => 1
[1,0,1,1,0,0]
=> [2,1,3] => [2,1,3] => [2,1,3] => 0
[1,1,0,0,1,0]
=> [1,3,2] => [1,3,2] => [1,3,2] => 0
[1,1,0,1,0,0]
=> [3,1,2] => [2,3,1] => [1,3,2] => 0
[1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => [1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => [4,2,3,1] => [4,1,3,2] => 0
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => [3,2,1,4] => [3,2,1,4] => 1
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => [2,1,4,3] => [2,1,4,3] => 0
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => [3,2,4,1] => [2,1,4,3] => 0
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => [2,1,3,4] => [2,1,3,4] => 0
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => [1,4,3,2] => [1,4,3,2] => 1
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [1,3,2,4] => [1,3,2,4] => 0
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => [3,4,1,2] => [2,4,1,3] => 0
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => [2,4,3,1] => [1,4,3,2] => 1
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => [2,3,1,4] => [1,3,2,4] => 0
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => [1,2,4,3] => [1,2,4,3] => 0
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [1,3,4,2] => [1,2,4,3] => 0
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => [2,3,4,1] => [1,2,4,3] => 0
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0
[]
=> [] => [] => ? => ? = 1
Description
The number of occurrences of the pattern 32-1. See [[Permutations/#Pattern-avoiding_permutations]] for the definition of the pattern $32\!\!-\!\!1$.
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
Mp00086: Permutations first fundamental transformationPermutations
Mp00069: Permutations complementPermutations
St000365: Permutations ⟶ ℤResult quality: 96% values known / values provided: 96%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => [1] => 0
[1,0,1,0]
=> [2,1] => [2,1] => [1,2] => 0
[1,1,0,0]
=> [1,2] => [1,2] => [2,1] => 0
[1,0,1,0,1,0]
=> [2,3,1] => [3,2,1] => [1,2,3] => 1
[1,0,1,1,0,0]
=> [2,1,3] => [2,1,3] => [2,3,1] => 0
[1,1,0,0,1,0]
=> [1,3,2] => [1,3,2] => [3,1,2] => 0
[1,1,0,1,0,0]
=> [3,1,2] => [2,3,1] => [2,1,3] => 0
[1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => [3,2,1] => 0
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => [4,2,3,1] => [1,3,2,4] => 0
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => [3,2,1,4] => [2,3,4,1] => 1
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => [2,1,4,3] => [3,4,1,2] => 0
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => [3,2,4,1] => [2,3,1,4] => 0
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => [2,1,3,4] => [3,4,2,1] => 0
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => [1,4,3,2] => [4,1,2,3] => 1
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [1,3,2,4] => [4,2,3,1] => 0
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => [3,4,1,2] => [2,1,4,3] => 0
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => [2,4,3,1] => [3,1,2,4] => 1
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => [2,3,1,4] => [3,2,4,1] => 0
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => [1,2,4,3] => [4,3,1,2] => 0
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [1,3,4,2] => [4,2,1,3] => 0
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => [2,3,4,1] => [3,2,1,4] => 0
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => [4,3,2,1] => 0
[]
=> [] => [] => [] => ? = 1
Description
The number of double ascents of a permutation. A double ascent of a permutation $\pi$ is a position $i$ such that $\pi(i) < \pi(i+1) < \pi(i+2)$.
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
Mp00086: Permutations first fundamental transformationPermutations
Mp00241: Permutations invert Laguerre heapPermutations
St000366: Permutations ⟶ ℤResult quality: 96% values known / values provided: 96%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => [1] => 0
[1,0,1,0]
=> [2,1] => [2,1] => [2,1] => 0
[1,1,0,0]
=> [1,2] => [1,2] => [1,2] => 0
[1,0,1,0,1,0]
=> [2,3,1] => [3,2,1] => [3,2,1] => 1
[1,0,1,1,0,0]
=> [2,1,3] => [2,1,3] => [2,1,3] => 0
[1,1,0,0,1,0]
=> [1,3,2] => [1,3,2] => [1,3,2] => 0
[1,1,0,1,0,0]
=> [3,1,2] => [2,3,1] => [3,1,2] => 0
[1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => [1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => [4,2,3,1] => [3,1,4,2] => 0
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => [3,2,1,4] => [3,2,1,4] => 1
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => [2,1,4,3] => [2,1,4,3] => 0
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => [3,2,4,1] => [4,1,3,2] => 0
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => [2,1,3,4] => [2,1,3,4] => 0
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => [1,4,3,2] => [1,4,3,2] => 1
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [1,3,2,4] => [1,3,2,4] => 0
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => [3,4,1,2] => [2,4,1,3] => 0
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => [2,4,3,1] => [4,3,1,2] => 1
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => [2,3,1,4] => [3,1,2,4] => 0
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => [1,2,4,3] => [1,2,4,3] => 0
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [1,3,4,2] => [1,4,2,3] => 0
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => [2,3,4,1] => [4,1,2,3] => 0
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0
[]
=> [] => [] => ? => ? = 1
Description
The number of double descents of a permutation. A double descent of a permutation $\pi$ is a position $i$ such that $\pi(i) > \pi(i+1) > \pi(i+2)$.
Matching statistic: St000373
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
Mp00235: Permutations descent views to invisible inversion bottomsPermutations
Mp00241: Permutations invert Laguerre heapPermutations
St000373: Permutations ⟶ ℤResult quality: 96% values known / values provided: 96%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => [1] => 0
[1,0,1,0]
=> [2,1] => [2,1] => [2,1] => 0
[1,1,0,0]
=> [1,2] => [1,2] => [1,2] => 0
[1,0,1,0,1,0]
=> [2,3,1] => [3,2,1] => [3,2,1] => 1
[1,0,1,1,0,0]
=> [2,1,3] => [2,1,3] => [2,1,3] => 0
[1,1,0,0,1,0]
=> [1,3,2] => [1,3,2] => [1,3,2] => 0
[1,1,0,1,0,0]
=> [3,1,2] => [3,1,2] => [2,3,1] => 0
[1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => [1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => [4,2,3,1] => [3,1,4,2] => 0
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => [3,2,1,4] => [3,2,1,4] => 1
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => [2,1,4,3] => [2,1,4,3] => 0
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => [4,2,1,3] => [3,4,2,1] => 0
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => [2,1,3,4] => [2,1,3,4] => 0
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => [1,4,3,2] => [1,4,3,2] => 1
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [1,3,2,4] => [1,3,2,4] => 0
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => [3,4,1,2] => [2,4,1,3] => 0
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => [4,1,3,2] => [3,2,4,1] => 1
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => [3,1,2,4] => [2,3,1,4] => 0
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => [1,2,4,3] => [1,2,4,3] => 0
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [1,4,2,3] => [1,3,4,2] => 0
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => [4,1,2,3] => [2,3,4,1] => 0
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0
[]
=> [] => [] => ? => ? = 1
Description
The number of weak exceedences of a permutation that are also mid-points of a decreasing subsequence of length $3$. Given a permutation $\pi = [\pi_1,\ldots,\pi_n]$, this statistic counts the number of position $j$ such that $\pi_j \geq j$ and there exist indices $i,k$ with $i < j < k$ and $\pi_i > \pi_j > \pi_k$. See also [[St000213]] and [[St000119]].
Matching statistic: St000661
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00120: Dyck paths Lalanne-Kreweras involutionDyck paths
Mp00132: Dyck paths switch returns and last double riseDyck paths
St000661: Dyck paths ⟶ ℤResult quality: 96% values known / values provided: 96%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> 0
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 0
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 0
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 0
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 0
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 0
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 0
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 0
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 0
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 0
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 0
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 0
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 0
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
[]
=> [1,0]
=> [1,0]
=> [1,0]
=> ? = 1
Description
The number of rises of length 3 of a Dyck path.
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
Mp00086: Permutations first fundamental transformationPermutations
Mp00241: Permutations invert Laguerre heapPermutations
St001728: Permutations ⟶ ℤResult quality: 96% values known / values provided: 96%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => [1] => 0
[1,0,1,0]
=> [2,1] => [2,1] => [2,1] => 0
[1,1,0,0]
=> [1,2] => [1,2] => [1,2] => 0
[1,0,1,0,1,0]
=> [2,3,1] => [3,2,1] => [3,2,1] => 1
[1,0,1,1,0,0]
=> [2,1,3] => [2,1,3] => [2,1,3] => 0
[1,1,0,0,1,0]
=> [1,3,2] => [1,3,2] => [1,3,2] => 0
[1,1,0,1,0,0]
=> [3,1,2] => [2,3,1] => [3,1,2] => 0
[1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => [1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => [4,2,3,1] => [3,1,4,2] => 0
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => [3,2,1,4] => [3,2,1,4] => 1
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => [2,1,4,3] => [2,1,4,3] => 0
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => [3,2,4,1] => [4,1,3,2] => 0
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => [2,1,3,4] => [2,1,3,4] => 0
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => [1,4,3,2] => [1,4,3,2] => 1
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [1,3,2,4] => [1,3,2,4] => 0
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => [3,4,1,2] => [2,4,1,3] => 0
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => [2,4,3,1] => [4,3,1,2] => 1
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => [2,3,1,4] => [3,1,2,4] => 0
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => [1,2,4,3] => [1,2,4,3] => 0
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [1,3,4,2] => [1,4,2,3] => 0
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => [2,3,4,1] => [4,1,2,3] => 0
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0
[]
=> [] => [] => ? => ? = 1
Description
The number of invisible descents of a permutation. A visible descent of a permutation $\pi$ is a position $i$ such that $\pi(i+1) \leq \min(i, \pi(i))$. Thus, an invisible descent satisfies $\pi(i) > \pi(i+1) > i$.
The following 423 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001744The number of occurrences of the arrow pattern 1-2 with an arrow from 1 to 2 in a permutation. St000732The number of double deficiencies of a permutation. St001552The number of inversions between excedances and fixed points of a permutation. St000649The number of 3-excedences of a permutation. St001141The number of occurrences of hills of size 3 in a Dyck path. St001423The number of distinct cubes in a binary word. St001719The number of shortest chains of small intervals from the bottom to the top in a lattice. St001095The number of non-isomorphic posets with precisely one further covering relation. St001846The number of elements which do not have a complement in the lattice. St000214The number of adjacencies of a permutation. St000215The number of adjacencies of a permutation, zero appended. St000454The largest eigenvalue of a graph if it is integral. St001465The number of adjacent transpositions in the cycle decomposition of a permutation. St000883The number of longest increasing subsequences of a permutation. St000635The number of strictly order preserving maps of a poset into itself. St001890The maximum magnitude of the Möbius function of a poset. St000237The number of small exceedances. St001498The normalised height of a Nakayama algebra with magnitude 1. St000842The breadth of a permutation. St001087The number of occurrences of the vincular pattern |12-3 in a permutation. St000405The number of occurrences of the pattern 1324 in a permutation. St000408The number of occurrences of the pattern 4231 in a permutation. St000440The number of occurrences of the pattern 4132 or of the pattern 4231 in a permutation. St000534The number of 2-rises of a permutation. St000036The evaluation at 1 of the Kazhdan-Lusztig polynomial with parameters given by the identity and the permutation. St000153The number of adjacent cycles of a permutation. St000451The length of the longest pattern of the form k 1 2. St000175Degree of the polynomial counting the number of semistandard Young tableaux when stretching the shape. St000225Difference between largest and smallest parts in a partition. St000489The number of cycles of a permutation of length at most 3. St000749The smallest integer d such that the restriction of the representation corresponding to a partition of n to the symmetric group on n-d letters has a constituent of odd degree. St000944The 3-degree of an integer partition. St001086The number of occurrences of the consecutive pattern 132 in a permutation. St001586The number of odd parts smaller than the largest even part in an integer partition. St000285The size of the preimage of the map 'to inverse des composition' from Parking functions to Integer compositions. St000455The second largest eigenvalue of a graph if it is integral. St001432The order dimension of the partition. St001609The number of coloured trees such that the multiplicities of colours are given by a partition. St001780The order of promotion on the set of standard tableaux of given shape. St001899The total number of irreducible representations contained in the higher Lie character for an integer partition. St001900The number of distinct irreducible representations contained in the higher Lie character for an integer partition. St001908The number of semistandard tableaux of distinct weight whose maximal entry is the length of the partition. St001913The number of preimages of an integer partition in Bulgarian solitaire. St001936The number of transitive factorisations of a permutation of given cycle type into star transpositions. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St000264The girth of a graph, which is not a tree. St001857The number of edges in the reduced word graph of a signed permutation. St001344The neighbouring number of a permutation. St001722The number of minimal chains with small intervals between a binary word and the top element. St000023The number of inner peaks of a permutation. St000034The maximum defect over any reduced expression for a permutation and any subexpression. St000091The descent variation of a composition. St000118The number of occurrences of the contiguous pattern [.,[.,[.,.]]] in a binary tree. St000122The number of occurrences of the contiguous pattern [.,[.,[[.,.],.]]] in a binary tree. St000130The number of occurrences of the contiguous pattern [.,[[.,.],[[.,.],.]]] in a binary tree. St000132The number of occurrences of the contiguous pattern [[.,.],[.,[[.,.],.]]] in a binary tree. St000217The number of occurrences of the pattern 312 in a permutation. St000241The number of cyclical small excedances. St000282The size of the preimage of the map 'to poset' from Ordered trees to Posets. St000338The number of pixed points of a permutation. St000357The number of occurrences of the pattern 12-3. St000358The number of occurrences of the pattern 31-2. St000370The genus of a graph. St000372The number of mid points of increasing subsequences of length 3 in a permutation. St000406The number of occurrences of the pattern 3241 in a permutation. St000407The number of occurrences of the pattern 2143 in a permutation. St000478Another weight of a partition according to Alladi. St000560The number of occurrences of the pattern {{1,2},{3,4}} in a set partition. St000562The number of internal points of a set partition. St000566The number of ways to select a row of a Ferrers shape and two cells in this row. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St000622The number of occurrences of the patterns 2143 or 4231 in a permutation. St000624The normalized sum of the minimal distances to a greater element. St000650The number of 3-rises of a permutation. St000666The number of right tethers of a permutation. St000750The number of occurrences of the pattern 4213 in a permutation. St000751The number of occurrences of either of the pattern 2143 or 2143 in a permutation. St000779The tier of a permutation. St000803The number of occurrences of the vincular pattern |132 in a permutation. St000804The number of occurrences of the vincular pattern |123 in a permutation. St000872The number of very big descents of a permutation. St000873The aix statistic of a permutation. St000881The number of short braid edges in the graph of braid moves of a permutation. St000934The 2-degree of an integer partition. St000936The number of even values of the symmetric group character corresponding to the partition. St000938The number of zeros of the symmetric group character corresponding to the partition. St000940The number of characters of the symmetric group whose value on the partition is zero. St000966Number of peaks minus the global dimension of the corresponding LNakayama algebra. St001061The number of indices that are both descents and recoils of a permutation. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St001130The number of two successive successions in a permutation. St001140Number of indecomposable modules with projective and injective dimension at least two in the corresponding Nakayama algebra. St001174The Gorenstein dimension of the algebra $A/I$ when $I$ is the tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St001195The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$. St001231The number of simple modules that are non-projective and non-injective with the property that they have projective dimension equal to one and that also the Auslander-Reiten translates of the module and the inverse Auslander-Reiten translate of the module have the same projective dimension. St001234The number of indecomposable three dimensional modules with projective dimension one. St001309The number of four-cliques in a graph. St001329The minimal number of occurrences of the outerplanar pattern in a linear ordering of the vertices of the graph. St001334The minimal number of occurrences of the 3-colorable pattern in a linear ordering of the vertices of the graph. St001411The number of patterns 321 or 3412 in a permutation. St001466The number of transpositions swapping cyclically adjacent numbers in a permutation. St001470The cyclic holeyness of a permutation. St001534The alternating sum of the coefficients of the Poincare polynomial of the poset cone. St001535The number of cyclic alignments of a permutation. St001537The number of cyclic crossings of a permutation. St001549The number of restricted non-inversions between exceedances. St001550The number of inversions between exceedances where the greater exceedance is linked. St001551The number of restricted non-inversions between exceedances where the rightmost exceedance is linked. St001559The number of transpositions that are smaller or equal to a permutation in Bruhat order while not being inversions. St001631The number of simple modules $S$ with $dim Ext^1(S,A)=1$ in the incidence algebra $A$ of the poset. St001633The number of simple modules with projective dimension two in the incidence algebra of the poset. St001663The number of occurrences of the Hertzsprung pattern 132 in a permutation. St001683The number of distinct positions of the pattern letter 3 in occurrences of 132 in a permutation. St001685The number of distinct positions of the pattern letter 1 in occurrences of 132 in a permutation. St001687The number of distinct positions of the pattern letter 2 in occurrences of 213 in a permutation. St001705The number of occurrences of the pattern 2413 in a permutation. St001715The number of non-records in a permutation. St001745The number of occurrences of the arrow pattern 13 with an arrow from 1 to 2 in a permutation. St001781The interlacing number of a set partition. St001866The nesting alignments of a signed permutation. St001871The number of triconnected components of a graph. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001877Number of indecomposable injective modules with projective dimension 2. St001906Half of the difference between the total displacement and the number of inversions and the reflection length of a permutation. St000078The number of alternating sign matrices whose left key is the permutation. St000099The number of valleys of a permutation, including the boundary. St000239The number of small weak excedances. St000243The number of cyclic valleys and cyclic peaks of a permutation. St000255The number of reduced Kogan faces with the permutation as type. St000284The Plancherel distribution on integer partitions. St000456The monochromatic index of a connected graph. St000570The Edelman-Greene number of a permutation. St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St000668The least common multiple of the parts of the partition. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000707The product of the factorials of the parts. St000708The product of the parts of an integer partition. St000770The major index of an integer partition when read from bottom to top. St000815The number of semistandard Young tableaux of partition weight of given shape. St000880The number of connected components of long braid edges in the graph of braid moves of a permutation. St000887The maximal number of nonzero entries on a diagonal of a permutation matrix. St000901The cube of the number of standard Young tableaux with shape given by the partition. St000911The number of maximal antichains of maximal size in a poset. St000929The constant term of the character polynomial of an integer partition. St000933The number of multipartitions of sizes given by an integer partition. St001063Numbers of 3-torsionfree simple modules in the corresponding Nakayama algebra. St001128The exponens consonantiae of a partition. St001162The minimum jump of a permutation. St001220The width of a permutation. St001413Half the length of the longest even length palindromic prefix of a binary word. St001493The number of simple modules with maximal even projective dimension in the corresponding Nakayama algebra. St001499The number of indecomposable projective-injective modules of a magnitude 1 Nakayama algebra. St001582The grades of the simple modules corresponding to the points in the poset of the symmetric group under the Bruhat order. St001613The binary logarithm of the size of the center of a lattice. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001693The excess length of a longest path consisting of elements and blocks of a set partition. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001881The number of factors of a lattice as a Cartesian product of lattices. St001941The evaluation at 1 of the modified Kazhdan--Lusztig R polynomial (as in [1, Section 5. St000236The number of cyclical small weak excedances. St000248The number of anti-singletons of a set partition. St000249The number of singletons (St000247) plus the number of antisingletons (St000248) of a set partition. St000308The height of the tree associated to a permutation. St000504The cardinality of the first block of a set partition. St000636The hull number of a graph. St000642The size of the smallest orbit of antichains under Panyushev complementation. St001062The maximal size of a block of a set partition. St001568The smallest positive integer that does not appear twice in the partition. St001654The monophonic hull number of a graph. St001875The number of simple modules with projective dimension at most 1. St000716The dimension of the irreducible representation of Sp(6) labelled by an integer partition. St000506The number of standard desarrangement tableaux of shape equal to the given partition. St001176The size of a partition minus its first part. St001440The number of standard Young tableaux whose major index is congruent one modulo the size of a given integer partition. St001714The number of subpartitions of an integer partition that do not dominate the conjugate subpartition. St001961The sum of the greatest common divisors of all pairs of parts. St001250The number of parts of a partition that are not congruent 0 modulo 3. St001608The number of coloured rooted trees such that the multiplicities of colours are given by a partition. St001933The largest multiplicity of a part in an integer partition. St000010The length of the partition. St000012The area of a Dyck path. St000147The largest part of an integer partition. St000148The number of odd parts of a partition. St000159The number of distinct parts of the integer partition. St000160The multiplicity of the smallest part of a partition. St000183The side length of the Durfee square of an integer partition. St000228The size of a partition. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St000329The number of evenly positioned ascents of the Dyck path, with the initial position equal to 1. St000340The number of non-final maximal constant sub-paths of length greater than one. St000369The dinv deficit of a Dyck path. St000376The bounce deficit of a Dyck path. St000378The diagonal inversion number of an integer partition. St000384The maximal part of the shifted composition of an integer partition. St000394The sum of the heights of the peaks of a Dyck path minus the number of peaks. St000459The hook length of the base cell of a partition. St000475The number of parts equal to 1 in a partition. St000533The minimum of the number of parts and the size of the first part of an integer partition. St000548The number of different non-empty partial sums of an integer partition. St000549The number of odd partial sums of an integer partition. St000783The side length of the largest staircase partition fitting into a partition. St000784The maximum of the length and the largest part of the integer partition. St000835The minimal difference in size when partitioning the integer partition into two subpartitions. St000867The sum of the hook lengths in the first row of an integer partition. St000869The sum of the hook lengths of an integer partition. St000879The number of long braid edges in the graph of braid moves of a permutation. St000897The number of different multiplicities of parts of an integer partition. St000992The alternating sum of the parts of an integer partition. St001001The number of indecomposable modules with projective and injective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St001037The number of inner corners of the upper path of the parallelogram polyomino associated with the Dyck path. St001055The Grundy value for the game of removing cells of a row in an integer partition. St001127The sum of the squares of the parts of a partition. St001189The number of simple modules with dominant and codominant dimension equal to zero in the Nakayama algebra corresponding to the Dyck path. St001194The injective dimension of $A/AfA$ in the corresponding Nakayama algebra $A$ when $Af$ is the minimal faithful projective-injective left $A$-module St001233The number of indecomposable 2-dimensional modules with projective dimension one. St001264The smallest index i such that the i-th simple module has projective dimension equal to the global dimension of the corresponding Nakayama algebra. St001265The maximal i such that the i-th simple module has projective dimension equal to the global dimension in the corresponding Nakayama algebra. St001280The number of parts of an integer partition that are at least two. St001295Gives the vector space dimension of the homomorphism space between J^2 and J^2. St001392The largest nonnegative integer which is not a part and is smaller than the largest part of the partition. St001484The number of singletons of an integer partition. St001508The degree of the standard monomial associated to a Dyck path relative to the diagonal boundary. St001541The Gini index of an integer partition. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001570The minimal number of edges to add to make a graph Hamiltonian. St001587Half of the largest even part of an integer partition. St001697The shifted natural comajor index of a standard Young tableau. St001803The maximal overlap of the cylindrical tableau associated with a tableau. St001873For a Nakayama algebra corresponding to a Dyck path, we define the matrix C with entries the Hom-spaces between $e_i J$ and $e_j J$ (the radical of the indecomposable projective modules). St001918The degree of the cyclic sieving polynomial corresponding to an integer partition. St001956The comajor index for set-valued two-row standard Young tableaux. St000026The position of the first return of a Dyck path. St000032The number of elements smaller than the given Dyck path in the Tamari Order. St000038The product of the heights of the descending steps of a Dyck path. St000063The number of linear extensions of a certain poset defined for an integer partition. St000108The number of partitions contained in the given partition. St000207Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000208Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer partition weight. St000288The number of ones in a binary word. St000290The major index of a binary word. St000297The number of leading ones in a binary word. St000318The number of addable cells of the Ferrers diagram of an integer partition. St000335The difference of lower and upper interactions. St000392The length of the longest run of ones in a binary word. St000443The number of long tunnels of a Dyck path. St000511The number of invariant subsets when acting with a permutation of given cycle type. St000532The total number of rook placements on a Ferrers board. St000655The length of the minimal rise of a Dyck path. St000667The greatest common divisor of the parts of the partition. St000733The row containing the largest entry of a standard tableau. St000738The first entry in the last row of a standard tableau. St000753The Grundy value for the game of Kayles on a binary word. St000755The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition. St000759The smallest missing part in an integer partition. St000999Number of indecomposable projective module with injective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001000Number of indecomposable modules with projective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001006Number of simple modules with projective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St001007Number of simple modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path. St001009Number of indecomposable injective modules with projective dimension g when g is the global dimension of the Nakayama algebra corresponding to the Dyck path. St001013Number of indecomposable injective modules with codominant dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001014Number of indecomposable injective modules with codominant dimension equal to the dominant dimension of the Nakayama algebra corresponding to the Dyck path. St001015Number of indecomposable injective modules with codominant dimension equal to one in the Nakayama algebra corresponding to the Dyck path. St001016Number of indecomposable injective modules with codominant dimension at most 1 in the Nakayama algebra corresponding to the Dyck path. St001088Number of indecomposable projective non-injective modules with dominant dimension equal to the injective dimension in the corresponding Nakayama algebra. St001184Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra. St001187The number of simple modules with grade at least one in the corresponding Nakayama algebra. St001191Number of simple modules $S$ with $Ext_A^i(S,A)=0$ for all $i=0,1,...,g-1$ in the corresponding Nakayama algebra $A$ with global dimension $g$. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001210Gives the maximal vector space dimension of the first Ext-group between an indecomposable module X and the regular module A, when A is the Nakayama algebra corresponding to the Dyck path. St001224Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001227The vector space dimension of the first extension group between the socle of the regular module and the Jacobson radical of the corresponding Nakayama algebra. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001241The number of non-zero radicals of the indecomposable projective modules that have injective dimension and projective dimension at most one. St001297The number of indecomposable non-injective projective modules minus the number of indecomposable non-injective projective modules that have reflexive Auslander-Reiten sequences in the corresponding Nakayama algebra. St001372The length of a longest cyclic run of ones of a binary word. St001389The number of partitions of the same length below the given integer partition. St001400The total number of Littlewood-Richardson tableaux of given shape. St001415The length of the longest palindromic prefix of a binary word. St001419The length of the longest palindromic factor beginning with a one of a binary word. St001481The minimal height of a peak of a Dyck path. St001485The modular major index of a binary word. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001515The vector space dimension of the socle of the first syzygy module of the regular module (as a bimodule). St001527The cyclic permutation representation number of an integer partition. St001571The Cartan determinant of the integer partition. St001732The number of peaks visible from the left. St001809The index of the step at the first peak of maximal height in a Dyck path. St001814The number of partitions interlacing the given partition. St000439The position of the first down step of a Dyck path. St001180Number of indecomposable injective modules with projective dimension at most 1. St001211The number of simple modules in the corresponding Nakayama algebra that have vanishing second Ext-group with the regular module. St001226The number of integers i such that the radical of the i-th indecomposable projective module has vanishing first extension group with the Jacobson radical J in the corresponding Nakayama algebra. St001492The number of simple modules that do not appear in the socle of the regular module or have no nontrivial selfextensions with the regular module in the corresponding Nakayama algebra. St001504The sum of all indegrees of vertices with indegree at least two in the resolution quiver of a Nakayama algebra corresponding to the Dyck path. St001624The breadth of a lattice. St001060The distinguishing index of a graph. St001237The number of simple modules with injective dimension at most one or dominant dimension at least one. St000882The number of connected components of short braid edges in the graph of braid moves of a permutation. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St000124The cardinality of the preimage of the Simion-Schmidt map. St000096The number of spanning trees of a graph. St000117The number of centered tunnels of a Dyck path. St000276The size of the preimage of the map 'to graph' from Ordered trees to Graphs. St000512The number of invariant subsets of size 3 when acting with a permutation of given cycle type. St000567The sum of the products of all pairs of parts. St000573The number of occurrences of the pattern {{1},{2}} such that 1 is a singleton and 2 a maximal element. St000575The number of occurrences of the pattern {{1},{2}} such that 1 is a maximal element and 2 a singleton. St000578The number of occurrences of the pattern {{1},{2}} such that 1 is a singleton. St000928The sum of the coefficients of the character polynomial of an integer partition. St000941The number of characters of the symmetric group whose value on the partition is even. St001097The coefficient of the monomial symmetric function indexed by the partition in the formal group law for linear orders. St001098The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for vertex labelled trees. St001099The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled binary trees. St001100The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled trees. St001101The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for increasing trees. St001217The projective dimension of the indecomposable injective module I[n-2] in the corresponding Nakayama algebra with simples enumerated from 0 to n-1. St001651The Frankl number of a lattice. St001850The number of Hecke atoms of a permutation. St001851The number of Hecke atoms of a signed permutation. St000260The radius of a connected graph. St000509The diagonal index (content) of a partition. St000510The number of invariant oriented cycles when acting with a permutation of given cycle type. St000681The Grundy value of Chomp on Ferrers diagrams. St000706The product of the factorials of the multiplicities of an integer partition. St000729The minimal arc length of a set partition. St000813The number of zero-one matrices with weakly decreasing column sums and row sums given by the partition. St000927The alternating sum of the coefficients of the character polynomial of an integer partition. St000939The number of characters of the symmetric group whose value on the partition is positive. St000968We make a CNakayama algebra out of the LNakayama algebra (corresponding to the Dyck path) $[c_0,c_1,...,c_{n−1}]$ by adding $c_0$ to $c_{n−1}$. St000990The first ascent of a permutation. St000993The multiplicity of the largest part of an integer partition. St001050The number of terminal closers of a set partition. St001123The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. St001236The dominant dimension of the corresponding Comp-Nakayama algebra. St000477The weight of a partition according to Alladi. St000514The number of invariant simple graphs when acting with a permutation of given cycle type. St000515The number of invariant set partitions when acting with a permutation of given cycle type. St000937The number of positive values of the symmetric group character corresponding to the partition. St000997The even-odd crank of an integer partition. St001720The minimal length of a chain of small intervals in a lattice. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St000713The dimension of the irreducible representation of Sp(4) labelled by an integer partition. St000102The charge of a semistandard tableau. St001556The number of inversions of the third entry of a permutation. St001948The number of augmented double ascents of a permutation. St001960The number of descents of a permutation minus one if its first entry is not one. St001208The number of connected components of the quiver of $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra $A$ of $K[x]/(x^n)$. St001569The maximal modular displacement of a permutation. St000095The number of triangles of a graph. St000101The cocharge of a semistandard tableau. St000188The area of the Dyck path corresponding to a parking function and the total displacement of a parking function. St000195The number of secondary dinversion pairs of the dyck path corresponding to a parking function. St000274The number of perfect matchings of a graph. St000303The determinant of the product of the incidence matrix and its transpose of a graph divided by $4$. St000315The number of isolated vertices of a graph. St000689The maximal n such that the minimal generator-cogenerator module in the LNakayama algebra of a Dyck path is n-rigid. St000894The trace of an alternating sign matrix. St000943The number of spots the most unlucky car had to go further in a parking function. St001314The number of tilting modules of arbitrary projective dimension that have no simple modules as a direct summand in the corresponding Nakayama algebra. St001429The number of negative entries in a signed permutation. St001520The number of strict 3-descents. St001557The number of inversions of the second entry of a permutation. St001572The minimal number of edges to remove to make a graph bipartite. St001573The minimal number of edges to remove to make a graph triangle-free. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St001690The length of a longest path in a graph such that after removing the paths edges, every vertex of the path has distance two from some other vertex of the path. St001771The number of occurrences of the signed pattern 1-2 in a signed permutation. St001783The number of odd automorphisms of a graph. St001811The Castelnuovo-Mumford regularity of a permutation. St001856The number of edges in the reduced word graph of a permutation. St001862The number of crossings of a signed permutation. St001868The number of alignments of type NE of a signed permutation. St001870The number of positive entries followed by a negative entry in a signed permutation. St001882The number of occurrences of a type-B 231 pattern in a signed permutation. St001895The oddness of a signed permutation. St001903The number of fixed points of a parking function. St001926Sparre Andersen's position of the maximum of a signed permutation. St001964The interval resolution global dimension of a poset. St000181The number of connected components of the Hasse diagram for the poset. St000261The edge connectivity of a graph. St000262The vertex connectivity of a graph. St000287The number of connected components of a graph. St000309The number of vertices with even degree. St000310The minimal degree of a vertex of a graph. St000450The number of edges minus the number of vertices plus 2 of a graph. St000739The first entry in the last row of a semistandard tableau. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000958The number of Bruhat factorizations of a permutation. St001204Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001260The permanent of an alternating sign matrix. St001410The minimal entry of a semistandard tableau. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001490The number of connected components of a skew partition. St001518The number of graphs with the same ordinary spectrum as the given graph. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St001805The maximal overlap of a cylindrical tableau associated with a semistandard tableau. St001828The Euler characteristic of a graph. St001889The size of the connectivity set of a signed permutation. St001904The length of the initial strictly increasing segment of a parking function. St001937The size of the center of a parking function. St001946The number of descents in a parking function. St000134The size of the orbit of an alternating sign matrix under gyration. St000259The diameter of a connected graph. St000822The Hadwiger number of the graph. St000893The number of distinct diagonal sums of an alternating sign matrix. St000898The number of maximal entries in the last diagonal of the monotone triangle. St001235The global dimension of the corresponding Comp-Nakayama algebra. St001330The hat guessing number of a graph. St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path. St001555The order of a signed permutation. St001734The lettericity of a graph. St001893The flag descent of a signed permutation. St001404The number of distinct entries in a Gelfand Tsetlin pattern. St001738The minimal order of a graph which is not an induced subgraph of the given graph.