searching the database
Your data matches 22 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000491
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00138: Dyck paths —to noncrossing partition⟶ Set partitions
St000491: Set partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000491: Set partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> {{1},{2}}
=> 0
[1,1,0,0]
=> {{1,2}}
=> 0
[1,0,1,0,1,0]
=> {{1},{2},{3}}
=> 0
[1,0,1,1,0,0]
=> {{1},{2,3}}
=> 0
[1,1,0,0,1,0]
=> {{1,2},{3}}
=> 0
[1,1,0,1,0,0]
=> {{1,3},{2}}
=> 1
[1,1,1,0,0,0]
=> {{1,2,3}}
=> 0
[1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4}}
=> 0
[1,0,1,0,1,1,0,0]
=> {{1},{2},{3,4}}
=> 0
[1,0,1,1,0,0,1,0]
=> {{1},{2,3},{4}}
=> 0
[1,0,1,1,0,1,0,0]
=> {{1},{2,4},{3}}
=> 1
[1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> 0
[1,1,0,0,1,0,1,0]
=> {{1,2},{3},{4}}
=> 0
[1,1,0,0,1,1,0,0]
=> {{1,2},{3,4}}
=> 0
[1,1,0,1,0,0,1,0]
=> {{1,3},{2},{4}}
=> 1
[1,1,0,1,0,1,0,0]
=> {{1,4},{2},{3}}
=> 2
[1,1,0,1,1,0,0,0]
=> {{1,3,4},{2}}
=> 2
[1,1,1,0,0,0,1,0]
=> {{1,2,3},{4}}
=> 0
[1,1,1,0,0,1,0,0]
=> {{1,4},{2,3}}
=> 1
[1,1,1,0,1,0,0,0]
=> {{1,2,4},{3}}
=> 1
[1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4},{5}}
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4,5}}
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> {{1},{2},{3,4},{5}}
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> {{1},{2},{3,5},{4}}
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5}}
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> {{1},{2,3},{4},{5}}
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4,5}}
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> {{1},{2,4},{3},{5}}
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> {{1},{2,5},{3},{4}}
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> {{1},{2,4,5},{3}}
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> {{1},{2,3,4},{5}}
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> {{1},{2,5},{3,4}}
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> {{1},{2,3,5},{4}}
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3,4,5}}
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> {{1,2},{3},{4},{5}}
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> {{1,2},{3},{4,5}}
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> {{1,2},{3,4},{5}}
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> {{1,2},{3,5},{4}}
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5}}
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> {{1,3},{2},{4},{5}}
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> {{1,3},{2},{4,5}}
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> {{1,4},{2},{3},{5}}
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> {{1,5},{2},{3},{4}}
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> {{1,4,5},{2},{3}}
=> 4
[1,1,0,1,1,0,0,0,1,0]
=> {{1,3,4},{2},{5}}
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> {{1,5},{2},{3,4}}
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> {{1,3,5},{2},{4}}
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> {{1,3,4,5},{2}}
=> 3
[1,1,1,0,0,0,1,0,1,0]
=> {{1,2,3},{4},{5}}
=> 0
Description
The number of inversions of a set partition.
Let S=B1,…,Bk be a set partition with ordered blocks Bi and with minBa<minBb for a<b.
According to [1], see also [2,3], an inversion of S is given by a pair i>j such that j=minBb and i∈Ba for a<b.
This statistic is called '''ros''' in [1, Definition 3] for "right, opener, smaller".
This is also the number of occurrences of the pattern {{1, 3}, {2}} such that 1 and 2 are minimal elements of blocks.
Matching statistic: St000496
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00138: Dyck paths —to noncrossing partition⟶ Set partitions
St000496: Set partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000496: Set partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> {{1},{2}}
=> 0
[1,1,0,0]
=> {{1,2}}
=> 0
[1,0,1,0,1,0]
=> {{1},{2},{3}}
=> 0
[1,0,1,1,0,0]
=> {{1},{2,3}}
=> 0
[1,1,0,0,1,0]
=> {{1,2},{3}}
=> 0
[1,1,0,1,0,0]
=> {{1,3},{2}}
=> 1
[1,1,1,0,0,0]
=> {{1,2,3}}
=> 0
[1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4}}
=> 0
[1,0,1,0,1,1,0,0]
=> {{1},{2},{3,4}}
=> 0
[1,0,1,1,0,0,1,0]
=> {{1},{2,3},{4}}
=> 0
[1,0,1,1,0,1,0,0]
=> {{1},{2,4},{3}}
=> 1
[1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> 0
[1,1,0,0,1,0,1,0]
=> {{1,2},{3},{4}}
=> 0
[1,1,0,0,1,1,0,0]
=> {{1,2},{3,4}}
=> 0
[1,1,0,1,0,0,1,0]
=> {{1,3},{2},{4}}
=> 1
[1,1,0,1,0,1,0,0]
=> {{1,4},{2},{3}}
=> 2
[1,1,0,1,1,0,0,0]
=> {{1,3,4},{2}}
=> 2
[1,1,1,0,0,0,1,0]
=> {{1,2,3},{4}}
=> 0
[1,1,1,0,0,1,0,0]
=> {{1,4},{2,3}}
=> 1
[1,1,1,0,1,0,0,0]
=> {{1,2,4},{3}}
=> 1
[1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4},{5}}
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4,5}}
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> {{1},{2},{3,4},{5}}
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> {{1},{2},{3,5},{4}}
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5}}
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> {{1},{2,3},{4},{5}}
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4,5}}
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> {{1},{2,4},{3},{5}}
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> {{1},{2,5},{3},{4}}
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> {{1},{2,4,5},{3}}
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> {{1},{2,3,4},{5}}
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> {{1},{2,5},{3,4}}
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> {{1},{2,3,5},{4}}
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3,4,5}}
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> {{1,2},{3},{4},{5}}
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> {{1,2},{3},{4,5}}
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> {{1,2},{3,4},{5}}
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> {{1,2},{3,5},{4}}
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5}}
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> {{1,3},{2},{4},{5}}
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> {{1,3},{2},{4,5}}
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> {{1,4},{2},{3},{5}}
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> {{1,5},{2},{3},{4}}
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> {{1,4,5},{2},{3}}
=> 4
[1,1,0,1,1,0,0,0,1,0]
=> {{1,3,4},{2},{5}}
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> {{1,5},{2},{3,4}}
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> {{1,3,5},{2},{4}}
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> {{1,3,4,5},{2}}
=> 3
[1,1,1,0,0,0,1,0,1,0]
=> {{1,2,3},{4},{5}}
=> 0
Description
The rcs statistic of a set partition.
Let S=B1,…,Bk be a set partition with ordered blocks Bi and with minBa<minBb for a<b.
According to [1, Definition 3], a '''rcs''' (right-closer-smaller) of S is given by a pair i>j such that j=maxBb and i∈Ba for a<b.
Matching statistic: St000581
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00138: Dyck paths —to noncrossing partition⟶ Set partitions
St000581: Set partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000581: Set partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> {{1},{2}}
=> 0
[1,1,0,0]
=> {{1,2}}
=> 0
[1,0,1,0,1,0]
=> {{1},{2},{3}}
=> 0
[1,0,1,1,0,0]
=> {{1},{2,3}}
=> 0
[1,1,0,0,1,0]
=> {{1,2},{3}}
=> 0
[1,1,0,1,0,0]
=> {{1,3},{2}}
=> 1
[1,1,1,0,0,0]
=> {{1,2,3}}
=> 0
[1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4}}
=> 0
[1,0,1,0,1,1,0,0]
=> {{1},{2},{3,4}}
=> 0
[1,0,1,1,0,0,1,0]
=> {{1},{2,3},{4}}
=> 0
[1,0,1,1,0,1,0,0]
=> {{1},{2,4},{3}}
=> 1
[1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> 0
[1,1,0,0,1,0,1,0]
=> {{1,2},{3},{4}}
=> 0
[1,1,0,0,1,1,0,0]
=> {{1,2},{3,4}}
=> 0
[1,1,0,1,0,0,1,0]
=> {{1,3},{2},{4}}
=> 1
[1,1,0,1,0,1,0,0]
=> {{1,4},{2},{3}}
=> 2
[1,1,0,1,1,0,0,0]
=> {{1,3,4},{2}}
=> 2
[1,1,1,0,0,0,1,0]
=> {{1,2,3},{4}}
=> 0
[1,1,1,0,0,1,0,0]
=> {{1,4},{2,3}}
=> 1
[1,1,1,0,1,0,0,0]
=> {{1,2,4},{3}}
=> 1
[1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4},{5}}
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4,5}}
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> {{1},{2},{3,4},{5}}
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> {{1},{2},{3,5},{4}}
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5}}
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> {{1},{2,3},{4},{5}}
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4,5}}
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> {{1},{2,4},{3},{5}}
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> {{1},{2,5},{3},{4}}
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> {{1},{2,4,5},{3}}
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> {{1},{2,3,4},{5}}
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> {{1},{2,5},{3,4}}
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> {{1},{2,3,5},{4}}
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3,4,5}}
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> {{1,2},{3},{4},{5}}
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> {{1,2},{3},{4,5}}
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> {{1,2},{3,4},{5}}
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> {{1,2},{3,5},{4}}
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5}}
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> {{1,3},{2},{4},{5}}
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> {{1,3},{2},{4,5}}
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> {{1,4},{2},{3},{5}}
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> {{1,5},{2},{3},{4}}
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> {{1,4,5},{2},{3}}
=> 4
[1,1,0,1,1,0,0,0,1,0]
=> {{1,3,4},{2},{5}}
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> {{1,5},{2},{3,4}}
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> {{1,3,5},{2},{4}}
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> {{1,3,4,5},{2}}
=> 3
[1,1,1,0,0,0,1,0,1,0]
=> {{1,2,3},{4},{5}}
=> 0
Description
The number of occurrences of the pattern {{1,3},{2}} such that 1 is minimal, 2 is maximal.
Matching statistic: St000497
Mp00138: Dyck paths —to noncrossing partition⟶ Set partitions
Mp00216: Set partitions —inverse Wachs-White⟶ Set partitions
Mp00217: Set partitions —Wachs-White-rho ⟶ Set partitions
St000497: Set partitions ⟶ ℤResult quality: 91% ●values known / values provided: 98%●distinct values known / distinct values provided: 91%
Mp00216: Set partitions —inverse Wachs-White⟶ Set partitions
Mp00217: Set partitions —Wachs-White-rho ⟶ Set partitions
St000497: Set partitions ⟶ ℤResult quality: 91% ●values known / values provided: 98%●distinct values known / distinct values provided: 91%
Values
[1,0,1,0]
=> {{1},{2}}
=> {{1},{2}}
=> {{1},{2}}
=> 0
[1,1,0,0]
=> {{1,2}}
=> {{1,2}}
=> {{1,2}}
=> 0
[1,0,1,0,1,0]
=> {{1},{2},{3}}
=> {{1},{2},{3}}
=> {{1},{2},{3}}
=> 0
[1,0,1,1,0,0]
=> {{1},{2,3}}
=> {{1,2},{3}}
=> {{1,2},{3}}
=> 0
[1,1,0,0,1,0]
=> {{1,2},{3}}
=> {{1},{2,3}}
=> {{1},{2,3}}
=> 0
[1,1,0,1,0,0]
=> {{1,3},{2}}
=> {{1,3},{2}}
=> {{1,3},{2}}
=> 1
[1,1,1,0,0,0]
=> {{1,2,3}}
=> {{1,2,3}}
=> {{1,2,3}}
=> 0
[1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4}}
=> {{1},{2},{3},{4}}
=> {{1},{2},{3},{4}}
=> 0
[1,0,1,0,1,1,0,0]
=> {{1},{2},{3,4}}
=> {{1,2},{3},{4}}
=> {{1,2},{3},{4}}
=> 0
[1,0,1,1,0,0,1,0]
=> {{1},{2,3},{4}}
=> {{1},{2,3},{4}}
=> {{1},{2,3},{4}}
=> 0
[1,0,1,1,0,1,0,0]
=> {{1},{2,4},{3}}
=> {{1,3},{2},{4}}
=> {{1,3},{2},{4}}
=> 1
[1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> {{1,2,3},{4}}
=> {{1,2,3},{4}}
=> 0
[1,1,0,0,1,0,1,0]
=> {{1,2},{3},{4}}
=> {{1},{2},{3,4}}
=> {{1},{2},{3,4}}
=> 0
[1,1,0,0,1,1,0,0]
=> {{1,2},{3,4}}
=> {{1,2},{3,4}}
=> {{1,2},{3,4}}
=> 0
[1,1,0,1,0,0,1,0]
=> {{1,3},{2},{4}}
=> {{1},{2,4},{3}}
=> {{1},{2,4},{3}}
=> 1
[1,1,0,1,0,1,0,0]
=> {{1,4},{2},{3}}
=> {{1,4},{2},{3}}
=> {{1,4},{2},{3}}
=> 2
[1,1,0,1,1,0,0,0]
=> {{1,3,4},{2}}
=> {{1,3},{2,4}}
=> {{1,4},{2,3}}
=> 2
[1,1,1,0,0,0,1,0]
=> {{1,2,3},{4}}
=> {{1},{2,3,4}}
=> {{1},{2,3,4}}
=> 0
[1,1,1,0,0,1,0,0]
=> {{1,4},{2,3}}
=> {{1,4},{2,3}}
=> {{1,3},{2,4}}
=> 1
[1,1,1,0,1,0,0,0]
=> {{1,2,4},{3}}
=> {{1,3,4},{2}}
=> {{1,3,4},{2}}
=> 1
[1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> {{1,2,3,4}}
=> {{1,2,3,4}}
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4},{5}}
=> {{1},{2},{3},{4},{5}}
=> {{1},{2},{3},{4},{5}}
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4,5}}
=> {{1,2},{3},{4},{5}}
=> {{1,2},{3},{4},{5}}
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> {{1},{2},{3,4},{5}}
=> {{1},{2,3},{4},{5}}
=> {{1},{2,3},{4},{5}}
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> {{1},{2},{3,5},{4}}
=> {{1,3},{2},{4},{5}}
=> {{1,3},{2},{4},{5}}
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5}}
=> {{1,2,3},{4},{5}}
=> {{1,2,3},{4},{5}}
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> {{1},{2,3},{4},{5}}
=> {{1},{2},{3,4},{5}}
=> {{1},{2},{3,4},{5}}
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4,5}}
=> {{1,2},{3,4},{5}}
=> {{1,2},{3,4},{5}}
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> {{1},{2,4},{3},{5}}
=> {{1},{2,4},{3},{5}}
=> {{1},{2,4},{3},{5}}
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> {{1},{2,5},{3},{4}}
=> {{1,4},{2},{3},{5}}
=> {{1,4},{2},{3},{5}}
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> {{1},{2,4,5},{3}}
=> {{1,3},{2,4},{5}}
=> {{1,4},{2,3},{5}}
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> {{1},{2,3,4},{5}}
=> {{1},{2,3,4},{5}}
=> {{1},{2,3,4},{5}}
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> {{1},{2,5},{3,4}}
=> {{1,4},{2,3},{5}}
=> {{1,3},{2,4},{5}}
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> {{1},{2,3,5},{4}}
=> {{1,3,4},{2},{5}}
=> {{1,3,4},{2},{5}}
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3,4,5}}
=> {{1,2,3,4},{5}}
=> {{1,2,3,4},{5}}
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> {{1,2},{3},{4},{5}}
=> {{1},{2},{3},{4,5}}
=> {{1},{2},{3},{4,5}}
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> {{1,2},{3},{4,5}}
=> {{1,2},{3},{4,5}}
=> {{1,2},{3},{4,5}}
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> {{1,2},{3,4},{5}}
=> {{1},{2,3},{4,5}}
=> {{1},{2,3},{4,5}}
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> {{1,2},{3,5},{4}}
=> {{1,3},{2},{4,5}}
=> {{1,3},{2},{4,5}}
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5}}
=> {{1,2,3},{4,5}}
=> {{1,2,3},{4,5}}
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> {{1,3},{2},{4},{5}}
=> {{1},{2},{3,5},{4}}
=> {{1},{2},{3,5},{4}}
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> {{1,3},{2},{4,5}}
=> {{1,2},{3,5},{4}}
=> {{1,2},{3,5},{4}}
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> {{1,4},{2},{3},{5}}
=> {{1},{2,5},{3},{4}}
=> {{1},{2,5},{3},{4}}
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> {{1,5},{2},{3},{4}}
=> {{1,5},{2},{3},{4}}
=> {{1,5},{2},{3},{4}}
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> {{1,4,5},{2},{3}}
=> {{1,4},{2,5},{3}}
=> {{1,5},{2,4},{3}}
=> 4
[1,1,0,1,1,0,0,0,1,0]
=> {{1,3,4},{2},{5}}
=> {{1},{2,4},{3,5}}
=> {{1},{2,5},{3,4}}
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> {{1,5},{2},{3,4}}
=> {{1,5},{2,3},{4}}
=> {{1,3},{2,5},{4}}
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> {{1,3,5},{2},{4}}
=> {{1,4},{2},{3,5}}
=> {{1,5},{2},{3,4}}
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> {{1,3,4,5},{2}}
=> {{1,3,5},{2,4}}
=> {{1,5},{2,3,4}}
=> 3
[1,1,1,0,0,0,1,0,1,0]
=> {{1,2,3},{4},{5}}
=> {{1},{2},{3,4,5}}
=> {{1},{2},{3,4,5}}
=> 0
[1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> {{1},{2},{3,4,5,6,7,8}}
=> {{1,2,3,4,5,6},{7},{8}}
=> {{1,2,3,4,5,6},{7},{8}}
=> ? = 0
[1,0,1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> {{1},{2,4,5,6,7,8},{3}}
=> {{1,3,5,7},{2,4,6},{8}}
=> {{1,7},{2,3,4,5,6},{8}}
=> ? = 5
[1,0,1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> {{1},{2,3,5,6,7,8},{4}}
=> {{1,3,5},{2,4,6,7},{8}}
=> {{1,6,7},{2,3,4,5},{8}}
=> ? = 4
[1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> {{1},{2,3,4,6,7,8},{5}}
=> {{1,3,5,6,7},{2,4},{8}}
=> {{1,5,6,7},{2,3,4},{8}}
=> ? = 3
[1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> {{1},{2,3,4,5,7,8},{6}}
=> {{1,3},{2,4,5,6,7},{8}}
=> {{1,4,5,6,7},{2,3},{8}}
=> ? = 2
[1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> {{1},{2,3,4,5,6,8},{7}}
=> {{1,3,4,5,6,7},{2},{8}}
=> {{1,3,4,5,6,7},{2},{8}}
=> ? = 1
[1,1,0,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> {{1,4,5,6,7,8},{2},{3}}
=> {{1,4,7},{2,5,8},{3,6}}
=> {{1,8},{2,7},{3,4,5,6}}
=> ? = 10
[1,1,0,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> {{1,3,5,6,7,8},{2},{4}}
=> {{1,4,7},{2,5},{3,6,8}}
=> {{1,8},{2,6,7},{3,4,5}}
=> ? = 9
[1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> {{1,2,4,5,6,7,8},{3}}
=> {{1,3,5,7,8},{2,4,6}}
=> {{1,7,8},{2,3,4,5,6}}
=> ? = 5
[1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0]
=> {{1,2,3,5,6,7,8},{4}}
=> {{1,3,5},{2,4,6,7,8}}
=> {{1,6,7,8},{2,3,4,5}}
=> ? = 4
[1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> {{1,2,3,4,6,7,8},{5}}
=> {{1,3,5,6,7,8},{2,4}}
=> {{1,5,6,7,8},{2,3,4}}
=> ? = 3
Description
The lcb statistic of a set partition.
Let S=B1,…,Bk be a set partition with ordered blocks Bi and with minBa<minBb for a<b.
According to [1, Definition 3], a '''lcb''' (left-closer-bigger) of S is given by a pair i<j such that j=maxBb and i∈Ba for a>b.
Matching statistic: St000609
Mp00138: Dyck paths —to noncrossing partition⟶ Set partitions
Mp00216: Set partitions —inverse Wachs-White⟶ Set partitions
Mp00171: Set partitions —intertwining number to dual major index⟶ Set partitions
St000609: Set partitions ⟶ ℤResult quality: 98% ●values known / values provided: 98%●distinct values known / distinct values provided: 100%
Mp00216: Set partitions —inverse Wachs-White⟶ Set partitions
Mp00171: Set partitions —intertwining number to dual major index⟶ Set partitions
St000609: Set partitions ⟶ ℤResult quality: 98% ●values known / values provided: 98%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> {{1},{2}}
=> {{1},{2}}
=> {{1},{2}}
=> 0
[1,1,0,0]
=> {{1,2}}
=> {{1,2}}
=> {{1,2}}
=> 0
[1,0,1,0,1,0]
=> {{1},{2},{3}}
=> {{1},{2},{3}}
=> {{1},{2},{3}}
=> 0
[1,0,1,1,0,0]
=> {{1},{2,3}}
=> {{1,2},{3}}
=> {{1,2},{3}}
=> 0
[1,1,0,0,1,0]
=> {{1,2},{3}}
=> {{1},{2,3}}
=> {{1,3},{2}}
=> 0
[1,1,0,1,0,0]
=> {{1,3},{2}}
=> {{1,3},{2}}
=> {{1},{2,3}}
=> 1
[1,1,1,0,0,0]
=> {{1,2,3}}
=> {{1,2,3}}
=> {{1,2,3}}
=> 0
[1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4}}
=> {{1},{2},{3},{4}}
=> {{1},{2},{3},{4}}
=> 0
[1,0,1,0,1,1,0,0]
=> {{1},{2},{3,4}}
=> {{1,2},{3},{4}}
=> {{1,2},{3},{4}}
=> 0
[1,0,1,1,0,0,1,0]
=> {{1},{2,3},{4}}
=> {{1},{2,3},{4}}
=> {{1,3},{2},{4}}
=> 0
[1,0,1,1,0,1,0,0]
=> {{1},{2,4},{3}}
=> {{1,3},{2},{4}}
=> {{1},{2,3},{4}}
=> 1
[1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> {{1,2,3},{4}}
=> {{1,2,3},{4}}
=> 0
[1,1,0,0,1,0,1,0]
=> {{1,2},{3},{4}}
=> {{1},{2},{3,4}}
=> {{1,4},{2},{3}}
=> 0
[1,1,0,0,1,1,0,0]
=> {{1,2},{3,4}}
=> {{1,2},{3,4}}
=> {{1,2,4},{3}}
=> 0
[1,1,0,1,0,0,1,0]
=> {{1,3},{2},{4}}
=> {{1},{2,4},{3}}
=> {{1},{2,4},{3}}
=> 1
[1,1,0,1,0,1,0,0]
=> {{1,4},{2},{3}}
=> {{1,4},{2},{3}}
=> {{1},{2},{3,4}}
=> 2
[1,1,0,1,1,0,0,0]
=> {{1,3,4},{2}}
=> {{1,3},{2,4}}
=> {{1},{2,3,4}}
=> 2
[1,1,1,0,0,0,1,0]
=> {{1,2,3},{4}}
=> {{1},{2,3,4}}
=> {{1,3,4},{2}}
=> 0
[1,1,1,0,0,1,0,0]
=> {{1,4},{2,3}}
=> {{1,4},{2,3}}
=> {{1,3},{2,4}}
=> 1
[1,1,1,0,1,0,0,0]
=> {{1,2,4},{3}}
=> {{1,3,4},{2}}
=> {{1,4},{2,3}}
=> 1
[1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> {{1,2,3,4}}
=> {{1,2,3,4}}
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4},{5}}
=> {{1},{2},{3},{4},{5}}
=> {{1},{2},{3},{4},{5}}
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4,5}}
=> {{1,2},{3},{4},{5}}
=> {{1,2},{3},{4},{5}}
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> {{1},{2},{3,4},{5}}
=> {{1},{2,3},{4},{5}}
=> {{1,3},{2},{4},{5}}
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> {{1},{2},{3,5},{4}}
=> {{1,3},{2},{4},{5}}
=> {{1},{2,3},{4},{5}}
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5}}
=> {{1,2,3},{4},{5}}
=> {{1,2,3},{4},{5}}
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> {{1},{2,3},{4},{5}}
=> {{1},{2},{3,4},{5}}
=> {{1,4},{2},{3},{5}}
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4,5}}
=> {{1,2},{3,4},{5}}
=> {{1,2,4},{3},{5}}
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> {{1},{2,4},{3},{5}}
=> {{1},{2,4},{3},{5}}
=> {{1},{2,4},{3},{5}}
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> {{1},{2,5},{3},{4}}
=> {{1,4},{2},{3},{5}}
=> {{1},{2},{3,4},{5}}
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> {{1},{2,4,5},{3}}
=> {{1,3},{2,4},{5}}
=> {{1},{2,3,4},{5}}
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> {{1},{2,3,4},{5}}
=> {{1},{2,3,4},{5}}
=> {{1,3,4},{2},{5}}
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> {{1},{2,5},{3,4}}
=> {{1,4},{2,3},{5}}
=> {{1,3},{2,4},{5}}
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> {{1},{2,3,5},{4}}
=> {{1,3,4},{2},{5}}
=> {{1,4},{2,3},{5}}
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3,4,5}}
=> {{1,2,3,4},{5}}
=> {{1,2,3,4},{5}}
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> {{1,2},{3},{4},{5}}
=> {{1},{2},{3},{4,5}}
=> {{1,5},{2},{3},{4}}
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> {{1,2},{3},{4,5}}
=> {{1,2},{3},{4,5}}
=> {{1,2,5},{3},{4}}
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> {{1,2},{3,4},{5}}
=> {{1},{2,3},{4,5}}
=> {{1,3,5},{2},{4}}
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> {{1,2},{3,5},{4}}
=> {{1,3},{2},{4,5}}
=> {{1,5},{2,3},{4}}
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5}}
=> {{1,2,3},{4,5}}
=> {{1,2,3,5},{4}}
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> {{1,3},{2},{4},{5}}
=> {{1},{2},{3,5},{4}}
=> {{1},{2,5},{3},{4}}
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> {{1,3},{2},{4,5}}
=> {{1,2},{3,5},{4}}
=> {{1,2},{3,5},{4}}
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> {{1,4},{2},{3},{5}}
=> {{1},{2,5},{3},{4}}
=> {{1},{2},{3,5},{4}}
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> {{1,5},{2},{3},{4}}
=> {{1,5},{2},{3},{4}}
=> {{1},{2},{3},{4,5}}
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> {{1,4,5},{2},{3}}
=> {{1,4},{2,5},{3}}
=> {{1},{2},{3,4,5}}
=> 4
[1,1,0,1,1,0,0,0,1,0]
=> {{1,3,4},{2},{5}}
=> {{1},{2,4},{3,5}}
=> {{1},{2,4,5},{3}}
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> {{1,5},{2},{3,4}}
=> {{1,5},{2,3},{4}}
=> {{1,3},{2},{4,5}}
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> {{1,3,5},{2},{4}}
=> {{1,4},{2},{3,5}}
=> {{1},{2,5},{3,4}}
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> {{1,3,4,5},{2}}
=> {{1,3,5},{2,4}}
=> {{1},{2,3,4,5}}
=> 3
[1,1,1,0,0,0,1,0,1,0]
=> {{1,2,3},{4},{5}}
=> {{1},{2},{3,4,5}}
=> {{1,4,5},{2},{3}}
=> 0
[1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> {{1},{2},{3,4,5,6,7,8}}
=> {{1,2,3,4,5,6},{7},{8}}
=> {{1,2,3,4,5,6},{7},{8}}
=> ? = 0
[1,0,1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> {{1},{2,3,5,6,7,8},{4}}
=> {{1,3,5},{2,4,6,7},{8}}
=> ?
=> ? = 4
[1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> {{1},{2,3,4,6,7,8},{5}}
=> {{1,3,5,6,7},{2,4},{8}}
=> {{1,6,7},{2,3,4,5},{8}}
=> ? = 3
[1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> {{1},{2,3,4,5,7,8},{6}}
=> {{1,3},{2,4,5,6,7},{8}}
=> {{1,5,6,7},{2,3,4},{8}}
=> ? = 2
[1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> {{1},{2,3,4,5,6,7},{8}}
=> {{1},{2,3,4,5,6,7},{8}}
=> {{1,3,4,5,6,7},{2},{8}}
=> ? = 0
[1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> {{1},{2,3,4,5,6,8},{7}}
=> {{1,3,4,5,6,7},{2},{8}}
=> {{1,4,5,6,7},{2,3},{8}}
=> ? = 1
[1,1,0,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> {{1,3,5,6,7,8},{2},{4}}
=> {{1,4,7},{2,5},{3,6,8}}
=> {{1},{2,8},{3,4,5,6,7}}
=> ? = 9
[1,1,1,1,0,0,1,1,1,1,0,0,0,0,0,0]
=> {{1,2,5,6,7,8},{3,4}}
=> {{1,3,5,6},{2,4,7,8}}
=> {{1,6,8},{2,3,4,5,7}}
=> ? = 4
[1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0]
=> {{1,2,3,5,6,7,8},{4}}
=> {{1,3,5},{2,4,6,7,8}}
=> {{1,7,8},{2,3,4,5,6}}
=> ? = 4
[1,1,1,1,1,0,0,1,1,1,0,0,0,0,0,0]
=> {{1,2,3,6,7,8},{4,5}}
=> {{1,3,6,7,8},{2,4,5}}
=> {{1,5,7,8},{2,3,4,6}}
=> ? = 3
[1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> {{1,2,3,4,6,7,8},{5}}
=> {{1,3,5,6,7,8},{2,4}}
=> {{1,6,7,8},{2,3,4,5}}
=> ? = 3
[1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> {{1,2,3,4,7,8},{5,6}}
=> {{1,3,4},{2,5,6,7,8}}
=> {{1,4,6,7,8},{2,3,5}}
=> ? = 2
[1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> {{1,2,3,4,5,7,8},{6}}
=> {{1,3},{2,4,5,6,7,8}}
=> {{1,5,6,7,8},{2,3,4}}
=> ? = 2
Description
The number of occurrences of the pattern {{1},{2,3}} such that 1,2 are minimal.
Matching statistic: St001843
Mp00138: Dyck paths —to noncrossing partition⟶ Set partitions
Mp00112: Set partitions —complement⟶ Set partitions
St001843: Set partitions ⟶ ℤResult quality: 91% ●values known / values provided: 96%●distinct values known / distinct values provided: 91%
Mp00112: Set partitions —complement⟶ Set partitions
St001843: Set partitions ⟶ ℤResult quality: 91% ●values known / values provided: 96%●distinct values known / distinct values provided: 91%
Values
[1,0,1,0]
=> {{1},{2}}
=> {{1},{2}}
=> 0
[1,1,0,0]
=> {{1,2}}
=> {{1,2}}
=> 0
[1,0,1,0,1,0]
=> {{1},{2},{3}}
=> {{1},{2},{3}}
=> 0
[1,0,1,1,0,0]
=> {{1},{2,3}}
=> {{1,2},{3}}
=> 0
[1,1,0,0,1,0]
=> {{1,2},{3}}
=> {{1},{2,3}}
=> 0
[1,1,0,1,0,0]
=> {{1,3},{2}}
=> {{1,3},{2}}
=> 1
[1,1,1,0,0,0]
=> {{1,2,3}}
=> {{1,2,3}}
=> 0
[1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4}}
=> {{1},{2},{3},{4}}
=> 0
[1,0,1,0,1,1,0,0]
=> {{1},{2},{3,4}}
=> {{1,2},{3},{4}}
=> 0
[1,0,1,1,0,0,1,0]
=> {{1},{2,3},{4}}
=> {{1},{2,3},{4}}
=> 0
[1,0,1,1,0,1,0,0]
=> {{1},{2,4},{3}}
=> {{1,3},{2},{4}}
=> 1
[1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> {{1,2,3},{4}}
=> 0
[1,1,0,0,1,0,1,0]
=> {{1,2},{3},{4}}
=> {{1},{2},{3,4}}
=> 0
[1,1,0,0,1,1,0,0]
=> {{1,2},{3,4}}
=> {{1,2},{3,4}}
=> 0
[1,1,0,1,0,0,1,0]
=> {{1,3},{2},{4}}
=> {{1},{2,4},{3}}
=> 1
[1,1,0,1,0,1,0,0]
=> {{1,4},{2},{3}}
=> {{1,4},{2},{3}}
=> 2
[1,1,0,1,1,0,0,0]
=> {{1,3,4},{2}}
=> {{1,2,4},{3}}
=> 2
[1,1,1,0,0,0,1,0]
=> {{1,2,3},{4}}
=> {{1},{2,3,4}}
=> 0
[1,1,1,0,0,1,0,0]
=> {{1,4},{2,3}}
=> {{1,4},{2,3}}
=> 1
[1,1,1,0,1,0,0,0]
=> {{1,2,4},{3}}
=> {{1,3,4},{2}}
=> 1
[1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> {{1,2,3,4}}
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4},{5}}
=> {{1},{2},{3},{4},{5}}
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4,5}}
=> {{1,2},{3},{4},{5}}
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> {{1},{2},{3,4},{5}}
=> {{1},{2,3},{4},{5}}
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> {{1},{2},{3,5},{4}}
=> {{1,3},{2},{4},{5}}
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5}}
=> {{1,2,3},{4},{5}}
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> {{1},{2,3},{4},{5}}
=> {{1},{2},{3,4},{5}}
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4,5}}
=> {{1,2},{3,4},{5}}
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> {{1},{2,4},{3},{5}}
=> {{1},{2,4},{3},{5}}
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> {{1},{2,5},{3},{4}}
=> {{1,4},{2},{3},{5}}
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> {{1},{2,4,5},{3}}
=> {{1,2,4},{3},{5}}
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> {{1},{2,3,4},{5}}
=> {{1},{2,3,4},{5}}
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> {{1},{2,5},{3,4}}
=> {{1,4},{2,3},{5}}
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> {{1},{2,3,5},{4}}
=> {{1,3,4},{2},{5}}
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3,4,5}}
=> {{1,2,3,4},{5}}
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> {{1,2},{3},{4},{5}}
=> {{1},{2},{3},{4,5}}
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> {{1,2},{3},{4,5}}
=> {{1,2},{3},{4,5}}
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> {{1,2},{3,4},{5}}
=> {{1},{2,3},{4,5}}
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> {{1,2},{3,5},{4}}
=> {{1,3},{2},{4,5}}
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5}}
=> {{1,2,3},{4,5}}
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> {{1,3},{2},{4},{5}}
=> {{1},{2},{3,5},{4}}
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> {{1,3},{2},{4,5}}
=> {{1,2},{3,5},{4}}
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> {{1,4},{2},{3},{5}}
=> {{1},{2,5},{3},{4}}
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> {{1,5},{2},{3},{4}}
=> {{1,5},{2},{3},{4}}
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> {{1,4,5},{2},{3}}
=> {{1,2,5},{3},{4}}
=> 4
[1,1,0,1,1,0,0,0,1,0]
=> {{1,3,4},{2},{5}}
=> {{1},{2,3,5},{4}}
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> {{1,5},{2},{3,4}}
=> {{1,5},{2,3},{4}}
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> {{1,3,5},{2},{4}}
=> {{1,3,5},{2},{4}}
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> {{1,3,4,5},{2}}
=> {{1,2,3,5},{4}}
=> 3
[1,1,1,0,0,0,1,0,1,0]
=> {{1,2,3},{4},{5}}
=> {{1},{2},{3,4,5}}
=> 0
[1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> {{1},{2},{3,4,5,6,7,8}}
=> {{1,2,3,4,5,6},{7},{8}}
=> ? = 0
[1,0,1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> {{1},{2,4,5,6,7,8},{3}}
=> {{1,2,3,4,5,7},{6},{8}}
=> ? = 5
[1,0,1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> {{1},{2,3,5,6,7,8},{4}}
=> {{1,2,3,4,6,7},{5},{8}}
=> ? = 4
[1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> {{1},{2,3,4,6,7,8},{5}}
=> {{1,2,3,5,6,7},{4},{8}}
=> ? = 3
[1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> {{1},{2,3,4,5,7,8},{6}}
=> {{1,2,4,5,6,7},{3},{8}}
=> ? = 2
[1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> {{1},{2,3,4,5,6,7},{8}}
=> {{1},{2,3,4,5,6,7},{8}}
=> ? = 0
[1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> {{1},{2,3,4,5,6,8},{7}}
=> {{1,3,4,5,6,7},{2},{8}}
=> ? = 1
[1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> {{1},{2,3,4,5,6,7,8}}
=> {{1,2,3,4,5,6,7},{8}}
=> ? = 0
[1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> {{1,2},{3,4,5,6,7,8}}
=> {{1,2,3,4,5,6},{7,8}}
=> ? = 0
[1,1,0,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> {{1,4,5,6,7,8},{2},{3}}
=> {{1,2,3,4,5,8},{6},{7}}
=> ? = 10
[1,1,0,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> {{1,3,5,6,7,8},{2},{4}}
=> {{1,2,3,4,6,8},{5},{7}}
=> ? = 9
[1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> {{1,3,4,5,6,7,8},{2}}
=> {{1,2,3,4,5,6,8},{7}}
=> ? = 6
[1,1,1,0,0,1,1,1,1,1,0,0,0,0,0,0]
=> {{1,4,5,6,7,8},{2,3}}
=> {{1,2,3,4,5,8},{6,7}}
=> ? = 5
[1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> {{1,2,4,5,6,7,8},{3}}
=> {{1,2,3,4,5,7,8},{6}}
=> ? = 5
[1,1,1,1,0,0,1,1,1,1,0,0,0,0,0,0]
=> {{1,2,5,6,7,8},{3,4}}
=> {{1,2,3,4,7,8},{5,6}}
=> ? = 4
[1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0]
=> {{1,2,3,5,6,7,8},{4}}
=> {{1,2,3,4,6,7,8},{5}}
=> ? = 4
[1,1,1,1,1,0,0,1,1,1,0,0,0,0,0,0]
=> {{1,2,3,6,7,8},{4,5}}
=> {{1,2,3,6,7,8},{4,5}}
=> ? = 3
[1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> {{1,2,3,4,6,7,8},{5}}
=> {{1,2,3,5,6,7,8},{4}}
=> ? = 3
[1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> {{1,2,3,4,5,6},{7,8}}
=> {{1,2},{3,4,5,6,7,8}}
=> ? = 0
[1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> {{1,2,3,4,7,8},{5,6}}
=> {{1,2,5,6,7,8},{3,4}}
=> ? = 2
[1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> {{1,2,3,4,5,7,8},{6}}
=> {{1,2,4,5,6,7,8},{3}}
=> ? = 2
[1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> {{1,2,3,4,5,6,7},{8}}
=> {{1},{2,3,4,5,6,7,8}}
=> ? = 0
[1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> {{1,8},{2,3,4,5,6,7}}
=> {{1,8},{2,3,4,5,6,7}}
=> ? = 1
[1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> {{1,2,3,4,5,8},{6,7}}
=> {{1,4,5,6,7,8},{2,3}}
=> ? = 1
[1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> {{1,2,3,4,5,6,8},{7}}
=> {{1,3,4,5,6,7,8},{2}}
=> ? = 1
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> {{1,2,3,4,5,6,7,8}}
=> {{1,2,3,4,5,6,7,8}}
=> ? = 0
Description
The Z-index of a set partition.
The Mahonian representation of a set partition {B1,…,Bk} of {1,…,n} is the restricted growth word w1…wn obtained by sorting the blocks of the set partition according to their maximal element, and setting wi to the index of the block containing i.
The Z-index of w equals
∑i<jwi,j,
where wi,j is the word obtained from w by removing all letters different from i and j.
Matching statistic: St000359
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
Mp00241: Permutations —invert Laguerre heap⟶ Permutations
Mp00066: Permutations —inverse⟶ Permutations
St000359: Permutations ⟶ ℤResult quality: 39% ●values known / values provided: 39%●distinct values known / distinct values provided: 73%
Mp00241: Permutations —invert Laguerre heap⟶ Permutations
Mp00066: Permutations —inverse⟶ Permutations
St000359: Permutations ⟶ ℤResult quality: 39% ●values known / values provided: 39%●distinct values known / distinct values provided: 73%
Values
[1,0,1,0]
=> [1,2] => [1,2] => [1,2] => 0
[1,1,0,0]
=> [2,1] => [2,1] => [2,1] => 0
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => [1,2,3] => 0
[1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => [1,3,2] => 0
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => [2,1,3] => 0
[1,1,0,1,0,0]
=> [2,3,1] => [3,1,2] => [2,3,1] => 1
[1,1,1,0,0,0]
=> [3,2,1] => [3,2,1] => [3,2,1] => 0
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,4,3] => [1,2,4,3] => 0
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2,4] => [1,3,2,4] => 0
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,2,3] => [1,3,4,2] => 1
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,4,3,2] => [1,4,3,2] => 0
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => [2,1,3,4] => 0
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => [2,1,4,3] => 0
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,1,2,4] => [2,3,1,4] => 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4,1,2,3] => [2,3,4,1] => 2
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [4,3,1,2] => [3,4,2,1] => 2
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [3,2,1,4] => [3,2,1,4] => 0
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [4,1,3,2] => [2,4,3,1] => 1
[1,1,1,0,1,0,0,0]
=> [3,4,2,1] => [4,2,1,3] => [3,2,4,1] => 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [4,3,2,1] => [4,3,2,1] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,5,4] => [1,2,3,5,4] => 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,5,3,4] => [1,2,4,5,3] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [1,2,5,4,3] => [1,2,5,4,3] => 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => [1,3,2,5,4] => 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,4,2,3,5] => [1,3,4,2,5] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,2,3,4] => [1,3,4,5,2] => 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,5,4,2,3] => [1,4,5,3,2] => 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [1,4,3,2,5] => [1,4,3,2,5] => 0
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [1,5,2,4,3] => [1,3,5,4,2] => 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => [1,5,3,2,4] => [1,4,3,5,2] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [1,5,4,3,2] => [1,5,4,3,2] => 0
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => [2,1,3,4,5] => 0
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => [2,1,3,5,4] => 0
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => [2,1,4,3,5] => 0
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,3,4] => [2,1,4,5,3] => 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [2,1,5,4,3] => [2,1,5,4,3] => 0
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [3,1,2,4,5] => [2,3,1,4,5] => 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,1,2,5,4] => [2,3,1,5,4] => 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,1,2,3,5] => [2,3,4,1,5] => 2
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5,1,2,3,4] => [2,3,4,5,1] => 3
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [5,4,1,2,3] => [3,4,5,2,1] => 4
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [4,3,1,2,5] => [3,4,2,1,5] => 2
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [5,1,2,4,3] => [2,3,5,4,1] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => [5,3,1,2,4] => [3,4,2,5,1] => 3
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [5,4,3,1,2] => [4,5,3,2,1] => 3
[1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [3,2,1,4,5] => [3,2,1,4,5] => 0
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,4,6,7,5] => [1,2,3,4,7,5,6] => [1,2,3,4,6,7,5] => ? = 1
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,4,7,6,5] => [1,2,3,4,7,6,5] => [1,2,3,4,7,6,5] => ? = 0
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,3,5,4,6,7] => [1,2,3,5,4,6,7] => [1,2,3,5,4,6,7] => ? = 0
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,3,5,4,7,6] => [1,2,3,5,4,7,6] => [1,2,3,5,4,7,6] => ? = 0
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,3,5,6,4,7] => [1,2,3,6,4,5,7] => [1,2,3,5,6,4,7] => ? = 1
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,3,5,6,7,4] => [1,2,3,7,4,5,6] => [1,2,3,5,6,7,4] => ? = 2
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,2,3,5,7,6,4] => [1,2,3,7,6,4,5] => [1,2,3,6,7,5,4] => ? = 2
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,3,6,5,4,7] => [1,2,3,6,5,4,7] => [1,2,3,6,5,4,7] => ? = 0
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,2,3,6,5,7,4] => [1,2,3,7,4,6,5] => [1,2,3,5,7,6,4] => ? = 1
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,2,3,6,7,5,4] => [1,2,3,7,5,4,6] => [1,2,3,6,5,7,4] => ? = 1
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,3,7,6,5,4] => [1,2,3,7,6,5,4] => [1,2,3,7,6,5,4] => ? = 0
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,4,3,5,6,7] => [1,2,4,3,5,6,7] => [1,2,4,3,5,6,7] => ? = 0
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,2,4,3,5,7,6] => [1,2,4,3,5,7,6] => [1,2,4,3,5,7,6] => ? = 0
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,2,4,3,6,5,7] => [1,2,4,3,6,5,7] => [1,2,4,3,6,5,7] => ? = 0
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,2,4,3,6,7,5] => [1,2,4,3,7,5,6] => [1,2,4,3,6,7,5] => ? = 1
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,2,4,3,7,6,5] => [1,2,4,3,7,6,5] => [1,2,4,3,7,6,5] => ? = 0
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,2,4,5,3,6,7] => [1,2,5,3,4,6,7] => [1,2,4,5,3,6,7] => ? = 1
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,2,4,5,3,7,6] => [1,2,5,3,4,7,6] => [1,2,4,5,3,7,6] => ? = 1
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,2,4,5,6,3,7] => [1,2,6,3,4,5,7] => [1,2,4,5,6,3,7] => ? = 2
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,2,4,5,6,7,3] => [1,2,7,3,4,5,6] => [1,2,4,5,6,7,3] => ? = 3
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,2,4,5,7,6,3] => [1,2,7,6,3,4,5] => [1,2,5,6,7,4,3] => ? = 4
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,2,4,6,5,3,7] => [1,2,6,5,3,4,7] => [1,2,5,6,4,3,7] => ? = 2
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,2,4,6,5,7,3] => [1,2,7,3,4,6,5] => [1,2,4,5,7,6,3] => ? = 2
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,2,4,6,7,5,3] => [1,2,7,5,3,4,6] => [1,2,5,6,4,7,3] => ? = 3
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,2,4,7,6,5,3] => [1,2,7,6,5,3,4] => [1,2,6,7,5,4,3] => ? = 3
[1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,2,5,4,3,6,7] => [1,2,5,4,3,6,7] => [1,2,5,4,3,6,7] => ? = 0
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,2,5,4,3,7,6] => [1,2,5,4,3,7,6] => [1,2,5,4,3,7,6] => ? = 0
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,2,5,4,6,3,7] => [1,2,6,3,5,4,7] => [1,2,4,6,5,3,7] => ? = 1
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,2,5,4,6,7,3] => [1,2,7,3,5,4,6] => [1,2,4,6,5,7,3] => ? = 2
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,2,5,4,7,6,3] => [1,2,7,6,3,5,4] => [1,2,5,7,6,4,3] => ? = 2
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,2,5,6,4,3,7] => [1,2,6,4,3,5,7] => [1,2,5,4,6,3,7] => ? = 1
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,2,5,6,4,7,3] => [1,2,7,3,6,4,5] => [1,2,4,6,7,5,3] => ? = 3
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,2,5,6,7,4,3] => [1,2,7,4,3,5,6] => [1,2,5,4,6,7,3] => ? = 2
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,2,5,7,6,4,3] => [1,2,7,6,4,3,5] => [1,2,6,5,7,4,3] => ? = 2
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,2,6,5,4,3,7] => [1,2,6,5,4,3,7] => [1,2,6,5,4,3,7] => ? = 0
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,2,6,5,4,7,3] => [1,2,7,3,6,5,4] => [1,2,4,7,6,5,3] => ? = 1
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,2,6,5,7,4,3] => [1,2,7,4,3,6,5] => [1,2,5,4,7,6,3] => ? = 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,2,6,7,5,4,3] => [1,2,7,5,4,3,6] => [1,2,6,5,4,7,3] => ? = 1
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,2,7,6,5,4,3] => [1,2,7,6,5,4,3] => [1,2,7,6,5,4,3] => ? = 0
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,3,2,4,5,7,6] => [1,3,2,4,5,7,6] => [1,3,2,4,5,7,6] => ? = 0
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,3,2,4,6,5,7] => [1,3,2,4,6,5,7] => [1,3,2,4,6,5,7] => ? = 0
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,3,2,4,6,7,5] => [1,3,2,4,7,5,6] => [1,3,2,4,6,7,5] => ? = 1
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,3,2,4,7,6,5] => [1,3,2,4,7,6,5] => [1,3,2,4,7,6,5] => ? = 0
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,3,2,5,4,6,7] => [1,3,2,5,4,6,7] => [1,3,2,5,4,6,7] => ? = 0
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4,7,6] => [1,3,2,5,4,7,6] => [1,3,2,5,4,7,6] => ? = 0
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,3,2,5,6,4,7] => [1,3,2,6,4,5,7] => [1,3,2,5,6,4,7] => ? = 1
[1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,3,2,5,6,7,4] => [1,3,2,7,4,5,6] => [1,3,2,5,6,7,4] => ? = 2
[1,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,3,2,5,7,6,4] => [1,3,2,7,6,4,5] => [1,3,2,6,7,5,4] => ? = 2
[1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,3,2,6,5,4,7] => [1,3,2,6,5,4,7] => [1,3,2,6,5,4,7] => ? = 0
[1,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,3,2,6,5,7,4] => [1,3,2,7,4,6,5] => [1,3,2,5,7,6,4] => ? = 1
Description
The number of occurrences of the pattern 23-1.
See [[Permutations/#Pattern-avoiding_permutations]] for the definition of the pattern 23−1.
Matching statistic: St000355
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
Mp00326: Permutations —weak order rowmotion⟶ Permutations
St000355: Permutations ⟶ ℤResult quality: 30% ●values known / values provided: 30%●distinct values known / distinct values provided: 64%
Mp00326: Permutations —weak order rowmotion⟶ Permutations
St000355: Permutations ⟶ ℤResult quality: 30% ●values known / values provided: 30%●distinct values known / distinct values provided: 64%
Values
[1,0,1,0]
=> [1,2] => [2,1] => 0
[1,1,0,0]
=> [2,1] => [1,2] => 0
[1,0,1,0,1,0]
=> [1,2,3] => [3,2,1] => 0
[1,0,1,1,0,0]
=> [1,3,2] => [2,3,1] => 0
[1,1,0,0,1,0]
=> [2,1,3] => [3,1,2] => 0
[1,1,0,1,0,0]
=> [2,3,1] => [2,1,3] => 1
[1,1,1,0,0,0]
=> [3,2,1] => [1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [4,3,2,1] => 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [3,4,2,1] => 0
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [4,2,3,1] => 0
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [3,2,4,1] => 1
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [2,3,4,1] => 0
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [4,3,1,2] => 0
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [3,4,1,2] => 0
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [4,2,1,3] => 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [3,2,1,4] => 2
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [2,1,3,4] => 2
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [4,1,2,3] => 0
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [2,3,1,4] => 1
[1,1,1,0,1,0,0,0]
=> [3,4,2,1] => [3,1,2,4] => 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [1,2,3,4] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [5,4,3,2,1] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [4,5,3,2,1] => 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [5,3,4,2,1] => 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [4,3,5,2,1] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [3,4,5,2,1] => 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [5,4,2,3,1] => 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [4,5,2,3,1] => 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [5,3,2,4,1] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [4,3,2,5,1] => 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [3,2,4,5,1] => 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [5,2,3,4,1] => 0
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [3,4,2,5,1] => 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => [4,2,3,5,1] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [2,3,4,5,1] => 0
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [5,4,3,1,2] => 0
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [4,5,3,1,2] => 0
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [5,3,4,1,2] => 0
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [4,3,5,1,2] => 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [3,4,5,1,2] => 0
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [5,4,2,1,3] => 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [4,5,2,1,3] => 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [5,3,2,1,4] => 2
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [4,3,2,1,5] => 3
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [3,2,1,4,5] => 4
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [5,2,1,3,4] => 2
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [3,4,2,1,5] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => [4,2,1,3,5] => 3
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [2,1,3,4,5] => 3
[1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [5,4,1,2,3] => 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 0
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,5,7,6] => [6,7,5,4,3,2,1] => ? = 0
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,4,6,5,7] => [7,5,6,4,3,2,1] => ? = 0
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,4,6,7,5] => [6,5,7,4,3,2,1] => ? = 1
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,4,7,6,5] => [5,6,7,4,3,2,1] => ? = 0
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,3,5,4,6,7] => [7,6,4,5,3,2,1] => ? = 0
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,3,5,4,7,6] => [6,7,4,5,3,2,1] => ? = 0
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,3,5,6,4,7] => [7,5,4,6,3,2,1] => ? = 1
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,3,5,6,7,4] => [6,5,4,7,3,2,1] => ? = 2
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,2,3,5,7,6,4] => [5,4,6,7,3,2,1] => ? = 2
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,3,6,5,4,7] => [7,4,5,6,3,2,1] => ? = 0
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,2,3,6,5,7,4] => [5,6,4,7,3,2,1] => ? = 1
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,2,3,6,7,5,4] => [6,4,5,7,3,2,1] => ? = 1
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,3,7,6,5,4] => [4,5,6,7,3,2,1] => ? = 0
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,4,3,5,6,7] => [7,6,5,3,4,2,1] => ? = 0
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,2,4,3,5,7,6] => [6,7,5,3,4,2,1] => ? = 0
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,2,4,3,6,5,7] => [7,5,6,3,4,2,1] => ? = 0
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,2,4,3,6,7,5] => [6,5,7,3,4,2,1] => ? = 1
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,2,4,3,7,6,5] => [5,6,7,3,4,2,1] => ? = 0
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,2,4,5,3,6,7] => [7,6,4,3,5,2,1] => ? = 1
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,2,4,5,3,7,6] => [6,7,4,3,5,2,1] => ? = 1
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,2,4,5,6,3,7] => [7,5,4,3,6,2,1] => ? = 2
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,2,4,5,6,7,3] => [6,5,4,3,7,2,1] => ? = 3
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,2,4,5,7,6,3] => [5,4,3,6,7,2,1] => ? = 4
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,2,4,6,5,3,7] => [7,4,3,5,6,2,1] => ? = 2
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,2,4,6,5,7,3] => [5,6,4,3,7,2,1] => ? = 2
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,2,4,6,7,5,3] => [6,4,3,5,7,2,1] => ? = 3
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,2,4,7,6,5,3] => [4,3,5,6,7,2,1] => ? = 3
[1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,2,5,4,3,6,7] => [7,6,3,4,5,2,1] => ? = 0
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,2,5,4,3,7,6] => [6,7,3,4,5,2,1] => ? = 0
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,2,5,4,6,3,7] => [7,4,5,3,6,2,1] => ? = 1
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,2,5,4,6,7,3] => [6,4,5,3,7,2,1] => ? = 2
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,2,5,4,7,6,3] => [4,5,3,6,7,2,1] => ? = 2
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,2,5,6,4,3,7] => [7,5,3,4,6,2,1] => ? = 1
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,2,5,6,4,7,3] => [5,4,6,3,7,2,1] => ? = 3
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,2,5,6,7,4,3] => [6,5,3,4,7,2,1] => ? = 2
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,2,5,7,6,4,3] => [5,3,4,6,7,2,1] => ? = 2
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,2,6,5,4,3,7] => [7,3,4,5,6,2,1] => ? = 0
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,2,6,5,4,7,3] => [4,5,6,3,7,2,1] => ? = 1
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,2,6,5,7,4,3] => [5,6,3,4,7,2,1] => ? = 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,2,6,7,5,4,3] => [6,3,4,5,7,2,1] => ? = 1
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,2,7,6,5,4,3] => [3,4,5,6,7,2,1] => ? = 0
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6,7] => [7,6,5,4,2,3,1] => ? = 0
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,3,2,4,5,7,6] => [6,7,5,4,2,3,1] => ? = 0
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,3,2,4,6,5,7] => [7,5,6,4,2,3,1] => ? = 0
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,3,2,4,6,7,5] => [6,5,7,4,2,3,1] => ? = 1
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,3,2,4,7,6,5] => [5,6,7,4,2,3,1] => ? = 0
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,3,2,5,4,6,7] => [7,6,4,5,2,3,1] => ? = 0
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4,7,6] => [6,7,4,5,2,3,1] => ? = 0
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,3,2,5,6,4,7] => [7,5,4,6,2,3,1] => ? = 1
Description
The number of occurrences of the pattern 21-3.
See [[Permutations/#Pattern-avoiding_permutations]] for the definition of the pattern 21−3.
Matching statistic: St001330
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Mp00229: Dyck paths —Delest-Viennot⟶ Dyck paths
Mp00232: Dyck paths —parallelogram poset⟶ Posets
Mp00074: Posets —to graph⟶ Graphs
St001330: Graphs ⟶ ℤResult quality: 18% ●values known / values provided: 21%●distinct values known / distinct values provided: 18%
Mp00232: Dyck paths —parallelogram poset⟶ Posets
Mp00074: Posets —to graph⟶ Graphs
St001330: Graphs ⟶ ℤResult quality: 18% ●values known / values provided: 21%●distinct values known / distinct values provided: 18%
Values
[1,0,1,0]
=> [1,1,0,0]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 0 + 2
[1,1,0,0]
=> [1,0,1,0]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 0 + 2
[1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2 = 0 + 2
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2 = 0 + 2
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2 = 0 + 2
[1,1,0,1,0,0]
=> [1,1,1,0,0,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 3 = 1 + 2
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2 = 0 + 2
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ? = 2 + 2
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? = 2 + 2
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ? = 1 + 2
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 0 + 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 0 + 2
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 0 + 2
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 0 + 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 0 + 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 0 + 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 0 + 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 1 + 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,2),(1,4),(2,5),(3,4),(3,6),(4,5),(5,6)],7)
=> ? = 2 + 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 2 + 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 0 + 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,2),(1,4),(2,5),(3,4),(3,6),(4,5),(5,6)],7)
=> ? = 1 + 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 0 + 2
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 0 + 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 0 + 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 0 + 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 0 + 2
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,6),(1,2),(1,4),(2,5),(3,4),(3,6),(4,5),(5,6)],7)
=> ? = 2 + 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 3 + 2
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,6),(1,2),(1,4),(2,5),(3,4),(3,6),(4,5),(5,6)],7)
=> ? = 4 + 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ? = 2 + 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,4),(0,5),(1,2),(1,3),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 2 + 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,3),(0,7),(1,2),(1,7),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 3 + 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ? = 3 + 2
[1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 0 + 2
[1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 0 + 2
[1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 1 + 2
[1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,2),(1,4),(2,5),(3,4),(3,6),(4,5),(5,6)],7)
=> ? = 2 + 2
[1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 2 + 2
[1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,6),(1,2),(1,4),(2,5),(3,4),(3,6),(4,5),(5,6)],7)
=> ? = 1 + 2
[1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,3),(0,7),(1,2),(1,7),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 3 + 2
[1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,6),(0,7),(1,4),(1,5),(2,5),(2,7),(3,4),(3,6),(4,8),(5,8),(6,8),(7,8)],9)
=> ? = 2 + 2
[1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,6),(1,2),(1,4),(2,5),(3,4),(3,6),(4,5),(5,6)],7)
=> ? = 2 + 2
[1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 0 + 2
[1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,2),(1,4),(2,5),(3,4),(3,6),(4,5),(5,6)],7)
=> ? = 1 + 2
[1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 1 + 2
[1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 0 + 2
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 0 + 2
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 0 + 2
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 0 + 2
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ? = 1 + 2
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 0 + 2
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 0 + 2
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 0 + 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
=> ? = 1 + 2
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,4),(1,2),(1,5),(2,7),(3,5),(3,6),(4,6),(5,7),(6,7)],8)
=> ? = 2 + 2
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
=> ? = 2 + 2
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 0 + 2
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ? = 1 + 2
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,4),(1,2),(1,5),(2,7),(3,5),(3,6),(4,6),(5,7),(6,7)],8)
=> ? = 1 + 2
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 0 + 2
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 0 + 2
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 0 + 2
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 0 + 2
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ? = 1 + 2
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 0 + 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
=> ? = 1 + 2
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
=> ? = 1 + 2
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,7),(1,6),(2,5),(2,6),(3,4),(3,7),(4,5),(4,6),(5,7)],8)
=> ? = 2 + 2
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(0,8),(1,4),(1,8),(2,3),(2,6),(3,7),(4,5),(4,6),(5,7),(5,8),(6,7)],9)
=> ? = 3 + 2
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,7),(1,6),(2,5),(2,6),(3,4),(3,7),(4,5),(4,6),(5,7)],8)
=> ? = 4 + 2
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
=> ? = 2 + 2
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8)
=> ([(0,6),(1,2),(1,3),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 2 + 2
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(0,7),(1,3),(1,8),(2,7),(2,8),(3,5),(4,5),(4,6),(5,8),(6,7),(6,8)],9)
=> ? = 3 + 2
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
=> ? = 3 + 2
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 0 + 2
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 0 + 2
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
=> ? = 1 + 2
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,4),(1,2),(1,5),(2,7),(3,5),(3,6),(4,6),(5,7),(6,7)],8)
=> ? = 2 + 2
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 0 + 2
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 0 + 2
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 0 + 2
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 0 + 2
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 0 + 2
Description
The hat guessing number of a graph.
Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of q possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number HG(G) of a graph G is the largest integer q such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of q possible colors.
Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Matching statistic: St000441
Mp00146: Dyck paths —to tunnel matching⟶ Perfect matchings
Mp00283: Perfect matchings —non-nesting-exceedence permutation⟶ Permutations
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
St000441: Permutations ⟶ ℤResult quality: 10% ●values known / values provided: 10%●distinct values known / distinct values provided: 18%
Mp00283: Perfect matchings —non-nesting-exceedence permutation⟶ Permutations
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
St000441: Permutations ⟶ ℤResult quality: 10% ●values known / values provided: 10%●distinct values known / distinct values provided: 18%
Values
[1,0,1,0]
=> [(1,2),(3,4)]
=> [2,1,4,3] => [2,1,4,3] => 0
[1,1,0,0]
=> [(1,4),(2,3)]
=> [3,4,2,1] => [4,3,2,1] => 0
[1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> [2,1,4,3,6,5] => [2,1,4,3,6,5] => 0
[1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> [2,1,5,6,4,3] => [2,1,6,5,4,3] => 0
[1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> [3,4,2,1,6,5] => [4,3,2,1,6,5] => 0
[1,1,0,1,0,0]
=> [(1,6),(2,3),(4,5)]
=> [3,5,2,6,4,1] => [6,5,3,4,2,1] => 1
[1,1,1,0,0,0]
=> [(1,6),(2,5),(3,4)]
=> [4,5,6,3,2,1] => [6,5,4,3,2,1] => 0
[1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => [2,1,4,3,6,5,8,7] => 0
[1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> [2,1,4,3,7,8,6,5] => [2,1,4,3,8,7,6,5] => 0
[1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> [2,1,5,6,4,3,8,7] => [2,1,6,5,4,3,8,7] => 0
[1,0,1,1,0,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7)]
=> [2,1,5,7,4,8,6,3] => [2,1,8,7,5,6,4,3] => ? = 1
[1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> [2,1,6,7,8,5,4,3] => [2,1,8,7,6,5,4,3] => 0
[1,1,0,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8)]
=> [3,4,2,1,6,5,8,7] => [4,3,2,1,6,5,8,7] => 0
[1,1,0,0,1,1,0,0]
=> [(1,4),(2,3),(5,8),(6,7)]
=> [3,4,2,1,7,8,6,5] => [4,3,2,1,8,7,6,5] => 0
[1,1,0,1,0,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8)]
=> [3,5,2,6,4,1,8,7] => [6,5,3,4,2,1,8,7] => ? = 1
[1,1,0,1,0,1,0,0]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [3,5,2,7,4,8,6,1] => [8,5,3,7,2,6,4,1] => ? = 2
[1,1,0,1,1,0,0,0]
=> [(1,8),(2,3),(4,7),(5,6)]
=> [3,6,2,7,8,5,4,1] => [8,7,3,6,5,4,2,1] => ? = 2
[1,1,1,0,0,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8)]
=> [4,5,6,3,2,1,8,7] => [6,5,4,3,2,1,8,7] => 0
[1,1,1,0,0,1,0,0]
=> [(1,8),(2,5),(3,4),(6,7)]
=> [4,5,7,3,2,8,6,1] => [8,5,7,4,2,6,3,1] => ? = 1
[1,1,1,0,1,0,0,0]
=> [(1,8),(2,7),(3,4),(5,6)]
=> [4,6,7,3,8,5,2,1] => [8,7,6,4,5,3,2,1] => ? = 1
[1,1,1,1,0,0,0,0]
=> [(1,8),(2,7),(3,6),(4,5)]
=> [5,6,7,8,4,3,2,1] => [8,7,6,5,4,3,2,1] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => [2,1,4,3,6,5,8,7,10,9] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,6),(7,10),(8,9)]
=> [2,1,4,3,6,5,9,10,8,7] => [2,1,4,3,6,5,10,9,8,7] => 0
[1,0,1,0,1,1,0,0,1,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,10)]
=> [2,1,4,3,7,8,6,5,10,9] => [2,1,4,3,8,7,6,5,10,9] => 0
[1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,10),(6,7),(8,9)]
=> [2,1,4,3,7,9,6,10,8,5] => [2,1,4,3,10,9,7,8,6,5] => ? = 1
[1,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8)]
=> [2,1,4,3,8,9,10,7,6,5] => [2,1,4,3,10,9,8,7,6,5] => 0
[1,0,1,1,0,0,1,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,10)]
=> [2,1,5,6,4,3,8,7,10,9] => [2,1,6,5,4,3,8,7,10,9] => 0
[1,0,1,1,0,0,1,1,0,0]
=> [(1,2),(3,6),(4,5),(7,10),(8,9)]
=> [2,1,5,6,4,3,9,10,8,7] => [2,1,6,5,4,3,10,9,8,7] => 0
[1,0,1,1,0,1,0,0,1,0]
=> [(1,2),(3,8),(4,5),(6,7),(9,10)]
=> [2,1,5,7,4,8,6,3,10,9] => [2,1,8,7,5,6,4,3,10,9] => ? = 1
[1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,10),(4,5),(6,7),(8,9)]
=> [2,1,5,7,4,9,6,10,8,3] => [2,1,10,7,5,9,4,8,6,3] => ? = 2
[1,0,1,1,0,1,1,0,0,0]
=> [(1,2),(3,10),(4,5),(6,9),(7,8)]
=> [2,1,5,8,4,9,10,7,6,3] => [2,1,10,9,5,8,7,6,4,3] => ? = 2
[1,0,1,1,1,0,0,0,1,0]
=> [(1,2),(3,8),(4,7),(5,6),(9,10)]
=> [2,1,6,7,8,5,4,3,10,9] => [2,1,8,7,6,5,4,3,10,9] => 0
[1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,10),(4,7),(5,6),(8,9)]
=> [2,1,6,7,9,5,4,10,8,3] => [2,1,10,7,9,6,4,8,5,3] => ? = 1
[1,0,1,1,1,0,1,0,0,0]
=> [(1,2),(3,10),(4,9),(5,6),(7,8)]
=> [2,1,6,8,9,5,10,7,4,3] => [2,1,10,9,8,6,7,5,4,3] => ? = 1
[1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,10),(4,9),(5,8),(6,7)]
=> [2,1,7,8,9,10,6,5,4,3] => [2,1,10,9,8,7,6,5,4,3] => 0
[1,1,0,0,1,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,10)]
=> [3,4,2,1,6,5,8,7,10,9] => [4,3,2,1,6,5,8,7,10,9] => 0
[1,1,0,0,1,0,1,1,0,0]
=> [(1,4),(2,3),(5,6),(7,10),(8,9)]
=> [3,4,2,1,6,5,9,10,8,7] => [4,3,2,1,6,5,10,9,8,7] => 0
[1,1,0,0,1,1,0,0,1,0]
=> [(1,4),(2,3),(5,8),(6,7),(9,10)]
=> [3,4,2,1,7,8,6,5,10,9] => [4,3,2,1,8,7,6,5,10,9] => 0
[1,1,0,0,1,1,0,1,0,0]
=> [(1,4),(2,3),(5,10),(6,7),(8,9)]
=> [3,4,2,1,7,9,6,10,8,5] => [4,3,2,1,10,9,7,8,6,5] => ? = 1
[1,1,0,0,1,1,1,0,0,0]
=> [(1,4),(2,3),(5,10),(6,9),(7,8)]
=> [3,4,2,1,8,9,10,7,6,5] => [4,3,2,1,10,9,8,7,6,5] => 0
[1,1,0,1,0,0,1,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8),(9,10)]
=> [3,5,2,6,4,1,8,7,10,9] => [6,5,3,4,2,1,8,7,10,9] => ? = 1
[1,1,0,1,0,0,1,1,0,0]
=> [(1,6),(2,3),(4,5),(7,10),(8,9)]
=> [3,5,2,6,4,1,9,10,8,7] => [6,5,3,4,2,1,10,9,8,7] => ? = 1
[1,1,0,1,0,1,0,0,1,0]
=> [(1,8),(2,3),(4,5),(6,7),(9,10)]
=> [3,5,2,7,4,8,6,1,10,9] => [8,5,3,7,2,6,4,1,10,9] => ? = 2
[1,1,0,1,0,1,0,1,0,0]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [3,5,2,7,4,9,6,10,8,1] => [10,5,3,7,2,9,4,8,6,1] => ? = 3
[1,1,0,1,0,1,1,0,0,0]
=> [(1,10),(2,3),(4,5),(6,9),(7,8)]
=> [3,5,2,8,4,9,10,7,6,1] => [10,5,3,9,2,8,7,6,4,1] => ? = 4
[1,1,0,1,1,0,0,0,1,0]
=> [(1,8),(2,3),(4,7),(5,6),(9,10)]
=> [3,6,2,7,8,5,4,1,10,9] => [8,7,3,6,5,4,2,1,10,9] => ? = 2
[1,1,0,1,1,0,0,1,0,0]
=> [(1,10),(2,3),(4,7),(5,6),(8,9)]
=> [3,6,2,7,9,5,4,10,8,1] => [10,7,3,6,9,4,2,8,5,1] => ? = 2
[1,1,0,1,1,0,1,0,0,0]
=> [(1,10),(2,3),(4,9),(5,6),(7,8)]
=> [3,6,2,8,9,5,10,7,4,1] => [10,9,3,8,6,5,7,4,2,1] => ? = 3
[1,1,0,1,1,1,0,0,0,0]
=> [(1,10),(2,3),(4,9),(5,8),(6,7)]
=> [3,7,2,8,9,10,6,5,4,1] => [10,9,3,8,7,6,5,4,2,1] => ? = 3
[1,1,1,0,0,0,1,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8),(9,10)]
=> [4,5,6,3,2,1,8,7,10,9] => [6,5,4,3,2,1,8,7,10,9] => 0
[1,1,1,0,0,0,1,1,0,0]
=> [(1,6),(2,5),(3,4),(7,10),(8,9)]
=> [4,5,6,3,2,1,9,10,8,7] => [6,5,4,3,2,1,10,9,8,7] => 0
[1,1,1,0,0,1,0,0,1,0]
=> [(1,8),(2,5),(3,4),(6,7),(9,10)]
=> [4,5,7,3,2,8,6,1,10,9] => [8,5,7,4,2,6,3,1,10,9] => ? = 1
[1,1,1,0,0,1,0,1,0,0]
=> [(1,10),(2,5),(3,4),(6,7),(8,9)]
=> [4,5,7,3,2,9,6,10,8,1] => [10,5,7,4,2,9,3,8,6,1] => ? = 2
[1,1,1,0,0,1,1,0,0,0]
=> [(1,10),(2,5),(3,4),(6,9),(7,8)]
=> [4,5,8,3,2,9,10,7,6,1] => [10,5,9,4,2,8,7,6,3,1] => ? = 2
[1,1,1,0,1,0,0,0,1,0]
=> [(1,8),(2,7),(3,4),(5,6),(9,10)]
=> [4,6,7,3,8,5,2,1,10,9] => [8,7,6,4,5,3,2,1,10,9] => ? = 1
[1,1,1,0,1,0,0,1,0,0]
=> [(1,10),(2,7),(3,4),(5,6),(8,9)]
=> [4,6,7,3,9,5,2,10,8,1] => [10,7,6,4,9,3,2,8,5,1] => ? = 3
[1,1,1,0,1,0,1,0,0,0]
=> [(1,10),(2,9),(3,4),(5,6),(7,8)]
=> [4,6,8,3,9,5,10,7,2,1] => [10,9,8,6,5,4,7,3,2,1] => ? = 2
[1,1,1,0,1,1,0,0,0,0]
=> [(1,10),(2,9),(3,4),(5,8),(6,7)]
=> [4,7,8,3,9,10,6,5,2,1] => [10,9,8,7,5,6,4,3,2,1] => ? = 2
[1,1,1,1,0,0,0,0,1,0]
=> [(1,8),(2,7),(3,6),(4,5),(9,10)]
=> [5,6,7,8,4,3,2,1,10,9] => [8,7,6,5,4,3,2,1,10,9] => 0
[1,1,1,1,0,0,0,1,0,0]
=> [(1,10),(2,7),(3,6),(4,5),(8,9)]
=> [5,6,7,9,4,3,2,10,8,1] => [10,7,6,9,5,3,2,8,4,1] => ? = 1
[1,1,1,1,0,0,1,0,0,0]
=> [(1,10),(2,9),(3,6),(4,5),(7,8)]
=> [5,6,8,9,4,3,10,7,2,1] => [10,9,8,6,5,4,7,3,2,1] => ? = 1
[1,1,1,1,0,1,0,0,0,0]
=> [(1,10),(2,9),(3,8),(4,5),(6,7)]
=> [5,7,8,9,4,10,6,3,2,1] => [10,9,8,7,5,6,4,3,2,1] => ? = 1
[1,1,1,1,1,0,0,0,0,0]
=> [(1,10),(2,9),(3,8),(4,7),(5,6)]
=> [6,7,8,9,10,5,4,3,2,1] => [10,9,8,7,6,5,4,3,2,1] => 0
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)]
=> [2,1,4,3,6,5,8,7,10,9,12,11] => [2,1,4,3,6,5,8,7,10,9,12,11] => 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,12),(10,11)]
=> [2,1,4,3,6,5,8,7,11,12,10,9] => [2,1,4,3,6,5,8,7,12,11,10,9] => 0
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [(1,2),(3,4),(5,6),(7,10),(8,9),(11,12)]
=> [2,1,4,3,6,5,9,10,8,7,12,11] => [2,1,4,3,6,5,10,9,8,7,12,11] => 0
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,12),(8,9),(10,11)]
=> [2,1,4,3,6,5,9,11,8,12,10,7] => [2,1,4,3,6,5,12,11,9,10,8,7] => ? = 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,6),(7,12),(8,11),(9,10)]
=> [2,1,4,3,6,5,10,11,12,9,8,7] => [2,1,4,3,6,5,12,11,10,9,8,7] => 0
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,10),(11,12)]
=> [2,1,4,3,7,8,6,5,10,9,12,11] => [2,1,4,3,8,7,6,5,10,9,12,11] => 0
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,12),(10,11)]
=> [2,1,4,3,7,8,6,5,11,12,10,9] => [2,1,4,3,8,7,6,5,12,11,10,9] => 0
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [(1,2),(3,4),(5,10),(6,7),(8,9),(11,12)]
=> [2,1,4,3,7,9,6,10,8,5,12,11] => [2,1,4,3,10,9,7,8,6,5,12,11] => ? = 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,4),(5,12),(6,7),(8,9),(10,11)]
=> [2,1,4,3,7,9,6,11,8,12,10,5] => [2,1,4,3,12,9,7,11,6,10,8,5] => ? = 2
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [(1,2),(3,4),(5,12),(6,7),(8,11),(9,10)]
=> [2,1,4,3,7,10,6,11,12,9,8,5] => [2,1,4,3,12,11,7,10,9,8,6,5] => ? = 2
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8),(11,12)]
=> [2,1,4,3,8,9,10,7,6,5,12,11] => [2,1,4,3,10,9,8,7,6,5,12,11] => 0
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,4),(5,12),(6,9),(7,8),(10,11)]
=> [2,1,4,3,8,9,11,7,6,12,10,5] => [2,1,4,3,12,9,11,8,6,10,7,5] => ? = 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [(1,2),(3,4),(5,12),(6,11),(7,8),(9,10)]
=> [2,1,4,3,8,10,11,7,12,9,6,5] => [2,1,4,3,12,11,10,8,9,7,6,5] => ? = 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,4),(5,12),(6,11),(7,10),(8,9)]
=> [2,1,4,3,9,10,11,12,8,7,6,5] => [2,1,4,3,12,11,10,9,8,7,6,5] => 0
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,10),(11,12)]
=> [2,1,5,6,4,3,8,7,10,9,12,11] => [2,1,6,5,4,3,8,7,10,9,12,11] => 0
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,12),(10,11)]
=> [2,1,5,6,4,3,8,7,11,12,10,9] => [2,1,6,5,4,3,8,7,12,11,10,9] => 0
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,10),(8,9),(11,12)]
=> [2,1,5,6,4,3,9,10,8,7,12,11] => [2,1,6,5,4,3,10,9,8,7,12,11] => 0
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [(1,2),(3,6),(4,5),(7,12),(8,9),(10,11)]
=> [2,1,5,6,4,3,9,11,8,12,10,7] => [2,1,6,5,4,3,12,11,9,10,8,7] => ? = 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [(1,2),(3,6),(4,5),(7,12),(8,11),(9,10)]
=> [2,1,5,6,4,3,10,11,12,9,8,7] => [2,1,6,5,4,3,12,11,10,9,8,7] => 0
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [(1,2),(3,8),(4,5),(6,7),(9,10),(11,12)]
=> [2,1,5,7,4,8,6,3,10,9,12,11] => [2,1,8,7,5,6,4,3,10,9,12,11] => ? = 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7),(9,12),(10,11)]
=> [2,1,5,7,4,8,6,3,11,12,10,9] => [2,1,8,7,5,6,4,3,12,11,10,9] => ? = 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [(1,2),(3,10),(4,5),(6,7),(8,9),(11,12)]
=> [2,1,5,7,4,9,6,10,8,3,12,11] => [2,1,10,7,5,9,4,8,6,3,12,11] => ? = 2
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [(1,2),(3,12),(4,5),(6,7),(8,9),(10,11)]
=> [2,1,5,7,4,9,6,11,8,12,10,3] => [2,1,12,7,5,9,4,11,6,10,8,3] => ? = 3
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [(1,2),(3,12),(4,5),(6,7),(8,11),(9,10)]
=> [2,1,5,7,4,10,6,11,12,9,8,3] => [2,1,12,7,5,11,4,10,9,8,6,3] => ? = 4
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [(1,2),(3,10),(4,5),(6,9),(7,8),(11,12)]
=> [2,1,5,8,4,9,10,7,6,3,12,11] => [2,1,10,9,5,8,7,6,4,3,12,11] => ? = 2
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [(1,2),(3,12),(4,5),(6,9),(7,8),(10,11)]
=> [2,1,5,8,4,9,11,7,6,12,10,3] => [2,1,12,9,5,8,11,6,4,10,7,3] => ? = 2
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [(1,2),(3,12),(4,5),(6,11),(7,8),(9,10)]
=> [2,1,5,8,4,10,11,7,12,9,6,3] => [2,1,12,11,5,10,8,7,9,6,4,3] => ? = 3
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [(1,2),(3,12),(4,5),(6,11),(7,10),(8,9)]
=> [2,1,5,9,4,10,11,12,8,7,6,3] => [2,1,12,11,5,10,9,8,7,6,4,3] => ? = 3
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [(1,2),(3,8),(4,7),(5,6),(9,10),(11,12)]
=> [2,1,6,7,8,5,4,3,10,9,12,11] => [2,1,8,7,6,5,4,3,10,9,12,11] => 0
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [(1,2),(3,8),(4,7),(5,6),(9,12),(10,11)]
=> [2,1,6,7,8,5,4,3,11,12,10,9] => [2,1,8,7,6,5,4,3,12,11,10,9] => 0
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [(1,2),(3,10),(4,7),(5,6),(8,9),(11,12)]
=> [2,1,6,7,9,5,4,10,8,3,12,11] => [2,1,10,7,9,6,4,8,5,3,12,11] => ? = 1
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [(1,2),(3,12),(4,7),(5,6),(8,9),(10,11)]
=> [2,1,6,7,9,5,4,11,8,12,10,3] => [2,1,12,7,9,6,4,11,5,10,8,3] => ? = 2
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [(1,2),(3,10),(4,9),(5,8),(6,7),(11,12)]
=> [2,1,7,8,9,10,6,5,4,3,12,11] => [2,1,10,9,8,7,6,5,4,3,12,11] => 0
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [(1,2),(3,12),(4,11),(5,10),(6,9),(7,8)]
=> [2,1,8,9,10,11,12,7,6,5,4,3] => [2,1,12,11,10,9,8,7,6,5,4,3] => 0
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,10),(11,12)]
=> [3,4,2,1,6,5,8,7,10,9,12,11] => [4,3,2,1,6,5,8,7,10,9,12,11] => 0
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,12),(10,11)]
=> [3,4,2,1,6,5,8,7,11,12,10,9] => [4,3,2,1,6,5,8,7,12,11,10,9] => 0
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6),(7,10),(8,9),(11,12)]
=> [3,4,2,1,6,5,9,10,8,7,12,11] => [4,3,2,1,6,5,10,9,8,7,12,11] => 0
Description
The number of successions of a permutation.
A succession of a permutation π is an index i such that π(i)+1=π(i+1). Successions are also known as ''small ascents'' or ''1-rises''.
The following 12 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000665The number of rafts of a permutation. St000731The number of double exceedences of a permutation. St001811The Castelnuovo-Mumford regularity of a permutation. St000028The number of stack-sorts needed to sort a permutation. St000451The length of the longest pattern of the form k 1 2. St001719The number of shortest chains of small intervals from the bottom to the top in a lattice. St000058The order of a permutation. St001882The number of occurrences of a type-B 231 pattern in a signed permutation. St001868The number of alignments of type NE of a signed permutation. St000516The number of stretching pairs of a permutation. St001207The Lowey length of the algebra A/T when T is the 1-tilting module corresponding to the permutation in the Auslander algebra of K[x]/(xn). St001314The number of tilting modules of arbitrary projective dimension that have no simple modules as a direct summand in the corresponding Nakayama algebra.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!