Loading [MathJax]/jax/output/HTML-CSS/jax.js

Your data matches 23 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00138: Dyck paths to noncrossing partitionSet partitions
St000497: Set partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> {{1},{2}}
=> 0
[1,1,0,0]
=> {{1,2}}
=> 0
[1,0,1,0,1,0]
=> {{1},{2},{3}}
=> 0
[1,0,1,1,0,0]
=> {{1},{2,3}}
=> 0
[1,1,0,0,1,0]
=> {{1,2},{3}}
=> 0
[1,1,0,1,0,0]
=> {{1,3},{2}}
=> 1
[1,1,1,0,0,0]
=> {{1,2,3}}
=> 0
[1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4}}
=> 0
[1,0,1,0,1,1,0,0]
=> {{1},{2},{3,4}}
=> 0
[1,0,1,1,0,0,1,0]
=> {{1},{2,3},{4}}
=> 0
[1,0,1,1,0,1,0,0]
=> {{1},{2,4},{3}}
=> 1
[1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> 0
[1,1,0,0,1,0,1,0]
=> {{1,2},{3},{4}}
=> 0
[1,1,0,0,1,1,0,0]
=> {{1,2},{3,4}}
=> 0
[1,1,0,1,0,0,1,0]
=> {{1,3},{2},{4}}
=> 1
[1,1,0,1,0,1,0,0]
=> {{1,4},{2},{3}}
=> 2
[1,1,0,1,1,0,0,0]
=> {{1,3,4},{2}}
=> 1
[1,1,1,0,0,0,1,0]
=> {{1,2,3},{4}}
=> 0
[1,1,1,0,0,1,0,0]
=> {{1,4},{2,3}}
=> 2
[1,1,1,0,1,0,0,0]
=> {{1,2,4},{3}}
=> 1
[1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4},{5}}
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4,5}}
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> {{1},{2},{3,4},{5}}
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> {{1},{2},{3,5},{4}}
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5}}
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> {{1},{2,3},{4},{5}}
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4,5}}
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> {{1},{2,4},{3},{5}}
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> {{1},{2,5},{3},{4}}
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> {{1},{2,4,5},{3}}
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> {{1},{2,3,4},{5}}
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> {{1},{2,5},{3,4}}
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> {{1},{2,3,5},{4}}
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3,4,5}}
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> {{1,2},{3},{4},{5}}
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> {{1,2},{3},{4,5}}
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> {{1,2},{3,4},{5}}
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> {{1,2},{3,5},{4}}
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5}}
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> {{1,3},{2},{4},{5}}
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> {{1,3},{2},{4,5}}
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> {{1,4},{2},{3},{5}}
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> {{1,5},{2},{3},{4}}
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> {{1,4,5},{2},{3}}
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> {{1,3,4},{2},{5}}
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> {{1,5},{2},{3,4}}
=> 3
[1,1,0,1,1,0,1,0,0,0]
=> {{1,3,5},{2},{4}}
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> {{1,3,4,5},{2}}
=> 1
[1,1,1,0,0,0,1,0,1,0]
=> {{1,2,3},{4},{5}}
=> 0
Description
The lcb statistic of a set partition. Let $S = B_1,\ldots,B_k$ be a set partition with ordered blocks $B_i$ and with $\operatorname{min} B_a < \operatorname{min} B_b$ for $a < b$. According to [1, Definition 3], a '''lcb''' (left-closer-bigger) of $S$ is given by a pair $i < j$ such that $j = \operatorname{max} B_b$ and $i \in B_a$ for $a > b$.
Mp00138: Dyck paths to noncrossing partitionSet partitions
St000572: Set partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> {{1},{2}}
=> 0
[1,1,0,0]
=> {{1,2}}
=> 0
[1,0,1,0,1,0]
=> {{1},{2},{3}}
=> 0
[1,0,1,1,0,0]
=> {{1},{2,3}}
=> 0
[1,1,0,0,1,0]
=> {{1,2},{3}}
=> 0
[1,1,0,1,0,0]
=> {{1,3},{2}}
=> 1
[1,1,1,0,0,0]
=> {{1,2,3}}
=> 0
[1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4}}
=> 0
[1,0,1,0,1,1,0,0]
=> {{1},{2},{3,4}}
=> 0
[1,0,1,1,0,0,1,0]
=> {{1},{2,3},{4}}
=> 0
[1,0,1,1,0,1,0,0]
=> {{1},{2,4},{3}}
=> 1
[1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> 0
[1,1,0,0,1,0,1,0]
=> {{1,2},{3},{4}}
=> 0
[1,1,0,0,1,1,0,0]
=> {{1,2},{3,4}}
=> 0
[1,1,0,1,0,0,1,0]
=> {{1,3},{2},{4}}
=> 1
[1,1,0,1,0,1,0,0]
=> {{1,4},{2},{3}}
=> 2
[1,1,0,1,1,0,0,0]
=> {{1,3,4},{2}}
=> 1
[1,1,1,0,0,0,1,0]
=> {{1,2,3},{4}}
=> 0
[1,1,1,0,0,1,0,0]
=> {{1,4},{2,3}}
=> 2
[1,1,1,0,1,0,0,0]
=> {{1,2,4},{3}}
=> 1
[1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4},{5}}
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4,5}}
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> {{1},{2},{3,4},{5}}
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> {{1},{2},{3,5},{4}}
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5}}
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> {{1},{2,3},{4},{5}}
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4,5}}
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> {{1},{2,4},{3},{5}}
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> {{1},{2,5},{3},{4}}
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> {{1},{2,4,5},{3}}
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> {{1},{2,3,4},{5}}
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> {{1},{2,5},{3,4}}
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> {{1},{2,3,5},{4}}
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3,4,5}}
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> {{1,2},{3},{4},{5}}
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> {{1,2},{3},{4,5}}
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> {{1,2},{3,4},{5}}
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> {{1,2},{3,5},{4}}
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5}}
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> {{1,3},{2},{4},{5}}
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> {{1,3},{2},{4,5}}
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> {{1,4},{2},{3},{5}}
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> {{1,5},{2},{3},{4}}
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> {{1,4,5},{2},{3}}
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> {{1,3,4},{2},{5}}
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> {{1,5},{2},{3,4}}
=> 3
[1,1,0,1,1,0,1,0,0,0]
=> {{1,3,5},{2},{4}}
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> {{1,3,4,5},{2}}
=> 1
[1,1,1,0,0,0,1,0,1,0]
=> {{1,2,3},{4},{5}}
=> 0
Description
The dimension exponent of a set partition. This is $$\sum_{B\in\pi} (\max(B) - \min(B) + 1) - n$$ where the summation runs over the blocks of the set partition $\pi$ of $\{1,\dots,n\}$. It is thus equal to the difference [[St000728]] - [[St000211]]. This is also the number of occurrences of the pattern {{1, 3}, {2}}, such that 1 and 3 are consecutive elements in a block. This is also the number of occurrences of the pattern {{1, 3}, {2}}, such that 1 is the minimal and 3 is the maximal element of the block.
Matching statistic: St000609
Mp00138: Dyck paths to noncrossing partitionSet partitions
Mp00115: Set partitions Kasraoui-ZengSet partitions
Mp00171: Set partitions intertwining number to dual major indexSet partitions
St000609: Set partitions ⟶ ℤResult quality: 98% values known / values provided: 98%distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> {{1},{2}}
=> {{1},{2}}
=> {{1},{2}}
=> 0
[1,1,0,0]
=> {{1,2}}
=> {{1,2}}
=> {{1,2}}
=> 0
[1,0,1,0,1,0]
=> {{1},{2},{3}}
=> {{1},{2},{3}}
=> {{1},{2},{3}}
=> 0
[1,0,1,1,0,0]
=> {{1},{2,3}}
=> {{1},{2,3}}
=> {{1,3},{2}}
=> 0
[1,1,0,0,1,0]
=> {{1,2},{3}}
=> {{1,2},{3}}
=> {{1,2},{3}}
=> 0
[1,1,0,1,0,0]
=> {{1,3},{2}}
=> {{1,3},{2}}
=> {{1},{2,3}}
=> 1
[1,1,1,0,0,0]
=> {{1,2,3}}
=> {{1,2,3}}
=> {{1,2,3}}
=> 0
[1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4}}
=> {{1},{2},{3},{4}}
=> {{1},{2},{3},{4}}
=> 0
[1,0,1,0,1,1,0,0]
=> {{1},{2},{3,4}}
=> {{1},{2},{3,4}}
=> {{1,4},{2},{3}}
=> 0
[1,0,1,1,0,0,1,0]
=> {{1},{2,3},{4}}
=> {{1},{2,3},{4}}
=> {{1,3},{2},{4}}
=> 0
[1,0,1,1,0,1,0,0]
=> {{1},{2,4},{3}}
=> {{1},{2,4},{3}}
=> {{1},{2,4},{3}}
=> 1
[1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> {{1},{2,3,4}}
=> {{1,3,4},{2}}
=> 0
[1,1,0,0,1,0,1,0]
=> {{1,2},{3},{4}}
=> {{1,2},{3},{4}}
=> {{1,2},{3},{4}}
=> 0
[1,1,0,0,1,1,0,0]
=> {{1,2},{3,4}}
=> {{1,2},{3,4}}
=> {{1,2,4},{3}}
=> 0
[1,1,0,1,0,0,1,0]
=> {{1,3},{2},{4}}
=> {{1,3},{2},{4}}
=> {{1},{2,3},{4}}
=> 1
[1,1,0,1,0,1,0,0]
=> {{1,4},{2},{3}}
=> {{1,4},{2},{3}}
=> {{1},{2},{3,4}}
=> 2
[1,1,0,1,1,0,0,0]
=> {{1,3,4},{2}}
=> {{1,3,4},{2}}
=> {{1,4},{2,3}}
=> 1
[1,1,1,0,0,0,1,0]
=> {{1,2,3},{4}}
=> {{1,2,3},{4}}
=> {{1,2,3},{4}}
=> 0
[1,1,1,0,0,1,0,0]
=> {{1,4},{2,3}}
=> {{1,3},{2,4}}
=> {{1},{2,3,4}}
=> 2
[1,1,1,0,1,0,0,0]
=> {{1,2,4},{3}}
=> {{1,2,4},{3}}
=> {{1,2},{3,4}}
=> 1
[1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> {{1,2,3,4}}
=> {{1,2,3,4}}
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4},{5}}
=> {{1},{2},{3},{4},{5}}
=> {{1},{2},{3},{4},{5}}
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4,5}}
=> {{1},{2},{3},{4,5}}
=> {{1,5},{2},{3},{4}}
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> {{1},{2},{3,4},{5}}
=> {{1},{2},{3,4},{5}}
=> {{1,4},{2},{3},{5}}
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> {{1},{2},{3,5},{4}}
=> {{1},{2},{3,5},{4}}
=> {{1},{2,5},{3},{4}}
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5}}
=> {{1},{2},{3,4,5}}
=> {{1,4,5},{2},{3}}
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> {{1},{2,3},{4},{5}}
=> {{1},{2,3},{4},{5}}
=> {{1,3},{2},{4},{5}}
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4,5}}
=> {{1},{2,3},{4,5}}
=> {{1,3,5},{2},{4}}
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> {{1},{2,4},{3},{5}}
=> {{1},{2,4},{3},{5}}
=> {{1},{2,4},{3},{5}}
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> {{1},{2,5},{3},{4}}
=> {{1},{2,5},{3},{4}}
=> {{1},{2},{3,5},{4}}
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> {{1},{2,4,5},{3}}
=> {{1},{2,4,5},{3}}
=> {{1,5},{2,4},{3}}
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> {{1},{2,3,4},{5}}
=> {{1},{2,3,4},{5}}
=> {{1,3,4},{2},{5}}
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> {{1},{2,5},{3,4}}
=> {{1},{2,4},{3,5}}
=> {{1},{2,4,5},{3}}
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> {{1},{2,3,5},{4}}
=> {{1},{2,3,5},{4}}
=> {{1,3},{2,5},{4}}
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3,4,5}}
=> {{1},{2,3,4,5}}
=> {{1,3,4,5},{2}}
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> {{1,2},{3},{4},{5}}
=> {{1,2},{3},{4},{5}}
=> {{1,2},{3},{4},{5}}
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> {{1,2},{3},{4,5}}
=> {{1,2},{3},{4,5}}
=> {{1,2,5},{3},{4}}
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> {{1,2},{3,4},{5}}
=> {{1,2},{3,4},{5}}
=> {{1,2,4},{3},{5}}
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> {{1,2},{3,5},{4}}
=> {{1,2},{3,5},{4}}
=> {{1,2},{3,5},{4}}
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5}}
=> {{1,2},{3,4,5}}
=> {{1,2,4,5},{3}}
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> {{1,3},{2},{4},{5}}
=> {{1,3},{2},{4},{5}}
=> {{1},{2,3},{4},{5}}
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> {{1,3},{2},{4,5}}
=> {{1,3},{2},{4,5}}
=> {{1,5},{2,3},{4}}
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> {{1,4},{2},{3},{5}}
=> {{1,4},{2},{3},{5}}
=> {{1},{2},{3,4},{5}}
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> {{1,5},{2},{3},{4}}
=> {{1,5},{2},{3},{4}}
=> {{1},{2},{3},{4,5}}
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> {{1,4,5},{2},{3}}
=> {{1,4,5},{2},{3}}
=> {{1,5},{2},{3,4}}
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> {{1,3,4},{2},{5}}
=> {{1,3,4},{2},{5}}
=> {{1,4},{2,3},{5}}
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> {{1,5},{2},{3,4}}
=> {{1,4},{2},{3,5}}
=> {{1},{2,5},{3,4}}
=> 3
[1,1,0,1,1,0,1,0,0,0]
=> {{1,3,5},{2},{4}}
=> {{1,3,5},{2},{4}}
=> {{1},{2,3,5},{4}}
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> {{1,3,4,5},{2}}
=> {{1,3,4,5},{2}}
=> {{1,4,5},{2,3}}
=> 1
[1,1,1,0,0,0,1,0,1,0]
=> {{1,2,3},{4},{5}}
=> {{1,2,3},{4},{5}}
=> {{1,2,3},{4},{5}}
=> 0
[1,0,1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> {{1},{2,4,5,6,7,8},{3}}
=> {{1},{2,4,5,6,7,8},{3}}
=> {{1,5,6,7,8},{2,4},{3}}
=> ? = 1
[1,0,1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> {{1},{2,3,5,6,7,8},{4}}
=> {{1},{2,3,5,6,7,8},{4}}
=> {{1,3,6,7,8},{2,5},{4}}
=> ? = 1
[1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> {{1},{2,3,4,6,7,8},{5}}
=> {{1},{2,3,4,6,7,8},{5}}
=> {{1,3,4,7,8},{2,6},{5}}
=> ? = 1
[1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> {{1},{2,3,4,5,7,8},{6}}
=> {{1},{2,3,4,5,7,8},{6}}
=> {{1,3,4,5,8},{2,7},{6}}
=> ? = 1
[1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> {{1},{2,3,4,5,6,7},{8}}
=> {{1},{2,3,4,5,6,7},{8}}
=> {{1,3,4,5,6,7},{2},{8}}
=> ? = 0
[1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> {{1},{2,3,4,5,6,8},{7}}
=> {{1},{2,3,4,5,6,8},{7}}
=> {{1,3,4,5,6},{2,8},{7}}
=> ? = 1
[1,1,0,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> {{1,4,5,6,7,8},{2},{3}}
=> {{1,4,5,6,7,8},{2},{3}}
=> {{1,5,6,7,8},{2},{3,4}}
=> ? = 2
[1,1,0,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> {{1,3,5,6,7,8},{2},{4}}
=> {{1,3,5,6,7,8},{2},{4}}
=> {{1,6,7,8},{2,3,5},{4}}
=> ? = 2
[1,1,1,0,0,1,1,1,1,1,0,0,0,0,0,0]
=> {{1,4,5,6,7,8},{2,3}}
=> {{1,3},{2,4,5,6,7,8}}
=> {{1,5,6,7,8},{2,3,4}}
=> ? = 2
[1,1,1,1,0,0,1,1,1,1,0,0,0,0,0,0]
=> {{1,2,5,6,7,8},{3,4}}
=> {{1,2,4},{3,5,6,7,8}}
=> {{1,2,6,7,8},{3,4,5}}
=> ? = 2
[1,1,1,1,1,0,0,1,1,1,0,0,0,0,0,0]
=> {{1,2,3,6,7,8},{4,5}}
=> {{1,2,3,5},{4,6,7,8}}
=> {{1,2,3,7,8},{4,5,6}}
=> ? = 2
[1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> {{1,2,3,4,7,8},{5,6}}
=> {{1,2,3,4,6},{5,7,8}}
=> {{1,2,3,4,8},{5,6,7}}
=> ? = 2
[1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> {{1,2,3,4,5,8},{6,7}}
=> {{1,2,3,4,5,7},{6,8}}
=> {{1,2,3,4,5},{6,7,8}}
=> ? = 2
Description
The number of occurrences of the pattern {{1},{2,3}} such that 1,2 are minimal.
Matching statistic: St000491
Mp00138: Dyck paths to noncrossing partitionSet partitions
Mp00115: Set partitions Kasraoui-ZengSet partitions
Mp00215: Set partitions Wachs-WhiteSet partitions
St000491: Set partitions ⟶ ℤResult quality: 98% values known / values provided: 98%distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> {{1},{2}}
=> {{1},{2}}
=> {{1},{2}}
=> 0
[1,1,0,0]
=> {{1,2}}
=> {{1,2}}
=> {{1,2}}
=> 0
[1,0,1,0,1,0]
=> {{1},{2},{3}}
=> {{1},{2},{3}}
=> {{1},{2},{3}}
=> 0
[1,0,1,1,0,0]
=> {{1},{2,3}}
=> {{1},{2,3}}
=> {{1,2},{3}}
=> 0
[1,1,0,0,1,0]
=> {{1,2},{3}}
=> {{1,2},{3}}
=> {{1},{2,3}}
=> 0
[1,1,0,1,0,0]
=> {{1,3},{2}}
=> {{1,3},{2}}
=> {{1,3},{2}}
=> 1
[1,1,1,0,0,0]
=> {{1,2,3}}
=> {{1,2,3}}
=> {{1,2,3}}
=> 0
[1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4}}
=> {{1},{2},{3},{4}}
=> {{1},{2},{3},{4}}
=> 0
[1,0,1,0,1,1,0,0]
=> {{1},{2},{3,4}}
=> {{1},{2},{3,4}}
=> {{1,2},{3},{4}}
=> 0
[1,0,1,1,0,0,1,0]
=> {{1},{2,3},{4}}
=> {{1},{2,3},{4}}
=> {{1},{2,3},{4}}
=> 0
[1,0,1,1,0,1,0,0]
=> {{1},{2,4},{3}}
=> {{1},{2,4},{3}}
=> {{1,3},{2},{4}}
=> 1
[1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> {{1},{2,3,4}}
=> {{1,2,3},{4}}
=> 0
[1,1,0,0,1,0,1,0]
=> {{1,2},{3},{4}}
=> {{1,2},{3},{4}}
=> {{1},{2},{3,4}}
=> 0
[1,1,0,0,1,1,0,0]
=> {{1,2},{3,4}}
=> {{1,2},{3,4}}
=> {{1,2},{3,4}}
=> 0
[1,1,0,1,0,0,1,0]
=> {{1,3},{2},{4}}
=> {{1,3},{2},{4}}
=> {{1},{2,4},{3}}
=> 1
[1,1,0,1,0,1,0,0]
=> {{1,4},{2},{3}}
=> {{1,4},{2},{3}}
=> {{1,4},{2},{3}}
=> 2
[1,1,0,1,1,0,0,0]
=> {{1,3,4},{2}}
=> {{1,3,4},{2}}
=> {{1,2,4},{3}}
=> 1
[1,1,1,0,0,0,1,0]
=> {{1,2,3},{4}}
=> {{1,2,3},{4}}
=> {{1},{2,3,4}}
=> 0
[1,1,1,0,0,1,0,0]
=> {{1,4},{2,3}}
=> {{1,3},{2,4}}
=> {{1,3,4},{2}}
=> 2
[1,1,1,0,1,0,0,0]
=> {{1,2,4},{3}}
=> {{1,2,4},{3}}
=> {{1,3},{2,4}}
=> 1
[1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> {{1,2,3,4}}
=> {{1,2,3,4}}
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4},{5}}
=> {{1},{2},{3},{4},{5}}
=> {{1},{2},{3},{4},{5}}
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4,5}}
=> {{1},{2},{3},{4,5}}
=> {{1,2},{3},{4},{5}}
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> {{1},{2},{3,4},{5}}
=> {{1},{2},{3,4},{5}}
=> {{1},{2,3},{4},{5}}
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> {{1},{2},{3,5},{4}}
=> {{1},{2},{3,5},{4}}
=> {{1,3},{2},{4},{5}}
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5}}
=> {{1},{2},{3,4,5}}
=> {{1,2,3},{4},{5}}
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> {{1},{2,3},{4},{5}}
=> {{1},{2,3},{4},{5}}
=> {{1},{2},{3,4},{5}}
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4,5}}
=> {{1},{2,3},{4,5}}
=> {{1,2},{3,4},{5}}
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> {{1},{2,4},{3},{5}}
=> {{1},{2,4},{3},{5}}
=> {{1},{2,4},{3},{5}}
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> {{1},{2,5},{3},{4}}
=> {{1},{2,5},{3},{4}}
=> {{1,4},{2},{3},{5}}
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> {{1},{2,4,5},{3}}
=> {{1},{2,4,5},{3}}
=> {{1,2,4},{3},{5}}
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> {{1},{2,3,4},{5}}
=> {{1},{2,3,4},{5}}
=> {{1},{2,3,4},{5}}
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> {{1},{2,5},{3,4}}
=> {{1},{2,4},{3,5}}
=> {{1,3,4},{2},{5}}
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> {{1},{2,3,5},{4}}
=> {{1},{2,3,5},{4}}
=> {{1,3},{2,4},{5}}
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3,4,5}}
=> {{1},{2,3,4,5}}
=> {{1,2,3,4},{5}}
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> {{1,2},{3},{4},{5}}
=> {{1,2},{3},{4},{5}}
=> {{1},{2},{3},{4,5}}
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> {{1,2},{3},{4,5}}
=> {{1,2},{3},{4,5}}
=> {{1,2},{3},{4,5}}
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> {{1,2},{3,4},{5}}
=> {{1,2},{3,4},{5}}
=> {{1},{2,3},{4,5}}
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> {{1,2},{3,5},{4}}
=> {{1,2},{3,5},{4}}
=> {{1,3},{2},{4,5}}
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5}}
=> {{1,2},{3,4,5}}
=> {{1,2,3},{4,5}}
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> {{1,3},{2},{4},{5}}
=> {{1,3},{2},{4},{5}}
=> {{1},{2},{3,5},{4}}
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> {{1,3},{2},{4,5}}
=> {{1,3},{2},{4,5}}
=> {{1,2},{3,5},{4}}
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> {{1,4},{2},{3},{5}}
=> {{1,4},{2},{3},{5}}
=> {{1},{2,5},{3},{4}}
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> {{1,5},{2},{3},{4}}
=> {{1,5},{2},{3},{4}}
=> {{1,5},{2},{3},{4}}
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> {{1,4,5},{2},{3}}
=> {{1,4,5},{2},{3}}
=> {{1,2,5},{3},{4}}
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> {{1,3,4},{2},{5}}
=> {{1,3,4},{2},{5}}
=> {{1},{2,3,5},{4}}
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> {{1,5},{2},{3,4}}
=> {{1,4},{2},{3,5}}
=> {{1,3,5},{2},{4}}
=> 3
[1,1,0,1,1,0,1,0,0,0]
=> {{1,3,5},{2},{4}}
=> {{1,3,5},{2},{4}}
=> {{1,3},{2,5},{4}}
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> {{1,3,4,5},{2}}
=> {{1,3,4,5},{2}}
=> {{1,2,3,5},{4}}
=> 1
[1,1,1,0,0,0,1,0,1,0]
=> {{1,2,3},{4},{5}}
=> {{1,2,3},{4},{5}}
=> {{1},{2},{3,4,5}}
=> 0
[1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> {{1},{2},{3,4,5,6,7,8}}
=> {{1},{2},{3,4,5,6,7,8}}
=> {{1,2,3,4,5,6},{7},{8}}
=> ? = 0
[1,0,1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> {{1},{2,4,5,6,7,8},{3}}
=> {{1},{2,4,5,6,7,8},{3}}
=> {{1,2,3,4,5,7},{6},{8}}
=> ? = 1
[1,0,1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> {{1},{2,3,5,6,7,8},{4}}
=> {{1},{2,3,5,6,7,8},{4}}
=> {{1,2,3,4,6},{5,7},{8}}
=> ? = 1
[1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> {{1},{2,3,4,6,7,8},{5}}
=> {{1},{2,3,4,6,7,8},{5}}
=> {{1,2,3,5},{4,6,7},{8}}
=> ? = 1
[1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> {{1},{2,3,4,5,7,8},{6}}
=> {{1},{2,3,4,5,7,8},{6}}
=> {{1,2,4},{3,5,6,7},{8}}
=> ? = 1
[1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> {{1},{2,3,4,5,6,8},{7}}
=> {{1},{2,3,4,5,6,8},{7}}
=> {{1,3},{2,4,5,6,7},{8}}
=> ? = 1
[1,1,0,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> {{1,4,5,6,7,8},{2},{3}}
=> {{1,4,5,6,7,8},{2},{3}}
=> {{1,2,3,4,5,8},{6},{7}}
=> ? = 2
[1,1,0,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> {{1,3,5,6,7,8},{2},{4}}
=> {{1,3,5,6,7,8},{2},{4}}
=> {{1,2,3,4,6},{5,8},{7}}
=> ? = 2
[1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0]
=> {{1,2,3,5,6,7,8},{4}}
=> {{1,2,3,5,6,7,8},{4}}
=> {{1,2,3,4,6},{5,7,8}}
=> ? = 1
[1,1,1,1,1,0,0,1,1,1,0,0,0,0,0,0]
=> {{1,2,3,6,7,8},{4,5}}
=> {{1,2,3,5},{4,6,7,8}}
=> {{1,2,3,5,6},{4,7,8}}
=> ? = 2
[1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> {{1,2,3,4,6,7,8},{5}}
=> {{1,2,3,4,6,7,8},{5}}
=> {{1,2,3,5},{4,6,7,8}}
=> ? = 1
[1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> {{1,2,3,4,7,8},{5,6}}
=> {{1,2,3,4,6},{5,7,8}}
=> {{1,2,4,5},{3,6,7,8}}
=> ? = 2
[1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> {{1,2,3,4,5,7,8},{6}}
=> {{1,2,3,4,5,7,8},{6}}
=> {{1,2,4},{3,5,6,7,8}}
=> ? = 1
[1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> {{1,2,3,4,5,8},{6,7}}
=> {{1,2,3,4,5,7},{6,8}}
=> {{1,3,4},{2,5,6,7,8}}
=> ? = 2
Description
The number of inversions of a set partition. Let $S = B_1,\ldots,B_k$ be a set partition with ordered blocks $B_i$ and with $\operatorname{min} B_a < \operatorname{min} B_b$ for $a < b$. According to [1], see also [2,3], an inversion of $S$ is given by a pair $i > j$ such that $j = \operatorname{min} B_b$ and $i \in B_a$ for $a < b$. This statistic is called '''ros''' in [1, Definition 3] for "right, opener, smaller". This is also the number of occurrences of the pattern {{1, 3}, {2}} such that 1 and 2 are minimal elements of blocks.
Matching statistic: St001841
Mp00138: Dyck paths to noncrossing partitionSet partitions
Mp00215: Set partitions Wachs-WhiteSet partitions
Mp00112: Set partitions complementSet partitions
St001841: Set partitions ⟶ ℤResult quality: 96% values known / values provided: 96%distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> {{1},{2}}
=> {{1},{2}}
=> {{1},{2}}
=> 0
[1,1,0,0]
=> {{1,2}}
=> {{1,2}}
=> {{1,2}}
=> 0
[1,0,1,0,1,0]
=> {{1},{2},{3}}
=> {{1},{2},{3}}
=> {{1},{2},{3}}
=> 0
[1,0,1,1,0,0]
=> {{1},{2,3}}
=> {{1,2},{3}}
=> {{1},{2,3}}
=> 0
[1,1,0,0,1,0]
=> {{1,2},{3}}
=> {{1},{2,3}}
=> {{1,2},{3}}
=> 0
[1,1,0,1,0,0]
=> {{1,3},{2}}
=> {{1,3},{2}}
=> {{1,3},{2}}
=> 1
[1,1,1,0,0,0]
=> {{1,2,3}}
=> {{1,2,3}}
=> {{1,2,3}}
=> 0
[1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4}}
=> {{1},{2},{3},{4}}
=> {{1},{2},{3},{4}}
=> 0
[1,0,1,0,1,1,0,0]
=> {{1},{2},{3,4}}
=> {{1,2},{3},{4}}
=> {{1},{2},{3,4}}
=> 0
[1,0,1,1,0,0,1,0]
=> {{1},{2,3},{4}}
=> {{1},{2,3},{4}}
=> {{1},{2,3},{4}}
=> 0
[1,0,1,1,0,1,0,0]
=> {{1},{2,4},{3}}
=> {{1,3},{2},{4}}
=> {{1},{2,4},{3}}
=> 1
[1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> {{1,2,3},{4}}
=> {{1},{2,3,4}}
=> 0
[1,1,0,0,1,0,1,0]
=> {{1,2},{3},{4}}
=> {{1},{2},{3,4}}
=> {{1,2},{3},{4}}
=> 0
[1,1,0,0,1,1,0,0]
=> {{1,2},{3,4}}
=> {{1,2},{3,4}}
=> {{1,2},{3,4}}
=> 0
[1,1,0,1,0,0,1,0]
=> {{1,3},{2},{4}}
=> {{1},{2,4},{3}}
=> {{1,3},{2},{4}}
=> 1
[1,1,0,1,0,1,0,0]
=> {{1,4},{2},{3}}
=> {{1,4},{2},{3}}
=> {{1,4},{2},{3}}
=> 2
[1,1,0,1,1,0,0,0]
=> {{1,3,4},{2}}
=> {{1,2,4},{3}}
=> {{1,3,4},{2}}
=> 1
[1,1,1,0,0,0,1,0]
=> {{1,2,3},{4}}
=> {{1},{2,3,4}}
=> {{1,2,3},{4}}
=> 0
[1,1,1,0,0,1,0,0]
=> {{1,4},{2,3}}
=> {{1,4},{2,3}}
=> {{1,4},{2,3}}
=> 2
[1,1,1,0,1,0,0,0]
=> {{1,2,4},{3}}
=> {{1,3},{2,4}}
=> {{1,3},{2,4}}
=> 1
[1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> {{1,2,3,4}}
=> {{1,2,3,4}}
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4},{5}}
=> {{1},{2},{3},{4},{5}}
=> {{1},{2},{3},{4},{5}}
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4,5}}
=> {{1,2},{3},{4},{5}}
=> {{1},{2},{3},{4,5}}
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> {{1},{2},{3,4},{5}}
=> {{1},{2,3},{4},{5}}
=> {{1},{2},{3,4},{5}}
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> {{1},{2},{3,5},{4}}
=> {{1,3},{2},{4},{5}}
=> {{1},{2},{3,5},{4}}
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5}}
=> {{1,2,3},{4},{5}}
=> {{1},{2},{3,4,5}}
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> {{1},{2,3},{4},{5}}
=> {{1},{2},{3,4},{5}}
=> {{1},{2,3},{4},{5}}
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4,5}}
=> {{1,2},{3,4},{5}}
=> {{1},{2,3},{4,5}}
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> {{1},{2,4},{3},{5}}
=> {{1},{2,4},{3},{5}}
=> {{1},{2,4},{3},{5}}
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> {{1},{2,5},{3},{4}}
=> {{1,4},{2},{3},{5}}
=> {{1},{2,5},{3},{4}}
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> {{1},{2,4,5},{3}}
=> {{1,2,4},{3},{5}}
=> {{1},{2,4,5},{3}}
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> {{1},{2,3,4},{5}}
=> {{1},{2,3,4},{5}}
=> {{1},{2,3,4},{5}}
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> {{1},{2,5},{3,4}}
=> {{1,4},{2,3},{5}}
=> {{1},{2,5},{3,4}}
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> {{1},{2,3,5},{4}}
=> {{1,3},{2,4},{5}}
=> {{1},{2,4},{3,5}}
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3,4,5}}
=> {{1,2,3,4},{5}}
=> {{1},{2,3,4,5}}
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> {{1,2},{3},{4},{5}}
=> {{1},{2},{3},{4,5}}
=> {{1,2},{3},{4},{5}}
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> {{1,2},{3},{4,5}}
=> {{1,2},{3},{4,5}}
=> {{1,2},{3},{4,5}}
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> {{1,2},{3,4},{5}}
=> {{1},{2,3},{4,5}}
=> {{1,2},{3,4},{5}}
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> {{1,2},{3,5},{4}}
=> {{1,3},{2},{4,5}}
=> {{1,2},{3,5},{4}}
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5}}
=> {{1,2,3},{4,5}}
=> {{1,2},{3,4,5}}
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> {{1,3},{2},{4},{5}}
=> {{1},{2},{3,5},{4}}
=> {{1,3},{2},{4},{5}}
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> {{1,3},{2},{4,5}}
=> {{1,2},{3,5},{4}}
=> {{1,3},{2},{4,5}}
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> {{1,4},{2},{3},{5}}
=> {{1},{2,5},{3},{4}}
=> {{1,4},{2},{3},{5}}
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> {{1,5},{2},{3},{4}}
=> {{1,5},{2},{3},{4}}
=> {{1,5},{2},{3},{4}}
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> {{1,4,5},{2},{3}}
=> {{1,2,5},{3},{4}}
=> {{1,4,5},{2},{3}}
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> {{1,3,4},{2},{5}}
=> {{1},{2,3,5},{4}}
=> {{1,3,4},{2},{5}}
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> {{1,5},{2},{3,4}}
=> {{1,5},{2,3},{4}}
=> {{1,5},{2},{3,4}}
=> 3
[1,1,0,1,1,0,1,0,0,0]
=> {{1,3,5},{2},{4}}
=> {{1,3},{2,5},{4}}
=> {{1,4},{2},{3,5}}
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> {{1,3,4,5},{2}}
=> {{1,2,3,5},{4}}
=> {{1,3,4,5},{2}}
=> 1
[1,1,1,0,0,0,1,0,1,0]
=> {{1,2,3},{4},{5}}
=> {{1},{2},{3,4,5}}
=> {{1,2,3},{4},{5}}
=> 0
[1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> {{1},{2},{3,4,5,6,7,8}}
=> {{1,2,3,4,5,6},{7},{8}}
=> {{1},{2},{3,4,5,6,7,8}}
=> ? = 0
[1,0,1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> {{1},{2,4,5,6,7,8},{3}}
=> {{1,2,3,4,5,7},{6},{8}}
=> {{1},{2,4,5,6,7,8},{3}}
=> ? = 1
[1,0,1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> {{1},{2,3,5,6,7,8},{4}}
=> {{1,2,3,4,6},{5,7},{8}}
=> {{1},{2,4},{3,5,6,7,8}}
=> ? = 1
[1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> {{1},{2,3,4,6,7,8},{5}}
=> {{1,2,3,5},{4,6,7},{8}}
=> {{1},{2,3,5},{4,6,7,8}}
=> ? = 1
[1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> {{1},{2,3,4,5,7,8},{6}}
=> {{1,2,4},{3,5,6,7},{8}}
=> {{1},{2,3,4,6},{5,7,8}}
=> ? = 1
[1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> {{1},{2,3,4,5,6,7},{8}}
=> {{1},{2,3,4,5,6,7},{8}}
=> {{1},{2,3,4,5,6,7},{8}}
=> ? = 0
[1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> {{1},{2,3,4,5,6,8},{7}}
=> {{1,3},{2,4,5,6,7},{8}}
=> {{1},{2,3,4,5,7},{6,8}}
=> ? = 1
[1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> {{1},{2,3,4,5,6,7,8}}
=> {{1,2,3,4,5,6,7},{8}}
=> {{1},{2,3,4,5,6,7,8}}
=> ? = 0
[1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> {{1,2},{3,4,5,6,7,8}}
=> {{1,2,3,4,5,6},{7,8}}
=> {{1,2},{3,4,5,6,7,8}}
=> ? = 0
[1,1,0,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> {{1,4,5,6,7,8},{2},{3}}
=> {{1,2,3,4,5,8},{6},{7}}
=> {{1,4,5,6,7,8},{2},{3}}
=> ? = 2
[1,1,0,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> {{1,3,5,6,7,8},{2},{4}}
=> {{1,2,3,4,6},{5,8},{7}}
=> {{1,4},{2},{3,5,6,7,8}}
=> ? = 2
[1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> {{1,3,4,5,6,7,8},{2}}
=> {{1,2,3,4,5,6,8},{7}}
=> {{1,3,4,5,6,7,8},{2}}
=> ? = 1
[1,1,1,0,0,1,1,1,1,1,0,0,0,0,0,0]
=> {{1,4,5,6,7,8},{2,3}}
=> {{1,2,3,4,5,8},{6,7}}
=> {{1,4,5,6,7,8},{2,3}}
=> ? = 2
[1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> {{1,2,4,5,6,7,8},{3}}
=> {{1,2,3,4,5,7},{6,8}}
=> {{1,3},{2,4,5,6,7,8}}
=> ? = 1
[1,1,1,1,0,0,1,1,1,1,0,0,0,0,0,0]
=> {{1,2,5,6,7,8},{3,4}}
=> {{1,2,3,4,7},{5,6,8}}
=> {{1,3,4},{2,5,6,7,8}}
=> ? = 2
[1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0]
=> {{1,2,3,5,6,7,8},{4}}
=> {{1,2,3,4,6},{5,7,8}}
=> {{1,2,4},{3,5,6,7,8}}
=> ? = 1
[1,1,1,1,1,0,0,1,1,1,0,0,0,0,0,0]
=> {{1,2,3,6,7,8},{4,5}}
=> {{1,2,3,6},{4,5,7,8}}
=> {{1,2,4,5},{3,6,7,8}}
=> ? = 2
[1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> {{1,2,3,4,6,7,8},{5}}
=> {{1,2,3,5},{4,6,7,8}}
=> {{1,2,3,5},{4,6,7,8}}
=> ? = 1
[1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> {{1,2,3,4,5,6},{7,8}}
=> {{1,2},{3,4,5,6,7,8}}
=> {{1,2,3,4,5,6},{7,8}}
=> ? = 0
[1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> {{1,2,3,4,7,8},{5,6}}
=> {{1,2,5},{3,4,6,7,8}}
=> {{1,2,3,5,6},{4,7,8}}
=> ? = 2
[1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> {{1,2,3,4,5,7,8},{6}}
=> {{1,2,4},{3,5,6,7,8}}
=> {{1,2,3,4,6},{5,7,8}}
=> ? = 1
[1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> {{1,2,3,4,5,6,7},{8}}
=> {{1},{2,3,4,5,6,7,8}}
=> {{1,2,3,4,5,6,7},{8}}
=> ? = 0
[1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> {{1,8},{2,3,4,5,6,7}}
=> {{1,8},{2,3,4,5,6,7}}
=> {{1,8},{2,3,4,5,6,7}}
=> ? = 6
[1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> {{1,2,3,4,5,8},{6,7}}
=> {{1,4},{2,3,5,6,7,8}}
=> {{1,2,3,4,6,7},{5,8}}
=> ? = 2
[1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> {{1,2,3,4,5,6,8},{7}}
=> {{1,3},{2,4,5,6,7,8}}
=> {{1,2,3,4,5,7},{6,8}}
=> ? = 1
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> {{1,2,3,4,5,6,7,8}}
=> {{1,2,3,4,5,6,7,8}}
=> {{1,2,3,4,5,6,7,8}}
=> ? = 0
Description
The number of inversions of a set partition. The Mahonian representation of a set partition $\{B_1,\dots,B_k\}$ of $\{1,\dots,n\}$ is the restricted growth word $w_1\dots w_n\}$ obtained by sorting the blocks of the set partition according to their maximal element, and setting $w_i$ to the index of the block containing $i$. A pair $(i,j)$ is an inversion of the word $w$ if $w_i > w_j$.
Mp00031: Dyck paths to 312-avoiding permutationPermutations
Mp00235: Permutations descent views to invisible inversion bottomsPermutations
Mp00090: Permutations cycle-as-one-line notationPermutations
St000356: Permutations ⟶ ℤResult quality: 70% values known / values provided: 88%distinct values known / distinct values provided: 70%
Values
[1,0,1,0]
=> [1,2] => [1,2] => [1,2] => 0
[1,1,0,0]
=> [2,1] => [2,1] => [1,2] => 0
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => [1,2,3] => 0
[1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => [1,2,3] => 0
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => [1,2,3] => 0
[1,1,0,1,0,0]
=> [2,3,1] => [3,2,1] => [1,3,2] => 1
[1,1,1,0,0,0]
=> [3,2,1] => [2,3,1] => [1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,4,3] => [1,2,3,4] => 0
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2,4] => [1,2,3,4] => 0
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,3,2] => [1,2,4,3] => 1
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,3,4,2] => [1,2,3,4] => 0
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => [1,2,3,4] => 0
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => [1,2,3,4] => 0
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,2,1,4] => [1,3,2,4] => 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4,2,3,1] => [1,4,2,3] => 2
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [3,2,4,1] => [1,3,4,2] => 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [2,3,1,4] => [1,2,3,4] => 0
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [4,3,2,1] => [1,4,2,3] => 2
[1,1,1,0,1,0,0,0]
=> [3,4,2,1] => [2,4,3,1] => [1,2,4,3] => 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [2,3,4,1] => [1,2,3,4] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,5,4] => [1,2,3,4,5] => 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,4,3,5] => [1,2,3,4,5] => 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,5,4,3] => [1,2,3,5,4] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [1,2,4,5,3] => [1,2,3,4,5] => 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => [1,2,3,4,5] => 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => [1,2,3,4,5] => 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,4,3,2,5] => [1,2,4,3,5] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,3,4,2] => [1,2,5,3,4] => 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,4,3,5,2] => [1,2,4,5,3] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [1,3,4,2,5] => [1,2,3,4,5] => 0
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [1,5,4,3,2] => [1,2,5,3,4] => 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => [1,3,5,4,2] => [1,2,3,5,4] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [1,3,4,5,2] => [1,2,3,4,5] => 0
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => [1,2,3,4,5] => 0
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => [1,2,3,4,5] => 0
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => [1,2,3,4,5] => 0
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,4,3] => [1,2,3,5,4] => 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [2,1,4,5,3] => [1,2,3,4,5] => 0
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [3,2,1,4,5] => [1,3,2,4,5] => 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,2,1,5,4] => [1,3,2,4,5] => 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,2,3,1,5] => [1,4,2,3,5] => 2
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5,2,3,4,1] => [1,5,2,3,4] => 3
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [4,2,3,5,1] => [1,4,5,2,3] => 2
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [3,2,4,1,5] => [1,3,4,2,5] => 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [5,2,4,3,1] => [1,5,2,3,4] => 3
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => [3,2,5,4,1] => [1,3,5,2,4] => 2
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [3,2,4,5,1] => [1,3,4,5,2] => 1
[1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [2,3,1,4,5] => [1,2,3,4,5] => 0
[1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [2,3,4,5,1,6,7] => [5,2,3,4,1,6,7] => [1,5,2,3,4,6,7] => ? = 3
[1,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> [2,3,4,5,1,7,6] => [5,2,3,4,1,7,6] => [1,5,2,3,4,6,7] => ? = 3
[1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [2,3,4,5,6,1,7] => [6,2,3,4,5,1,7] => [1,6,2,3,4,5,7] => ? = 4
[1,1,0,1,0,1,0,1,1,0,0,0,1,0]
=> [2,3,4,6,5,1,7] => [5,2,3,4,6,1,7] => [1,5,6,2,3,4,7] => ? = 3
[1,1,0,1,0,1,1,0,0,1,0,0,1,0]
=> [2,3,5,4,6,1,7] => [6,2,3,5,4,1,7] => [1,6,2,3,4,5,7] => ? = 4
[1,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> [2,3,5,6,4,7,1] => [7,2,3,6,5,4,1] => [1,7,2,3,4,6,5] => ? = 6
[1,1,0,1,1,0,0,1,0,0,1,0,1,0]
=> [2,4,3,5,1,6,7] => [5,2,4,3,1,6,7] => [1,5,2,3,4,6,7] => ? = 3
[1,1,0,1,1,0,0,1,0,0,1,1,0,0]
=> [2,4,3,5,1,7,6] => [5,2,4,3,1,7,6] => [1,5,2,3,4,6,7] => ? = 3
[1,1,0,1,1,0,0,1,0,1,0,0,1,0]
=> [2,4,3,5,6,1,7] => [6,2,4,3,5,1,7] => [1,6,2,3,4,5,7] => ? = 4
[1,1,0,1,1,0,0,1,1,0,0,0,1,0]
=> [2,4,3,6,5,1,7] => [5,2,4,3,6,1,7] => [1,5,6,2,3,4,7] => ? = 3
[1,1,0,1,1,0,1,0,0,1,0,0,1,0]
=> [2,4,5,3,6,1,7] => [6,2,5,4,3,1,7] => [1,6,2,3,5,4,7] => ? = 5
[1,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [2,4,5,3,6,7,1] => [7,2,5,4,3,6,1] => [1,7,2,3,5,4,6] => ? = 6
[1,1,0,1,1,0,1,0,0,1,1,0,0,0]
=> [2,4,5,3,7,6,1] => [6,2,5,4,3,7,1] => [1,6,7,2,3,5,4] => ? = 5
[1,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> [2,4,5,6,3,7,1] => [7,2,6,4,5,3,1] => [1,7,2,3,6,4,5] => ? = 7
[1,1,0,1,1,0,1,1,0,0,0,1,0,0]
=> [2,4,6,5,3,7,1] => [7,2,5,4,6,3,1] => [1,7,2,3,5,6,4] => ? = 6
[1,1,0,1,1,1,0,0,0,1,0,0,1,0]
=> [2,5,4,3,6,1,7] => [6,2,4,5,3,1,7] => [1,6,2,3,4,5,7] => ? = 4
[1,1,0,1,1,1,0,0,1,0,0,1,0,0]
=> [2,5,4,6,3,7,1] => [7,2,6,5,4,3,1] => [1,7,2,3,6,4,5] => ? = 7
[1,1,0,1,1,1,0,1,0,0,0,1,0,0]
=> [2,5,6,4,3,7,1] => [7,2,4,6,5,3,1] => [1,7,2,3,4,6,5] => ? = 6
[1,1,1,0,0,1,0,1,0,0,1,0,1,0]
=> [3,2,4,5,1,6,7] => [5,3,2,4,1,6,7] => [1,5,2,3,4,6,7] => ? = 3
[1,1,1,0,0,1,0,1,0,0,1,1,0,0]
=> [3,2,4,5,1,7,6] => [5,3,2,4,1,7,6] => [1,5,2,3,4,6,7] => ? = 3
[1,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> [3,2,4,5,6,1,7] => [6,3,2,4,5,1,7] => [1,6,2,3,4,5,7] => ? = 4
[1,1,1,0,0,1,0,1,1,0,0,0,1,0]
=> [3,2,4,6,5,1,7] => [5,3,2,4,6,1,7] => [1,5,6,2,3,4,7] => ? = 3
[1,1,1,0,0,1,1,0,0,1,0,0,1,0]
=> [3,2,5,4,6,1,7] => [6,3,2,5,4,1,7] => [1,6,2,3,4,5,7] => ? = 4
[1,1,1,0,0,1,1,0,1,0,0,1,0,0]
=> [3,2,5,6,4,7,1] => [7,3,2,6,5,4,1] => [1,7,2,3,4,6,5] => ? = 6
[1,1,1,0,1,0,0,1,0,0,1,0,1,0]
=> [3,4,2,5,1,6,7] => [5,4,3,2,1,6,7] => [1,5,2,4,3,6,7] => ? = 4
[1,1,1,0,1,0,0,1,0,0,1,1,0,0]
=> [3,4,2,5,1,7,6] => [5,4,3,2,1,7,6] => [1,5,2,4,3,6,7] => ? = 4
[1,1,1,0,1,0,0,1,0,1,0,0,1,0]
=> [3,4,2,5,6,1,7] => [6,4,3,2,5,1,7] => [1,6,2,4,3,5,7] => ? = 5
[1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [3,4,2,5,6,7,1] => [7,4,3,2,5,6,1] => [1,7,2,4,3,5,6] => ? = 6
[1,1,1,0,1,0,0,1,0,1,1,0,0,0]
=> [3,4,2,5,7,6,1] => [6,4,3,2,5,7,1] => [1,6,7,2,4,3,5] => ? = 5
[1,1,1,0,1,0,0,1,1,0,0,0,1,0]
=> [3,4,2,6,5,1,7] => [5,4,3,2,6,1,7] => [1,5,6,2,4,3,7] => ? = 4
[1,1,1,0,1,0,0,1,1,0,0,1,0,0]
=> [3,4,2,6,5,7,1] => [7,4,3,2,6,5,1] => [1,7,2,4,3,5,6] => ? = 6
[1,1,1,0,1,0,0,1,1,0,1,0,0,0]
=> [3,4,2,6,7,5,1] => [5,4,3,2,7,6,1] => [1,5,7,2,4,3,6] => ? = 5
[1,1,1,0,1,0,0,1,1,1,0,0,0,0]
=> [3,4,2,7,6,5,1] => [5,4,3,2,6,7,1] => [1,5,6,7,2,4,3] => ? = 4
[1,1,1,0,1,0,1,0,0,1,0,0,1,0]
=> [3,4,5,2,6,1,7] => [6,5,3,4,2,1,7] => [1,6,2,5,3,4,7] => ? = 6
[1,1,1,0,1,0,1,0,0,1,0,1,0,0]
=> [3,4,5,2,6,7,1] => [7,5,3,4,2,6,1] => [1,7,2,5,3,4,6] => ? = 7
[1,1,1,0,1,0,1,0,0,1,1,0,0,0]
=> [3,4,5,2,7,6,1] => [6,5,3,4,2,7,1] => [1,6,7,2,5,3,4] => ? = 6
[1,1,1,0,1,0,1,0,1,0,0,1,0,0]
=> [3,4,5,6,2,7,1] => [7,6,3,4,5,2,1] => [1,7,2,6,3,4,5] => ? = 8
[1,1,1,0,1,0,1,1,0,0,0,1,0,0]
=> [3,4,6,5,2,7,1] => [7,5,3,4,6,2,1] => [1,7,2,5,6,3,4] => ? = 7
[1,1,1,0,1,1,0,0,0,1,0,0,1,0]
=> [3,5,4,2,6,1,7] => [6,4,3,5,2,1,7] => [1,6,2,4,5,3,7] => ? = 5
[1,1,1,0,1,1,0,0,0,1,0,1,0,0]
=> [3,5,4,2,6,7,1] => [7,4,3,5,2,6,1] => [1,7,2,4,5,3,6] => ? = 6
[1,1,1,0,1,1,0,0,0,1,1,0,0,0]
=> [3,5,4,2,7,6,1] => [6,4,3,5,2,7,1] => [1,6,7,2,4,5,3] => ? = 5
[1,1,1,0,1,1,0,0,1,0,0,1,0,0]
=> [3,5,4,6,2,7,1] => [7,6,3,5,4,2,1] => [1,7,2,6,3,4,5] => ? = 8
[1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> [3,5,6,4,2,7,1] => [7,4,3,6,5,2,1] => [1,7,2,4,6,3,5] => ? = 7
[1,1,1,0,1,1,1,0,0,0,0,1,0,0]
=> [3,6,5,4,2,7,1] => [7,4,3,5,6,2,1] => [1,7,2,4,5,6,3] => ? = 6
[1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> [4,3,2,5,1,6,7] => [5,3,4,2,1,6,7] => [1,5,2,3,4,6,7] => ? = 3
[1,1,1,1,0,0,0,1,0,0,1,1,0,0]
=> [4,3,2,5,1,7,6] => [5,3,4,2,1,7,6] => [1,5,2,3,4,6,7] => ? = 3
[1,1,1,1,0,0,0,1,0,1,0,0,1,0]
=> [4,3,2,5,6,1,7] => [6,3,4,2,5,1,7] => [1,6,2,3,4,5,7] => ? = 4
[1,1,1,1,0,0,0,1,1,0,0,0,1,0]
=> [4,3,2,6,5,1,7] => [5,3,4,2,6,1,7] => [1,5,6,2,3,4,7] => ? = 3
[1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [4,3,5,2,6,1,7] => [6,5,4,3,2,1,7] => [1,6,2,5,3,4,7] => ? = 6
[1,1,1,1,0,0,1,0,0,1,0,1,0,0]
=> [4,3,5,2,6,7,1] => [7,5,4,3,2,6,1] => [1,7,2,5,3,4,6] => ? = 7
Description
The number of occurrences of the pattern 13-2. See [[Permutations/#Pattern-avoiding_permutations]] for the definition of the pattern $13\!\!-\!\!2$.
Matching statistic: St000463
Mp00029: Dyck paths to binary tree: left tree, up step, right tree, down stepBinary trees
Mp00014: Binary trees to 132-avoiding permutationPermutations
Mp00064: Permutations reversePermutations
St000463: Permutations ⟶ ℤResult quality: 48% values known / values provided: 48%distinct values known / distinct values provided: 70%
Values
[1,0,1,0]
=> [[.,.],.]
=> [1,2] => [2,1] => 0
[1,1,0,0]
=> [.,[.,.]]
=> [2,1] => [1,2] => 0
[1,0,1,0,1,0]
=> [[[.,.],.],.]
=> [1,2,3] => [3,2,1] => 0
[1,0,1,1,0,0]
=> [[.,.],[.,.]]
=> [3,1,2] => [2,1,3] => 0
[1,1,0,0,1,0]
=> [[.,[.,.]],.]
=> [2,1,3] => [3,1,2] => 0
[1,1,0,1,0,0]
=> [.,[[.,.],.]]
=> [2,3,1] => [1,3,2] => 1
[1,1,1,0,0,0]
=> [.,[.,[.,.]]]
=> [3,2,1] => [1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [[[[.,.],.],.],.]
=> [1,2,3,4] => [4,3,2,1] => 0
[1,0,1,0,1,1,0,0]
=> [[[.,.],.],[.,.]]
=> [4,1,2,3] => [3,2,1,4] => 0
[1,0,1,1,0,0,1,0]
=> [[[.,.],[.,.]],.]
=> [3,1,2,4] => [4,2,1,3] => 0
[1,0,1,1,0,1,0,0]
=> [[.,.],[[.,.],.]]
=> [3,4,1,2] => [2,1,4,3] => 1
[1,0,1,1,1,0,0,0]
=> [[.,.],[.,[.,.]]]
=> [4,3,1,2] => [2,1,3,4] => 0
[1,1,0,0,1,0,1,0]
=> [[[.,[.,.]],.],.]
=> [2,1,3,4] => [4,3,1,2] => 0
[1,1,0,0,1,1,0,0]
=> [[.,[.,.]],[.,.]]
=> [4,2,1,3] => [3,1,2,4] => 0
[1,1,0,1,0,0,1,0]
=> [[.,[[.,.],.]],.]
=> [2,3,1,4] => [4,1,3,2] => 1
[1,1,0,1,0,1,0,0]
=> [.,[[[.,.],.],.]]
=> [2,3,4,1] => [1,4,3,2] => 2
[1,1,0,1,1,0,0,0]
=> [.,[[.,.],[.,.]]]
=> [4,2,3,1] => [1,3,2,4] => 1
[1,1,1,0,0,0,1,0]
=> [[.,[.,[.,.]]],.]
=> [3,2,1,4] => [4,1,2,3] => 0
[1,1,1,0,0,1,0,0]
=> [.,[[.,[.,.]],.]]
=> [3,2,4,1] => [1,4,2,3] => 2
[1,1,1,0,1,0,0,0]
=> [.,[.,[[.,.],.]]]
=> [3,4,2,1] => [1,2,4,3] => 1
[1,1,1,1,0,0,0,0]
=> [.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [1,2,3,4] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [[[[[.,.],.],.],.],.]
=> [1,2,3,4,5] => [5,4,3,2,1] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [[[[.,.],.],.],[.,.]]
=> [5,1,2,3,4] => [4,3,2,1,5] => 0
[1,0,1,0,1,1,0,0,1,0]
=> [[[[.,.],.],[.,.]],.]
=> [4,1,2,3,5] => [5,3,2,1,4] => 0
[1,0,1,0,1,1,0,1,0,0]
=> [[[.,.],.],[[.,.],.]]
=> [4,5,1,2,3] => [3,2,1,5,4] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [[[.,.],.],[.,[.,.]]]
=> [5,4,1,2,3] => [3,2,1,4,5] => 0
[1,0,1,1,0,0,1,0,1,0]
=> [[[[.,.],[.,.]],.],.]
=> [3,1,2,4,5] => [5,4,2,1,3] => 0
[1,0,1,1,0,0,1,1,0,0]
=> [[[.,.],[.,.]],[.,.]]
=> [5,3,1,2,4] => [4,2,1,3,5] => 0
[1,0,1,1,0,1,0,0,1,0]
=> [[[.,.],[[.,.],.]],.]
=> [3,4,1,2,5] => [5,2,1,4,3] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [[.,.],[[[.,.],.],.]]
=> [3,4,5,1,2] => [2,1,5,4,3] => 2
[1,0,1,1,0,1,1,0,0,0]
=> [[.,.],[[.,.],[.,.]]]
=> [5,3,4,1,2] => [2,1,4,3,5] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [[[.,.],[.,[.,.]]],.]
=> [4,3,1,2,5] => [5,2,1,3,4] => 0
[1,0,1,1,1,0,0,1,0,0]
=> [[.,.],[[.,[.,.]],.]]
=> [4,3,5,1,2] => [2,1,5,3,4] => 2
[1,0,1,1,1,0,1,0,0,0]
=> [[.,.],[.,[[.,.],.]]]
=> [4,5,3,1,2] => [2,1,3,5,4] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [[.,.],[.,[.,[.,.]]]]
=> [5,4,3,1,2] => [2,1,3,4,5] => 0
[1,1,0,0,1,0,1,0,1,0]
=> [[[[.,[.,.]],.],.],.]
=> [2,1,3,4,5] => [5,4,3,1,2] => 0
[1,1,0,0,1,0,1,1,0,0]
=> [[[.,[.,.]],.],[.,.]]
=> [5,2,1,3,4] => [4,3,1,2,5] => 0
[1,1,0,0,1,1,0,0,1,0]
=> [[[.,[.,.]],[.,.]],.]
=> [4,2,1,3,5] => [5,3,1,2,4] => 0
[1,1,0,0,1,1,0,1,0,0]
=> [[.,[.,.]],[[.,.],.]]
=> [4,5,2,1,3] => [3,1,2,5,4] => 1
[1,1,0,0,1,1,1,0,0,0]
=> [[.,[.,.]],[.,[.,.]]]
=> [5,4,2,1,3] => [3,1,2,4,5] => 0
[1,1,0,1,0,0,1,0,1,0]
=> [[[.,[[.,.],.]],.],.]
=> [2,3,1,4,5] => [5,4,1,3,2] => 1
[1,1,0,1,0,0,1,1,0,0]
=> [[.,[[.,.],.]],[.,.]]
=> [5,2,3,1,4] => [4,1,3,2,5] => 1
[1,1,0,1,0,1,0,0,1,0]
=> [[.,[[[.,.],.],.]],.]
=> [2,3,4,1,5] => [5,1,4,3,2] => 2
[1,1,0,1,0,1,0,1,0,0]
=> [.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [1,5,4,3,2] => 3
[1,1,0,1,0,1,1,0,0,0]
=> [.,[[[.,.],.],[.,.]]]
=> [5,2,3,4,1] => [1,4,3,2,5] => 2
[1,1,0,1,1,0,0,0,1,0]
=> [[.,[[.,.],[.,.]]],.]
=> [4,2,3,1,5] => [5,1,3,2,4] => 1
[1,1,0,1,1,0,0,1,0,0]
=> [.,[[[.,.],[.,.]],.]]
=> [4,2,3,5,1] => [1,5,3,2,4] => 3
[1,1,0,1,1,0,1,0,0,0]
=> [.,[[.,.],[[.,.],.]]]
=> [4,5,2,3,1] => [1,3,2,5,4] => 2
[1,1,0,1,1,1,0,0,0,0]
=> [.,[[.,.],[.,[.,.]]]]
=> [5,4,2,3,1] => [1,3,2,4,5] => 1
[1,1,1,0,0,0,1,0,1,0]
=> [[[.,[.,[.,.]]],.],.]
=> [3,2,1,4,5] => [5,4,1,2,3] => 0
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [[[[[[.,.],.],.],.],[.,.]],.]
=> [6,1,2,3,4,5,7] => [7,5,4,3,2,1,6] => ? = 0
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [[[[[[.,.],.],.],[.,.]],.],.]
=> [5,1,2,3,4,6,7] => [7,6,4,3,2,1,5] => ? = 0
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [[[[[.,.],.],.],[.,.]],[.,.]]
=> [7,5,1,2,3,4,6] => [6,4,3,2,1,5,7] => ? = 0
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [[[[[.,.],.],.],[[.,.],.]],.]
=> [5,6,1,2,3,4,7] => [7,4,3,2,1,6,5] => ? = 1
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [[[[.,.],.],.],[[[.,.],.],.]]
=> [5,6,7,1,2,3,4] => [4,3,2,1,7,6,5] => ? = 2
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [[[[.,.],.],.],[[.,.],[.,.]]]
=> [7,5,6,1,2,3,4] => [4,3,2,1,6,5,7] => ? = 1
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [[[[[.,.],.],.],[.,[.,.]]],.]
=> [6,5,1,2,3,4,7] => [7,4,3,2,1,5,6] => ? = 0
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [[[[.,.],.],.],[[.,[.,.]],.]]
=> [6,5,7,1,2,3,4] => [4,3,2,1,7,5,6] => ? = 2
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [[[[.,.],.],.],[.,[[.,.],.]]]
=> [6,7,5,1,2,3,4] => [4,3,2,1,5,7,6] => ? = 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [[[[[[.,.],.],[.,.]],.],.],.]
=> [4,1,2,3,5,6,7] => [7,6,5,3,2,1,4] => ? = 0
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [[[[[.,.],.],[.,.]],.],[.,.]]
=> [7,4,1,2,3,5,6] => [6,5,3,2,1,4,7] => ? = 0
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [[[[[.,.],.],[.,.]],[.,.]],.]
=> [6,4,1,2,3,5,7] => [7,5,3,2,1,4,6] => ? = 0
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [[[[.,.],.],[.,.]],[[.,.],.]]
=> [6,7,4,1,2,3,5] => [5,3,2,1,4,7,6] => ? = 1
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [[[[.,.],.],[.,.]],[.,[.,.]]]
=> [7,6,4,1,2,3,5] => [5,3,2,1,4,6,7] => ? = 0
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [[[[[.,.],.],[[.,.],.]],.],.]
=> [4,5,1,2,3,6,7] => [7,6,3,2,1,5,4] => ? = 1
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [[[[.,.],.],[[.,.],.]],[.,.]]
=> [7,4,5,1,2,3,6] => [6,3,2,1,5,4,7] => ? = 1
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [[[[.,.],.],[[[.,.],.],.]],.]
=> [4,5,6,1,2,3,7] => [7,3,2,1,6,5,4] => ? = 2
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [[[.,.],.],[[[[.,.],.],.],.]]
=> [4,5,6,7,1,2,3] => [3,2,1,7,6,5,4] => ? = 3
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [[[.,.],.],[[[.,.],.],[.,.]]]
=> [7,4,5,6,1,2,3] => [3,2,1,6,5,4,7] => ? = 2
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [[[[.,.],.],[[.,.],[.,.]]],.]
=> [6,4,5,1,2,3,7] => [7,3,2,1,5,4,6] => ? = 1
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [[[.,.],.],[[[.,.],[.,.]],.]]
=> [6,4,5,7,1,2,3] => [3,2,1,7,5,4,6] => ? = 3
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [[[.,.],.],[[.,.],[[.,.],.]]]
=> [6,7,4,5,1,2,3] => [3,2,1,5,4,7,6] => ? = 2
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [[[.,.],.],[[.,.],[.,[.,.]]]]
=> [7,6,4,5,1,2,3] => [3,2,1,5,4,6,7] => ? = 1
[1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [[[[[.,.],.],[.,[.,.]]],.],.]
=> [5,4,1,2,3,6,7] => [7,6,3,2,1,4,5] => ? = 0
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [[[[.,.],.],[.,[.,.]]],[.,.]]
=> [7,5,4,1,2,3,6] => [6,3,2,1,4,5,7] => ? = 0
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [[[[.,.],.],[[.,[.,.]],.]],.]
=> [5,4,6,1,2,3,7] => [7,3,2,1,6,4,5] => ? = 2
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [[[.,.],.],[[[.,[.,.]],.],.]]
=> [5,4,6,7,1,2,3] => [3,2,1,7,6,4,5] => ? = 3
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [[[.,.],.],[[.,[.,.]],[.,.]]]
=> [7,5,4,6,1,2,3] => [3,2,1,6,4,5,7] => ? = 2
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [[[[.,.],.],[.,[[.,.],.]]],.]
=> [5,6,4,1,2,3,7] => [7,3,2,1,4,6,5] => ? = 1
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [[[.,.],.],[[.,[[.,.],.]],.]]
=> [5,6,4,7,1,2,3] => [3,2,1,7,4,6,5] => ? = 4
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [[[.,.],.],[.,[[[.,.],.],.]]]
=> [5,6,7,4,1,2,3] => [3,2,1,4,7,6,5] => ? = 2
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [[[.,.],.],[.,[[.,.],[.,.]]]]
=> [7,5,6,4,1,2,3] => [3,2,1,4,6,5,7] => ? = 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [[[.,.],.],[[.,[.,[.,.]]],.]]
=> [6,5,4,7,1,2,3] => [3,2,1,7,4,5,6] => ? = 3
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [[[.,.],.],[.,[[.,[.,.]],.]]]
=> [6,5,7,4,1,2,3] => [3,2,1,4,7,5,6] => ? = 2
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [[[.,.],.],[.,[.,[[.,.],.]]]]
=> [6,7,5,4,1,2,3] => [3,2,1,4,5,7,6] => ? = 1
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [[[[[[.,.],[.,.]],.],.],.],.]
=> [3,1,2,4,5,6,7] => [7,6,5,4,2,1,3] => ? = 0
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [[[[[.,.],[.,.]],.],.],[.,.]]
=> [7,3,1,2,4,5,6] => [6,5,4,2,1,3,7] => ? = 0
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [[[[[.,.],[.,.]],.],[.,.]],.]
=> [6,3,1,2,4,5,7] => [7,5,4,2,1,3,6] => ? = 0
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [[[[.,.],[.,.]],.],[[.,.],.]]
=> [6,7,3,1,2,4,5] => [5,4,2,1,3,7,6] => ? = 1
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [[[[.,.],[.,.]],.],[.,[.,.]]]
=> [7,6,3,1,2,4,5] => [5,4,2,1,3,6,7] => ? = 0
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [[[[[.,.],[.,.]],[.,.]],.],.]
=> [5,3,1,2,4,6,7] => [7,6,4,2,1,3,5] => ? = 0
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [[[[.,.],[.,.]],[.,.]],[.,.]]
=> [7,5,3,1,2,4,6] => [6,4,2,1,3,5,7] => ? = 0
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [[[[.,.],[.,.]],[[.,.],.]],.]
=> [5,6,3,1,2,4,7] => [7,4,2,1,3,6,5] => ? = 1
[1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> [[[.,.],[.,.]],[[[.,.],.],.]]
=> [5,6,7,3,1,2,4] => [4,2,1,3,7,6,5] => ? = 2
[1,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [[[.,.],[.,.]],[[.,.],[.,.]]]
=> [7,5,6,3,1,2,4] => [4,2,1,3,6,5,7] => ? = 1
[1,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [[[.,.],[.,.]],[[.,[.,.]],.]]
=> [6,5,7,3,1,2,4] => [4,2,1,3,7,5,6] => ? = 2
[1,0,1,1,0,0,1,1,1,0,1,0,0,0]
=> [[[.,.],[.,.]],[.,[[.,.],.]]]
=> [6,7,5,3,1,2,4] => [4,2,1,3,5,7,6] => ? = 1
[1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [[[.,.],[.,.]],[.,[.,[.,.]]]]
=> [7,6,5,3,1,2,4] => [4,2,1,3,5,6,7] => ? = 0
[1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [[[[[.,.],[[.,.],.]],.],.],.]
=> [3,4,1,2,5,6,7] => [7,6,5,2,1,4,3] => ? = 1
[1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> [[[[.,.],[[.,.],.]],.],[.,.]]
=> [7,3,4,1,2,5,6] => [6,5,2,1,4,3,7] => ? = 1
Description
The number of admissible inversions of a permutation. Let $w = w_1,w_2,\dots,w_k$ be a word of length $k$ with distinct letters from $[n]$. An admissible inversion of $w$ is a pair $(w_i,w_j)$ such that $1\leq i < j\leq k$ and $w_i > w_j$ that satisfies either of the following conditions: $1 < i$ and $w_{i−1} < w_i$ or there is some $l$ such that $i < l < j$ and $w_i < w_l$.
Mp00327: Dyck paths inverse Kreweras complementDyck paths
Mp00031: Dyck paths to 312-avoiding permutationPermutations
St000866: Permutations ⟶ ℤResult quality: 47% values known / values provided: 47%distinct values known / distinct values provided: 70%
Values
[1,0,1,0]
=> [1,1,0,0]
=> [2,1] => 0
[1,1,0,0]
=> [1,0,1,0]
=> [1,2] => 0
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => 0
[1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => 0
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,3,2] => 0
[1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> [2,1,3] => 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 0
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [3,4,2,1] => 0
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 0
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 0
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 0
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 0
[1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 2
[1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 0
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 2
[1,1,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [4,5,3,2,1] => 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [3,5,4,2,1] => 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [4,3,5,2,1] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [3,4,5,2,1] => 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => 0
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [3,4,2,5,1] => 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 0
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 0
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => 0
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 0
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 0
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => 3
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,2,1,5] => 3
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [7,6,5,4,3,2,1] => ? = 0
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [6,7,5,4,3,2,1] => ? = 0
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [5,7,6,4,3,2,1] => ? = 0
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [6,5,7,4,3,2,1] => ? = 1
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [5,6,7,4,3,2,1] => ? = 0
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [4,7,6,5,3,2,1] => ? = 0
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [4,6,7,5,3,2,1] => ? = 0
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [5,4,7,6,3,2,1] => ? = 1
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [6,5,4,7,3,2,1] => ? = 2
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [5,4,6,7,3,2,1] => ? = 1
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> [4,5,7,6,3,2,1] => ? = 0
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,1,0,0,0,0]
=> [5,6,4,7,3,2,1] => ? = 2
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,1,0,0,1,0,0,0,0]
=> [4,6,5,7,3,2,1] => ? = 1
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [4,5,6,7,3,2,1] => ? = 0
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [3,7,6,5,4,2,1] => ? = 0
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,1,1,0,1,0,0,0,0,0]
=> [3,6,7,5,4,2,1] => ? = 0
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> [3,5,7,6,4,2,1] => ? = 0
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,0]
=> [3,6,5,7,4,2,1] => ? = 1
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> [3,5,6,7,4,2,1] => ? = 0
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> [4,3,7,6,5,2,1] => ? = 1
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,1,1,0,1,0,0,0,0]
=> [4,3,6,7,5,2,1] => ? = 1
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [5,4,3,7,6,2,1] => ? = 2
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [6,5,4,3,7,2,1] => ? = 3
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [5,4,3,6,7,2,1] => ? = 2
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,1,0,0,0,0]
=> [4,3,5,7,6,2,1] => ? = 1
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,1,0,0,0]
=> [5,6,4,3,7,2,1] => ? = 3
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,1,0,0,0]
=> [4,3,6,5,7,2,1] => ? = 2
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> [4,3,5,6,7,2,1] => ? = 1
[1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [3,4,7,6,5,2,1] => ? = 0
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> [3,4,6,7,5,2,1] => ? = 0
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,1,0,0,1,1,0,0,0,0]
=> [4,5,3,7,6,2,1] => ? = 2
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,0,1,0,0,0]
=> [4,6,5,3,7,2,1] => ? = 3
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,1,0,0,1,0,1,0,0,0]
=> [4,5,3,6,7,2,1] => ? = 2
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,1,1,0,0,0,0]
=> [3,5,4,7,6,2,1] => ? = 1
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,0]
=> [5,4,6,3,7,2,1] => ? = 4
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> [3,6,5,4,7,2,1] => ? = 2
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,1,0,0,1,0,1,0,0,0]
=> [3,5,4,6,7,2,1] => ? = 1
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> [3,4,5,7,6,2,1] => ? = 0
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,1,0,1,0,0,1,0,0,0]
=> [4,5,6,3,7,2,1] => ? = 3
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,1,0,0,0]
=> [3,5,6,4,7,2,1] => ? = 2
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,1,0,0,0]
=> [3,4,6,5,7,2,1] => ? = 1
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [3,4,5,6,7,2,1] => ? = 0
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [2,7,6,5,4,3,1] => ? = 0
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [2,6,7,5,4,3,1] => ? = 0
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> [2,5,7,6,4,3,1] => ? = 0
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> [2,6,5,7,4,3,1] => ? = 1
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,1,0,0,0,0]
=> [2,5,6,7,4,3,1] => ? = 0
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> [2,4,7,6,5,3,1] => ? = 0
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [2,4,6,7,5,3,1] => ? = 0
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> [2,5,4,7,6,3,1] => ? = 1
Description
The number of admissible inversions of a permutation in the sense of Shareshian-Wachs. An admissible inversion of a permutation $\sigma$ is a pair $(\sigma_i,\sigma_j)$ such that 1. $i < j$ and $\sigma_i > \sigma_j$ and 2. either $\sigma_j < \sigma_{j+1}$ or there exists a $i < k < j$ with $\sigma_k < \sigma_j$. This version was introduced by John Shareshian and Michelle L. Wachs in [1], for a closely related version, see [[St000463]].
Mp00031: Dyck paths to 312-avoiding permutationPermutations
Mp00235: Permutations descent views to invisible inversion bottomsPermutations
St001727: Permutations ⟶ ℤResult quality: 45% values known / values provided: 45%distinct values known / distinct values provided: 70%
Values
[1,0,1,0]
=> [1,2] => [1,2] => 0
[1,1,0,0]
=> [2,1] => [2,1] => 0
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => 0
[1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => 0
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => 0
[1,1,0,1,0,0]
=> [2,3,1] => [3,2,1] => 1
[1,1,1,0,0,0]
=> [3,2,1] => [2,3,1] => 0
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,4,3] => 0
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2,4] => 0
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,3,2] => 1
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,3,4,2] => 0
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => 0
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => 0
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,2,1,4] => 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4,2,3,1] => 2
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [3,2,4,1] => 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [2,3,1,4] => 0
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [4,3,2,1] => 2
[1,1,1,0,1,0,0,0]
=> [3,4,2,1] => [2,4,3,1] => 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [2,3,4,1] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,5,4] => 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,4,3,5] => 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,5,4,3] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [1,2,4,5,3] => 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,4,3,2,5] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,3,4,2] => 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,4,3,5,2] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [1,3,4,2,5] => 0
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [1,5,4,3,2] => 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => [1,3,5,4,2] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [1,3,4,5,2] => 0
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => 0
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => 0
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => 0
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,4,3] => 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [2,1,4,5,3] => 0
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [3,2,1,4,5] => 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,2,1,5,4] => 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,2,3,1,5] => 2
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5,2,3,4,1] => 3
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [4,2,3,5,1] => 2
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [3,2,4,1,5] => 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [5,2,4,3,1] => 3
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => [3,2,5,4,1] => 2
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [3,2,4,5,1] => 1
[1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [2,3,1,4,5] => 0
[1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,3,4,5,2,6,7] => [1,5,3,4,2,6,7] => ? = 2
[1,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,3,4,5,2,7,6] => [1,5,3,4,2,7,6] => ? = 2
[1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,3,4,5,6,2,7] => [1,6,3,4,5,2,7] => ? = 3
[1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,7,2] => [1,7,3,4,5,6,2] => ? = 4
[1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,3,4,5,7,6,2] => [1,6,3,4,5,7,2] => ? = 3
[1,0,1,1,0,1,0,1,1,0,0,0,1,0]
=> [1,3,4,6,5,2,7] => [1,5,3,4,6,2,7] => ? = 2
[1,0,1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,3,4,6,5,7,2] => [1,7,3,4,6,5,2] => ? = 4
[1,0,1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,3,4,6,7,5,2] => [1,5,3,4,7,6,2] => ? = 3
[1,0,1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,3,4,7,6,5,2] => [1,5,3,4,6,7,2] => ? = 2
[1,0,1,1,0,1,1,0,0,1,0,0,1,0]
=> [1,3,5,4,6,2,7] => [1,6,3,5,4,2,7] => ? = 3
[1,0,1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,3,5,4,6,7,2] => [1,7,3,5,4,6,2] => ? = 4
[1,0,1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,3,5,4,7,6,2] => [1,6,3,5,4,7,2] => ? = 3
[1,0,1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,3,5,6,4,7,2] => [1,7,3,6,5,4,2] => ? = 5
[1,0,1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,3,6,5,4,7,2] => [1,7,3,5,6,4,2] => ? = 4
[1,0,1,1,1,0,0,1,0,0,1,0,1,0]
=> [1,4,3,5,2,6,7] => [1,5,4,3,2,6,7] => ? = 2
[1,0,1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,4,3,5,2,7,6] => [1,5,4,3,2,7,6] => ? = 2
[1,0,1,1,1,0,0,1,0,1,0,0,1,0]
=> [1,4,3,5,6,2,7] => [1,6,4,3,5,2,7] => ? = 3
[1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,4,3,5,6,7,2] => [1,7,4,3,5,6,2] => ? = 4
[1,0,1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,4,3,5,7,6,2] => [1,6,4,3,5,7,2] => ? = 3
[1,0,1,1,1,0,0,1,1,0,0,0,1,0]
=> [1,4,3,6,5,2,7] => [1,5,4,3,6,2,7] => ? = 2
[1,0,1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,4,3,6,5,7,2] => [1,7,4,3,6,5,2] => ? = 4
[1,0,1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,4,3,6,7,5,2] => [1,5,4,3,7,6,2] => ? = 3
[1,0,1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,4,3,7,6,5,2] => [1,5,4,3,6,7,2] => ? = 2
[1,0,1,1,1,0,1,0,0,1,0,0,1,0]
=> [1,4,5,3,6,2,7] => [1,6,5,4,3,2,7] => ? = 4
[1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,4,5,3,6,7,2] => [1,7,5,4,3,6,2] => ? = 5
[1,0,1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,4,5,3,7,6,2] => [1,6,5,4,3,7,2] => ? = 4
[1,0,1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,4,5,6,3,7,2] => [1,7,6,4,5,3,2] => ? = 6
[1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,4,6,5,3,7,2] => [1,7,5,4,6,3,2] => ? = 5
[1,0,1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,5,4,3,6,2,7] => [1,6,4,5,3,2,7] => ? = 3
[1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,5,4,3,6,7,2] => [1,7,4,5,3,6,2] => ? = 4
[1,0,1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,5,4,3,7,6,2] => [1,6,4,5,3,7,2] => ? = 3
[1,0,1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,5,4,6,3,7,2] => [1,7,6,5,4,3,2] => ? = 6
[1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,5,6,4,3,7,2] => [1,7,4,6,5,3,2] => ? = 5
[1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,6,5,4,3,7,2] => [1,7,4,5,6,3,2] => ? = 4
[1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6,7] => [2,1,3,4,5,6,7] => ? = 0
[1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [2,1,3,4,5,7,6] => [2,1,3,4,5,7,6] => ? = 0
[1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [2,1,3,4,6,5,7] => [2,1,3,4,6,5,7] => ? = 0
[1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [2,1,3,4,6,7,5] => [2,1,3,4,7,6,5] => ? = 1
[1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [2,1,3,4,7,6,5] => [2,1,3,4,6,7,5] => ? = 0
[1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [2,1,3,5,4,6,7] => [2,1,3,5,4,6,7] => ? = 0
[1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [2,1,3,5,4,7,6] => [2,1,3,5,4,7,6] => ? = 0
[1,1,0,0,1,0,1,1,0,1,0,0,1,0]
=> [2,1,3,5,6,4,7] => [2,1,3,6,5,4,7] => ? = 1
[1,1,0,0,1,0,1,1,0,1,0,1,0,0]
=> [2,1,3,5,6,7,4] => [2,1,3,7,5,6,4] => ? = 2
[1,1,0,0,1,0,1,1,0,1,1,0,0,0]
=> [2,1,3,5,7,6,4] => [2,1,3,6,5,7,4] => ? = 1
[1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,6,5,4,7] => [2,1,3,5,6,4,7] => ? = 0
[1,1,0,0,1,0,1,1,1,0,0,1,0,0]
=> [2,1,3,6,5,7,4] => [2,1,3,7,6,5,4] => ? = 2
[1,1,0,0,1,0,1,1,1,0,1,0,0,0]
=> [2,1,3,6,7,5,4] => [2,1,3,5,7,6,4] => ? = 1
[1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,7,6,5,4] => [2,1,3,5,6,7,4] => ? = 0
[1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [2,1,4,3,5,6,7] => [2,1,4,3,5,6,7] => ? = 0
[1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [2,1,4,3,5,7,6] => [2,1,4,3,5,7,6] => ? = 0
Description
The number of invisible inversions of a permutation. A visible inversion of a permutation $\pi$ is a pair $i < j$ such that $\pi(j) \leq \min(i, \pi(i))$. Thus, an invisible inversion satisfies $\pi(i) > \pi(j) > i$.
Mp00031: Dyck paths to 312-avoiding permutationPermutations
Mp00241: Permutations invert Laguerre heapPermutations
St000358: Permutations ⟶ ℤResult quality: 40% values known / values provided: 40%distinct values known / distinct values provided: 70%
Values
[1,0,1,0]
=> [1,2] => [1,2] => 0
[1,1,0,0]
=> [2,1] => [2,1] => 0
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => 0
[1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => 0
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => 0
[1,1,0,1,0,0]
=> [2,3,1] => [3,1,2] => 1
[1,1,1,0,0,0]
=> [3,2,1] => [3,2,1] => 0
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,4,3] => 0
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2,4] => 0
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,2,3] => 1
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,4,3,2] => 0
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => 0
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => 0
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,1,2,4] => 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4,1,2,3] => 2
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [4,3,1,2] => 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [3,2,1,4] => 0
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [4,1,3,2] => 2
[1,1,1,0,1,0,0,0]
=> [3,4,2,1] => [4,2,1,3] => 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [4,3,2,1] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,5,4] => 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,4,3,5] => 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,5,3,4] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [1,2,5,4,3] => 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,4,2,3,5] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,2,3,4] => 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,5,4,2,3] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [1,4,3,2,5] => 0
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [1,5,2,4,3] => 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => [1,5,3,2,4] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [1,5,4,3,2] => 0
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => 0
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => 0
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => 0
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,3,4] => 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [2,1,5,4,3] => 0
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [3,1,2,4,5] => 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,1,2,5,4] => 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,1,2,3,5] => 2
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5,1,2,3,4] => 3
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [5,4,1,2,3] => 2
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [4,3,1,2,5] => 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [5,1,2,4,3] => 3
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => [5,3,1,2,4] => 2
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [5,4,3,1,2] => 1
[1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [3,2,1,4,5] => 0
[1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,3,4,5,2,6,7] => [1,5,2,3,4,6,7] => ? = 2
[1,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,3,4,5,2,7,6] => [1,5,2,3,4,7,6] => ? = 2
[1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,3,4,5,6,2,7] => [1,6,2,3,4,5,7] => ? = 3
[1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,7,2] => [1,7,2,3,4,5,6] => ? = 4
[1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,3,4,5,7,6,2] => [1,7,6,2,3,4,5] => ? = 3
[1,0,1,1,0,1,0,1,1,0,0,0,1,0]
=> [1,3,4,6,5,2,7] => [1,6,5,2,3,4,7] => ? = 2
[1,0,1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,3,4,6,5,7,2] => [1,7,2,3,4,6,5] => ? = 4
[1,0,1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,3,4,6,7,5,2] => [1,7,5,2,3,4,6] => ? = 3
[1,0,1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,3,4,7,6,5,2] => [1,7,6,5,2,3,4] => ? = 2
[1,0,1,1,0,1,1,0,0,0,1,0,1,0]
=> [1,3,5,4,2,6,7] => [1,5,4,2,3,6,7] => ? = 1
[1,0,1,1,0,1,1,0,0,0,1,1,0,0]
=> [1,3,5,4,2,7,6] => [1,5,4,2,3,7,6] => ? = 1
[1,0,1,1,0,1,1,0,0,1,0,0,1,0]
=> [1,3,5,4,6,2,7] => [1,6,2,3,5,4,7] => ? = 3
[1,0,1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,3,5,4,6,7,2] => [1,7,2,3,5,4,6] => ? = 4
[1,0,1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,3,5,4,7,6,2] => [1,7,6,2,3,5,4] => ? = 3
[1,0,1,1,0,1,1,0,1,0,0,0,1,0]
=> [1,3,5,6,4,2,7] => [1,6,4,2,3,5,7] => ? = 2
[1,0,1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,3,5,6,4,7,2] => [1,7,2,3,6,4,5] => ? = 5
[1,0,1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,3,5,6,7,4,2] => [1,7,4,2,3,5,6] => ? = 3
[1,0,1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,3,5,7,6,4,2] => [1,7,6,4,2,3,5] => ? = 2
[1,0,1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,3,6,5,4,2,7] => [1,6,5,4,2,3,7] => ? = 1
[1,0,1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,3,6,5,4,7,2] => [1,7,2,3,6,5,4] => ? = 4
[1,0,1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,3,6,5,7,4,2] => [1,7,4,2,3,6,5] => ? = 3
[1,0,1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,3,6,7,5,4,2] => [1,7,5,4,2,3,6] => ? = 2
[1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,3,7,6,5,4,2] => [1,7,6,5,4,2,3] => ? = 1
[1,0,1,1,1,0,0,1,0,0,1,0,1,0]
=> [1,4,3,5,2,6,7] => [1,5,2,4,3,6,7] => ? = 2
[1,0,1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,4,3,5,2,7,6] => [1,5,2,4,3,7,6] => ? = 2
[1,0,1,1,1,0,0,1,0,1,0,0,1,0]
=> [1,4,3,5,6,2,7] => [1,6,2,4,3,5,7] => ? = 3
[1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,4,3,5,6,7,2] => [1,7,2,4,3,5,6] => ? = 4
[1,0,1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,4,3,5,7,6,2] => [1,7,6,2,4,3,5] => ? = 3
[1,0,1,1,1,0,0,1,1,0,0,0,1,0]
=> [1,4,3,6,5,2,7] => [1,6,5,2,4,3,7] => ? = 2
[1,0,1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,4,3,6,5,7,2] => [1,7,2,4,3,6,5] => ? = 4
[1,0,1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,4,3,6,7,5,2] => [1,7,5,2,4,3,6] => ? = 3
[1,0,1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,4,3,7,6,5,2] => [1,7,6,5,2,4,3] => ? = 2
[1,0,1,1,1,0,1,0,0,0,1,0,1,0]
=> [1,4,5,3,2,6,7] => [1,5,3,2,4,6,7] => ? = 1
[1,0,1,1,1,0,1,0,0,0,1,1,0,0]
=> [1,4,5,3,2,7,6] => [1,5,3,2,4,7,6] => ? = 1
[1,0,1,1,1,0,1,0,0,1,0,0,1,0]
=> [1,4,5,3,6,2,7] => [1,6,2,5,3,4,7] => ? = 4
[1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,4,5,3,6,7,2] => [1,7,2,5,3,4,6] => ? = 5
[1,0,1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,4,5,3,7,6,2] => [1,7,6,2,5,3,4] => ? = 4
[1,0,1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,4,5,6,3,2,7] => [1,6,3,2,4,5,7] => ? = 2
[1,0,1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,4,5,6,3,7,2] => [1,7,2,6,3,4,5] => ? = 6
[1,0,1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,4,5,6,7,3,2] => [1,7,3,2,4,5,6] => ? = 3
[1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,4,5,7,6,3,2] => [1,7,6,3,2,4,5] => ? = 2
[1,0,1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,4,6,5,3,2,7] => [1,6,5,3,2,4,7] => ? = 1
[1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,4,6,5,3,7,2] => [1,7,2,6,5,3,4] => ? = 5
[1,0,1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,4,6,5,7,3,2] => [1,7,3,2,4,6,5] => ? = 3
[1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,4,6,7,5,3,2] => [1,7,5,3,2,4,6] => ? = 2
[1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,4,7,6,5,3,2] => [1,7,6,5,3,2,4] => ? = 1
[1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,5,4,3,2,6,7] => [1,5,4,3,2,6,7] => ? = 0
[1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,5,4,3,2,7,6] => [1,5,4,3,2,7,6] => ? = 0
[1,0,1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,5,4,3,6,2,7] => [1,6,2,5,4,3,7] => ? = 3
[1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,5,4,3,6,7,2] => [1,7,2,5,4,3,6] => ? = 4
Description
The number of occurrences of the pattern 31-2. See [[Permutations/#Pattern-avoiding_permutations]] for the definition of the pattern $31\!\!-\!\!2$.
The following 13 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000223The number of nestings in the permutation. St000039The number of crossings of a permutation. St001330The hat guessing number of a graph. St000441The number of successions of a permutation. St000665The number of rafts of a permutation. St000731The number of double exceedences of a permutation. St000028The number of stack-sorts needed to sort a permutation. St000451The length of the longest pattern of the form k 1 2. St001719The number of shortest chains of small intervals from the bottom to the top in a lattice. St000058The order of a permutation. St001866The nesting alignments of a signed permutation. St001882The number of occurrences of a type-B 231 pattern in a signed permutation. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$.