searching the database
Your data matches 107 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000011
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Mp00099: Dyck paths —bounce path⟶ Dyck paths
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
St000011: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
St000011: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1,0]
=> 1
[1,0,1,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1
[1,1,0,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 2
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 1
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 1
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 2
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 1
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 3
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 1
[1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 2
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 3
[1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2
[1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1
Description
The number of touch points (or returns) of a Dyck path.
This is the number of points, excluding the origin, where the Dyck path has height 0.
Matching statistic: St000382
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Mp00099: Dyck paths —bounce path⟶ Dyck paths
Mp00100: Dyck paths —touch composition⟶ Integer compositions
St000382: Integer compositions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00100: Dyck paths —touch composition⟶ Integer compositions
St000382: Integer compositions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1] => 1
[1,0,1,0]
=> [1,0,1,0]
=> [1,1] => 1
[1,1,0,0]
=> [1,1,0,0]
=> [2] => 2
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1] => 1
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,2] => 1
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [2,1] => 2
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,2] => 1
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [3] => 3
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1] => 1
[1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,2] => 1
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,2,1] => 1
[1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,2] => 1
[1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,3] => 1
[1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,1] => 2
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,2] => 2
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,2,1] => 1
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,2] => 2
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,3] => 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [3,1] => 3
[1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,2] => 2
[1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,3] => 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4] => 4
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,4] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,3] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,3] => 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,3] => 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,4] => 1
Description
The first part of an integer composition.
Matching statistic: St000505
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00099: Dyck paths —bounce path⟶ Dyck paths
Mp00138: Dyck paths —to noncrossing partition⟶ Set partitions
St000505: Set partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00138: Dyck paths —to noncrossing partition⟶ Set partitions
St000505: Set partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> {{1}}
=> 1
[1,0,1,0]
=> [1,0,1,0]
=> {{1},{2}}
=> 1
[1,1,0,0]
=> [1,1,0,0]
=> {{1,2}}
=> 2
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> {{1},{2},{3}}
=> 1
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> {{1},{2,3}}
=> 1
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> {{1,2},{3}}
=> 2
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> {{1},{2,3}}
=> 1
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> {{1,2,3}}
=> 3
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4}}
=> 1
[1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> {{1},{2},{3,4}}
=> 1
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> {{1},{2,3},{4}}
=> 1
[1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> {{1},{2},{3,4}}
=> 1
[1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> 1
[1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> {{1,2},{3},{4}}
=> 2
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> {{1,2},{3,4}}
=> 2
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> {{1},{2,3},{4}}
=> 1
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> {{1,2},{3,4}}
=> 2
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> {{1,2,3},{4}}
=> 3
[1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> {{1,2},{3,4}}
=> 2
[1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 4
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4},{5}}
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4,5}}
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> {{1},{2},{3,4},{5}}
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4,5}}
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5}}
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> {{1},{2,3},{4},{5}}
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4,5}}
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> {{1},{2},{3,4},{5}}
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4,5}}
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5}}
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> {{1},{2,3,4},{5}}
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4,5}}
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5}}
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3,4,5}}
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> {{1,2},{3},{4},{5}}
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> {{1,2},{3},{4,5}}
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> {{1,2},{3,4},{5}}
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> {{1,2},{3},{4,5}}
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5}}
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> {{1},{2,3},{4},{5}}
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4,5}}
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> {{1,2},{3,4},{5}}
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4,5}}
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5}}
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> {{1},{2,3,4},{5}}
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4,5}}
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5}}
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3,4,5}}
=> 1
Description
The biggest entry in the block containing the 1.
Matching statistic: St000971
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00099: Dyck paths —bounce path⟶ Dyck paths
Mp00138: Dyck paths —to noncrossing partition⟶ Set partitions
St000971: Set partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00138: Dyck paths —to noncrossing partition⟶ Set partitions
St000971: Set partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> {{1}}
=> 1
[1,0,1,0]
=> [1,0,1,0]
=> {{1},{2}}
=> 1
[1,1,0,0]
=> [1,1,0,0]
=> {{1,2}}
=> 2
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> {{1},{2},{3}}
=> 1
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> {{1},{2,3}}
=> 1
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> {{1,2},{3}}
=> 2
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> {{1},{2,3}}
=> 1
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> {{1,2,3}}
=> 3
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4}}
=> 1
[1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> {{1},{2},{3,4}}
=> 1
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> {{1},{2,3},{4}}
=> 1
[1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> {{1},{2},{3,4}}
=> 1
[1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> 1
[1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> {{1,2},{3},{4}}
=> 2
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> {{1,2},{3,4}}
=> 2
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> {{1},{2,3},{4}}
=> 1
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> {{1,2},{3,4}}
=> 2
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> {{1,2,3},{4}}
=> 3
[1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> {{1,2},{3,4}}
=> 2
[1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 4
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4},{5}}
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4,5}}
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> {{1},{2},{3,4},{5}}
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4,5}}
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5}}
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> {{1},{2,3},{4},{5}}
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4,5}}
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> {{1},{2},{3,4},{5}}
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4,5}}
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5}}
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> {{1},{2,3,4},{5}}
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4,5}}
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5}}
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3,4,5}}
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> {{1,2},{3},{4},{5}}
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> {{1,2},{3},{4,5}}
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> {{1,2},{3,4},{5}}
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> {{1,2},{3},{4,5}}
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5}}
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> {{1},{2,3},{4},{5}}
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4,5}}
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> {{1,2},{3,4},{5}}
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4,5}}
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5}}
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> {{1},{2,3,4},{5}}
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4,5}}
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5}}
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3,4,5}}
=> 1
Description
The smallest closer of a set partition.
A closer (or right hand endpoint) of a set partition is a number that is maximal in its block. For this statistic, singletons are considered as closers.
In other words, this is the smallest among the maximal elements of the blocks.
Matching statistic: St000326
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Mp00099: Dyck paths —bounce path⟶ Dyck paths
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00114: Permutations —connectivity set⟶ Binary words
St000326: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00114: Permutations —connectivity set⟶ Binary words
St000326: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1] => => ? = 1
[1,0,1,0]
=> [1,0,1,0]
=> [1,2] => 1 => 1
[1,1,0,0]
=> [1,1,0,0]
=> [2,1] => 0 => 2
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,2,3] => 11 => 1
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,3,2] => 10 => 1
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [2,1,3] => 01 => 2
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,3,2] => 10 => 1
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => 00 => 3
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 111 => 1
[1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 110 => 1
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 101 => 1
[1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 110 => 1
[1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 100 => 1
[1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 011 => 2
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 010 => 2
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 101 => 1
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 010 => 2
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 100 => 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 001 => 3
[1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 010 => 2
[1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 100 => 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 000 => 4
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 1111 => 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 1110 => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 1101 => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 1110 => 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 1100 => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 1011 => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 1010 => 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 1101 => 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 1010 => 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 1100 => 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => 1001 => 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 1010 => 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 1100 => 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 1000 => 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 0111 => 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 0110 => 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 0101 => 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 0110 => 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 0100 => 2
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 1011 => 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 1010 => 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 0101 => 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 1010 => 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 0100 => 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => 1001 => 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 1010 => 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 0100 => 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 1000 => 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => 0011 => 3
Description
The position of the first one in a binary word after appending a 1 at the end.
Regarding the binary word as a subset of $\{1,\dots,n,n+1\}$ that contains $n+1$, this is the minimal element of the set.
Matching statistic: St000297
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00099: Dyck paths —bounce path⟶ Dyck paths
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00109: Permutations —descent word⟶ Binary words
St000297: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00109: Permutations —descent word⟶ Binary words
St000297: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1] => => ? = 1 - 1
[1,0,1,0]
=> [1,0,1,0]
=> [1,2] => 0 => 0 = 1 - 1
[1,1,0,0]
=> [1,1,0,0]
=> [2,1] => 1 => 1 = 2 - 1
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,2,3] => 00 => 0 = 1 - 1
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,3,2] => 01 => 0 = 1 - 1
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [2,1,3] => 10 => 1 = 2 - 1
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,3,2] => 01 => 0 = 1 - 1
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => 11 => 2 = 3 - 1
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 000 => 0 = 1 - 1
[1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 001 => 0 = 1 - 1
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 010 => 0 = 1 - 1
[1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 001 => 0 = 1 - 1
[1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 011 => 0 = 1 - 1
[1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 100 => 1 = 2 - 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 101 => 1 = 2 - 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 010 => 0 = 1 - 1
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 101 => 1 = 2 - 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 011 => 0 = 1 - 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 110 => 2 = 3 - 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 101 => 1 = 2 - 1
[1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 011 => 0 = 1 - 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 111 => 3 = 4 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 0000 => 0 = 1 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 0001 => 0 = 1 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 0010 => 0 = 1 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 0001 => 0 = 1 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 0011 => 0 = 1 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 0100 => 0 = 1 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 0101 => 0 = 1 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 0010 => 0 = 1 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 0101 => 0 = 1 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 0011 => 0 = 1 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => 0110 => 0 = 1 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 0101 => 0 = 1 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 0011 => 0 = 1 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 0111 => 0 = 1 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 1000 => 1 = 2 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 1001 => 1 = 2 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 1010 => 1 = 2 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 1001 => 1 = 2 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 1011 => 1 = 2 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 0100 => 0 = 1 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 0101 => 0 = 1 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 1010 => 1 = 2 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 0101 => 0 = 1 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 1011 => 1 = 2 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => 0110 => 0 = 1 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 0101 => 0 = 1 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 1011 => 1 = 2 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 0111 => 0 = 1 - 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => 1100 => 2 = 3 - 1
Description
The number of leading ones in a binary word.
Matching statistic: St000745
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00099: Dyck paths —bounce path⟶ Dyck paths
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00059: Permutations —Robinson-Schensted insertion tableau⟶ Standard tableaux
St000745: Standard tableaux ⟶ ℤResult quality: 90% ●values known / values provided: 99%●distinct values known / distinct values provided: 90%
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00059: Permutations —Robinson-Schensted insertion tableau⟶ Standard tableaux
St000745: Standard tableaux ⟶ ℤResult quality: 90% ●values known / values provided: 99%●distinct values known / distinct values provided: 90%
Values
[1,0]
=> [1,0]
=> [1] => [[1]]
=> 1
[1,0,1,0]
=> [1,0,1,0]
=> [1,2] => [[1,2]]
=> 1
[1,1,0,0]
=> [1,1,0,0]
=> [2,1] => [[1],[2]]
=> 2
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,2,3] => [[1,2,3]]
=> 1
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,3,2] => [[1,2],[3]]
=> 1
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [2,1,3] => [[1,3],[2]]
=> 2
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,3,2] => [[1,2],[3]]
=> 1
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => [[1],[2],[3]]
=> 3
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [[1,2,3,4]]
=> 1
[1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [[1,2,3],[4]]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [[1,2,4],[3]]
=> 1
[1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [[1,2,3],[4]]
=> 1
[1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [[1,2],[3],[4]]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [[1,3,4],[2]]
=> 2
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [[1,3],[2,4]]
=> 2
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [[1,2,4],[3]]
=> 1
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [[1,3],[2,4]]
=> 2
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [[1,2],[3],[4]]
=> 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [[1,4],[2],[3]]
=> 3
[1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [[1,3],[2,4]]
=> 2
[1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [[1,2],[3],[4]]
=> 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [[1],[2],[3],[4]]
=> 4
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [[1,2,3,4,5]]
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [[1,2,3,4],[5]]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [[1,2,3,5],[4]]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [[1,2,3,4],[5]]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [[1,2,3],[4],[5]]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [[1,2,4,5],[3]]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [[1,2,4],[3,5]]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [[1,2,3,5],[4]]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [[1,2,4],[3,5]]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [[1,2,3],[4],[5]]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [[1,2,5],[3],[4]]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [[1,2,4],[3,5]]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [[1,2,3],[4],[5]]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [[1,2],[3],[4],[5]]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [[1,3,4,5],[2]]
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [[1,3,4],[2,5]]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [[1,3,5],[2,4]]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [[1,3,4],[2,5]]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [[1,3],[2,4],[5]]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [[1,2,4,5],[3]]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [[1,2,4],[3,5]]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [[1,3,5],[2,4]]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [[1,2,4],[3,5]]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [[1,3],[2,4],[5]]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [[1,2,5],[3],[4]]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [[1,2,4],[3,5]]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [[1,3],[2,4],[5]]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [[1,2],[3],[4],[5]]
=> 1
[1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [10,9,8,7,6,5,4,3,2,1,11] => [[1,11],[2],[3],[4],[5],[6],[7],[8],[9],[10]]
=> ? = 10
[1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,11,10,9,8,7,6,5,4,3,2] => [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 1
[1,1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,11,10,9,8,7,6,5,4,3,2] => [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 1
[1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,11,10,9,8,7,6,5,4,3,2] => [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 1
[1,1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,11,10,9,8,7,6,5,4,3,2] => [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 1
[1,1,1,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,11,10,9,8,7,6,5,4,3,2] => [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 1
[1,1,1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,11,10,9,8,7,6,5,4,3,2] => [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 1
[1,1,1,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,11,10,9,8,7,6,5,4,3,2] => [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 1
[1,1,1,1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,11,10,9,8,7,6,5,4,3,2] => [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 1
[1,1,1,1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,11,10,9,8,7,6,5,4,3,2] => [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 1
[1,1,1,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,11,10,9,8,7,6,5,4,3,2] => [[1,2],[3],[4],[5],[6],[7],[8],[9],[10],[11]]
=> ? = 1
Description
The index of the last row whose first entry is the row number in a standard Young tableau.
Matching statistic: St001777
Mp00099: Dyck paths —bounce path⟶ Dyck paths
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
Mp00100: Dyck paths —touch composition⟶ Integer compositions
St001777: Integer compositions ⟶ ℤResult quality: 90% ●values known / values provided: 94%●distinct values known / distinct values provided: 90%
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
Mp00100: Dyck paths —touch composition⟶ Integer compositions
St001777: Integer compositions ⟶ ℤResult quality: 90% ●values known / values provided: 94%●distinct values known / distinct values provided: 90%
Values
[1,0]
=> [1,0]
=> [1,0]
=> [1] => 0 = 1 - 1
[1,0,1,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> [2] => 0 = 1 - 1
[1,1,0,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1,1] => 1 = 2 - 1
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [3] => 0 = 1 - 1
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [3] => 0 = 1 - 1
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [2,1] => 1 = 2 - 1
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [3] => 0 = 1 - 1
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1] => 2 = 3 - 1
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [4] => 0 = 1 - 1
[1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [4] => 0 = 1 - 1
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [4] => 0 = 1 - 1
[1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [4] => 0 = 1 - 1
[1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [4] => 0 = 1 - 1
[1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [3,1] => 1 = 2 - 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [3,1] => 1 = 2 - 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [4] => 0 = 1 - 1
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [3,1] => 1 = 2 - 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [4] => 0 = 1 - 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,1] => 2 = 3 - 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [3,1] => 1 = 2 - 1
[1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [4] => 0 = 1 - 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1] => 3 = 4 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5] => 0 = 1 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [5] => 0 = 1 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [5] => 0 = 1 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [5] => 0 = 1 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [5] => 0 = 1 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [5] => 0 = 1 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [5] => 0 = 1 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [5] => 0 = 1 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [5] => 0 = 1 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [5] => 0 = 1 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [5] => 0 = 1 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [5] => 0 = 1 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [5] => 0 = 1 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [5] => 0 = 1 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1] => 1 = 2 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1] => 1 = 2 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,1] => 1 = 2 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1] => 1 = 2 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [4,1] => 1 = 2 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [5] => 0 = 1 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [5] => 0 = 1 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,1] => 1 = 2 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [5] => 0 = 1 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [4,1] => 1 = 2 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [5] => 0 = 1 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [5] => 0 = 1 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [4,1] => 1 = 2 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [5] => 0 = 1 - 1
[1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,1,1,1,1,1,1,1,1] => ? = 10 - 1
[1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [11] => ? = 1 - 1
[1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0]
=> [11,1] => ? = 2 - 1
[1,1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [11] => ? = 1 - 1
[1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [11] => ? = 1 - 1
[1,1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [11] => ? = 1 - 1
[1,1,1,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [11] => ? = 1 - 1
[1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0]
=> [11,1] => ? = 2 - 1
[1,1,1,0,0,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0]
=> [11,1] => ? = 2 - 1
[1,1,0,0,1,1,1,0,0,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0]
=> [11,1] => ? = 2 - 1
[1,1,1,0,0,1,1,0,0,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0]
=> [11,1] => ? = 2 - 1
[1,1,0,0,1,1,0,0,1,1,1,0,0,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0]
=> [11,1] => ? = 2 - 1
[1,1,1,0,0,1,0,0,1,1,1,0,0,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0]
=> [11,1] => ? = 2 - 1
[1,1,0,0,1,1,1,0,0,1,1,0,0,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0]
=> [11,1] => ? = 2 - 1
[1,1,1,0,0,1,1,0,0,1,1,0,0,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0]
=> [11,1] => ? = 2 - 1
[1,1,0,0,1,1,0,0,1,1,0,0,1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0]
=> [11,1] => ? = 2 - 1
[1,1,1,0,0,1,0,0,1,1,0,0,1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0]
=> [11,1] => ? = 2 - 1
[1,1,0,0,1,1,1,0,0,1,0,0,1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0]
=> [11,1] => ? = 2 - 1
[1,1,1,0,0,1,1,0,0,1,0,0,1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0]
=> [11,1] => ? = 2 - 1
[1,1,0,0,1,1,0,0,1,1,1,0,0,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0]
=> [11,1] => ? = 2 - 1
[1,1,1,0,0,1,0,0,1,1,1,0,0,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0]
=> [11,1] => ? = 2 - 1
[1,1,0,0,1,1,1,0,0,1,1,0,0,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0]
=> [11,1] => ? = 2 - 1
[1,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0]
=> [11,1] => ? = 2 - 1
[1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0]
=> [11,1] => ? = 2 - 1
[1,1,1,0,0,1,0,0,1,1,0,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0]
=> [11,1] => ? = 2 - 1
[1,1,0,0,1,1,1,0,0,1,0,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0]
=> [11,1] => ? = 2 - 1
[1,1,1,0,0,1,1,0,0,1,0,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0]
=> [11,1] => ? = 2 - 1
[1,1,0,0,1,1,0,0,1,1,1,0,0,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0]
=> [11,1] => ? = 2 - 1
[1,1,1,0,0,1,0,0,1,1,1,0,0,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0]
=> [11,1] => ? = 2 - 1
[1,1,0,0,1,1,1,0,0,1,1,0,0,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0]
=> [11,1] => ? = 2 - 1
[1,1,1,0,0,1,1,0,0,1,1,0,0,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0]
=> [11,1] => ? = 2 - 1
[1,1,0,0,1,1,0,0,1,1,0,0,1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0]
=> [11,1] => ? = 2 - 1
[1,1,1,0,0,1,0,0,1,1,0,0,1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0]
=> [11,1] => ? = 2 - 1
[1,1,0,0,1,1,1,0,0,1,0,0,1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0]
=> [11,1] => ? = 2 - 1
[1,1,1,0,0,1,1,0,0,1,0,0,1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0]
=> [11,1] => ? = 2 - 1
[1,1,0,0,1,1,0,0,1,1,1,0,0,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0]
=> [11,1] => ? = 2 - 1
[1,1,1,0,0,1,0,0,1,1,1,0,0,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0]
=> [11,1] => ? = 2 - 1
[1,1,0,0,1,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0]
=> [11,1] => ? = 2 - 1
[1,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0]
=> [11,1] => ? = 2 - 1
[1,1,1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [11] => ? = 1 - 1
[1,1,1,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [11] => ? = 1 - 1
[1,1,1,1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [11] => ? = 1 - 1
[1,1,1,1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [11] => ? = 1 - 1
[1,1,1,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [11] => ? = 1 - 1
Description
The number of weak descents in an integer composition.
A weak descent of an integer composition $\alpha=(a_1, \dots, a_n)$ is an index $1\leq i < n$ such that $a_i \geq a_{i+1}$.
Matching statistic: St000383
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00099: Dyck paths —bounce path⟶ Dyck paths
Mp00028: Dyck paths —reverse⟶ Dyck paths
Mp00100: Dyck paths —touch composition⟶ Integer compositions
St000383: Integer compositions ⟶ ℤResult quality: 92% ●values known / values provided: 92%●distinct values known / distinct values provided: 100%
Mp00028: Dyck paths —reverse⟶ Dyck paths
Mp00100: Dyck paths —touch composition⟶ Integer compositions
St000383: Integer compositions ⟶ ℤResult quality: 92% ●values known / values provided: 92%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1,0]
=> [1] => 1
[1,0,1,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> [1,1] => 1
[1,1,0,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> [2] => 2
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1] => 1
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [2,1] => 1
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,2] => 2
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [2,1] => 1
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [3] => 3
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1] => 1
[1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,1] => 1
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,2,1] => 1
[1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,1] => 1
[1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3,1] => 1
[1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,2] => 2
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,2] => 2
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,2,1] => 1
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,2] => 2
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3,1] => 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,3] => 3
[1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,2] => 2
[1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3,1] => 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4] => 4
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2] => 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2] => 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1] => 1
[1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [6,2] => ? = 2
[1,1,0,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [6,2] => ? = 2
[1,1,0,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [6,2] => ? = 2
[1,1,0,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [6,2] => ? = 2
[1,1,0,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [6,2] => ? = 2
[1,1,0,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [6,2] => ? = 2
[1,1,1,0,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [6,2] => ? = 2
[1,1,1,0,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [6,2] => ? = 2
[1,1,1,0,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [6,2] => ? = 2
[1,1,1,0,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [6,2] => ? = 2
[1,1,1,0,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [6,2] => ? = 2
[1,1,1,1,0,0,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [6,2] => ? = 2
[1,1,1,1,0,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [6,2] => ? = 2
[1,1,1,1,0,1,1,0,1,1,0,0,0,0,0,0]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [6,2] => ? = 2
[1,1,1,1,0,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [6,2] => ? = 2
[1,1,1,1,1,0,0,1,1,1,0,0,0,0,0,0]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [6,2] => ? = 2
[1,1,1,1,1,0,1,0,1,1,0,0,0,0,0,0]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [6,2] => ? = 2
[1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [6,2] => ? = 2
[1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,6] => ? = 6
[1,1,1,1,1,1,0,0,0,0,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,6] => ? = 6
[1,1,1,1,1,1,0,0,0,0,1,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,6] => ? = 6
[1,1,1,1,1,1,0,0,0,1,0,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,6] => ? = 6
[1,1,1,1,1,1,0,0,1,0,0,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,6] => ? = 6
[1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [6,2] => ? = 2
[1,1,1,1,1,1,0,1,0,0,0,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,6] => ? = 6
[1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [6,2] => ? = 2
[1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,6] => ? = 6
[1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [6,2] => ? = 2
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [8] => ? = 8
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,2,2,2,2] => ? = 2
[1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,2,2,2,2] => ? = 2
[1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,2,2,2,2] => ? = 2
[1,1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,2,2,2,2] => ? = 2
[1,1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,2,2,2,2] => ? = 2
[1,1,0,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,2,2,2,2] => ? = 2
[1,1,0,1,0,1,0,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,2,2,2,2] => ? = 2
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,2,2,2,2] => ? = 2
[1,1,1,0,0,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,2,2,2,2] => ? = 2
[1,1,1,0,0,1,1,0,0,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,2,2,2,2] => ? = 2
[1,1,1,0,0,1,1,0,0,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,2,2,2,2] => ? = 2
[1,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,2,2,2,2] => ? = 2
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,2,2,2,2] => ? = 2
[1,1,0,0,1,1,0,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,2,2,2,2] => ? = 2
[1,1,0,0,1,1,0,0,1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,2,2,2,2] => ? = 2
[1,1,0,0,1,1,1,0,0,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,2,2,2,2] => ? = 2
[1,1,0,0,1,1,1,0,0,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,2,2,2,2] => ? = 2
[1,1,0,0,1,1,0,0,1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,2,2,2,2] => ? = 2
[1,1,1,0,0,1,0,0,1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,2,2,2,2] => ? = 2
[1,1,0,0,1,1,1,0,0,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,2,2,2,2] => ? = 2
[1,1,1,0,0,1,0,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,2,2,2,2] => ? = 2
Description
The last part of an integer composition.
Matching statistic: St000439
(load all 9 compositions to match this statistic)
(load all 9 compositions to match this statistic)
Mp00099: Dyck paths —bounce path⟶ Dyck paths
St000439: Dyck paths ⟶ ℤResult quality: 92% ●values known / values provided: 92%●distinct values known / distinct values provided: 100%
St000439: Dyck paths ⟶ ℤResult quality: 92% ●values known / values provided: 92%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> 2 = 1 + 1
[1,0,1,0]
=> [1,0,1,0]
=> 2 = 1 + 1
[1,1,0,0]
=> [1,1,0,0]
=> 3 = 2 + 1
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 3 = 2 + 1
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 4 = 3 + 1
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 3 = 2 + 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 3 = 2 + 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 3 = 2 + 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 4 = 3 + 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 3 = 2 + 1
[1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 5 = 4 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 3 = 2 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 3 = 2 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 3 = 2 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 3 = 2 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 3 = 2 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2 + 1
[1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2 + 1
[1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2 + 1
[1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2 + 1
[1,1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2 + 1
[1,1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2 + 1
[1,1,0,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2 + 1
[1,1,0,1,0,1,0,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2 + 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2 + 1
[1,1,1,0,0,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2 + 1
[1,1,1,0,0,1,1,0,0,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2 + 1
[1,1,1,0,0,1,1,0,0,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2 + 1
[1,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2 + 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2 + 1
[1,1,0,0,1,1,0,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2 + 1
[1,1,0,0,1,1,0,0,1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2 + 1
[1,1,0,0,1,1,1,0,0,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2 + 1
[1,1,0,0,1,1,1,0,0,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2 + 1
[1,1,0,0,1,1,0,0,1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2 + 1
[1,1,1,0,0,1,0,0,1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2 + 1
[1,1,0,0,1,1,1,0,0,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2 + 1
[1,1,1,0,0,1,0,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2 + 1
[1,1,0,0,1,1,1,0,0,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2 + 1
[1,1,1,0,0,1,1,0,0,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2 + 1
[1,1,1,0,0,1,0,0,1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2 + 1
[1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2 + 1
[1,1,1,0,0,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2 + 1
[1,1,0,0,1,1,1,0,0,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2 + 1
[1,1,1,0,0,1,1,0,0,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2 + 1
[1,1,0,0,1,1,0,0,1,1,1,0,0,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2 + 1
[1,1,1,0,0,1,0,0,1,1,1,0,0,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2 + 1
[1,1,0,0,1,1,1,0,0,1,1,0,0,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2 + 1
[1,1,1,0,0,1,1,0,0,1,1,0,0,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2 + 1
[1,1,0,0,1,1,0,0,1,1,0,0,1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2 + 1
[1,1,1,0,0,1,0,0,1,1,0,0,1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2 + 1
[1,1,0,0,1,1,1,0,0,1,0,0,1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2 + 1
[1,1,1,0,0,1,1,0,0,1,0,0,1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2 + 1
[1,1,0,0,1,1,0,0,1,1,1,0,0,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2 + 1
[1,1,1,0,0,1,0,0,1,1,1,0,0,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2 + 1
[1,1,0,0,1,1,1,0,0,1,1,0,0,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2 + 1
[1,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2 + 1
[1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2 + 1
[1,1,1,0,0,1,0,0,1,1,0,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2 + 1
[1,1,0,0,1,1,1,0,0,1,0,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2 + 1
[1,1,1,0,0,1,1,0,0,1,0,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2 + 1
[1,1,0,0,1,1,0,0,1,1,1,0,0,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2 + 1
[1,1,1,0,0,1,0,0,1,1,1,0,0,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2 + 1
[1,1,0,0,1,1,1,0,0,1,1,0,0,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2 + 1
[1,1,1,0,0,1,1,0,0,1,1,0,0,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2 + 1
[1,1,0,0,1,1,0,0,1,1,0,0,1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2 + 1
Description
The position of the first down step of a Dyck path.
The following 97 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000069The number of maximal elements of a poset. St000054The first entry of the permutation. St000008The major index of the composition. St000678The number of up steps after the last double rise of a Dyck path. St000068The number of minimal elements in a poset. St000504The cardinality of the first block of a set partition. St000823The number of unsplittable factors of the set partition. St000675The number of centered multitunnels of a Dyck path. St000738The first entry in the last row of a standard tableau. St000700The protection number of an ordered tree. St001733The number of weak left to right maxima of a Dyck path. St000617The number of global maxima of a Dyck path. St001616The number of neutral elements in a lattice. St001720The minimal length of a chain of small intervals in a lattice. St001615The number of join prime elements of a lattice. St001617The dimension of the space of valuations of a lattice. St001619The number of non-isomorphic sublattices of a lattice. St001622The number of join-irreducible elements of a lattice. St001666The number of non-isomorphic subposets of a lattice which are lattices. St000550The number of modular elements of a lattice. St000551The number of left modular elements of a lattice. St000759The smallest missing part in an integer partition. St000502The number of successions of a set partitions. St000025The number of initial rises of a Dyck path. St000026The position of the first return of a Dyck path. St001009Number of indecomposable injective modules with projective dimension g when g is the global dimension of the Nakayama algebra corresponding to the Dyck path. St001050The number of terminal closers of a set partition. St001051The depth of the label 1 in the decreasing labelled unordered tree associated with the set partition. St001135The projective dimension of the first simple module in the Nakayama algebra corresponding to the Dyck path. St001784The minimum of the smallest closer and the second element of the block containing 1 in a set partition. St000234The number of global ascents of a permutation. St000363The number of minimal vertex covers of a graph. St001498The normalised height of a Nakayama algebra with magnitude 1. St000909The number of maximal chains of maximal size in a poset. St000911The number of maximal antichains of maximal size in a poset. St000989The number of final rises of a permutation. St000501The size of the first part in the decomposition of a permutation. St000007The number of saliances of the permutation. St000542The number of left-to-right-minima of a permutation. St000990The first ascent of a permutation. St000541The number of indices greater than or equal to 2 of a permutation such that all smaller indices appear to its right. St000654The first descent of a permutation. St000740The last entry of a permutation. St000883The number of longest increasing subsequences of a permutation. St000546The number of global descents of a permutation. St000066The column of the unique '1' in the first row of the alternating sign matrix. St000237The number of small exceedances. St001651The Frankl number of a lattice. St000993The multiplicity of the largest part of an integer partition. St001461The number of topologically connected components of the chord diagram of a permutation. St000717The number of ordinal summands of a poset. St001038The minimal height of a column in the parallelogram polyomino associated with the Dyck path. St000203The number of external nodes of a binary tree. St000838The number of terminal right-hand endpoints when the vertices are written in order. St000843The decomposition number of a perfect matching. St001640The number of ascent tops in the permutation such that all smaller elements appear before. St000734The last entry in the first row of a standard tableau. St000335The difference of lower and upper interactions. St000991The number of right-to-left minima of a permutation. St001184Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra. St001201The grade of the simple module $S_0$ in the special CNakayama algebra corresponding to the Dyck path. St001390The number of bumps occurring when Schensted-inserting the letter 1 of a permutation. St000051The size of the left subtree of a binary tree. St001226The number of integers i such that the radical of the i-th indecomposable projective module has vanishing first extension group with the Jacobson radical J in the corresponding Nakayama algebra. St000056The decomposition (or block) number of a permutation. St000084The number of subtrees. St000314The number of left-to-right-maxima of a permutation. St000352The Elizalde-Pak rank of a permutation. St001235The global dimension of the corresponding Comp-Nakayama algebra. St001481The minimal height of a peak of a Dyck path. St001185The number of indecomposable injective modules of grade at least 2 in the corresponding Nakayama algebra. St001816Eigenvalues of the top-to-random operator acting on a simple module. St000061The number of nodes on the left branch of a binary tree. St001875The number of simple modules with projective dimension at most 1. St001133The smallest label in the subtree rooted at the sister of 1 in the decreasing labelled binary unordered tree associated with the perfect matching. St001134The largest label in the subtree rooted at the sister of 1 in the leaf labelled binary unordered tree associated with the perfect matching. St000193The row of the unique '1' in the first column of the alternating sign matrix. St000338The number of pixed points of a permutation. St000060The greater neighbor of the maximum. St000133The "bounce" of a permutation. St000199The column of the unique '1' in the last row of the alternating sign matrix. St000200The row of the unique '1' in the last column of the alternating sign matrix. St000999Number of indecomposable projective module with injective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St000802The number of occurrences of the vincular pattern |321 in a permutation. St000756The sum of the positions of the left to right maxima of a permutation. St001240The number of indecomposable modules e_i J^2 that have injective dimension at most one in the corresponding Nakayama algebra St001330The hat guessing number of a graph. St001231The number of simple modules that are non-projective and non-injective with the property that they have projective dimension equal to one and that also the Auslander-Reiten translates of the module and the inverse Auslander-Reiten translate of the module have the same projective dimension. St001234The number of indecomposable three dimensional modules with projective dimension one. St001355Number of non-empty prefixes of a binary word that contain equally many 0's and 1's. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001462The number of factors of a standard tableaux under concatenation. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001804The minimal height of the rectangular inner shape in a cylindrical tableau associated to a tableau. St001937The size of the center of a parking function. St001414Half the length of the longest odd length palindromic prefix of a binary word. St001210Gives the maximal vector space dimension of the first Ext-group between an indecomposable module X and the regular module A, when A is the Nakayama algebra corresponding to the Dyck path.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!