searching the database
Your data matches 20 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000506
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000506: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000506: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[2] => ([],2)
=> [1,1]
=> [1]
=> 0
[1,2] => ([(1,2)],3)
=> [2,1]
=> [1]
=> 0
[3] => ([],3)
=> [1,1,1]
=> [1,1]
=> 1
[1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 0
[1,3] => ([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 1
[2,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 0
[4] => ([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 0
[1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
[1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
[1,4] => ([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 0
[2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
[2,3] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[3,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
[5] => ([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
[1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
[1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
[1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
[1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
[1,5] => ([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
[2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
[2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
[2,4] => ([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
[3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
[3,3] => ([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
[6] => ([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 0
[1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
[1,1,1,2,2] => ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 0
[1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 0
[1,1,2,1,2] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 0
[1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
[1,1,3,2] => ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 0
[1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,2,1,1,2] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 0
[1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
[1,2,2,2] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 0
[1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 0
[1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 0
[1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
[1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 0
[1,6] => ([(5,6)],7)
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[2,1,1,1,2] => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 0
[2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
[2,1,2,2] => ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 0
Description
The number of standard desarrangement tableaux of shape equal to the given partition.
A '''standard desarrangement tableau''' is a standard tableau whose first ascent is even. Here, an ascent of a standard tableau is an entry i such that i+1 appears to the right or above i in the tableau (with respect to English tableau notation).
This is also the nullity of the random-to-random operator (and the random-to-top) operator acting on the simple module of the symmetric group indexed by the given partition. See also:
* [[St000046]]: The largest eigenvalue of the random to random operator acting on the simple module corresponding to the given partition
* [[St000500]]: Eigenvalues of the random-to-random operator acting on the regular representation.
Matching statistic: St001172
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00142: Dyck paths —promotion⟶ Dyck paths
Mp00124: Dyck paths —Adin-Bagno-Roichman transformation⟶ Dyck paths
St001172: Dyck paths ⟶ ℤResult quality: 89% ●values known / values provided: 89%●distinct values known / distinct values provided: 100%
Mp00142: Dyck paths —promotion⟶ Dyck paths
Mp00124: Dyck paths —Adin-Bagno-Roichman transformation⟶ Dyck paths
St001172: Dyck paths ⟶ ℤResult quality: 89% ●values known / values provided: 89%●distinct values known / distinct values provided: 100%
Values
[2] => [1,1,0,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> 0
[1,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 0
[3] => [1,1,1,0,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 1
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 0
[1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 0
[4] => [1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 0
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 0
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 0
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 0
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 0
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 0
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> 1
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> 0
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> 0
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 0
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> 1
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> 0
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 1
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> 0
[2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> 1
[2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> 0
[2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 0
[3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> 0
[3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 1
[4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 0
[6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 0
[1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> 0
[1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> 1
[1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> 0
[1,1,1,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> 0
[1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,2,3] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> 1
[1,1,3,2] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> 0
[1,1,5] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> 1
[1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> 0
[1,2,1,3] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> 1
[1,2,2,2] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> 0
[1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> 0
[1,3,1,2] => [1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> 0
[1,3,3] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> 1
[1,4,2] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> 0
[1,6] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> 0
[2,1,1,1,2] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> 0
[2,1,1,3] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,1,0,0]
=> 1
[2,1,2,2] => [1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> 0
[3,1,1,1,2] => [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 0
[3,1,1,3] => [1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0,1,1,1,0,0,1,0,0]
=> ? = 1
[3,1,2,2] => [1,1,1,0,0,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 0
[3,2,1,2] => [1,1,1,0,0,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 0
[3,2,3] => [1,1,1,0,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,1,0,0]
=> ? = 1
[3,3,2] => [1,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 0
[4,1,1,2] => [1,1,1,1,0,0,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,1,0,0,1,0]
=> ? = 0
[4,1,3] => [1,1,1,1,0,0,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,1,0,0]
=> ? = 1
[4,2,2] => [1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0,1,0]
=> ? = 0
[4,4] => [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0]
=> ? = 0
[8] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> ? = 0
Description
The number of 1-rises at odd height of a Dyck path.
Matching statistic: St000674
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00227: Dyck paths —Delest-Viennot-inverse⟶ Dyck paths
Mp00032: Dyck paths —inverse zeta map⟶ Dyck paths
St000674: Dyck paths ⟶ ℤResult quality: 63% ●values known / values provided: 63%●distinct values known / distinct values provided: 100%
Mp00227: Dyck paths —Delest-Viennot-inverse⟶ Dyck paths
Mp00032: Dyck paths —inverse zeta map⟶ Dyck paths
St000674: Dyck paths ⟶ ℤResult quality: 63% ●values known / values provided: 63%●distinct values known / distinct values provided: 100%
Values
[2] => [1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> 0
[1,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> 0
[3] => [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> 1
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 0
[1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1
[2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 0
[4] => [1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 0
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 0
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 1
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 0
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 0
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 0
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 1
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 0
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 0
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> 1
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> 0
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0]
=> 0
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> 0
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0,1,0]
=> 1
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> 0
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0]
=> 1
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> 0
[2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,0]
=> 1
[2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> 0
[2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> 0
[3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> 0
[3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0]
=> 1
[4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> 0
[6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> 0
[1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> 0
[1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> 1
[1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> 0
[1,1,1,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> 0
[1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> 0
[1,1,2,3] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0,1,0]
=> 1
[1,1,3,2] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> 0
[1,1,5] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> 1
[1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> 0
[1,2,1,3] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0,1,0]
=> 1
[1,2,2,2] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> 0
[1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,1,0,1,0,0,0]
=> 0
[1,3,1,2] => [1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> 0
[1,3,3] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0,1,0]
=> 1
[1,4,2] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,1,0,0,0]
=> 0
[1,6] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> 0
[2,1,1,1,2] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> 0
[2,1,1,3] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0,1,0]
=> 1
[2,1,2,2] => [1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> 0
[1,1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 0
[1,1,1,1,2,2] => [1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> ? = 0
[1,1,1,2,1,2] => [1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> ? = 0
[1,1,1,3,2] => [1,0,1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,0,1,0,0]
=> ? = 0
[1,1,2,1,1,2] => [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 0
[1,1,2,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> ? = 0
[1,1,3,1,2] => [1,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> ? = 0
[1,1,3,3] => [1,0,1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,1,0,0,1,0]
=> ? = 1
[1,2,1,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 0
[1,2,1,2,2] => [1,0,1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> ? = 0
[1,2,2,1,2] => [1,0,1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> ? = 0
[1,2,2,3] => [1,0,1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,1,0,1,0,0,0,0,1,0]
=> ? = 1
[1,2,3,2] => [1,0,1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> ? = 0
[1,3,1,1,2] => [1,0,1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> ? = 0
[1,3,1,3] => [1,0,1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,0,1,0]
=> ? = 1
[1,3,2,2] => [1,0,1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,1,0,0,1,0,0,0]
=> ? = 0
[1,4,1,2] => [1,0,1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,1,0,0,0]
=> ? = 0
[1,4,3] => [1,0,1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,1,0,0,0,1,0]
=> ? = 1
[2,1,1,1,1,2] => [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> ? = 0
[2,1,1,2,2] => [1,1,0,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> ? = 0
[2,1,2,1,2] => [1,1,0,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> ? = 0
[2,1,2,3] => [1,1,0,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,1,0,0,0,0,1,0]
=> ? = 1
[2,1,3,2] => [1,1,0,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,1,0,0,0,1,0,0]
=> ? = 0
[2,2,1,1,2] => [1,1,0,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> ? = 0
[2,2,1,3] => [1,1,0,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,0,0,1,0]
=> ? = 1
[2,2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> ? = 0
[2,3,1,2] => [1,1,0,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,0,1,0,0]
=> ? = 0
[2,3,3] => [1,1,0,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,1,0,0,1,0]
=> ? = 1
[2,4,2] => [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,1,1,0,0,0,0]
=> ? = 0
[3,1,1,1,2] => [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> ? = 0
[3,1,1,3] => [1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,0,1,0]
=> ? = 1
[3,1,2,2] => [1,1,1,0,0,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,1,0,0,1,0,0,0]
=> ? = 0
[3,2,1,2] => [1,1,1,0,0,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,1,0,0,0]
=> ? = 0
[3,2,3] => [1,1,1,0,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,1,0,0,1,0,0,0,1,0]
=> ? = 1
[3,3,2] => [1,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,1,0,0,1,0,0]
=> ? = 0
[4,1,1,2] => [1,1,1,1,0,0,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> ? = 0
[4,1,3] => [1,1,1,1,0,0,0,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,0,0,1,0]
=> ? = 1
[4,2,2] => [1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,1,1,0,0,0,0]
=> ? = 0
Description
The number of hills of a Dyck path.
A hill is a peak with up step starting and down step ending at height zero.
Matching statistic: St001057
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
[2] => ([],2)
=> ([],2)
=> 0
[1,2] => ([(1,2)],3)
=> ([],2)
=> 0
[3] => ([],3)
=> ([],3)
=> 1
[1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> 0
[1,3] => ([(2,3)],4)
=> ([],3)
=> 1
[2,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> 0
[4] => ([],4)
=> ([],4)
=> 0
[1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> 0
[1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> 1
[1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> 0
[1,4] => ([(3,4)],5)
=> ([],4)
=> 0
[2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> 0
[2,3] => ([(2,4),(3,4)],5)
=> ([(2,3)],4)
=> 1
[3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> 0
[5] => ([],5)
=> ([],5)
=> 1
[1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> 0
[1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> 1
[1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> 0
[1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([],4)
=> 0
[1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> 0
[1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3)],4)
=> 1
[1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> 0
[1,5] => ([(4,5)],6)
=> ([],5)
=> 1
[2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> 0
[2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3)],4)
=> 1
[2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> 0
[2,4] => ([(3,5),(4,5)],6)
=> ([(3,4)],5)
=> 0
[3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> 0
[3,3] => ([(2,5),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(3,4)],5)
=> 1
[4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[6] => ([],6)
=> ([],6)
=> 0
[1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],2)
=> 0
[1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],3)
=> 1
[1,1,1,2,2] => ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2)],3)
=> 0
[1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],4)
=> 0
[1,1,2,1,2] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2)],3)
=> 0
[1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,3)],4)
=> 1
[1,1,3,2] => ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(2,3)],4)
=> 0
[1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> ([],5)
=> 1
[1,2,1,1,2] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2)],3)
=> 0
[1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,3)],4)
=> 1
[1,2,2,2] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(2,3)],4)
=> 0
[1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7)
=> ([(3,4)],5)
=> 0
[1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(2,3)],4)
=> 0
[1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,3),(2,4),(3,4)],5)
=> 1
[1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[1,6] => ([(5,6)],7)
=> ([],6)
=> 0
[2,1,1,1,2] => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2)],3)
=> 0
[2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,3)],4)
=> 1
[2,1,2,2] => ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(2,3)],4)
=> 0
[1,1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0
[1,1,1,1,2,2] => ([(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0
[1,1,1,2,1,2] => ([(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0
[1,1,1,3,2] => ([(1,7),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0
[1,1,1,5] => ([(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,1,2,1,1,2] => ([(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0
[1,1,2,2,2] => ([(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0
[1,1,3,1,2] => ([(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0
[1,1,3,3] => ([(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,2,1,1,1,2] => ([(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0
[1,2,1,2,2] => ([(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0
[1,2,2,1,2] => ([(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0
[1,2,2,3] => ([(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,2,3,2] => ([(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0
[1,3,1,1,2] => ([(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0
[1,3,1,3] => ([(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,3,2,2] => ([(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0
[1,4,1,2] => ([(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0
[1,4,3] => ([(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1
[2,1,1,1,1,2] => ([(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0
[2,1,1,2,2] => ([(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0
[2,1,2,1,2] => ([(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0
[2,1,2,3] => ([(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1
[2,1,3,2] => ([(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0
[2,2,1,1,2] => ([(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0
[2,2,1,3] => ([(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1
[2,2,2,2] => ([(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0
[2,3,1,2] => ([(1,6),(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0
[2,3,3] => ([(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1
[2,4,2] => ([(1,7),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0
[3,1,1,1,2] => ([(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0
[3,1,1,3] => ([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1
[3,1,2,2] => ([(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0
[3,2,1,2] => ([(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0
[3,2,3] => ([(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1
[3,3,2] => ([(1,7),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0
[4,1,1,2] => ([(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0
[4,1,3] => ([(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1
[4,2,2] => ([(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0
[4,4] => ([(3,7),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 0
[8] => ([],8)
=> ?
=> ? = 0
Description
The Grundy value of the game of creating an independent set in a graph.
Two players alternately add a vertex to an initially empty set, which is not adjacent to any of the vertices it already contains.
Alternatively, the game can be described as starting with a graph, the players remove vertices together with their neighbors, until the graph is empty.
Matching statistic: St001816
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00045: Integer partitions —reading tableau⟶ Standard tableaux
St001816: Standard tableaux ⟶ ℤResult quality: 61% ●values known / values provided: 61%●distinct values known / distinct values provided: 100%
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00045: Integer partitions —reading tableau⟶ Standard tableaux
St001816: Standard tableaux ⟶ ℤResult quality: 61% ●values known / values provided: 61%●distinct values known / distinct values provided: 100%
Values
[2] => ([],2)
=> [1,1]
=> [[1],[2]]
=> 0
[1,2] => ([(1,2)],3)
=> [2,1]
=> [[1,3],[2]]
=> 0
[3] => ([],3)
=> [1,1,1]
=> [[1],[2],[3]]
=> 1
[1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [[1,3,4],[2]]
=> 0
[1,3] => ([(2,3)],4)
=> [2,1,1]
=> [[1,4],[2],[3]]
=> 1
[2,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> [[1,3,4],[2]]
=> 0
[4] => ([],4)
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 0
[1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [[1,3,4,5],[2]]
=> 0
[1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> 1
[1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [[1,3,4,5],[2]]
=> 0
[1,4] => ([(3,4)],5)
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> 0
[2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [[1,3,4,5],[2]]
=> 0
[2,3] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> 1
[3,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [[1,3,4,5],[2]]
=> 0
[5] => ([],5)
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 1
[1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [[1,3,4,5,6],[2]]
=> 0
[1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> 1
[1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [[1,3,4,5,6],[2]]
=> 0
[1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> 0
[1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [[1,3,4,5,6],[2]]
=> 0
[1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> 1
[1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [[1,3,4,5,6],[2]]
=> 0
[1,5] => ([(4,5)],6)
=> [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> 1
[2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [[1,3,4,5,6],[2]]
=> 0
[2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> 1
[2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [[1,3,4,5,6],[2]]
=> 0
[2,4] => ([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> 0
[3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [[1,3,4,5,6],[2]]
=> 0
[3,3] => ([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> 1
[4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [[1,3,4,5,6],[2]]
=> 0
[6] => ([],6)
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> 0
[1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [[1,3,4,5,6,7],[2]]
=> 0
[1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> 1
[1,1,1,2,2] => ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [[1,3,4,5,6,7],[2]]
=> 0
[1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> 0
[1,1,2,1,2] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [[1,3,4,5,6,7],[2]]
=> 0
[1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> 1
[1,1,3,2] => ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [[1,3,4,5,6,7],[2]]
=> 0
[1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [[1,6,7],[2],[3],[4],[5]]
=> 1
[1,2,1,1,2] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [[1,3,4,5,6,7],[2]]
=> 0
[1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> 1
[1,2,2,2] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [[1,3,4,5,6,7],[2]]
=> 0
[1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> 0
[1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [[1,3,4,5,6,7],[2]]
=> 0
[1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> 1
[1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [[1,3,4,5,6,7],[2]]
=> 0
[1,6] => ([(5,6)],7)
=> [2,1,1,1,1,1]
=> [[1,7],[2],[3],[4],[5],[6]]
=> 0
[2,1,1,1,2] => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [[1,3,4,5,6,7],[2]]
=> 0
[2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> 1
[2,1,2,2] => ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [6,1]
=> [[1,3,4,5,6,7],[2]]
=> 0
[1,1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [7,1]
=> [[1,3,4,5,6,7,8],[2]]
=> ? = 0
[1,1,1,1,2,2] => ([(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [7,1]
=> [[1,3,4,5,6,7,8],[2]]
=> ? = 0
[1,1,1,2,1,2] => ([(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [7,1]
=> [[1,3,4,5,6,7,8],[2]]
=> ? = 0
[1,1,1,3,2] => ([(1,7),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [7,1]
=> [[1,3,4,5,6,7,8],[2]]
=> ? = 0
[1,1,1,5] => ([(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [4,1,1,1,1]
=> [[1,6,7,8],[2],[3],[4],[5]]
=> ? = 1
[1,1,2,1,1,2] => ([(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [7,1]
=> [[1,3,4,5,6,7,8],[2]]
=> ? = 0
[1,1,2,2,2] => ([(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [7,1]
=> [[1,3,4,5,6,7,8],[2]]
=> ? = 0
[1,1,3,1,2] => ([(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [7,1]
=> [[1,3,4,5,6,7,8],[2]]
=> ? = 0
[1,1,3,3] => ([(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [[1,4,5,6,7,8],[2],[3]]
=> ? = 1
[1,2,1,1,1,2] => ([(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [7,1]
=> [[1,3,4,5,6,7,8],[2]]
=> ? = 0
[1,2,1,2,2] => ([(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [7,1]
=> [[1,3,4,5,6,7,8],[2]]
=> ? = 0
[1,2,2,1,2] => ([(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [7,1]
=> [[1,3,4,5,6,7,8],[2]]
=> ? = 0
[1,2,2,3] => ([(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [[1,4,5,6,7,8],[2],[3]]
=> ? = 1
[1,2,3,2] => ([(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [7,1]
=> [[1,3,4,5,6,7,8],[2]]
=> ? = 0
[1,3,1,1,2] => ([(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [7,1]
=> [[1,3,4,5,6,7,8],[2]]
=> ? = 0
[1,3,1,3] => ([(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [[1,4,5,6,7,8],[2],[3]]
=> ? = 1
[1,3,2,2] => ([(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [7,1]
=> [[1,3,4,5,6,7,8],[2]]
=> ? = 0
[1,4,1,2] => ([(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [7,1]
=> [[1,3,4,5,6,7,8],[2]]
=> ? = 0
[1,4,3] => ([(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [[1,4,5,6,7,8],[2],[3]]
=> ? = 1
[2,1,1,1,1,2] => ([(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [7,1]
=> [[1,3,4,5,6,7,8],[2]]
=> ? = 0
[2,1,1,2,2] => ([(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [7,1]
=> [[1,3,4,5,6,7,8],[2]]
=> ? = 0
[2,1,2,1,2] => ([(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [7,1]
=> [[1,3,4,5,6,7,8],[2]]
=> ? = 0
[2,1,2,3] => ([(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [[1,4,5,6,7,8],[2],[3]]
=> ? = 1
[2,1,3,2] => ([(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [7,1]
=> [[1,3,4,5,6,7,8],[2]]
=> ? = 0
[2,2,1,1,2] => ([(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [7,1]
=> [[1,3,4,5,6,7,8],[2]]
=> ? = 0
[2,2,1,3] => ([(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [[1,4,5,6,7,8],[2],[3]]
=> ? = 1
[2,2,2,2] => ([(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [7,1]
=> [[1,3,4,5,6,7,8],[2]]
=> ? = 0
[2,3,1,2] => ([(1,6),(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [7,1]
=> [[1,3,4,5,6,7,8],[2]]
=> ? = 0
[2,3,3] => ([(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [[1,4,5,6,7,8],[2],[3]]
=> ? = 1
[2,4,2] => ([(1,7),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [7,1]
=> [[1,3,4,5,6,7,8],[2]]
=> ? = 0
[3,1,1,1,2] => ([(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [7,1]
=> [[1,3,4,5,6,7,8],[2]]
=> ? = 0
[3,1,1,3] => ([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [[1,4,5,6,7,8],[2],[3]]
=> ? = 1
[3,1,2,2] => ([(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [7,1]
=> [[1,3,4,5,6,7,8],[2]]
=> ? = 0
[3,2,1,2] => ([(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [7,1]
=> [[1,3,4,5,6,7,8],[2]]
=> ? = 0
[3,2,3] => ([(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [[1,4,5,6,7,8],[2],[3]]
=> ? = 1
[3,3,2] => ([(1,7),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [7,1]
=> [[1,3,4,5,6,7,8],[2]]
=> ? = 0
[4,1,1,2] => ([(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [7,1]
=> [[1,3,4,5,6,7,8],[2]]
=> ? = 0
[4,1,3] => ([(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [[1,4,5,6,7,8],[2],[3]]
=> ? = 1
[4,2,2] => ([(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [7,1]
=> [[1,3,4,5,6,7,8],[2]]
=> ? = 0
[4,4] => ([(3,7),(4,7),(5,7),(6,7)],8)
=> [5,1,1,1]
=> [[1,5,6,7,8],[2],[3],[4]]
=> ? = 0
[8] => ([],8)
=> [1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> ? = 0
Description
Eigenvalues of the top-to-random operator acting on a simple module.
These eigenvalues are given in [1] and [3].
The simple module of the symmetric group indexed by a partition λ has dimension equal to the number of standard tableaux of shape λ. Hence, the eigenvalues of any linear operator defined on this module can be indexed by standard tableaux of shape λ; this statistic gives all the eigenvalues of the operator acting on the module.
This statistic bears different names, such as the type in [2] or eig in [3].
Similarly, the eigenvalues of the random-to-random operator acting on a simple module is [[St000508]].
Matching statistic: St000260
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00039: Integer compositions —complement⟶ Integer compositions
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000260: Graphs ⟶ ℤResult quality: 50% ●values known / values provided: 57%●distinct values known / distinct values provided: 50%
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000260: Graphs ⟶ ℤResult quality: 50% ●values known / values provided: 57%●distinct values known / distinct values provided: 50%
Values
[2] => [1,1] => [2] => ([],2)
=> ? = 0 + 1
[1,2] => [2,1] => [1,1] => ([(0,1)],2)
=> 1 = 0 + 1
[3] => [1,1,1] => [3] => ([],3)
=> ? = 1 + 1
[1,1,2] => [3,1] => [1,1] => ([(0,1)],2)
=> 1 = 0 + 1
[1,3] => [2,1,1] => [1,2] => ([(1,2)],3)
=> ? = 1 + 1
[2,2] => [1,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1 = 0 + 1
[4] => [1,1,1,1] => [4] => ([],4)
=> ? = 0 + 1
[1,1,1,2] => [4,1] => [1,1] => ([(0,1)],2)
=> 1 = 0 + 1
[1,1,3] => [3,1,1] => [1,2] => ([(1,2)],3)
=> ? = 1 + 1
[1,2,2] => [2,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[1,4] => [2,1,1,1] => [1,3] => ([(2,3)],4)
=> ? = 0 + 1
[2,1,2] => [1,3,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1 = 0 + 1
[2,3] => [1,2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 1 + 1
[3,2] => [1,1,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[5] => [1,1,1,1,1] => [5] => ([],5)
=> ? = 1 + 1
[1,1,1,1,2] => [5,1] => [1,1] => ([(0,1)],2)
=> 1 = 0 + 1
[1,1,1,3] => [4,1,1] => [1,2] => ([(1,2)],3)
=> ? = 1 + 1
[1,1,2,2] => [3,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1 = 0 + 1
[1,1,4] => [3,1,1,1] => [1,3] => ([(2,3)],4)
=> ? = 0 + 1
[1,2,1,2] => [2,3,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1 = 0 + 1
[1,2,3] => [2,2,1,1] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 1 + 1
[1,3,2] => [2,1,2,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,5] => [2,1,1,1,1] => [1,4] => ([(3,4)],5)
=> ? = 1 + 1
[2,1,1,2] => [1,4,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1 = 0 + 1
[2,1,3] => [1,3,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 1 + 1
[2,2,2] => [1,2,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[2,4] => [1,2,1,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[3,1,2] => [1,1,3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[3,3] => [1,1,2,1,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
[4,2] => [1,1,1,2,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[6] => [1,1,1,1,1,1] => [6] => ([],6)
=> ? = 0 + 1
[1,1,1,1,1,2] => [6,1] => [1,1] => ([(0,1)],2)
=> 1 = 0 + 1
[1,1,1,1,3] => [5,1,1] => [1,2] => ([(1,2)],3)
=> ? = 1 + 1
[1,1,1,2,2] => [4,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1 = 0 + 1
[1,1,1,4] => [4,1,1,1] => [1,3] => ([(2,3)],4)
=> ? = 0 + 1
[1,1,2,1,2] => [3,3,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[1,1,2,3] => [3,2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 1 + 1
[1,1,3,2] => [3,1,2,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,1,5] => [3,1,1,1,1] => [1,4] => ([(3,4)],5)
=> ? = 1 + 1
[1,2,1,1,2] => [2,4,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1 = 0 + 1
[1,2,1,3] => [2,3,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 1 + 1
[1,2,2,2] => [2,2,2,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,2,4] => [2,2,1,1,1] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 0 + 1
[1,3,1,2] => [2,1,3,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,3,3] => [2,1,2,1,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
[1,4,2] => [2,1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,6] => [2,1,1,1,1,1] => [1,5] => ([(4,5)],6)
=> ? = 0 + 1
[2,1,1,1,2] => [1,5,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1 = 0 + 1
[2,1,1,3] => [1,4,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 1 + 1
[2,1,2,2] => [1,3,2,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[2,1,4] => [1,3,1,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[2,2,1,2] => [1,2,3,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[2,2,3] => [1,2,2,1,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
[2,3,2] => [1,2,1,2,1] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[2,5] => [1,2,1,1,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
[3,1,1,2] => [1,1,4,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[3,1,3] => [1,1,3,1,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
[3,2,2] => [1,1,2,2,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[3,4] => [1,1,2,1,1,1] => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 1
[4,1,2] => [1,1,1,3,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[4,3] => [1,1,1,2,1,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
[5,2] => [1,1,1,1,2,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[7] => [1,1,1,1,1,1,1] => [7] => ([],7)
=> ? = 1 + 1
[1,1,1,1,1,1,2] => [7,1] => [1,1] => ([(0,1)],2)
=> 1 = 0 + 1
[1,1,1,1,2,2] => [5,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1 = 0 + 1
[1,1,1,2,1,2] => [4,3,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1 = 0 + 1
[1,1,1,3,2] => [4,1,2,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,1,1,5] => [4,1,1,1,1] => [1,4] => ([(3,4)],5)
=> ? = 1 + 1
[1,1,2,1,1,2] => [3,4,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1 = 0 + 1
[1,1,2,2,2] => [3,2,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,1,3,1,2] => [3,1,3,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,1,3,3] => [3,1,2,1,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
[1,2,1,1,1,2] => [2,5,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1 = 0 + 1
[1,2,1,2,2] => [2,3,2,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,2,2,1,2] => [2,2,3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,2,2,3] => [2,2,2,1,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1 + 1
[1,2,3,2] => [2,2,1,2,1] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,3,1,1,2] => [2,1,4,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,3,1,3] => [2,1,3,1,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
[1,3,2,2] => [2,1,2,2,1] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,4,1,2] => [2,1,1,3,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,4,3] => [2,1,1,2,1,1] => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
[2,1,1,1,1,2] => [1,6,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1 = 0 + 1
[2,1,1,2,2] => [1,4,2,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[2,1,2,1,2] => [1,3,3,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[2,1,2,3] => [1,3,2,1,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
[2,1,3,2] => [1,3,1,2,1] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[2,2,1,1,2] => [1,2,4,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[2,2,1,3] => [1,2,3,1,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
[2,3,3] => [1,2,1,2,1,1] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
[3,1,1,3] => [1,1,4,1,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
[3,2,3] => [1,1,2,2,1,1] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
[4,1,3] => [1,1,1,3,1,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
[4,4] => [1,1,1,2,1,1,1] => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0 + 1
[8] => [1,1,1,1,1,1,1,1] => [8] => ([],8)
=> ? = 0 + 1
Description
The radius of a connected graph.
This is the minimum eccentricity of any vertex.
Matching statistic: St000678
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00228: Dyck paths —reflect parallelogram polyomino⟶ Dyck paths
St000678: Dyck paths ⟶ ℤResult quality: 45% ●values known / values provided: 45%●distinct values known / distinct values provided: 100%
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00228: Dyck paths —reflect parallelogram polyomino⟶ Dyck paths
St000678: Dyck paths ⟶ ℤResult quality: 45% ●values known / values provided: 45%●distinct values known / distinct values provided: 100%
Values
[2] => [1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 1 = 0 + 1
[1,2] => [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[3] => [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2 = 1 + 1
[1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 2 = 1 + 1
[2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 1 = 0 + 1
[4] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 1 = 0 + 1
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> 2 = 1 + 1
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> 1 = 0 + 1
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 1 = 0 + 1
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> 2 = 1 + 1
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> 1 = 0 + 1
[5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 2 = 1 + 1
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> 2 = 1 + 1
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> 1 = 0 + 1
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,1,0,1,0,0,0]
=> 2 = 1 + 1
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,1,1,0,0,0]
=> 1 = 0 + 1
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> 2 = 1 + 1
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,1,0,0,0]
=> 2 = 1 + 1
[2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> 1 = 0 + 1
[2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> 1 = 0 + 1
[3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,1,1,0,1,0,0,0]
=> 2 = 1 + 1
[4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> 1 = 0 + 1
[6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> 1 = 0 + 1
[1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> 2 = 1 + 1
[1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,1,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> 1 = 0 + 1
[1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,2,3] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,1,0,1,0,0,0]
=> 2 = 1 + 1
[1,1,3,2] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,5] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> 2 = 1 + 1
[1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,2,1,3] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,1,0,1,0,0,0]
=> 2 = 1 + 1
[1,2,2,2] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> 1 = 0 + 1
[1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> 1 = 0 + 1
[1,3,1,2] => [1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,3,3] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,1,1,0,1,0,0,0]
=> 2 = 1 + 1
[1,4,2] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> 1 = 0 + 1
[1,6] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> 1 = 0 + 1
[2,1,1,1,2] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 0 + 1
[2,1,1,3] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,1,0,1,0,0,0]
=> ? = 1 + 1
[2,1,2,2] => [1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,1,1,0,0,0]
=> ? = 0 + 1
[2,1,4] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 1
[2,2,1,2] => [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,1,1,0,0,0]
=> ? = 0 + 1
[2,2,3] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,0,0,1,1,0,1,0,0,0]
=> ? = 1 + 1
[2,3,2] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,1,1,0,0,0]
=> ? = 0 + 1
[2,5] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,0,0,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 1 + 1
[3,1,1,2] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,1,1,0,0,0]
=> ? = 0 + 1
[3,1,3] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,1,1,0,1,0,0,0]
=> ? = 1 + 1
[3,2,2] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,1,1,0,0,0]
=> ? = 0 + 1
[3,4] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,0,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 1
[4,1,2] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0]
=> ? = 0 + 1
[4,3] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,1,0,0,0]
=> ? = 1 + 1
[5,2] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,1,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,1,1,0,0,0]
=> ? = 0 + 1
[7] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> ? = 1 + 1
[1,1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 0 + 1
[1,1,1,1,2,2] => [1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> ? = 0 + 1
[1,1,1,2,1,2] => [1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> ? = 0 + 1
[1,1,1,3,2] => [1,0,1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> ?
=> ? = 0 + 1
[1,1,1,5] => [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 1 + 1
[1,1,2,1,1,2] => [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> ? = 0 + 1
[1,1,2,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> ?
=> ? = 0 + 1
[1,1,3,1,2] => [1,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0,0]
=> ?
=> ? = 0 + 1
[1,1,3,3] => [1,0,1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> ?
=> ? = 1 + 1
[1,2,1,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 0 + 1
[1,2,1,2,2] => [1,0,1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,1,0,0,1,1,0,0,0]
=> ?
=> ? = 0 + 1
[1,2,2,1,2] => [1,0,1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0,1,1,1,0,0,0]
=> ? = 0 + 1
[1,2,2,3] => [1,0,1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,1,0,0,1,1,0,1,0,0,0]
=> ? = 1 + 1
[1,2,3,2] => [1,0,1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,1,0,0,0,1,1,0,0,0]
=> ?
=> ? = 0 + 1
[1,3,1,1,2] => [1,0,1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,0,1,0,1,1,0,0,0]
=> ?
=> ? = 0 + 1
[1,3,1,3] => [1,0,1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,1,0,1,1,1,0,0,0,0]
=> ?
=> ? = 1 + 1
[1,3,2,2] => [1,0,1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,0,0,1,1,0,0,0]
=> ?
=> ? = 0 + 1
[1,4,1,2] => [1,0,1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,1,0,1,1,0,0,0]
=> ?
=> ? = 0 + 1
[1,4,3] => [1,0,1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,1,1,0,1,0,0,0]
=> ? = 1 + 1
[2,1,1,1,1,2] => [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 0 + 1
[2,1,1,2,2] => [1,1,0,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> ?
=> ? = 0 + 1
[2,1,2,1,2] => [1,1,0,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> ?
=> ? = 0 + 1
[2,1,2,3] => [1,1,0,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> ?
=> ? = 1 + 1
[2,1,3,2] => [1,1,0,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> ?
=> ? = 0 + 1
[2,2,1,1,2] => [1,1,0,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> ?
=> ? = 0 + 1
[2,2,1,3] => [1,1,0,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,1,0,1,1,1,0,0,0,0]
=> ?
=> ? = 1 + 1
[2,2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> ?
=> ? = 0 + 1
[2,3,1,2] => [1,1,0,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,1,0,1,1,0,0,0]
=> ?
=> ? = 0 + 1
[2,3,3] => [1,1,0,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> ?
=> ? = 1 + 1
[2,4,2] => [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> ?
=> ? = 0 + 1
[3,1,1,1,2] => [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 0 + 1
[3,1,1,3] => [1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0,0]
=> ?
=> ? = 1 + 1
[3,1,2,2] => [1,1,1,0,0,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,1,0,0,1,1,0,0,0]
=> ?
=> ? = 0 + 1
[3,2,1,2] => [1,1,1,0,0,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,1,0,1,1,0,0,0]
=> ?
=> ? = 0 + 1
Description
The number of up steps after the last double rise of a Dyck path.
Matching statistic: St000338
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Mp00039: Integer compositions —complement⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
St000338: Permutations ⟶ ℤResult quality: 30% ●values known / values provided: 30%●distinct values known / distinct values provided: 100%
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
St000338: Permutations ⟶ ℤResult quality: 30% ●values known / values provided: 30%●distinct values known / distinct values provided: 100%
Values
[2] => [1,1] => [1,0,1,0]
=> [2,1] => 0
[1,2] => [2,1] => [1,1,0,0,1,0]
=> [3,1,2] => 0
[3] => [1,1,1] => [1,0,1,0,1,0]
=> [3,2,1] => 1
[1,1,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 0
[1,3] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 1
[2,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 0
[4] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [4,3,2,1] => 0
[1,1,1,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => 0
[1,1,3] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => 1
[1,2,2] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => 0
[1,4] => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => 0
[2,1,2] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => 0
[2,3] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => 1
[3,2] => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => 0
[5] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => 1
[1,1,1,1,2] => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [6,1,2,3,4,5] => 0
[1,1,1,3] => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [6,5,1,2,3,4] => 1
[1,1,2,2] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [6,4,5,1,2,3] => 0
[1,1,4] => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [6,5,4,1,2,3] => 0
[1,2,1,2] => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [6,3,4,5,1,2] => 0
[1,2,3] => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [6,5,3,4,1,2] => 1
[1,3,2] => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [6,4,5,3,1,2] => 0
[1,5] => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,1,2] => 1
[2,1,1,2] => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [6,2,3,4,5,1] => 0
[2,1,3] => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [6,5,2,3,4,1] => 1
[2,2,2] => [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> [6,4,5,2,3,1] => 0
[2,4] => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,3,1] => 0
[3,1,2] => [1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [6,3,4,5,2,1] => 0
[3,3] => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [6,5,3,4,2,1] => 1
[4,2] => [1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [6,4,5,3,2,1] => 0
[6] => [1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2,1] => 0
[1,1,1,1,1,2] => [6,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [7,1,2,3,4,5,6] => ? = 0
[1,1,1,1,3] => [5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [7,6,1,2,3,4,5] => ? = 1
[1,1,1,2,2] => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [7,5,6,1,2,3,4] => ? = 0
[1,1,1,4] => [4,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [7,6,5,1,2,3,4] => ? = 0
[1,1,2,1,2] => [3,3,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [7,4,5,6,1,2,3] => ? = 0
[1,1,2,3] => [3,2,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [7,6,4,5,1,2,3] => ? = 1
[1,1,3,2] => [3,1,2,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [7,5,6,4,1,2,3] => ? = 0
[1,1,5] => [3,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,1,2,3] => ? = 1
[1,2,1,1,2] => [2,4,1] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [7,3,4,5,6,1,2] => ? = 0
[1,2,1,3] => [2,3,1,1] => [1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [7,6,3,4,5,1,2] => ? = 1
[1,2,2,2] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [7,5,6,3,4,1,2] => ? = 0
[1,2,4] => [2,2,1,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [7,6,5,3,4,1,2] => ? = 0
[1,3,1,2] => [2,1,3,1] => [1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [7,4,5,6,3,1,2] => ? = 0
[1,3,3] => [2,1,2,1,1] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [7,6,4,5,3,1,2] => ? = 1
[1,4,2] => [2,1,1,2,1] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [7,5,6,4,3,1,2] => ? = 0
[1,6] => [2,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,3,1,2] => ? = 0
[2,1,1,1,2] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [7,2,3,4,5,6,1] => ? = 0
[2,1,1,3] => [1,4,1,1] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [7,6,2,3,4,5,1] => ? = 1
[2,1,2,2] => [1,3,2,1] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> [7,5,6,2,3,4,1] => ? = 0
[2,1,4] => [1,3,1,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [7,6,5,2,3,4,1] => ? = 0
[2,2,1,2] => [1,2,3,1] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [7,4,5,6,2,3,1] => ? = 0
[2,2,3] => [1,2,2,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [7,6,4,5,2,3,1] => ? = 1
[2,3,2] => [1,2,1,2,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [7,5,6,4,2,3,1] => ? = 0
[2,5] => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,2,3,1] => ? = 1
[3,1,1,2] => [1,1,4,1] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [7,3,4,5,6,2,1] => ? = 0
[3,1,3] => [1,1,3,1,1] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [7,6,3,4,5,2,1] => ? = 1
[3,2,2] => [1,1,2,2,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [7,5,6,3,4,2,1] => ? = 0
[3,4] => [1,1,2,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [7,6,5,3,4,2,1] => ? = 0
[4,1,2] => [1,1,1,3,1] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [7,4,5,6,3,2,1] => ? = 0
[4,3] => [1,1,1,2,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [7,6,4,5,3,2,1] => ? = 1
[5,2] => [1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [7,5,6,4,3,2,1] => ? = 0
[7] => [1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,3,2,1] => ? = 1
[1,1,1,1,1,1,2] => [7,1] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [8,1,2,3,4,5,6,7] => ? = 0
[1,1,1,1,2,2] => [5,2,1] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0,1,0]
=> [8,6,7,1,2,3,4,5] => ? = 0
[1,1,1,2,1,2] => [4,3,1] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0,1,0]
=> [8,5,6,7,1,2,3,4] => ? = 0
[1,1,1,3,2] => [4,1,2,1] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0,1,0]
=> [8,6,7,5,1,2,3,4] => ? = 0
[1,1,1,5] => [4,1,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> [8,7,6,5,1,2,3,4] => ? = 1
[1,1,2,1,1,2] => [3,4,1] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> [8,4,5,6,7,1,2,3] => ? = 0
[1,1,2,2,2] => [3,2,2,1] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0,1,0]
=> [8,6,7,4,5,1,2,3] => ? = 0
[1,1,3,1,2] => [3,1,3,1] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0,1,0]
=> [8,5,6,7,4,1,2,3] => ? = 0
[1,1,3,3] => [3,1,2,1,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,0]
=> [8,7,5,6,4,1,2,3] => ? = 1
[1,2,1,1,1,2] => [2,5,1] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [8,3,4,5,6,7,1,2] => ? = 0
[1,2,1,2,2] => [2,3,2,1] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> [8,6,7,3,4,5,1,2] => ? = 0
[1,2,2,1,2] => [2,2,3,1] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [8,5,6,7,3,4,1,2] => ? = 0
[1,2,2,3] => [2,2,2,1,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [8,7,5,6,3,4,1,2] => ? = 1
[1,2,3,2] => [2,2,1,2,1] => [1,1,0,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [8,6,7,5,3,4,1,2] => ? = 0
[1,3,1,1,2] => [2,1,4,1] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [8,4,5,6,7,3,1,2] => ? = 0
[1,3,1,3] => [2,1,3,1,1] => [1,1,0,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [8,7,4,5,6,3,1,2] => ? = 1
[1,3,2,2] => [2,1,2,2,1] => [1,1,0,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [8,6,7,4,5,3,1,2] => ? = 0
[1,4,1,2] => [2,1,1,3,1] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [8,5,6,7,4,3,1,2] => ? = 0
Description
The number of pixed points of a permutation.
For a permutation σ=pτ1τ2⋯τk in its hook factorization, [1] defines
pixσ=length(p).
Matching statistic: St000379
Mp00039: Integer compositions —complement⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00274: Graphs —block-cut tree⟶ Graphs
St000379: Graphs ⟶ ℤResult quality: 30% ●values known / values provided: 30%●distinct values known / distinct values provided: 50%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00274: Graphs —block-cut tree⟶ Graphs
St000379: Graphs ⟶ ℤResult quality: 30% ●values known / values provided: 30%●distinct values known / distinct values provided: 50%
Values
[2] => [1,1] => ([(0,1)],2)
=> ([],1)
=> ? = 0
[1,2] => [2,1] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 0
[3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ? = 1
[1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
[1,3] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ? = 1
[2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 0
[4] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ? = 0
[1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
[1,1,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1
[1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 0
[1,4] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 0
[2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
[2,3] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1
[3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 0
[5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1
[1,1,1,1,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0
[1,1,1,3] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 1
[1,1,2,2] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 0
[1,1,4] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 0
[1,2,1,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
[1,2,3] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 1
[1,3,2] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 0
[1,5] => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 1
[2,1,1,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
[2,1,3] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 1
[2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 0
[2,4] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 0
[3,1,2] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
[3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 1
[4,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 0
[6] => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 0
[1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 0
[1,1,1,1,3] => [5,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? = 1
[1,1,1,2,2] => [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
[1,1,1,4] => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? = 0
[1,1,2,1,2] => [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
[1,1,2,3] => [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? = 1
[1,1,3,2] => [3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
[1,1,5] => [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? = 1
[1,2,1,1,2] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
[1,2,1,3] => [2,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? = 1
[1,2,2,2] => [2,2,2,1] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
[1,2,4] => [2,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? = 0
[1,3,1,2] => [2,1,3,1] => ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
[1,3,3] => [2,1,2,1,1] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? = 1
[1,4,2] => [2,1,1,2,1] => ([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
[1,6] => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? = 0
[2,1,1,1,2] => [1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0
[2,1,1,3] => [1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? = 1
[2,1,2,2] => [1,3,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
[2,1,4] => [1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? = 0
[2,2,1,2] => [1,2,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
[2,2,3] => [1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? = 1
[2,3,2] => [1,2,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
[2,5] => [1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? = 1
[3,1,1,2] => [1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
[3,1,3] => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? = 1
[3,2,2] => [1,1,2,2,1] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
[3,4] => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? = 0
[4,1,2] => [1,1,1,3,1] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
[4,3] => [1,1,1,2,1,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? = 1
[5,2] => [1,1,1,1,2,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
[7] => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? = 1
[1,1,1,1,1,1,2] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 0
[1,1,1,1,2,2] => [5,2,1] => ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0
[1,1,1,2,1,2] => [4,3,1] => ([(0,7),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0
[1,1,1,3,2] => [4,1,2,1] => ([(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0
[1,1,1,5] => [4,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,1,2,1,1,2] => [3,4,1] => ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0
[1,1,2,2,2] => [3,2,2,1] => ([(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0
[1,1,3,1,2] => [3,1,3,1] => ([(0,7),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0
[1,1,3,3] => [3,1,2,1,1] => ([(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,2,1,1,1,2] => [2,5,1] => ([(0,7),(1,7),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0
[1,2,1,2,2] => [2,3,2,1] => ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0
[1,2,2,1,2] => [2,2,3,1] => ([(0,7),(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0
[1,2,2,3] => [2,2,2,1,1] => ([(0,6),(0,7),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,2,3,2] => [2,2,1,2,1] => ([(0,7),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0
[1,3,1,1,2] => [2,1,4,1] => ([(0,7),(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0
[1,3,1,3] => [2,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,3,2,2] => [2,1,2,2,1] => ([(0,7),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0
[1,4,1,2] => [2,1,1,3,1] => ([(0,7),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0
Description
The number of Hamiltonian cycles in a graph.
A Hamiltonian cycle in a graph G is a subgraph (this is, a subset of the edges) that is a cycle which contains every vertex of G.
Since it is unclear whether the graph on one vertex is Hamiltonian, the statistic is undefined for this graph.
Matching statistic: St000455
Mp00039: Integer compositions —complement⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00274: Graphs —block-cut tree⟶ Graphs
St000455: Graphs ⟶ ℤResult quality: 30% ●values known / values provided: 30%●distinct values known / distinct values provided: 50%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00274: Graphs —block-cut tree⟶ Graphs
St000455: Graphs ⟶ ℤResult quality: 30% ●values known / values provided: 30%●distinct values known / distinct values provided: 50%
Values
[2] => [1,1] => ([(0,1)],2)
=> ([],1)
=> ? = 0
[1,2] => [2,1] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 0
[3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ? = 1
[1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
[1,3] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ? = 1
[2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 0
[4] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ? = 0
[1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
[1,1,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1
[1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 0
[1,4] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 0
[2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
[2,3] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1
[3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 0
[5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1
[1,1,1,1,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0
[1,1,1,3] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 1
[1,1,2,2] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 0
[1,1,4] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 0
[1,2,1,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
[1,2,3] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 1
[1,3,2] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 0
[1,5] => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 1
[2,1,1,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
[2,1,3] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 1
[2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 0
[2,4] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 0
[3,1,2] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
[3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 1
[4,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 0
[6] => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 0
[1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 0
[1,1,1,1,3] => [5,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? = 1
[1,1,1,2,2] => [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
[1,1,1,4] => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? = 0
[1,1,2,1,2] => [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
[1,1,2,3] => [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? = 1
[1,1,3,2] => [3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
[1,1,5] => [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? = 1
[1,2,1,1,2] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
[1,2,1,3] => [2,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? = 1
[1,2,2,2] => [2,2,2,1] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
[1,2,4] => [2,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? = 0
[1,3,1,2] => [2,1,3,1] => ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
[1,3,3] => [2,1,2,1,1] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? = 1
[1,4,2] => [2,1,1,2,1] => ([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
[1,6] => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? = 0
[2,1,1,1,2] => [1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0
[2,1,1,3] => [1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? = 1
[2,1,2,2] => [1,3,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
[2,1,4] => [1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? = 0
[2,2,1,2] => [1,2,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
[2,2,3] => [1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? = 1
[2,3,2] => [1,2,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
[2,5] => [1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? = 1
[3,1,1,2] => [1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
[3,1,3] => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? = 1
[3,2,2] => [1,1,2,2,1] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
[3,4] => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? = 0
[4,1,2] => [1,1,1,3,1] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
[4,3] => [1,1,1,2,1,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? = 1
[5,2] => [1,1,1,1,2,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
[7] => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? = 1
[1,1,1,1,1,1,2] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 0
[1,1,1,1,2,2] => [5,2,1] => ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0
[1,1,1,2,1,2] => [4,3,1] => ([(0,7),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0
[1,1,1,3,2] => [4,1,2,1] => ([(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0
[1,1,1,5] => [4,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,1,2,1,1,2] => [3,4,1] => ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0
[1,1,2,2,2] => [3,2,2,1] => ([(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0
[1,1,3,1,2] => [3,1,3,1] => ([(0,7),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0
[1,1,3,3] => [3,1,2,1,1] => ([(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,2,1,1,1,2] => [2,5,1] => ([(0,7),(1,7),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0
[1,2,1,2,2] => [2,3,2,1] => ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0
[1,2,2,1,2] => [2,2,3,1] => ([(0,7),(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0
[1,2,2,3] => [2,2,2,1,1] => ([(0,6),(0,7),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,2,3,2] => [2,2,1,2,1] => ([(0,7),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0
[1,3,1,1,2] => [2,1,4,1] => ([(0,7),(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0
[1,3,1,3] => [2,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,3,2,2] => [2,1,2,2,1] => ([(0,7),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0
[1,4,1,2] => [2,1,1,3,1] => ([(0,7),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 0
Description
The second largest eigenvalue of a graph if it is integral.
This statistic is undefined if the second largest eigenvalue of the graph is not integral.
Chapter 4 of [1] provides lots of context.
The following 10 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001204Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series L=[c0,c1,...,cn−1] such that n=c0<ci for all i>0 a special CNakayama algebra. St001217The projective dimension of the indecomposable injective module I[n-2] in the corresponding Nakayama algebra with simples enumerated from 0 to n-1. St000456The monochromatic index of a connected graph. St001257The dominant dimension of the double dual of A/J when A is the corresponding Nakayama algebra with Jacobson radical J. St001592The maximal number of simple paths between any two different vertices of a graph. St001060The distinguishing index of a graph. St001651The Frankl number of a lattice. St001845The number of join irreducibles minus the rank of a lattice. St001624The breadth of a lattice. St001626The number of maximal proper sublattices of a lattice.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!