Your data matches 53 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00045: Integer partitions reading tableauStandard tableaux
St000507: Standard tableaux ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> [1]
=> [[1]]
=> 1
([],2)
=> [1,1]
=> [[1],[2]]
=> 1
([(0,1)],2)
=> [2]
=> [[1,2]]
=> 2
([],3)
=> [1,1,1]
=> [[1],[2],[3]]
=> 1
([(1,2)],3)
=> [2,1]
=> [[1,3],[2]]
=> 2
([(0,2),(1,2)],3)
=> [3]
=> [[1,2,3]]
=> 3
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [[1,2,3]]
=> 3
([],4)
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 1
([(2,3)],4)
=> [2,1,1]
=> [[1,4],[2],[3]]
=> 2
([(1,3),(2,3)],4)
=> [3,1]
=> [[1,3,4],[2]]
=> 3
([(0,3),(1,3),(2,3)],4)
=> [4]
=> [[1,2,3,4]]
=> 4
([(0,3),(1,2)],4)
=> [2,2]
=> [[1,2],[3,4]]
=> 3
([(0,3),(1,2),(2,3)],4)
=> [4]
=> [[1,2,3,4]]
=> 4
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [[1,3,4],[2]]
=> 3
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [[1,2,3,4]]
=> 4
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> [[1,2,3,4]]
=> 4
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [[1,2,3,4]]
=> 4
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [[1,2,3,4]]
=> 4
([],5)
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 1
([(3,4)],5)
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> 2
([(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> 3
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [[1,3,4,5],[2]]
=> 4
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 5
([(1,4),(2,3)],5)
=> [2,2,1]
=> [[1,3],[2,5],[4]]
=> 3
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [[1,3,4,5],[2]]
=> 4
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [[1,2,5],[3,4]]
=> 4
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 5
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [[1,3,4,5],[2]]
=> 4
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 5
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [[1,3,4,5],[2]]
=> 4
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 5
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [[1,3,4,5],[2]]
=> 4
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 5
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 5
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 5
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 5
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 5
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [[1,2,5],[3,4]]
=> 4
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 5
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 5
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 5
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 5
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 5
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 5
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [[1,3,4,5],[2]]
=> 4
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 5
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 5
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 5
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> 5
Description
The number of ascents of a standard tableau. Entry $i$ of a standard Young tableau is an '''ascent''' if $i+1$ appears to the right or above $i$ in the tableau (with respect to the English notation for tableaux).
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
St001176: Integer partitions ⟶ ℤResult quality: 92% values known / values provided: 100%distinct values known / distinct values provided: 92%
Values
([],1)
=> [1]
=> [1]
=> 0 = 1 - 1
([],2)
=> [1,1]
=> [2]
=> 0 = 1 - 1
([(0,1)],2)
=> [2]
=> [1,1]
=> 1 = 2 - 1
([],3)
=> [1,1,1]
=> [3]
=> 0 = 1 - 1
([(1,2)],3)
=> [2,1]
=> [2,1]
=> 1 = 2 - 1
([(0,2),(1,2)],3)
=> [3]
=> [1,1,1]
=> 2 = 3 - 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1]
=> 2 = 3 - 1
([],4)
=> [1,1,1,1]
=> [4]
=> 0 = 1 - 1
([(2,3)],4)
=> [2,1,1]
=> [3,1]
=> 1 = 2 - 1
([(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 2 = 3 - 1
([(0,3),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> 3 = 4 - 1
([(0,3),(1,2)],4)
=> [2,2]
=> [2,2]
=> 2 = 3 - 1
([(0,3),(1,2),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> 3 = 4 - 1
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 2 = 3 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> 3 = 4 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> [1,1,1,1]
=> 3 = 4 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> 3 = 4 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> 3 = 4 - 1
([],5)
=> [1,1,1,1,1]
=> [5]
=> 0 = 1 - 1
([(3,4)],5)
=> [2,1,1,1]
=> [4,1]
=> 1 = 2 - 1
([(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> 2 = 3 - 1
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> 3 = 4 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 4 = 5 - 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> [3,2]
=> 2 = 3 - 1
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> 3 = 4 - 1
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2,2,1]
=> 3 = 4 - 1
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> 2 = 3 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 4 = 5 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> 3 = 4 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 4 = 5 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [2,1,1,1]
=> 3 = 4 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 4 = 5 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> 3 = 4 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 4 = 5 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 4 = 5 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 4 = 5 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 4 = 5 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 4 = 5 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2,2,1]
=> 3 = 4 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 4 = 5 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 4 = 5 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> [1,1,1,1,1]
=> 4 = 5 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 4 = 5 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 4 = 5 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 4 = 5 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> 3 = 4 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 4 = 5 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 4 = 5 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 4 = 5 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> 4 = 5 - 1
([],0)
=> []
=> []
=> ? = 0 - 1
Description
The size of a partition minus its first part. This is the number of boxes in its diagram that are not in the first row.
Matching statistic: St000738
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
Mp00045: Integer partitions reading tableauStandard tableaux
St000738: Standard tableaux ⟶ ℤResult quality: 83% values known / values provided: 100%distinct values known / distinct values provided: 83%
Values
([],1)
=> [1]
=> [1]
=> [[1]]
=> 1
([],2)
=> [1,1]
=> [2]
=> [[1,2]]
=> 1
([(0,1)],2)
=> [2]
=> [1,1]
=> [[1],[2]]
=> 2
([],3)
=> [1,1,1]
=> [3]
=> [[1,2,3]]
=> 1
([(1,2)],3)
=> [2,1]
=> [2,1]
=> [[1,3],[2]]
=> 2
([(0,2),(1,2)],3)
=> [3]
=> [1,1,1]
=> [[1],[2],[3]]
=> 3
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1]
=> [[1],[2],[3]]
=> 3
([],4)
=> [1,1,1,1]
=> [4]
=> [[1,2,3,4]]
=> 1
([(2,3)],4)
=> [2,1,1]
=> [3,1]
=> [[1,3,4],[2]]
=> 2
([(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> [[1,4],[2],[3]]
=> 3
([(0,3),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 4
([(0,3),(1,2)],4)
=> [2,2]
=> [2,2]
=> [[1,2],[3,4]]
=> 3
([(0,3),(1,2),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 4
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> [[1,4],[2],[3]]
=> 3
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 4
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 4
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 4
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 4
([],5)
=> [1,1,1,1,1]
=> [5]
=> [[1,2,3,4,5]]
=> 1
([(3,4)],5)
=> [2,1,1,1]
=> [4,1]
=> [[1,3,4,5],[2]]
=> 2
([(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> 3
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> 4
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 5
([(1,4),(2,3)],5)
=> [2,2,1]
=> [3,2]
=> [[1,2,5],[3,4]]
=> 3
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> 4
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2,2,1]
=> [[1,3],[2,5],[4]]
=> 4
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 5
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> 4
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 5
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> 4
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 5
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> 4
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 5
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 5
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 5
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 5
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 5
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2,2,1]
=> [[1,3],[2,5],[4]]
=> 4
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 5
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 5
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 5
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 5
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 5
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 5
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> 4
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 5
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 5
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 5
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 5
([],0)
=> []
=> []
=> []
=> ? = 0
([(0,11),(1,10),(2,9),(3,8),(4,8),(4,9),(4,10),(5,8),(5,9),(5,11),(6,8),(6,10),(6,11),(7,9),(7,10),(7,11)],12)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 12
([(0,9),(1,7),(1,8),(2,7),(2,11),(3,6),(3,8),(4,9),(4,11),(5,6),(5,9),(5,11),(6,10),(7,10),(8,10),(10,11)],12)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 12
([(0,1),(0,3),(1,2),(2,4),(3,5),(4,10),(5,11),(6,7),(6,8),(7,9),(8,9),(8,10),(9,11),(10,11)],12)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 12
([(0,1),(0,2),(0,3),(0,7),(0,9),(0,10),(0,11),(1,2),(1,3),(1,6),(1,8),(1,10),(1,11),(2,3),(2,5),(2,8),(2,9),(2,11),(3,4),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12]]
=> ? = 12
Description
The first entry in the last row of a standard tableau. For the last entry in the first row, see [[St000734]].
Matching statistic: St000074
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00042: Integer partitions initial tableauStandard tableaux
Mp00082: Standard tableaux to Gelfand-Tsetlin patternGelfand-Tsetlin patterns
St000074: Gelfand-Tsetlin patterns ⟶ ℤResult quality: 83% values known / values provided: 100%distinct values known / distinct values provided: 83%
Values
([],1)
=> [1]
=> [[1]]
=> [[1]]
=> 0 = 1 - 1
([],2)
=> [1,1]
=> [[1],[2]]
=> [[1,1],[1]]
=> 0 = 1 - 1
([(0,1)],2)
=> [2]
=> [[1,2]]
=> [[2,0],[1]]
=> 1 = 2 - 1
([],3)
=> [1,1,1]
=> [[1],[2],[3]]
=> [[1,1,1],[1,1],[1]]
=> 0 = 1 - 1
([(1,2)],3)
=> [2,1]
=> [[1,2],[3]]
=> [[2,1,0],[2,0],[1]]
=> 1 = 2 - 1
([(0,2),(1,2)],3)
=> [3]
=> [[1,2,3]]
=> [[3,0,0],[2,0],[1]]
=> 2 = 3 - 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [[1,2,3]]
=> [[3,0,0],[2,0],[1]]
=> 2 = 3 - 1
([],4)
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [[1,1,1,1],[1,1,1],[1,1],[1]]
=> 0 = 1 - 1
([(2,3)],4)
=> [2,1,1]
=> [[1,2],[3],[4]]
=> [[2,1,1,0],[2,1,0],[2,0],[1]]
=> 1 = 2 - 1
([(1,3),(2,3)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> [[3,1,0,0],[3,0,0],[2,0],[1]]
=> 2 = 3 - 1
([(0,3),(1,3),(2,3)],4)
=> [4]
=> [[1,2,3,4]]
=> [[4,0,0,0],[3,0,0],[2,0],[1]]
=> 3 = 4 - 1
([(0,3),(1,2)],4)
=> [2,2]
=> [[1,2],[3,4]]
=> [[2,2,0,0],[2,1,0],[2,0],[1]]
=> 2 = 3 - 1
([(0,3),(1,2),(2,3)],4)
=> [4]
=> [[1,2,3,4]]
=> [[4,0,0,0],[3,0,0],[2,0],[1]]
=> 3 = 4 - 1
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> [[3,1,0,0],[3,0,0],[2,0],[1]]
=> 2 = 3 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [[1,2,3,4]]
=> [[4,0,0,0],[3,0,0],[2,0],[1]]
=> 3 = 4 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> [[1,2,3,4]]
=> [[4,0,0,0],[3,0,0],[2,0],[1]]
=> 3 = 4 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [[1,2,3,4]]
=> [[4,0,0,0],[3,0,0],[2,0],[1]]
=> 3 = 4 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [[1,2,3,4]]
=> [[4,0,0,0],[3,0,0],[2,0],[1]]
=> 3 = 4 - 1
([],5)
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [[1,1,1,1,1],[1,1,1,1],[1,1,1],[1,1],[1]]
=> 0 = 1 - 1
([(3,4)],5)
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [[2,1,1,1,0],[2,1,1,0],[2,1,0],[2,0],[1]]
=> 1 = 2 - 1
([(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [[3,1,1,0,0],[3,1,0,0],[3,0,0],[2,0],[1]]
=> 2 = 3 - 1
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> [[4,1,0,0,0],[4,0,0,0],[3,0,0],[2,0],[1]]
=> 3 = 4 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [[5,0,0,0,0],[4,0,0,0],[3,0,0],[2,0],[1]]
=> 4 = 5 - 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> [[2,2,1,0,0],[2,2,0,0],[2,1,0],[2,0],[1]]
=> 2 = 3 - 1
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> [[4,1,0,0,0],[4,0,0,0],[3,0,0],[2,0],[1]]
=> 3 = 4 - 1
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [[1,2,3],[4,5]]
=> [[3,2,0,0,0],[3,1,0,0],[3,0,0],[2,0],[1]]
=> 3 = 4 - 1
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [[3,1,1,0,0],[3,1,0,0],[3,0,0],[2,0],[1]]
=> 2 = 3 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [[5,0,0,0,0],[4,0,0,0],[3,0,0],[2,0],[1]]
=> 4 = 5 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> [[4,1,0,0,0],[4,0,0,0],[3,0,0],[2,0],[1]]
=> 3 = 4 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [[5,0,0,0,0],[4,0,0,0],[3,0,0],[2,0],[1]]
=> 4 = 5 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> [[4,1,0,0,0],[4,0,0,0],[3,0,0],[2,0],[1]]
=> 3 = 4 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [[5,0,0,0,0],[4,0,0,0],[3,0,0],[2,0],[1]]
=> 4 = 5 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> [[4,1,0,0,0],[4,0,0,0],[3,0,0],[2,0],[1]]
=> 3 = 4 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [[5,0,0,0,0],[4,0,0,0],[3,0,0],[2,0],[1]]
=> 4 = 5 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [[5,0,0,0,0],[4,0,0,0],[3,0,0],[2,0],[1]]
=> 4 = 5 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [[5,0,0,0,0],[4,0,0,0],[3,0,0],[2,0],[1]]
=> 4 = 5 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [[5,0,0,0,0],[4,0,0,0],[3,0,0],[2,0],[1]]
=> 4 = 5 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [[5,0,0,0,0],[4,0,0,0],[3,0,0],[2,0],[1]]
=> 4 = 5 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [[1,2,3],[4,5]]
=> [[3,2,0,0,0],[3,1,0,0],[3,0,0],[2,0],[1]]
=> 3 = 4 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [[5,0,0,0,0],[4,0,0,0],[3,0,0],[2,0],[1]]
=> 4 = 5 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [[5,0,0,0,0],[4,0,0,0],[3,0,0],[2,0],[1]]
=> 4 = 5 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [[5,0,0,0,0],[4,0,0,0],[3,0,0],[2,0],[1]]
=> 4 = 5 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [[5,0,0,0,0],[4,0,0,0],[3,0,0],[2,0],[1]]
=> 4 = 5 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [[5,0,0,0,0],[4,0,0,0],[3,0,0],[2,0],[1]]
=> 4 = 5 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [[5,0,0,0,0],[4,0,0,0],[3,0,0],[2,0],[1]]
=> 4 = 5 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> [[4,1,0,0,0],[4,0,0,0],[3,0,0],[2,0],[1]]
=> 3 = 4 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [[5,0,0,0,0],[4,0,0,0],[3,0,0],[2,0],[1]]
=> 4 = 5 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [[5,0,0,0,0],[4,0,0,0],[3,0,0],[2,0],[1]]
=> 4 = 5 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [[5,0,0,0,0],[4,0,0,0],[3,0,0],[2,0],[1]]
=> 4 = 5 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> [[5,0,0,0,0],[4,0,0,0],[3,0,0],[2,0],[1]]
=> 4 = 5 - 1
([],0)
=> []
=> []
=> ?
=> ? = 0 - 1
([(0,11),(1,10),(2,9),(3,8),(4,8),(4,9),(4,10),(5,8),(5,9),(5,11),(6,8),(6,10),(6,11),(7,9),(7,10),(7,11)],12)
=> [12]
=> [[1,2,3,4,5,6,7,8,9,10,11,12]]
=> [[12,0,0,0,0,0,0,0,0,0,0,0],[11,0,0,0,0,0,0,0,0,0,0],[10,0,0,0,0,0,0,0,0,0],[9,0,0,0,0,0,0,0,0],[8,0,0,0,0,0,0,0],[7,0,0,0,0,0,0],[6,0,0,0,0,0],[5,0,0,0,0],[4,0,0,0],[3,0,0],[2,0],[1]]
=> ? = 12 - 1
([(0,9),(1,7),(1,8),(2,7),(2,11),(3,6),(3,8),(4,9),(4,11),(5,6),(5,9),(5,11),(6,10),(7,10),(8,10),(10,11)],12)
=> [12]
=> [[1,2,3,4,5,6,7,8,9,10,11,12]]
=> [[12,0,0,0,0,0,0,0,0,0,0,0],[11,0,0,0,0,0,0,0,0,0,0],[10,0,0,0,0,0,0,0,0,0],[9,0,0,0,0,0,0,0,0],[8,0,0,0,0,0,0,0],[7,0,0,0,0,0,0],[6,0,0,0,0,0],[5,0,0,0,0],[4,0,0,0],[3,0,0],[2,0],[1]]
=> ? = 12 - 1
([(0,1),(0,3),(1,2),(2,4),(3,5),(4,10),(5,11),(6,7),(6,8),(7,9),(8,9),(8,10),(9,11),(10,11)],12)
=> [12]
=> [[1,2,3,4,5,6,7,8,9,10,11,12]]
=> [[12,0,0,0,0,0,0,0,0,0,0,0],[11,0,0,0,0,0,0,0,0,0,0],[10,0,0,0,0,0,0,0,0,0],[9,0,0,0,0,0,0,0,0],[8,0,0,0,0,0,0,0],[7,0,0,0,0,0,0],[6,0,0,0,0,0],[5,0,0,0,0],[4,0,0,0],[3,0,0],[2,0],[1]]
=> ? = 12 - 1
([(0,1),(0,2),(0,3),(0,7),(0,9),(0,10),(0,11),(1,2),(1,3),(1,6),(1,8),(1,10),(1,11),(2,3),(2,5),(2,8),(2,9),(2,11),(3,4),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> [12]
=> [[1,2,3,4,5,6,7,8,9,10,11,12]]
=> [[12,0,0,0,0,0,0,0,0,0,0,0],[11,0,0,0,0,0,0,0,0,0,0],[10,0,0,0,0,0,0,0,0,0],[9,0,0,0,0,0,0,0,0],[8,0,0,0,0,0,0,0],[7,0,0,0,0,0,0],[6,0,0,0,0,0],[5,0,0,0,0],[4,0,0,0],[3,0,0],[2,0],[1]]
=> ? = 12 - 1
Description
The number of special entries. An entry $a_{i,j}$ of a Gelfand-Tsetlin pattern is special if $a_{i-1,j-i} > a_{i,j} > a_{i-1,j}$. That is, it is neither boxed nor circled.
Matching statistic: St000228
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000228: Integer partitions ⟶ ℤResult quality: 83% values known / values provided: 100%distinct values known / distinct values provided: 83%
Values
([],1)
=> [1]
=> [1]
=> []
=> 0 = 1 - 1
([],2)
=> [1,1]
=> [2]
=> []
=> 0 = 1 - 1
([(0,1)],2)
=> [2]
=> [1,1]
=> [1]
=> 1 = 2 - 1
([],3)
=> [1,1,1]
=> [3]
=> []
=> 0 = 1 - 1
([(1,2)],3)
=> [2,1]
=> [2,1]
=> [1]
=> 1 = 2 - 1
([(0,2),(1,2)],3)
=> [3]
=> [1,1,1]
=> [1,1]
=> 2 = 3 - 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1]
=> [1,1]
=> 2 = 3 - 1
([],4)
=> [1,1,1,1]
=> [4]
=> []
=> 0 = 1 - 1
([(2,3)],4)
=> [2,1,1]
=> [3,1]
=> [1]
=> 1 = 2 - 1
([(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> [1,1]
=> 2 = 3 - 1
([(0,3),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> [1,1,1]
=> 3 = 4 - 1
([(0,3),(1,2)],4)
=> [2,2]
=> [2,2]
=> [2]
=> 2 = 3 - 1
([(0,3),(1,2),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> [1,1,1]
=> 3 = 4 - 1
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> [1,1]
=> 2 = 3 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> [1,1,1]
=> 3 = 4 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> [1,1,1,1]
=> [1,1,1]
=> 3 = 4 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> [1,1,1]
=> 3 = 4 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> [1,1,1]
=> 3 = 4 - 1
([],5)
=> [1,1,1,1,1]
=> [5]
=> []
=> 0 = 1 - 1
([(3,4)],5)
=> [2,1,1,1]
=> [4,1]
=> [1]
=> 1 = 2 - 1
([(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> [1,1]
=> 2 = 3 - 1
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> [1,1,1]
=> 3 = 4 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 4 = 5 - 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> [3,2]
=> [2]
=> 2 = 3 - 1
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> [1,1,1]
=> 3 = 4 - 1
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2,2,1]
=> [2,1]
=> 3 = 4 - 1
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> [1,1]
=> 2 = 3 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 4 = 5 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> [1,1,1]
=> 3 = 4 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 4 = 5 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [2,1,1,1]
=> [1,1,1]
=> 3 = 4 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 4 = 5 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> [1,1,1]
=> 3 = 4 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 4 = 5 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 4 = 5 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 4 = 5 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 4 = 5 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 4 = 5 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2,2,1]
=> [2,1]
=> 3 = 4 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 4 = 5 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 4 = 5 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 4 = 5 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 4 = 5 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 4 = 5 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 4 = 5 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> [1,1,1]
=> 3 = 4 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 4 = 5 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 4 = 5 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 4 = 5 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 4 = 5 - 1
([],0)
=> []
=> []
=> ?
=> ? = 0 - 1
([(0,11),(1,10),(2,9),(3,8),(4,8),(4,9),(4,10),(5,8),(5,9),(5,11),(6,8),(6,10),(6,11),(7,9),(7,10),(7,11)],12)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> ? = 12 - 1
([(0,9),(1,7),(1,8),(2,7),(2,11),(3,6),(3,8),(4,9),(4,11),(5,6),(5,9),(5,11),(6,10),(7,10),(8,10),(10,11)],12)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> ? = 12 - 1
([(0,1),(0,3),(1,2),(2,4),(3,5),(4,10),(5,11),(6,7),(6,8),(7,9),(8,9),(8,10),(9,11),(10,11)],12)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> ? = 12 - 1
([(0,1),(0,2),(0,3),(0,7),(0,9),(0,10),(0,11),(1,2),(1,3),(1,6),(1,8),(1,10),(1,11),(2,3),(2,5),(2,8),(2,9),(2,11),(3,4),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> [12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> ? = 12 - 1
Description
The size of a partition. This statistic is the constant statistic of the level sets.
Matching statistic: St000293
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00095: Integer partitions to binary wordBinary words
Mp00136: Binary words rotate back-to-frontBinary words
St000293: Binary words ⟶ ℤResult quality: 83% values known / values provided: 100%distinct values known / distinct values provided: 83%
Values
([],1)
=> [1]
=> 10 => 01 => 0 = 1 - 1
([],2)
=> [1,1]
=> 110 => 011 => 0 = 1 - 1
([(0,1)],2)
=> [2]
=> 100 => 010 => 1 = 2 - 1
([],3)
=> [1,1,1]
=> 1110 => 0111 => 0 = 1 - 1
([(1,2)],3)
=> [2,1]
=> 1010 => 0101 => 1 = 2 - 1
([(0,2),(1,2)],3)
=> [3]
=> 1000 => 0100 => 2 = 3 - 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1000 => 0100 => 2 = 3 - 1
([],4)
=> [1,1,1,1]
=> 11110 => 01111 => 0 = 1 - 1
([(2,3)],4)
=> [2,1,1]
=> 10110 => 01011 => 1 = 2 - 1
([(1,3),(2,3)],4)
=> [3,1]
=> 10010 => 01001 => 2 = 3 - 1
([(0,3),(1,3),(2,3)],4)
=> [4]
=> 10000 => 01000 => 3 = 4 - 1
([(0,3),(1,2)],4)
=> [2,2]
=> 1100 => 0110 => 2 = 3 - 1
([(0,3),(1,2),(2,3)],4)
=> [4]
=> 10000 => 01000 => 3 = 4 - 1
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 10010 => 01001 => 2 = 3 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 10000 => 01000 => 3 = 4 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> 10000 => 01000 => 3 = 4 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 10000 => 01000 => 3 = 4 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 10000 => 01000 => 3 = 4 - 1
([],5)
=> [1,1,1,1,1]
=> 111110 => 011111 => 0 = 1 - 1
([(3,4)],5)
=> [2,1,1,1]
=> 101110 => 010111 => 1 = 2 - 1
([(2,4),(3,4)],5)
=> [3,1,1]
=> 100110 => 010011 => 2 = 3 - 1
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 100010 => 010001 => 3 = 4 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> 100000 => 010000 => 4 = 5 - 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> 11010 => 01101 => 2 = 3 - 1
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> 100010 => 010001 => 3 = 4 - 1
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> 10100 => 01010 => 3 = 4 - 1
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 100110 => 010011 => 2 = 3 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> 100000 => 010000 => 4 = 5 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 100010 => 010001 => 3 = 4 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 100000 => 010000 => 4 = 5 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> 100010 => 010001 => 3 = 4 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> 100000 => 010000 => 4 = 5 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 100010 => 010001 => 3 = 4 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> 100000 => 010000 => 4 = 5 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 100000 => 010000 => 4 = 5 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> 100000 => 010000 => 4 = 5 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 100000 => 010000 => 4 = 5 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> 100000 => 010000 => 4 = 5 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> 10100 => 01010 => 3 = 4 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> 100000 => 010000 => 4 = 5 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> 100000 => 010000 => 4 = 5 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> 100000 => 010000 => 4 = 5 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> 100000 => 010000 => 4 = 5 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 100000 => 010000 => 4 = 5 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> 100000 => 010000 => 4 = 5 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 100010 => 010001 => 3 = 4 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 100000 => 010000 => 4 = 5 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 100000 => 010000 => 4 = 5 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> 100000 => 010000 => 4 = 5 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> 100000 => 010000 => 4 = 5 - 1
([],0)
=> []
=> => ? => ? = 0 - 1
([(0,11),(1,10),(2,9),(3,8),(4,8),(4,9),(4,10),(5,8),(5,9),(5,11),(6,8),(6,10),(6,11),(7,9),(7,10),(7,11)],12)
=> [12]
=> 1000000000000 => ? => ? = 12 - 1
([(0,9),(1,7),(1,8),(2,7),(2,11),(3,6),(3,8),(4,9),(4,11),(5,6),(5,9),(5,11),(6,10),(7,10),(8,10),(10,11)],12)
=> [12]
=> 1000000000000 => ? => ? = 12 - 1
([(0,1),(0,3),(1,2),(2,4),(3,5),(4,10),(5,11),(6,7),(6,8),(7,9),(8,9),(8,10),(9,11),(10,11)],12)
=> [12]
=> 1000000000000 => ? => ? = 12 - 1
([(0,1),(0,2),(0,3),(0,7),(0,9),(0,10),(0,11),(1,2),(1,3),(1,6),(1,8),(1,10),(1,11),(2,3),(2,5),(2,8),(2,9),(2,11),(3,4),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> [12]
=> 1000000000000 => ? => ? = 12 - 1
Description
The number of inversions of a binary word.
Matching statistic: St000394
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
Mp00227: Dyck paths Delest-Viennot-inverseDyck paths
St000394: Dyck paths ⟶ ℤResult quality: 83% values known / values provided: 100%distinct values known / distinct values provided: 83%
Values
([],1)
=> [1]
=> [1,0]
=> [1,0]
=> 0 = 1 - 1
([],2)
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 0 = 1 - 1
([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1 = 2 - 1
([],3)
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 0 = 1 - 1
([(1,2)],3)
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1 = 2 - 1
([(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 2 = 3 - 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 2 = 3 - 1
([],4)
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
([(2,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
([(1,3),(2,3)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 2 = 3 - 1
([(0,3),(1,3),(2,3)],4)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 3 = 4 - 1
([(0,3),(1,2)],4)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 2 = 3 - 1
([(0,3),(1,2),(2,3)],4)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 3 = 4 - 1
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 2 = 3 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 3 = 4 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 3 = 4 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 3 = 4 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 3 = 4 - 1
([],5)
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
([(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1 = 2 - 1
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 2 = 3 - 1
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 3 = 4 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 4 = 5 - 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2 = 3 - 1
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 3 = 4 - 1
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 3 = 4 - 1
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 2 = 3 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 4 = 5 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 3 = 4 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 4 = 5 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 3 = 4 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 4 = 5 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 3 = 4 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 4 = 5 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 4 = 5 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 4 = 5 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 4 = 5 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 4 = 5 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 3 = 4 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 4 = 5 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 4 = 5 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 4 = 5 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 4 = 5 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 4 = 5 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 4 = 5 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 3 = 4 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 4 = 5 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 4 = 5 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 4 = 5 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 4 = 5 - 1
([],0)
=> []
=> []
=> []
=> ? = 0 - 1
([(0,11),(1,10),(2,9),(3,8),(4,8),(4,9),(4,10),(5,8),(5,9),(5,11),(6,8),(6,10),(6,11),(7,9),(7,10),(7,11)],12)
=> [12]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0]
=> ? = 12 - 1
([(0,9),(1,7),(1,8),(2,7),(2,11),(3,6),(3,8),(4,9),(4,11),(5,6),(5,9),(5,11),(6,10),(7,10),(8,10),(10,11)],12)
=> [12]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0]
=> ? = 12 - 1
([(0,1),(0,3),(1,2),(2,4),(3,5),(4,10),(5,11),(6,7),(6,8),(7,9),(8,9),(8,10),(9,11),(10,11)],12)
=> [12]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0]
=> ? = 12 - 1
([(0,1),(0,2),(0,3),(0,7),(0,9),(0,10),(0,11),(1,2),(1,3),(1,6),(1,8),(1,10),(1,11),(2,3),(2,5),(2,8),(2,9),(2,11),(3,4),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> [12]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0]
=> ? = 12 - 1
Description
The sum of the heights of the peaks of a Dyck path minus the number of peaks.
Mp00152: Graphs Laplacian multiplicitiesInteger compositions
Mp00315: Integer compositions inverse Foata bijectionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
St000476: Dyck paths ⟶ ℤResult quality: 67% values known / values provided: 93%distinct values known / distinct values provided: 67%
Values
([],1)
=> [1] => [1] => [1,0]
=> ? = 1 - 1
([],2)
=> [2] => [2] => [1,1,0,0]
=> 0 = 1 - 1
([(0,1)],2)
=> [1,1] => [1,1] => [1,0,1,0]
=> 1 = 2 - 1
([],3)
=> [3] => [3] => [1,1,1,0,0,0]
=> 0 = 1 - 1
([(1,2)],3)
=> [1,2] => [1,2] => [1,0,1,1,0,0]
=> 1 = 2 - 1
([(0,2),(1,2)],3)
=> [1,1,1] => [1,1,1] => [1,0,1,0,1,0]
=> 2 = 3 - 1
([(0,1),(0,2),(1,2)],3)
=> [2,1] => [2,1] => [1,1,0,0,1,0]
=> 2 = 3 - 1
([],4)
=> [4] => [4] => [1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
([(2,3)],4)
=> [1,3] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
([(1,3),(2,3)],4)
=> [1,1,2] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 2 = 3 - 1
([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 3 = 4 - 1
([(0,3),(1,2)],4)
=> [2,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> 2 = 3 - 1
([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 3 = 4 - 1
([(1,2),(1,3),(2,3)],4)
=> [2,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> 2 = 3 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 3 = 4 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 3 = 4 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 3 = 4 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> 3 = 4 - 1
([],5)
=> [5] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 0 = 1 - 1
([(3,4)],5)
=> [1,4] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1 = 2 - 1
([(2,4),(3,4)],5)
=> [1,1,3] => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 2 = 3 - 1
([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 3 = 4 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 4 = 5 - 1
([(1,4),(2,3)],5)
=> [2,3] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2 = 3 - 1
([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 3 = 4 - 1
([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 3 = 4 - 1
([(2,3),(2,4),(3,4)],5)
=> [2,3] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2 = 3 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 3 = 4 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 4 = 5 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [1,2,2] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 3 = 4 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 3 = 4 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 4 = 5 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 4 = 5 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 3 = 4 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 4 = 5 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 4 = 5 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3 = 4 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 4 = 5 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 4 = 5 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 4 = 5 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 4 = 5 - 1
([(0,8),(1,7),(2,3),(2,4),(3,5),(4,6),(5,7),(6,8)],9)
=> [1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 1
([],0)
=> [] => ? => ?
=> ? = 0 - 1
([(0,1),(0,4),(0,5),(0,7),(0,8),(1,2),(1,3),(1,7),(1,8),(2,3),(2,5),(2,6),(2,8),(3,4),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> [2,2,1,2,1,1] => [1,2,2,1,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> ? = 9 - 1
([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> [5,4,1] => [5,4,1] => [1,1,1,1,1,0,0,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 10 - 1
([(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,6),(1,7),(2,3),(2,5),(2,7),(3,4),(3,7),(4,5),(4,6),(5,6)],8)
=> [3,3,1,1] => [3,1,3,1] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 8 - 1
([(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,6),(1,7),(1,8),(2,3),(2,5),(2,7),(2,8),(3,4),(3,7),(3,8),(4,5),(4,6),(4,8),(5,6),(5,8),(6,8),(7,8)],9)
=> [1,3,3,1,1] => [3,1,3,1,1] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 9 - 1
([(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,8),(2,3),(2,6),(2,8),(3,4),(3,5),(3,7),(3,8),(4,5),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 1
([(0,3),(0,6),(0,7),(0,8),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,8),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 1
([(0,2),(0,3),(0,7),(0,8),(1,2),(1,3),(1,5),(1,6),(2,5),(2,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,8),(6,7),(7,8)],9)
=> [1,1,2,1,1,1,1,1] => [1,1,1,1,2,1,1,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 9 - 1
([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,9),(3,5),(3,6),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(6,7),(6,9),(7,8),(7,9),(8,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 10 - 1
([(0,2),(0,3),(0,7),(0,8),(1,2),(1,3),(1,5),(1,6),(2,6),(2,8),(3,5),(3,7),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [2,1,2,2,1,1] => [2,2,1,1,2,1] => [1,1,0,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 9 - 1
([(0,3),(0,5),(0,8),(1,2),(1,4),(1,7),(2,3),(2,6),(2,7),(3,6),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,7),(1,8),(2,3),(2,6),(2,8),(3,4),(3,6),(4,7),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,1,2,1,1,1,1,1] => [1,1,1,1,2,1,1,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 9 - 1
([(0,1),(0,6),(0,7),(1,4),(1,5),(2,3),(2,5),(2,7),(2,8),(3,4),(3,6),(3,8),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 1
([(0,1),(0,5),(0,6),(0,8),(1,4),(1,6),(1,7),(2,3),(2,4),(2,5),(2,9),(3,6),(3,7),(3,8),(3,9),(4,5),(4,7),(4,9),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 10 - 1
([(0,6),(0,7),(0,8),(1,2),(1,4),(1,5),(1,7),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(3,8),(4,5),(4,7),(4,8),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 1
([(0,5),(0,7),(0,8),(1,2),(1,4),(1,6),(1,8),(2,3),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,1,1,2,1,1,1,1] => [1,1,1,2,1,1,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 1
([(0,6),(0,7),(0,8),(0,9),(1,2),(1,4),(1,5),(1,7),(1,9),(2,3),(2,5),(2,7),(2,8),(3,4),(3,5),(3,6),(3,8),(4,5),(4,6),(4,9),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 10 - 1
([(0,3),(0,4),(0,7),(1,2),(1,5),(1,7),(1,8),(2,3),(2,6),(2,8),(3,6),(3,8),(4,5),(4,6),(4,7),(5,6),(5,7),(5,8),(6,8),(7,8)],9)
=> [1,1,2,1,1,1,1,1] => [1,1,1,1,2,1,1,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 9 - 1
([(0,1),(0,5),(0,7),(0,8),(1,4),(1,7),(1,8),(2,3),(2,4),(2,6),(2,7),(3,5),(3,6),(3,8),(4,6),(4,7),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> [2,2,2,2,1] => [2,2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 9 - 1
([(0,3),(0,5),(0,7),(0,9),(1,2),(1,4),(1,7),(1,8),(2,3),(2,6),(2,7),(2,8),(3,6),(3,7),(3,9),(4,5),(4,6),(4,8),(4,9),(5,6),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 10 - 1
([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(3,6),(3,8),(4,5),(4,7),(5,8),(6,7)],9)
=> [4,4,1] => [4,4,1] => [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 9 - 1
([(0,1),(0,2),(0,7),(0,8),(1,2),(1,5),(1,6),(2,3),(2,4),(3,4),(3,6),(3,8),(3,9),(4,5),(4,7),(4,9),(5,6),(5,7),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> [1,2,2,1,2,1,1] => [1,2,2,1,2,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 10 - 1
([(0,1),(0,6),(0,7),(0,9),(1,4),(1,5),(1,8),(2,3),(2,5),(2,7),(2,8),(2,9),(3,4),(3,6),(3,8),(3,9),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(6,9),(7,9),(8,9)],10)
=> [1,2,1,1,1,1,1,1,1] => [1,1,1,1,1,1,2,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 10 - 1
([(0,4),(0,5),(1,2),(1,3),(1,7),(1,8),(2,3),(2,6),(2,8),(3,6),(3,7),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [2,1,1,2,1,1,1] => [1,2,1,1,1,2,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 9 - 1
([(0,4),(0,5),(0,8),(1,2),(1,3),(1,4),(1,7),(2,3),(2,4),(2,6),(3,6),(3,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 1
([(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(2,3),(2,5),(2,7),(2,8),(3,4),(3,7),(3,8),(4,5),(4,6),(4,8),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,2,1,1,2,1,1] => [2,1,1,1,2,1,1] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 9 - 1
([(0,3),(0,6),(0,7),(1,2),(1,4),(1,5),(2,4),(2,6),(2,8),(3,5),(3,7),(3,8),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 1
([(0,2),(0,3),(1,4),(1,5),(1,6),(1,7),(2,6),(2,7),(2,8),(3,4),(3,5),(3,8),(4,5),(4,7),(4,8),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,1,2,1,1,1,1,1] => [1,1,1,1,2,1,1,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 9 - 1
([(0,4),(0,5),(0,8),(1,2),(1,3),(1,6),(1,7),(2,3),(2,4),(2,7),(2,9),(3,4),(3,6),(3,9),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 10 - 1
([(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,8),(5,9),(6,7),(6,9),(7,8),(8,9)],10)
=> [3,1,3,1,1,1] => [1,3,1,1,3,1] => [1,0,1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 10 - 1
([(0,1),(0,4),(0,8),(1,3),(1,7),(2,3),(2,4),(2,5),(2,6),(3,5),(3,7),(4,6),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 - 1
([(0,3),(0,4),(0,8),(0,9),(1,2),(1,4),(1,5),(1,7),(2,3),(2,5),(2,6),(3,6),(3,8),(4,7),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> [2,2,2,1,2,1] => [2,2,1,2,2,1] => [1,1,0,0,1,1,0,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 10 - 1
([(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,7),(4,8),(5,7),(6,8),(7,8)],9)
=> [3,2,2,1,1] => [2,1,3,2,1] => [1,1,0,0,1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> ? = 9 - 1
([(0,2),(0,5),(0,6),(0,8),(1,2),(1,3),(1,4),(1,7),(2,7),(2,8),(3,4),(3,5),(3,7),(3,9),(4,6),(4,8),(4,9),(5,6),(5,7),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 10 - 1
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,6),(1,8),(1,9),(2,5),(2,7),(2,9),(3,4),(3,5),(3,7),(3,8),(4,6),(4,7),(4,8),(5,7),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 10 - 1
([(0,1),(0,5),(0,6),(1,4),(1,8),(1,9),(2,3),(2,4),(2,6),(2,7),(2,9),(3,4),(3,5),(3,7),(3,8),(4,8),(4,9),(5,6),(5,7),(5,8),(6,7),(6,9),(7,8),(7,9),(8,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 10 - 1
([(0,3),(0,7),(0,8),(0,9),(1,2),(1,4),(1,6),(1,8),(2,4),(2,5),(2,7),(3,5),(3,6),(3,9),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> [2,2,1,1,2,1,1] => [1,1,2,2,1,2,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> ? = 10 - 1
([(0,7),(0,8),(0,9),(1,2),(1,3),(1,5),(1,6),(1,9),(2,3),(2,4),(2,6),(2,8),(3,4),(3,5),(3,7),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> [2,2,1,1,2,1,1] => [1,1,2,2,1,2,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> ? = 10 - 1
([(0,1),(0,2),(1,2),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8)
=> [2,4,2] => [4,2,2] => [1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> ? = 7 - 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [7,1] => [7,1] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 8 - 1
([(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,2] => [6,2] => [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 7 - 1
([(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [3,3,1,1] => [3,1,3,1] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 8 - 1
([(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [2,3,1,2] => [3,2,1,2] => [1,1,1,0,0,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 7 - 1
([(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [3,5] => [3,5] => [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 4 - 1
([(0,7),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,3,1,2,1] => [3,1,2,1,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 8 - 1
([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [3,1,1,2,1] => [3,1,1,2,1] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 8 - 1
([(1,7),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,1,1,3,2] => [3,1,1,1,2] => [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 7 - 1
([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [3,2,3] => [3,2,3] => [1,1,1,0,0,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 6 - 1
Description
The sum of the semi-lengths of tunnels before a valley of a Dyck path. For each valley $v$ in a Dyck path $D$ there is a corresponding tunnel, which is the factor $T_v = s_i\dots s_j$ of $D$ where $s_i$ is the step after the first intersection of $D$ with the line $y = ht(v)$ to the left of $s_j$. This statistic is $$ \sum_v (j_v-i_v)/2. $$
Matching statistic: St000645
Mp00152: Graphs Laplacian multiplicitiesInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00132: Dyck paths switch returns and last double riseDyck paths
St000645: Dyck paths ⟶ ℤResult quality: 92% values known / values provided: 93%distinct values known / distinct values provided: 92%
Values
([],1)
=> [1] => [1,0]
=> [1,0]
=> 0 = 1 - 1
([],2)
=> [2] => [1,1,0,0]
=> [1,1,0,0]
=> 0 = 1 - 1
([(0,1)],2)
=> [1,1] => [1,0,1,0]
=> [1,0,1,0]
=> 1 = 2 - 1
([],3)
=> [3] => [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 0 = 1 - 1
([(1,2)],3)
=> [1,2] => [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 1 = 2 - 1
([(0,2),(1,2)],3)
=> [1,1,1] => [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 2 = 3 - 1
([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 2 = 3 - 1
([],4)
=> [4] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
([(2,3)],4)
=> [1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1 = 2 - 1
([(1,3),(2,3)],4)
=> [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 2 = 3 - 1
([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 3 = 4 - 1
([(0,3),(1,2)],4)
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2 = 3 - 1
([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 3 = 4 - 1
([(1,2),(1,3),(2,3)],4)
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2 = 3 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 3 = 4 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 3 = 4 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 3 = 4 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 3 = 4 - 1
([],5)
=> [5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0 = 1 - 1
([(3,4)],5)
=> [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1 = 2 - 1
([(2,4),(3,4)],5)
=> [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 2 = 3 - 1
([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3 = 4 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 4 = 5 - 1
([(1,4),(2,3)],5)
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 2 = 3 - 1
([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3 = 4 - 1
([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3 = 4 - 1
([(2,3),(2,4),(3,4)],5)
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 2 = 3 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3 = 4 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 4 = 5 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3 = 4 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 3 = 4 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 4 = 5 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 4 = 5 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 3 = 4 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 4 = 5 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 4 = 5 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 3 = 4 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 4 = 5 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 4 = 5 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 4 = 5 - 1
([],0)
=> [] => ?
=> ?
=> ? = 0 - 1
([(0,2),(0,3),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(2,5),(2,7),(3,4),(3,6),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [2,2,1,2,1] => [1,1,0,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,1,0,0,1,0]
=> ? = 8 - 1
([(0,1),(0,4),(0,5),(0,7),(0,8),(1,2),(1,3),(1,7),(1,8),(2,3),(2,5),(2,6),(2,8),(3,4),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> [2,2,1,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> ?
=> ? = 9 - 1
([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> [5,4,1] => [1,1,1,1,1,0,0,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0,0,1,0]
=> ? = 10 - 1
([(0,1),(0,2),(0,6),(0,7),(1,2),(1,5),(1,7),(2,4),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,2,1,2,1,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0,1,0,1,0]
=> ? = 8 - 1
([(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,6),(1,7),(1,8),(2,3),(2,5),(2,7),(2,8),(3,4),(3,7),(3,8),(4,5),(4,6),(4,8),(5,6),(5,8),(6,8),(7,8)],9)
=> [1,3,3,1,1] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,1,0,0,0,1,0,1,0]
=> ? = 9 - 1
([(0,2),(0,3),(0,7),(0,8),(1,2),(1,3),(1,5),(1,6),(2,6),(2,8),(3,5),(3,7),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [2,1,2,2,1,1] => [1,1,0,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> ?
=> ? = 9 - 1
([(0,3),(0,6),(0,7),(1,2),(1,5),(1,7),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,7),(6,7)],8)
=> [1,2,1,2,1,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0,1,0,1,0]
=> ? = 8 - 1
([(0,1),(0,5),(0,7),(0,8),(1,4),(1,7),(1,8),(2,3),(2,4),(2,6),(2,7),(3,5),(3,6),(3,8),(4,6),(4,7),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> [2,2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,1,0,0,1,0]
=> ? = 9 - 1
([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(3,6),(3,8),(4,5),(4,7),(5,8),(6,7)],9)
=> [4,4,1] => [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0,1,0]
=> ? = 9 - 1
([(0,1),(0,2),(0,7),(0,8),(1,2),(1,5),(1,6),(2,3),(2,4),(3,4),(3,6),(3,8),(3,9),(4,5),(4,7),(4,9),(5,6),(5,7),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> [1,2,2,1,2,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> ?
=> ? = 10 - 1
([(0,4),(0,5),(1,2),(1,3),(1,7),(1,8),(2,3),(2,6),(2,8),(3,6),(3,7),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [2,1,1,2,1,1,1] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 9 - 1
([(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(2,3),(2,5),(2,7),(2,8),(3,4),(3,7),(3,8),(4,5),(4,6),(4,8),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> [1,2,1,1,2,1,1] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 9 - 1
([(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,8),(5,9),(6,7),(6,9),(7,8),(8,9)],10)
=> [3,1,3,1,1,1] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> ?
=> ? = 10 - 1
([(0,3),(0,4),(0,8),(0,9),(1,2),(1,4),(1,5),(1,7),(2,3),(2,5),(2,6),(3,6),(3,8),(4,7),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> [2,2,2,1,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,1,0,1,0,0,1,0]
=> ? = 10 - 1
([(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,7),(4,8),(5,7),(6,8),(7,8)],9)
=> [3,2,2,1,1] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> ?
=> ? = 9 - 1
([(0,3),(0,7),(0,8),(0,9),(1,2),(1,4),(1,6),(1,8),(2,4),(2,5),(2,7),(3,5),(3,6),(3,9),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> [2,2,1,1,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> ?
=> ? = 10 - 1
([(0,7),(0,8),(0,9),(1,2),(1,3),(1,5),(1,6),(1,9),(2,3),(2,4),(2,6),(2,8),(3,4),(3,5),(3,7),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> [2,2,1,1,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> ?
=> ? = 10 - 1
([(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,5,1,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0,1,0]
=> ? = 8 - 1
([(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [2,4,1,1] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0,1,0]
=> ? = 8 - 1
([(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,4,1,2] => [1,0,1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,1,0,1,0,0]
=> ? = 7 - 1
([(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [2,3,1,2] => [1,1,0,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,1,0,1,0,0]
=> ? = 7 - 1
([(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [3,2,1,2] => [1,1,1,0,0,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,1,0,0]
=> ? = 7 - 1
([(0,7),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,2,2,1,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0,1,0,1,0]
=> ? = 8 - 1
([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [3,2,2,1] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,0,1,0]
=> ? = 8 - 1
([(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [2,2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,1,0,0]
=> ? = 7 - 1
([(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [3,1,2,2] => [1,1,1,0,0,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,1,0,0]
=> ? = 7 - 1
([(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,2,1,2,1,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0,1,0,1,0]
=> ? = 8 - 1
([(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,1,1,2,1,2] => [1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,1,0,1,0,0]
=> ? = 7 - 1
([(0,7),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,1,1,2,2,1] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,1,0,0,1,0]
=> ? = 8 - 1
([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [3,1,3,1] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0,1,0]
=> ? = 8 - 1
([(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [2,1,3,2] => [1,1,0,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,1,0,0]
=> ? = 7 - 1
([(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,4,1,1,1] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 8 - 1
([(0,7),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,3,1,2,1] => [1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,1,0,0,1,0]
=> ? = 8 - 1
([(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [2,2,1,1,2] => [1,1,0,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,1,0,1,0,0]
=> ? = 7 - 1
([(0,6),(0,7),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [2,2,1,2,1] => [1,1,0,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,1,0,0,1,0]
=> ? = 8 - 1
([(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,2,1,2,2] => [1,0,1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,1,0,0,1,0,0]
=> ? = 7 - 1
([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [2,1,1,3,1] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,0,1,0]
=> ? = 8 - 1
([(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,3,2,1,1] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0,1,0,1,0]
=> ? = 8 - 1
([(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [2,2,2,1,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0,1,0]
=> ? = 8 - 1
([(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,2,2,1,2] => [1,0,1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,1,0,1,0,0]
=> ? = 7 - 1
([(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [2,1,2,1,2] => [1,1,0,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,1,0,1,0,0]
=> ? = 7 - 1
([(0,6),(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [2,1,2,2,1] => [1,1,0,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,1,0,0,1,0]
=> ? = 8 - 1
([(1,7),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,1,2,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,1,0,1,0,0,1,0,0,1,0,0]
=> ? = 7 - 1
([(0,7),(1,7),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,1,2,3,1] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,1,0,0,0,1,0]
=> ? = 8 - 1
([(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,2,3,1,1] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0,1,0,1,0]
=> ? = 8 - 1
([(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [2,1,3,1,1] => [1,1,0,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0,1,0,1,0]
=> ? = 8 - 1
([(0,7),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [1,1,3,2,1] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,0,1,0,0,1,0]
=> ? = 8 - 1
([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8)
=> [2,1,4,1] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0,1,0]
=> ? = 8 - 1
([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8)
=> [2,2,1,2,1] => [1,1,0,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,1,0,0,1,0]
=> ? = 8 - 1
Description
The sum of the areas of the rectangles formed by two consecutive peaks and the valley in between. For a Dyck path $D = D_1 \cdots D_{2n}$ with peaks in positions $i_1 < \ldots < i_k$ and valleys in positions $j_1 < \ldots < j_{k-1}$, this statistic is given by $$ \sum_{a=1}^{k-1} (j_a-i_a)(i_{a+1}-j_a) $$
Matching statistic: St000502
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00042: Integer partitions initial tableauStandard tableaux
Mp00284: Standard tableaux rowsSet partitions
St000502: Set partitions ⟶ ℤResult quality: 67% values known / values provided: 93%distinct values known / distinct values provided: 67%
Values
([],1)
=> [1]
=> [[1]]
=> {{1}}
=> ? = 1 - 1
([],2)
=> [1,1]
=> [[1],[2]]
=> {{1},{2}}
=> 0 = 1 - 1
([(0,1)],2)
=> [2]
=> [[1,2]]
=> {{1,2}}
=> 1 = 2 - 1
([],3)
=> [1,1,1]
=> [[1],[2],[3]]
=> {{1},{2},{3}}
=> 0 = 1 - 1
([(1,2)],3)
=> [2,1]
=> [[1,2],[3]]
=> {{1,2},{3}}
=> 1 = 2 - 1
([(0,2),(1,2)],3)
=> [3]
=> [[1,2,3]]
=> {{1,2,3}}
=> 2 = 3 - 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [[1,2,3]]
=> {{1,2,3}}
=> 2 = 3 - 1
([],4)
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> {{1},{2},{3},{4}}
=> 0 = 1 - 1
([(2,3)],4)
=> [2,1,1]
=> [[1,2],[3],[4]]
=> {{1,2},{3},{4}}
=> 1 = 2 - 1
([(1,3),(2,3)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> {{1,2,3},{4}}
=> 2 = 3 - 1
([(0,3),(1,3),(2,3)],4)
=> [4]
=> [[1,2,3,4]]
=> {{1,2,3,4}}
=> 3 = 4 - 1
([(0,3),(1,2)],4)
=> [2,2]
=> [[1,2],[3,4]]
=> {{1,2},{3,4}}
=> 2 = 3 - 1
([(0,3),(1,2),(2,3)],4)
=> [4]
=> [[1,2,3,4]]
=> {{1,2,3,4}}
=> 3 = 4 - 1
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> {{1,2,3},{4}}
=> 2 = 3 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [[1,2,3,4]]
=> {{1,2,3,4}}
=> 3 = 4 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> [[1,2,3,4]]
=> {{1,2,3,4}}
=> 3 = 4 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [[1,2,3,4]]
=> {{1,2,3,4}}
=> 3 = 4 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [[1,2,3,4]]
=> {{1,2,3,4}}
=> 3 = 4 - 1
([],5)
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> {{1},{2},{3},{4},{5}}
=> 0 = 1 - 1
([(3,4)],5)
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> {{1,2},{3},{4},{5}}
=> 1 = 2 - 1
([(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> {{1,2,3},{4},{5}}
=> 2 = 3 - 1
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> {{1,2,3,4},{5}}
=> 3 = 4 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> {{1,2,3,4,5}}
=> 4 = 5 - 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> {{1,2},{3,4},{5}}
=> 2 = 3 - 1
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> {{1,2,3,4},{5}}
=> 3 = 4 - 1
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [[1,2,3],[4,5]]
=> {{1,2,3},{4,5}}
=> 3 = 4 - 1
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> {{1,2,3},{4},{5}}
=> 2 = 3 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> {{1,2,3,4,5}}
=> 4 = 5 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> {{1,2,3,4},{5}}
=> 3 = 4 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> {{1,2,3,4,5}}
=> 4 = 5 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> {{1,2,3,4},{5}}
=> 3 = 4 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> {{1,2,3,4,5}}
=> 4 = 5 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> {{1,2,3,4},{5}}
=> 3 = 4 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> {{1,2,3,4,5}}
=> 4 = 5 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> {{1,2,3,4,5}}
=> 4 = 5 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> {{1,2,3,4,5}}
=> 4 = 5 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> {{1,2,3,4,5}}
=> 4 = 5 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> {{1,2,3,4,5}}
=> 4 = 5 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [[1,2,3],[4,5]]
=> {{1,2,3},{4,5}}
=> 3 = 4 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> {{1,2,3,4,5}}
=> 4 = 5 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> {{1,2,3,4,5}}
=> 4 = 5 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> [[1,2,3,4,5]]
=> {{1,2,3,4,5}}
=> 4 = 5 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> {{1,2,3,4,5}}
=> 4 = 5 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> {{1,2,3,4,5}}
=> 4 = 5 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> {{1,2,3,4,5}}
=> 4 = 5 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> {{1,2,3,4},{5}}
=> 3 = 4 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> {{1,2,3,4,5}}
=> 4 = 5 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> {{1,2,3,4,5}}
=> 4 = 5 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> {{1,2,3,4,5}}
=> 4 = 5 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> {{1,2,3,4,5}}
=> 4 = 5 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [[1,2,3,4,5]]
=> {{1,2,3,4,5}}
=> 4 = 5 - 1
([(0,8),(1,7),(2,3),(2,4),(3,5),(4,6),(5,7),(6,8)],9)
=> [9]
=> [[1,2,3,4,5,6,7,8,9]]
=> {{1,2,3,4,5,6,7,8,9}}
=> ? = 9 - 1
([],0)
=> []
=> []
=> {}
=> ? = 0 - 1
([(0,1),(0,4),(0,5),(0,7),(0,8),(1,2),(1,3),(1,7),(1,8),(2,3),(2,5),(2,6),(2,8),(3,4),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> [9]
=> [[1,2,3,4,5,6,7,8,9]]
=> {{1,2,3,4,5,6,7,8,9}}
=> ? = 9 - 1
([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> [10]
=> [[1,2,3,4,5,6,7,8,9,10]]
=> {{1,2,3,4,5,6,7,8,9,10}}
=> ? = 10 - 1
([(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,6),(1,7),(1,8),(2,3),(2,5),(2,7),(2,8),(3,4),(3,7),(3,8),(4,5),(4,6),(4,8),(5,6),(5,8),(6,8),(7,8)],9)
=> [9]
=> [[1,2,3,4,5,6,7,8,9]]
=> {{1,2,3,4,5,6,7,8,9}}
=> ? = 9 - 1
([(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,8),(2,3),(2,6),(2,8),(3,4),(3,5),(3,7),(3,8),(4,5),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [9]
=> [[1,2,3,4,5,6,7,8,9]]
=> {{1,2,3,4,5,6,7,8,9}}
=> ? = 9 - 1
([(0,3),(0,6),(0,7),(0,8),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,8),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> [9]
=> [[1,2,3,4,5,6,7,8,9]]
=> {{1,2,3,4,5,6,7,8,9}}
=> ? = 9 - 1
([(0,2),(0,3),(0,7),(0,8),(1,2),(1,3),(1,5),(1,6),(2,5),(2,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,8),(6,7),(7,8)],9)
=> [9]
=> [[1,2,3,4,5,6,7,8,9]]
=> {{1,2,3,4,5,6,7,8,9}}
=> ? = 9 - 1
([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,9),(3,5),(3,6),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(6,7),(6,9),(7,8),(7,9),(8,9)],10)
=> [10]
=> [[1,2,3,4,5,6,7,8,9,10]]
=> {{1,2,3,4,5,6,7,8,9,10}}
=> ? = 10 - 1
([(0,2),(0,3),(0,7),(0,8),(1,2),(1,3),(1,5),(1,6),(2,6),(2,8),(3,5),(3,7),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [9]
=> [[1,2,3,4,5,6,7,8,9]]
=> {{1,2,3,4,5,6,7,8,9}}
=> ? = 9 - 1
([(0,3),(0,5),(0,8),(1,2),(1,4),(1,7),(2,3),(2,6),(2,7),(3,6),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [9]
=> [[1,2,3,4,5,6,7,8,9]]
=> {{1,2,3,4,5,6,7,8,9}}
=> ? = 9 - 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,7),(1,8),(2,3),(2,6),(2,8),(3,4),(3,6),(4,7),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [9]
=> [[1,2,3,4,5,6,7,8,9]]
=> {{1,2,3,4,5,6,7,8,9}}
=> ? = 9 - 1
([(0,1),(0,6),(0,7),(1,4),(1,5),(2,3),(2,5),(2,7),(2,8),(3,4),(3,6),(3,8),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [9]
=> [[1,2,3,4,5,6,7,8,9]]
=> {{1,2,3,4,5,6,7,8,9}}
=> ? = 9 - 1
([(0,1),(0,5),(0,6),(0,8),(1,4),(1,6),(1,7),(2,3),(2,4),(2,5),(2,9),(3,6),(3,7),(3,8),(3,9),(4,5),(4,7),(4,9),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> [10]
=> [[1,2,3,4,5,6,7,8,9,10]]
=> {{1,2,3,4,5,6,7,8,9,10}}
=> ? = 10 - 1
([(0,6),(0,7),(0,8),(1,2),(1,4),(1,5),(1,7),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(3,8),(4,5),(4,7),(4,8),(5,8),(6,7),(6,8),(7,8)],9)
=> [9]
=> [[1,2,3,4,5,6,7,8,9]]
=> {{1,2,3,4,5,6,7,8,9}}
=> ? = 9 - 1
([(0,5),(0,7),(0,8),(1,2),(1,4),(1,6),(1,8),(2,3),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [9]
=> [[1,2,3,4,5,6,7,8,9]]
=> {{1,2,3,4,5,6,7,8,9}}
=> ? = 9 - 1
([(0,6),(0,7),(0,8),(0,9),(1,2),(1,4),(1,5),(1,7),(1,9),(2,3),(2,5),(2,7),(2,8),(3,4),(3,5),(3,6),(3,8),(4,5),(4,6),(4,9),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> [10]
=> [[1,2,3,4,5,6,7,8,9,10]]
=> {{1,2,3,4,5,6,7,8,9,10}}
=> ? = 10 - 1
([(0,3),(0,4),(0,7),(1,2),(1,5),(1,7),(1,8),(2,3),(2,6),(2,8),(3,6),(3,8),(4,5),(4,6),(4,7),(5,6),(5,7),(5,8),(6,8),(7,8)],9)
=> [9]
=> [[1,2,3,4,5,6,7,8,9]]
=> {{1,2,3,4,5,6,7,8,9}}
=> ? = 9 - 1
([(0,1),(0,5),(0,7),(0,8),(1,4),(1,7),(1,8),(2,3),(2,4),(2,6),(2,7),(3,5),(3,6),(3,8),(4,6),(4,7),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> [9]
=> [[1,2,3,4,5,6,7,8,9]]
=> {{1,2,3,4,5,6,7,8,9}}
=> ? = 9 - 1
([(0,3),(0,5),(0,7),(0,9),(1,2),(1,4),(1,7),(1,8),(2,3),(2,6),(2,7),(2,8),(3,6),(3,7),(3,9),(4,5),(4,6),(4,8),(4,9),(5,6),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> [10]
=> [[1,2,3,4,5,6,7,8,9,10]]
=> {{1,2,3,4,5,6,7,8,9,10}}
=> ? = 10 - 1
([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(3,6),(3,8),(4,5),(4,7),(5,8),(6,7)],9)
=> [9]
=> [[1,2,3,4,5,6,7,8,9]]
=> {{1,2,3,4,5,6,7,8,9}}
=> ? = 9 - 1
([(0,1),(0,2),(0,7),(0,8),(1,2),(1,5),(1,6),(2,3),(2,4),(3,4),(3,6),(3,8),(3,9),(4,5),(4,7),(4,9),(5,6),(5,7),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> [10]
=> [[1,2,3,4,5,6,7,8,9,10]]
=> {{1,2,3,4,5,6,7,8,9,10}}
=> ? = 10 - 1
([(0,1),(0,6),(0,7),(0,9),(1,4),(1,5),(1,8),(2,3),(2,5),(2,7),(2,8),(2,9),(3,4),(3,6),(3,8),(3,9),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(6,9),(7,9),(8,9)],10)
=> [10]
=> [[1,2,3,4,5,6,7,8,9,10]]
=> {{1,2,3,4,5,6,7,8,9,10}}
=> ? = 10 - 1
([(0,4),(0,5),(1,2),(1,3),(1,7),(1,8),(2,3),(2,6),(2,8),(3,6),(3,7),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [9]
=> [[1,2,3,4,5,6,7,8,9]]
=> {{1,2,3,4,5,6,7,8,9}}
=> ? = 9 - 1
([(0,4),(0,5),(0,8),(1,2),(1,3),(1,4),(1,7),(2,3),(2,4),(2,6),(3,6),(3,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [9]
=> [[1,2,3,4,5,6,7,8,9]]
=> {{1,2,3,4,5,6,7,8,9}}
=> ? = 9 - 1
([(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(2,3),(2,5),(2,7),(2,8),(3,4),(3,7),(3,8),(4,5),(4,6),(4,8),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> [9]
=> [[1,2,3,4,5,6,7,8,9]]
=> {{1,2,3,4,5,6,7,8,9}}
=> ? = 9 - 1
([(0,3),(0,6),(0,7),(1,2),(1,4),(1,5),(2,4),(2,6),(2,8),(3,5),(3,7),(3,8),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [9]
=> [[1,2,3,4,5,6,7,8,9]]
=> {{1,2,3,4,5,6,7,8,9}}
=> ? = 9 - 1
([(0,2),(0,3),(1,4),(1,5),(1,6),(1,7),(2,6),(2,7),(2,8),(3,4),(3,5),(3,8),(4,5),(4,7),(4,8),(5,6),(5,8),(6,7),(6,8),(7,8)],9)
=> [9]
=> [[1,2,3,4,5,6,7,8,9]]
=> {{1,2,3,4,5,6,7,8,9}}
=> ? = 9 - 1
([(0,4),(0,5),(0,8),(1,2),(1,3),(1,6),(1,7),(2,3),(2,4),(2,7),(2,9),(3,4),(3,6),(3,9),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> [10]
=> [[1,2,3,4,5,6,7,8,9,10]]
=> {{1,2,3,4,5,6,7,8,9,10}}
=> ? = 10 - 1
([(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,8),(5,9),(6,7),(6,9),(7,8),(8,9)],10)
=> [10]
=> [[1,2,3,4,5,6,7,8,9,10]]
=> {{1,2,3,4,5,6,7,8,9,10}}
=> ? = 10 - 1
([(0,1),(0,4),(0,8),(1,3),(1,7),(2,3),(2,4),(2,5),(2,6),(3,5),(3,7),(4,6),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> [9]
=> [[1,2,3,4,5,6,7,8,9]]
=> {{1,2,3,4,5,6,7,8,9}}
=> ? = 9 - 1
([(0,3),(0,4),(0,8),(0,9),(1,2),(1,4),(1,5),(1,7),(2,3),(2,5),(2,6),(3,6),(3,8),(4,7),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> [10]
=> [[1,2,3,4,5,6,7,8,9,10]]
=> {{1,2,3,4,5,6,7,8,9,10}}
=> ? = 10 - 1
([(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,7),(4,8),(5,7),(6,8),(7,8)],9)
=> [9]
=> [[1,2,3,4,5,6,7,8,9]]
=> {{1,2,3,4,5,6,7,8,9}}
=> ? = 9 - 1
([(0,2),(0,5),(0,6),(0,8),(1,2),(1,3),(1,4),(1,7),(2,7),(2,8),(3,4),(3,5),(3,7),(3,9),(4,6),(4,8),(4,9),(5,6),(5,7),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> [10]
=> [[1,2,3,4,5,6,7,8,9,10]]
=> {{1,2,3,4,5,6,7,8,9,10}}
=> ? = 10 - 1
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,6),(1,8),(1,9),(2,5),(2,7),(2,9),(3,4),(3,5),(3,7),(3,8),(4,6),(4,7),(4,8),(5,7),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> [10]
=> [[1,2,3,4,5,6,7,8,9,10]]
=> {{1,2,3,4,5,6,7,8,9,10}}
=> ? = 10 - 1
([(0,1),(0,5),(0,6),(1,4),(1,8),(1,9),(2,3),(2,4),(2,6),(2,7),(2,9),(3,4),(3,5),(3,7),(3,8),(4,8),(4,9),(5,6),(5,7),(5,8),(6,7),(6,9),(7,8),(7,9),(8,9)],10)
=> [10]
=> [[1,2,3,4,5,6,7,8,9,10]]
=> {{1,2,3,4,5,6,7,8,9,10}}
=> ? = 10 - 1
([(0,3),(0,7),(0,8),(0,9),(1,2),(1,4),(1,6),(1,8),(2,4),(2,5),(2,7),(3,5),(3,6),(3,9),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> [10]
=> [[1,2,3,4,5,6,7,8,9,10]]
=> {{1,2,3,4,5,6,7,8,9,10}}
=> ? = 10 - 1
([(0,7),(0,8),(0,9),(1,2),(1,3),(1,5),(1,6),(1,9),(2,3),(2,4),(2,6),(2,8),(3,4),(3,5),(3,7),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> [10]
=> [[1,2,3,4,5,6,7,8,9,10]]
=> {{1,2,3,4,5,6,7,8,9,10}}
=> ? = 10 - 1
([(0,1),(0,2),(1,2),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8)
=> [5,3]
=> [[1,2,3,4,5],[6,7,8]]
=> {{1,2,3,4,5},{6,7,8}}
=> ? = 7 - 1
([(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [4,1,1,1,1]
=> [[1,2,3,4],[5],[6],[7],[8]]
=> {{1,2,3,4},{5},{6},{7},{8}}
=> ? = 4 - 1
([(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [[1,2,3,4,5,6],[7],[8]]
=> {{1,2,3,4,5,6},{7},{8}}
=> ? = 6 - 1
([(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [[1,2,3,4,5,6],[7],[8]]
=> {{1,2,3,4,5,6},{7},{8}}
=> ? = 6 - 1
([(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [[1,2,3,4,5,6],[7],[8]]
=> {{1,2,3,4,5,6},{7},{8}}
=> ? = 6 - 1
([(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [[1,2,3,4,5,6],[7],[8]]
=> {{1,2,3,4,5,6},{7},{8}}
=> ? = 6 - 1
([(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [[1,2,3,4,5,6],[7],[8]]
=> {{1,2,3,4,5,6},{7},{8}}
=> ? = 6 - 1
([(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [[1,2,3,4,5,6],[7],[8]]
=> {{1,2,3,4,5,6},{7},{8}}
=> ? = 6 - 1
([(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [[1,2,3,4,5,6],[7],[8]]
=> {{1,2,3,4,5,6},{7},{8}}
=> ? = 6 - 1
([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [[1,2,3,4,5,6],[7],[8]]
=> {{1,2,3,4,5,6},{7},{8}}
=> ? = 6 - 1
([(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> [6,1,1]
=> [[1,2,3,4,5,6],[7],[8]]
=> {{1,2,3,4,5,6},{7},{8}}
=> ? = 6 - 1
Description
The number of successions of a set partitions. This is the number of indices $i$ such that $i$ and $i+1$ belonging to the same block.
The following 43 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000147The largest part of an integer partition. St001389The number of partitions of the same length below the given integer partition. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St001918The degree of the cyclic sieving polynomial corresponding to an integer partition. St000668The least common multiple of the parts of the partition. St000708The product of the parts of an integer partition. St000839The largest opener of a set partition. St000369The dinv deficit of a Dyck path. St000054The first entry of the permutation. St000141The maximum drop size of a permutation. St000987The number of positive eigenvalues of the Laplacian matrix of the graph. St000026The position of the first return of a Dyck path. St000211The rank of the set partition. St000171The degree of the graph. St000740The last entry of a permutation. St001497The position of the largest weak excedence of a permutation. St000727The largest label of a leaf in the binary search tree associated with the permutation. St001298The number of repeated entries in the Lehmer code of a permutation. St001645The pebbling number of a connected graph. St001725The harmonious chromatic number of a graph. St001330The hat guessing number of a graph. St000653The last descent of a permutation. St001291The number of indecomposable summands of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St000051The size of the left subtree of a binary tree. St000316The number of non-left-to-right-maxima of a permutation. St001227The vector space dimension of the first extension group between the socle of the regular module and the Jacobson radical of the corresponding Nakayama algebra. St001480The number of simple summands of the module J^2/J^3. St000840The number of closers smaller than the largest opener in a perfect matching. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001812The biclique partition number of a graph. St000199The column of the unique '1' in the last row of the alternating sign matrix. St000200The row of the unique '1' in the last column of the alternating sign matrix. St000528The height of a poset. St000912The number of maximal antichains in a poset. St001343The dimension of the reduced incidence algebra of a poset. St000080The rank of the poset. St001782The order of rowmotion on the set of order ideals of a poset. St000680The Grundy value for Hackendot on posets. St000717The number of ordinal summands of a poset. St000906The length of the shortest maximal chain in a poset. St000643The size of the largest orbit of antichains under Panyushev complementation. St001668The number of points of the poset minus the width of the poset.