Your data matches 23 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000520: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,2] => 3
[2,1] => 3
[1,2,3] => 4
[1,3,2] => 5
[2,1,3] => 5
[2,3,1] => 5
[3,1,2] => 5
[3,2,1] => 4
[1,2,3,4] => 5
[1,2,4,3] => 7
[1,3,2,4] => 8
[1,3,4,2] => 8
[1,4,2,3] => 8
[1,4,3,2] => 7
[2,1,3,4] => 7
[2,1,4,3] => 7
[2,3,1,4] => 8
[2,3,4,1] => 7
[2,4,1,3] => 9
[2,4,3,1] => 8
[3,1,2,4] => 8
[3,1,4,2] => 9
[3,2,1,4] => 7
[3,2,4,1] => 8
[3,4,1,2] => 7
[3,4,2,1] => 7
[4,1,2,3] => 7
[4,1,3,2] => 8
[4,2,1,3] => 8
[4,2,3,1] => 8
[4,3,1,2] => 7
[4,3,2,1] => 5
[1,2,3,4,5] => 6
[1,2,3,5,4] => 9
[1,2,4,3,5] => 11
[1,2,4,5,3] => 11
[1,2,5,3,4] => 11
[1,2,5,4,3] => 10
[1,3,2,4,5] => 11
[1,3,2,5,4] => 11
[1,3,4,2,5] => 13
[1,3,4,5,2] => 11
[1,3,5,2,4] => 15
[1,3,5,4,2] => 13
[1,4,2,3,5] => 13
[1,4,2,5,3] => 15
[1,4,3,2,5] => 12
[1,4,3,5,2] => 14
[1,4,5,2,3] => 12
[1,4,5,3,2] => 12
Description
The number of patterns in a permutation. In other words, this is the number of subsequences which are not order-isomorphic.
Matching statistic: St000548
Mp00209: Permutations pattern posetPosets
Mp00110: Posets Greene-Kleitman invariantInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
St000548: Integer partitions ⟶ ℤResult quality: 13% values known / values provided: 13%distinct values known / distinct values provided: 24%
Values
[1,2] => ([(0,1)],2)
=> [2]
=> [1,1]
=> 2 = 3 - 1
[2,1] => ([(0,1)],2)
=> [2]
=> [1,1]
=> 2 = 3 - 1
[1,2,3] => ([(0,2),(2,1)],3)
=> [3]
=> [1,1,1]
=> 3 = 4 - 1
[1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 4 = 5 - 1
[2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 4 = 5 - 1
[2,3,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 4 = 5 - 1
[3,1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 4 = 5 - 1
[3,2,1] => ([(0,2),(2,1)],3)
=> [3]
=> [1,1,1]
=> 3 = 4 - 1
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,1,1,1]
=> 4 = 5 - 1
[1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> [2,2,1,1]
=> 6 = 7 - 1
[1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> [3,2,1,1]
=> 7 = 8 - 1
[1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> [3,2,1,1]
=> 7 = 8 - 1
[1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> [3,2,1,1]
=> 7 = 8 - 1
[1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> [2,2,1,1]
=> 6 = 7 - 1
[2,1,3,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> [2,2,1,1]
=> 6 = 7 - 1
[2,1,4,3] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [4,2]
=> [2,2,1,1]
=> 6 = 7 - 1
[2,3,1,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> [3,2,1,1]
=> 7 = 8 - 1
[2,3,4,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> [2,2,1,1]
=> 6 = 7 - 1
[2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> [4,2,1,1]
=> [4,2,1,1]
=> 8 = 9 - 1
[2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> [3,2,1,1]
=> 7 = 8 - 1
[3,1,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> [3,2,1,1]
=> 7 = 8 - 1
[3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> [4,2,1,1]
=> [4,2,1,1]
=> 8 = 9 - 1
[3,2,1,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> [2,2,1,1]
=> 6 = 7 - 1
[3,2,4,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> [3,2,1,1]
=> 7 = 8 - 1
[3,4,1,2] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [4,2]
=> [2,2,1,1]
=> 6 = 7 - 1
[3,4,2,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> [2,2,1,1]
=> 6 = 7 - 1
[4,1,2,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> [2,2,1,1]
=> 6 = 7 - 1
[4,1,3,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> [3,2,1,1]
=> 7 = 8 - 1
[4,2,1,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> [3,2,1,1]
=> 7 = 8 - 1
[4,2,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> [3,2,1,1]
=> 7 = 8 - 1
[4,3,1,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> [2,2,1,1]
=> 6 = 7 - 1
[4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,1,1,1]
=> 4 = 5 - 1
[1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> [1,1,1,1,1]
=> 5 = 6 - 1
[1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> [5,3]
=> [2,2,2,1,1]
=> 8 = 9 - 1
[1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> [5,3,2]
=> [3,3,2,1,1]
=> 10 = 11 - 1
[1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> [5,3,2]
=> [3,3,2,1,1]
=> 10 = 11 - 1
[1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> [5,3,2]
=> [3,3,2,1,1]
=> 10 = 11 - 1
[1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> [5,3,1]
=> [3,2,2,1,1]
=> 9 = 10 - 1
[1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> [5,3,2]
=> [3,3,2,1,1]
=> 10 = 11 - 1
[1,3,2,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> [5,3,2]
=> [3,3,2,1,1]
=> 10 = 11 - 1
[1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> [5,3,2,2]
=> [4,4,2,1,1]
=> 12 = 13 - 1
[1,3,4,5,2] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> [5,3,2]
=> [3,3,2,1,1]
=> 10 = 11 - 1
[1,3,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> [5,3,2,2,2]
=> [5,5,2,1,1]
=> ? = 15 - 1
[1,3,5,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> [5,3,2,2]
=> [4,4,2,1,1]
=> 12 = 13 - 1
[1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> [5,3,2,2]
=> [4,4,2,1,1]
=> 12 = 13 - 1
[1,4,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> [5,3,2,2,2]
=> [5,5,2,1,1]
=> ? = 15 - 1
[1,4,3,2,5] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> [5,3,2,1]
=> [4,3,2,1,1]
=> 11 = 12 - 1
[1,4,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> [5,3,2,2,1]
=> [5,4,2,1,1]
=> 13 = 14 - 1
[1,4,5,2,3] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> [5,3,2,1]
=> [4,3,2,1,1]
=> 11 = 12 - 1
[1,4,5,3,2] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> [5,3,2,1]
=> [4,3,2,1,1]
=> 11 = 12 - 1
[1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> [5,3,2]
=> [3,3,2,1,1]
=> 10 = 11 - 1
[1,5,2,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> [5,3,2,2]
=> [4,4,2,1,1]
=> 12 = 13 - 1
[2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> [5,3,2,2,2]
=> [5,5,2,1,1]
=> ? = 15 - 1
[2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> [5,3,2,2,2]
=> [5,5,2,1,1]
=> ? = 15 - 1
[2,5,3,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,12),(2,7),(2,11),(2,12),(3,7),(3,9),(3,10),(4,6),(4,10),(4,12),(5,6),(5,9),(5,11),(6,14),(7,13),(9,13),(9,14),(10,13),(10,14),(11,13),(11,14),(12,13),(12,14),(13,8),(14,8)],15)
=> [5,3,2,2,2,1]
=> [6,5,2,1,1]
=> ? = 16 - 1
[3,1,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> [5,3,2,2,2]
=> [5,5,2,1,1]
=> ? = 15 - 1
[3,1,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> [5,3,2,2,2]
=> [5,5,2,1,1]
=> ? = 15 - 1
[3,5,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> [5,3,2,2,2]
=> [5,5,2,1,1]
=> ? = 15 - 1
[3,5,2,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> [5,3,2,2,2]
=> [5,5,2,1,1]
=> ? = 15 - 1
[4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,12),(2,7),(2,11),(2,12),(3,7),(3,9),(3,10),(4,6),(4,10),(4,12),(5,6),(5,9),(5,11),(6,14),(7,13),(9,13),(9,14),(10,13),(10,14),(11,13),(11,14),(12,13),(12,14),(13,8),(14,8)],15)
=> [5,3,2,2,2,1]
=> [6,5,2,1,1]
=> ? = 16 - 1
[4,2,5,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> [5,3,2,2,2]
=> [5,5,2,1,1]
=> ? = 15 - 1
[4,2,5,3,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> [5,3,2,2,2]
=> [5,5,2,1,1]
=> ? = 15 - 1
[5,2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> [5,3,2,2,2]
=> [5,5,2,1,1]
=> ? = 15 - 1
[5,3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> [5,3,2,2,2]
=> [5,5,2,1,1]
=> ? = 15 - 1
[1,2,3,5,4,6] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ?
=> ?
=> ? = 14 - 1
[1,2,3,5,6,4] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ?
=> ?
=> ? = 14 - 1
[1,2,3,6,4,5] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ?
=> ?
=> ? = 14 - 1
[1,2,4,3,5,6] => ([(0,3),(0,4),(0,5),(1,9),(1,13),(2,8),(2,13),(3,11),(4,2),(4,6),(4,11),(5,1),(5,6),(5,11),(6,8),(6,9),(6,13),(8,10),(8,12),(9,10),(9,12),(10,7),(11,13),(12,7),(13,12)],14)
=> ?
=> ?
=> ? = 15 - 1
[1,2,4,3,6,5] => ([(0,2),(0,3),(0,4),(1,7),(1,13),(2,6),(2,12),(3,1),(3,9),(3,12),(4,6),(4,9),(4,12),(6,10),(7,8),(7,11),(8,5),(9,7),(9,10),(9,13),(10,11),(11,5),(12,10),(12,13),(13,8),(13,11)],14)
=> ?
=> ?
=> ? = 15 - 1
[1,2,4,5,3,6] => ([(0,1),(0,3),(0,4),(0,5),(1,14),(2,7),(2,8),(2,16),(3,9),(3,11),(3,14),(4,9),(4,10),(4,14),(5,2),(5,10),(5,11),(5,14),(7,13),(7,15),(8,13),(8,15),(9,12),(9,16),(10,7),(10,12),(10,16),(11,8),(11,12),(11,16),(12,13),(12,15),(13,6),(14,16),(15,6),(16,15)],17)
=> ?
=> ?
=> ? = 18 - 1
[1,2,4,5,6,3] => ([(0,3),(0,4),(0,5),(1,9),(1,13),(2,8),(2,13),(3,11),(4,2),(4,6),(4,11),(5,1),(5,6),(5,11),(6,8),(6,9),(6,13),(8,10),(8,12),(9,10),(9,12),(10,7),(11,13),(12,7),(13,12)],14)
=> ?
=> ?
=> ? = 15 - 1
[1,2,4,6,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,6),(1,14),(1,18),(2,13),(2,14),(2,18),(3,12),(3,14),(3,18),(4,11),(4,14),(4,18),(5,8),(5,9),(5,10),(5,16),(6,5),(6,11),(6,12),(6,13),(6,18),(8,15),(8,19),(9,15),(9,19),(10,15),(10,19),(11,8),(11,16),(11,17),(12,9),(12,16),(12,17),(13,10),(13,16),(13,17),(14,17),(15,7),(16,15),(16,19),(17,19),(18,16),(18,17),(19,7)],20)
=> ?
=> ?
=> ? = 21 - 1
[1,2,4,6,5,3] => ([(0,1),(0,2),(0,4),(0,5),(1,9),(1,16),(2,10),(2,16),(3,6),(3,7),(3,15),(4,9),(4,11),(4,16),(5,3),(5,10),(5,11),(5,16),(6,13),(7,13),(7,14),(9,12),(10,6),(10,15),(11,7),(11,12),(11,15),(12,14),(13,8),(14,8),(15,13),(15,14),(16,12),(16,15)],17)
=> ?
=> ?
=> ? = 18 - 1
[1,2,5,3,4,6] => ([(0,1),(0,3),(0,4),(0,5),(1,14),(2,7),(2,8),(2,16),(3,9),(3,11),(3,14),(4,9),(4,10),(4,14),(5,2),(5,10),(5,11),(5,14),(7,13),(7,15),(8,13),(8,15),(9,12),(9,16),(10,7),(10,12),(10,16),(11,8),(11,12),(11,16),(12,13),(12,15),(13,6),(14,16),(15,6),(16,15)],17)
=> ?
=> ?
=> ? = 18 - 1
[1,2,5,3,6,4] => ([(0,1),(0,2),(0,3),(0,4),(0,6),(1,14),(1,18),(2,13),(2,14),(2,18),(3,12),(3,14),(3,18),(4,11),(4,14),(4,18),(5,8),(5,9),(5,10),(5,16),(6,5),(6,11),(6,12),(6,13),(6,18),(8,15),(8,19),(9,15),(9,19),(10,15),(10,19),(11,8),(11,16),(11,17),(12,9),(12,16),(12,17),(13,10),(13,16),(13,17),(14,17),(15,7),(16,15),(16,19),(17,19),(18,16),(18,17),(19,7)],20)
=> ?
=> ?
=> ? = 21 - 1
[1,2,5,4,3,6] => ([(0,3),(0,4),(0,5),(1,13),(2,6),(2,8),(3,9),(3,10),(4,2),(4,10),(4,11),(5,1),(5,9),(5,11),(6,14),(6,15),(8,14),(9,12),(9,13),(10,8),(10,12),(11,6),(11,12),(11,13),(12,14),(12,15),(13,15),(14,7),(15,7)],16)
=> ?
=> ?
=> ? = 17 - 1
[1,2,5,4,6,3] => ([(0,1),(0,2),(0,3),(0,5),(1,11),(1,14),(2,10),(2,13),(2,14),(3,10),(3,12),(3,14),(4,7),(4,8),(4,9),(5,4),(5,11),(5,12),(5,13),(7,17),(8,17),(8,18),(9,17),(9,18),(10,15),(11,7),(11,16),(12,8),(12,15),(12,16),(13,9),(13,15),(13,16),(14,15),(14,16),(15,18),(16,17),(16,18),(17,6),(18,6)],19)
=> ?
=> ?
=> ? = 20 - 1
[1,2,5,6,3,4] => ([(0,2),(0,3),(0,4),(1,8),(1,9),(2,1),(2,10),(2,11),(3,6),(3,7),(3,11),(4,6),(4,7),(4,10),(6,14),(7,12),(7,14),(8,13),(8,15),(9,13),(9,15),(10,8),(10,12),(10,14),(11,9),(11,12),(11,14),(12,13),(12,15),(13,5),(14,15),(15,5)],16)
=> ?
=> ?
=> ? = 17 - 1
[1,2,5,6,4,3] => ([(0,3),(0,4),(0,5),(1,13),(2,6),(2,8),(3,9),(3,10),(4,2),(4,10),(4,11),(5,1),(5,9),(5,11),(6,14),(6,15),(8,14),(9,12),(9,13),(10,8),(10,12),(11,6),(11,12),(11,13),(12,14),(12,15),(13,15),(14,7),(15,7)],16)
=> ?
=> ?
=> ? = 17 - 1
[1,2,6,3,4,5] => ([(0,3),(0,4),(0,5),(1,9),(1,13),(2,8),(2,13),(3,11),(4,2),(4,6),(4,11),(5,1),(5,6),(5,11),(6,8),(6,9),(6,13),(8,10),(8,12),(9,10),(9,12),(10,7),(11,13),(12,7),(13,12)],14)
=> ?
=> ?
=> ? = 15 - 1
[1,2,6,3,5,4] => ([(0,1),(0,2),(0,4),(0,5),(1,9),(1,16),(2,10),(2,16),(3,6),(3,7),(3,15),(4,9),(4,11),(4,16),(5,3),(5,10),(5,11),(5,16),(6,13),(7,13),(7,14),(9,12),(10,6),(10,15),(11,7),(11,12),(11,15),(12,14),(13,8),(14,8),(15,13),(15,14),(16,12),(16,15)],17)
=> ?
=> ?
=> ? = 18 - 1
[1,2,6,4,3,5] => ([(0,1),(0,2),(0,3),(0,5),(1,11),(1,14),(2,10),(2,13),(2,14),(3,10),(3,12),(3,14),(4,7),(4,8),(4,9),(5,4),(5,11),(5,12),(5,13),(7,17),(8,17),(8,18),(9,17),(9,18),(10,15),(11,7),(11,16),(12,8),(12,15),(12,16),(13,9),(13,15),(13,16),(14,15),(14,16),(15,18),(16,17),(16,18),(17,6),(18,6)],19)
=> ?
=> ?
=> ? = 20 - 1
[1,2,6,4,5,3] => ([(0,1),(0,2),(0,3),(0,5),(1,11),(1,14),(2,10),(2,13),(2,14),(3,10),(3,12),(3,14),(4,7),(4,8),(4,9),(5,4),(5,11),(5,12),(5,13),(7,17),(8,17),(8,18),(9,17),(9,18),(10,15),(11,7),(11,16),(12,8),(12,15),(12,16),(13,9),(13,15),(13,16),(14,15),(14,16),(15,18),(16,17),(16,18),(17,6),(18,6)],19)
=> ?
=> ?
=> ? = 20 - 1
[1,2,6,5,3,4] => ([(0,3),(0,4),(0,5),(1,13),(2,6),(2,8),(3,9),(3,10),(4,2),(4,10),(4,11),(5,1),(5,9),(5,11),(6,14),(6,15),(8,14),(9,12),(9,13),(10,8),(10,12),(11,6),(11,12),(11,13),(12,14),(12,15),(13,15),(14,7),(15,7)],16)
=> ?
=> ?
=> ? = 17 - 1
[1,3,2,4,5,6] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ?
=> ?
=> ? = 14 - 1
[1,3,2,4,6,5] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,13),(2,8),(2,9),(2,13),(3,7),(3,9),(3,13),(4,6),(4,7),(4,8),(6,15),(7,12),(7,15),(8,11),(8,12),(8,15),(9,11),(9,12),(10,5),(11,10),(11,14),(12,10),(12,14),(13,11),(13,15),(14,5),(15,14)],16)
=> ?
=> ?
=> ? = 17 - 1
[1,3,2,5,4,6] => ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,15),(2,7),(2,9),(2,15),(3,6),(3,7),(3,15),(4,6),(4,8),(4,15),(6,14),(7,11),(7,14),(8,12),(8,14),(9,11),(9,12),(10,5),(11,10),(11,13),(12,10),(12,13),(13,5),(14,13),(15,11),(15,12),(15,14)],16)
=> ?
=> ?
=> ? = 17 - 1
[1,3,2,5,6,4] => ([(0,2),(0,3),(0,4),(0,5),(1,14),(1,16),(2,7),(2,8),(2,9),(3,7),(3,10),(3,12),(4,8),(4,11),(4,12),(5,9),(5,10),(5,11),(7,17),(8,15),(8,17),(9,1),(9,15),(9,17),(10,13),(10,17),(11,13),(11,15),(12,13),(12,15),(12,17),(13,14),(13,16),(14,6),(15,14),(15,16),(16,6),(17,16)],18)
=> ?
=> ?
=> ? = 19 - 1
[1,3,2,6,4,5] => ([(0,2),(0,3),(0,4),(0,5),(1,14),(1,16),(2,7),(2,8),(2,9),(3,7),(3,10),(3,12),(4,8),(4,11),(4,12),(5,9),(5,10),(5,11),(7,17),(8,15),(8,17),(9,1),(9,15),(9,17),(10,13),(10,17),(11,13),(11,15),(12,13),(12,15),(12,17),(13,14),(13,16),(14,6),(15,14),(15,16),(16,6),(17,16)],18)
=> ?
=> ?
=> ? = 19 - 1
[1,3,2,6,5,4] => ([(0,3),(0,4),(0,5),(1,13),(2,6),(2,7),(2,14),(3,9),(3,10),(4,9),(4,11),(5,2),(5,10),(5,11),(6,12),(7,12),(7,13),(9,1),(9,14),(10,6),(10,14),(11,7),(11,14),(12,8),(13,8),(14,12),(14,13)],15)
=> ?
=> ?
=> ? = 16 - 1
[1,3,4,2,5,6] => ([(0,1),(0,3),(0,4),(0,5),(1,14),(2,7),(2,8),(2,16),(3,9),(3,11),(3,14),(4,9),(4,10),(4,14),(5,2),(5,10),(5,11),(5,14),(7,13),(7,15),(8,13),(8,15),(9,12),(9,16),(10,7),(10,12),(10,16),(11,8),(11,12),(11,16),(12,13),(12,15),(13,6),(14,16),(15,6),(16,15)],17)
=> ?
=> ?
=> ? = 18 - 1
[1,3,4,2,6,5] => ([(0,2),(0,3),(0,4),(0,5),(1,10),(1,15),(1,17),(2,7),(2,13),(3,8),(3,9),(3,13),(4,8),(4,11),(4,13),(5,1),(5,7),(5,9),(5,11),(7,17),(8,12),(8,15),(9,12),(9,15),(9,17),(10,14),(10,16),(11,10),(11,12),(11,17),(12,14),(12,16),(13,15),(13,17),(14,6),(15,14),(15,16),(16,6),(17,16)],18)
=> ?
=> ?
=> ? = 19 - 1
[1,3,4,5,2,6] => ([(0,1),(0,3),(0,4),(0,5),(1,14),(2,7),(2,8),(2,16),(3,9),(3,11),(3,14),(4,9),(4,10),(4,14),(5,2),(5,10),(5,11),(5,14),(7,13),(7,15),(8,13),(8,15),(9,12),(9,16),(10,7),(10,12),(10,16),(11,8),(11,12),(11,16),(12,13),(12,15),(13,6),(14,16),(15,6),(16,15)],17)
=> ?
=> ?
=> ? = 18 - 1
[1,3,4,5,6,2] => ([(0,2),(0,3),(0,5),(1,8),(1,12),(2,10),(3,6),(3,10),(4,1),(4,9),(4,11),(5,4),(5,6),(5,10),(6,9),(6,11),(8,7),(9,8),(9,12),(10,11),(11,12),(12,7)],13)
=> ?
=> ?
=> ? = 14 - 1
[1,3,4,6,2,5] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,12),(1,20),(1,21),(2,13),(2,14),(3,8),(3,13),(3,15),(4,9),(4,10),(4,13),(4,15),(5,7),(5,8),(5,9),(5,14),(6,1),(6,7),(6,10),(6,14),(6,15),(7,12),(7,16),(7,18),(7,20),(8,18),(8,21),(9,16),(9,18),(9,21),(10,16),(10,20),(10,21),(12,17),(12,19),(13,21),(14,20),(14,21),(15,18),(15,20),(15,21),(16,17),(16,19),(17,11),(18,17),(18,19),(19,11),(20,17),(20,19),(21,19)],22)
=> ?
=> ?
=> ? = 23 - 1
[1,3,4,6,5,2] => ([(0,2),(0,3),(0,4),(0,5),(1,10),(1,17),(2,7),(2,13),(3,9),(3,11),(3,13),(4,1),(4,8),(4,11),(4,13),(5,7),(5,8),(5,9),(7,16),(8,12),(8,16),(8,17),(9,12),(9,16),(10,14),(11,10),(11,12),(11,17),(12,14),(12,15),(13,16),(13,17),(14,6),(15,6),(16,15),(17,14),(17,15)],18)
=> ?
=> ?
=> ? = 19 - 1
[1,3,5,2,4,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,14),(1,17),(1,22),(2,13),(2,17),(2,22),(3,9),(3,11),(3,17),(3,22),(4,8),(4,10),(4,17),(4,22),(5,8),(5,9),(5,12),(5,13),(5,22),(6,10),(6,11),(6,12),(6,14),(6,22),(8,15),(8,19),(8,23),(9,16),(9,19),(9,23),(10,15),(10,20),(10,23),(11,16),(11,20),(11,23),(12,15),(12,16),(12,19),(12,20),(13,19),(13,23),(14,20),(14,23),(15,18),(15,21),(16,18),(16,21),(17,23),(18,7),(19,18),(19,21),(20,18),(20,21),(21,7),(22,19),(22,20),(22,23),(23,21)],24)
=> ?
=> ?
=> ? = 25 - 1
[1,3,5,2,6,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,16),(1,20),(2,8),(2,16),(2,17),(3,9),(3,10),(3,17),(3,20),(4,12),(4,13),(4,16),(4,17),(4,20),(5,11),(5,13),(5,16),(5,17),(5,20),(6,8),(6,10),(6,11),(6,12),(6,20),(8,19),(8,23),(9,22),(10,15),(10,19),(10,22),(11,14),(11,15),(11,19),(11,23),(12,14),(12,15),(12,19),(12,23),(13,14),(13,22),(13,23),(14,18),(14,21),(15,18),(15,21),(16,22),(16,23),(17,19),(17,22),(17,23),(18,7),(19,18),(19,21),(20,15),(20,22),(20,23),(21,7),(22,21),(23,18),(23,21)],24)
=> ?
=> ?
=> ? = 25 - 1
[1,3,5,4,2,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(1,13),(1,17),(2,10),(2,11),(2,17),(3,8),(3,9),(3,13),(3,17),(4,7),(4,9),(4,10),(4,17),(5,7),(5,8),(5,11),(5,12),(7,15),(7,20),(7,21),(8,14),(8,15),(8,20),(9,15),(9,16),(9,21),(10,21),(11,20),(11,21),(12,14),(12,20),(13,14),(13,16),(14,19),(15,18),(15,19),(16,18),(16,19),(17,16),(17,20),(17,21),(18,6),(19,6),(20,18),(20,19),(21,18)],22)
=> ?
=> ?
=> ? = 23 - 1
[1,3,5,4,6,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,15),(2,10),(2,12),(2,16),(3,11),(3,13),(3,15),(3,16),(4,8),(4,10),(4,11),(4,15),(5,8),(5,9),(5,13),(5,16),(6,18),(6,19),(8,14),(8,17),(8,20),(9,17),(9,21),(10,20),(10,21),(11,14),(11,20),(12,21),(13,6),(13,14),(13,17),(14,19),(15,17),(15,20),(15,21),(16,6),(16,20),(16,21),(17,18),(17,19),(18,7),(19,7),(20,18),(20,19),(21,18)],22)
=> ?
=> ?
=> ? = 23 - 1
Description
The number of different non-empty partial sums of an integer partition.
Mp00209: Permutations pattern posetPosets
Mp00110: Posets Greene-Kleitman invariantInteger partitions
St000228: Integer partitions ⟶ ℤResult quality: 7% values known / values provided: 7%distinct values known / distinct values provided: 18%
Values
[1,2] => ([(0,1)],2)
=> [2]
=> 2 = 3 - 1
[2,1] => ([(0,1)],2)
=> [2]
=> 2 = 3 - 1
[1,2,3] => ([(0,2),(2,1)],3)
=> [3]
=> 3 = 4 - 1
[1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 4 = 5 - 1
[2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 4 = 5 - 1
[2,3,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 4 = 5 - 1
[3,1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 4 = 5 - 1
[3,2,1] => ([(0,2),(2,1)],3)
=> [3]
=> 3 = 4 - 1
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4 = 5 - 1
[1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 6 = 7 - 1
[1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> 7 = 8 - 1
[1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> 7 = 8 - 1
[1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> 7 = 8 - 1
[1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 6 = 7 - 1
[2,1,3,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 6 = 7 - 1
[2,1,4,3] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [4,2]
=> 6 = 7 - 1
[2,3,1,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> 7 = 8 - 1
[2,3,4,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 6 = 7 - 1
[2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> [4,2,1,1]
=> 8 = 9 - 1
[2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> 7 = 8 - 1
[3,1,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> 7 = 8 - 1
[3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> [4,2,1,1]
=> 8 = 9 - 1
[3,2,1,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 6 = 7 - 1
[3,2,4,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> 7 = 8 - 1
[3,4,1,2] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [4,2]
=> 6 = 7 - 1
[3,4,2,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 6 = 7 - 1
[4,1,2,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 6 = 7 - 1
[4,1,3,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> 7 = 8 - 1
[4,2,1,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> 7 = 8 - 1
[4,2,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> 7 = 8 - 1
[4,3,1,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [4,2]
=> 6 = 7 - 1
[4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4 = 5 - 1
[1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> 5 = 6 - 1
[1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> [5,3]
=> 8 = 9 - 1
[1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> [5,3,2]
=> 10 = 11 - 1
[1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> [5,3,2]
=> 10 = 11 - 1
[1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> [5,3,2]
=> 10 = 11 - 1
[1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> [5,3,1]
=> 9 = 10 - 1
[1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> [5,3,2]
=> 10 = 11 - 1
[1,3,2,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> [5,3,2]
=> 10 = 11 - 1
[1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> [5,3,2,2]
=> ? = 13 - 1
[1,3,4,5,2] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> [5,3,2]
=> 10 = 11 - 1
[1,3,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> [5,3,2,2,2]
=> ? = 15 - 1
[1,3,5,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> [5,3,2,2]
=> ? = 13 - 1
[1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> [5,3,2,2]
=> ? = 13 - 1
[1,4,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> [5,3,2,2,2]
=> ? = 15 - 1
[1,4,3,2,5] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> [5,3,2,1]
=> ? = 12 - 1
[1,4,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> [5,3,2,2,1]
=> ? = 14 - 1
[1,4,5,2,3] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> [5,3,2,1]
=> ? = 12 - 1
[1,4,5,3,2] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> [5,3,2,1]
=> ? = 12 - 1
[1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> [5,3,2]
=> 10 = 11 - 1
[1,5,2,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> [5,3,2,2]
=> ? = 13 - 1
[1,5,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> [5,3,2,2,1]
=> ? = 14 - 1
[1,5,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> [5,3,2,2,1]
=> ? = 14 - 1
[1,5,4,2,3] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> [5,3,2,1]
=> ? = 12 - 1
[1,5,4,3,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> [5,3]
=> 8 = 9 - 1
[2,1,3,4,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> [5,3]
=> 8 = 9 - 1
[2,1,3,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> [5,3,2]
=> 10 = 11 - 1
[2,1,4,3,5] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> [5,3,2]
=> 10 = 11 - 1
[2,1,4,5,3] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> [5,3,2,1]
=> ? = 12 - 1
[2,1,5,3,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> [5,3,2,1]
=> ? = 12 - 1
[2,1,5,4,3] => ([(0,3),(0,4),(1,8),(2,7),(2,8),(3,1),(3,5),(4,2),(4,5),(5,7),(5,8),(7,6),(8,6)],9)
=> [5,3,1]
=> 9 = 10 - 1
[2,3,1,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> [5,3,2]
=> 10 = 11 - 1
[2,3,1,5,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> [5,3,2,1]
=> ? = 12 - 1
[2,3,4,1,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> [5,3,2]
=> 10 = 11 - 1
[2,3,4,5,1] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> [5,3]
=> 8 = 9 - 1
[2,3,5,1,4] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> [5,3,2,2,1]
=> ? = 14 - 1
[2,3,5,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> [5,3,2,1]
=> ? = 12 - 1
[2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> [5,3,2,2,2]
=> ? = 15 - 1
[2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> [5,3,2,2,2]
=> ? = 15 - 1
[2,4,3,1,5] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> [5,3,2,2,1]
=> ? = 14 - 1
[2,4,3,5,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> [5,3,2,2,1]
=> ? = 14 - 1
[2,4,5,1,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> [5,3,2,2,1]
=> ? = 14 - 1
[2,4,5,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> [5,3,2,2]
=> ? = 13 - 1
[2,5,1,3,4] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> [5,3,2,2,1]
=> ? = 14 - 1
[2,5,1,4,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> [5,3,2,2,1]
=> ? = 14 - 1
[2,5,3,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,12),(2,7),(2,11),(2,12),(3,7),(3,9),(3,10),(4,6),(4,10),(4,12),(5,6),(5,9),(5,11),(6,14),(7,13),(9,13),(9,14),(10,13),(10,14),(11,13),(11,14),(12,13),(12,14),(13,8),(14,8)],15)
=> [5,3,2,2,2,1]
=> ? = 16 - 1
[2,5,3,4,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> [5,3,2,2,1]
=> ? = 14 - 1
[2,5,4,1,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> [5,3,2,2,1]
=> ? = 14 - 1
[3,1,2,5,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> [5,3,2,1]
=> ? = 12 - 1
[3,1,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> [5,3,2,2,2]
=> ? = 15 - 1
[3,1,4,5,2] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> [5,3,2,2,1]
=> ? = 14 - 1
[3,1,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> [5,3,2,2,2]
=> ? = 15 - 1
[3,1,5,4,2] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> [5,3,2,2,1]
=> ? = 14 - 1
[3,2,4,1,5] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> [5,3,2,2]
=> ? = 13 - 1
[3,2,4,5,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> [5,3,2,1]
=> ? = 12 - 1
[3,2,5,1,4] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> [5,3,2,2,1]
=> ? = 14 - 1
[3,2,5,4,1] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> [5,3,2,1]
=> ? = 12 - 1
[3,4,1,2,5] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> [5,3,2,1]
=> ? = 12 - 1
[3,4,1,5,2] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> [5,3,2,2,1]
=> ? = 14 - 1
[3,4,2,1,5] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> [5,3,2,1]
=> ? = 12 - 1
[3,4,2,5,1] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> [5,3,2,2]
=> ? = 13 - 1
[3,5,1,2,4] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> [5,3,2,2,1]
=> ? = 14 - 1
[3,5,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> [5,3,2,2,2]
=> ? = 15 - 1
[3,5,2,1,4] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> [5,3,2,2,1]
=> ? = 14 - 1
[3,5,2,4,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> [5,3,2,2,2]
=> ? = 15 - 1
[3,5,4,1,2] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> [5,3,2,1]
=> ? = 12 - 1
[4,1,2,5,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> [5,3,2,2,1]
=> ? = 14 - 1
[4,1,3,2,5] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> [5,3,2,2,1]
=> ? = 14 - 1
[4,1,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,12),(2,7),(2,11),(2,12),(3,7),(3,9),(3,10),(4,6),(4,10),(4,12),(5,6),(5,9),(5,11),(6,14),(7,13),(9,13),(9,14),(10,13),(10,14),(11,13),(11,14),(12,13),(12,14),(13,8),(14,8)],15)
=> [5,3,2,2,2,1]
=> ? = 16 - 1
Description
The size of a partition. This statistic is the constant statistic of the level sets.
Mp00209: Permutations pattern posetPosets
Mp00198: Posets incomparability graphGraphs
St001342: Graphs ⟶ ℤResult quality: 3% values known / values provided: 3%distinct values known / distinct values provided: 12%
Values
[1,2] => ([(0,1)],2)
=> ([],2)
=> 2 = 3 - 1
[2,1] => ([(0,1)],2)
=> ([],2)
=> 2 = 3 - 1
[1,2,3] => ([(0,2),(2,1)],3)
=> ([],3)
=> 3 = 4 - 1
[1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 4 = 5 - 1
[2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 4 = 5 - 1
[2,3,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 4 = 5 - 1
[3,1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 4 = 5 - 1
[3,2,1] => ([(0,2),(2,1)],3)
=> ([],3)
=> 3 = 4 - 1
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 5 - 1
[1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 6 = 7 - 1
[1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 7 = 8 - 1
[1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 7 = 8 - 1
[1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 7 = 8 - 1
[1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 6 = 7 - 1
[2,1,3,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 6 = 7 - 1
[2,1,4,3] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> 6 = 7 - 1
[2,3,1,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 7 = 8 - 1
[2,3,4,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 6 = 7 - 1
[2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ([(2,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 9 - 1
[2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 7 = 8 - 1
[3,1,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 7 = 8 - 1
[3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ([(2,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 9 - 1
[3,2,1,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 6 = 7 - 1
[3,2,4,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 7 = 8 - 1
[3,4,1,2] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> 6 = 7 - 1
[3,4,2,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 6 = 7 - 1
[4,1,2,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 6 = 7 - 1
[4,1,3,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 7 = 8 - 1
[4,2,1,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 7 = 8 - 1
[4,2,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 7 = 8 - 1
[4,3,1,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 6 = 7 - 1
[4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4 = 5 - 1
[1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5 = 6 - 1
[1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 9 - 1
[1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 11 - 1
[1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 11 - 1
[1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 11 - 1
[1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(2,5),(2,8),(3,4),(3,8),(4,7),(5,7),(6,7),(6,8),(7,8)],9)
=> ? = 10 - 1
[1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 11 - 1
[1,3,2,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(2,5),(3,6),(3,9),(4,7),(4,8),(5,9),(6,8),(6,9),(7,8),(7,9)],10)
=> ? = 11 - 1
[1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ([(2,3),(3,7),(3,11),(4,5),(4,6),(4,10),(4,11),(5,6),(5,9),(5,11),(6,8),(6,11),(7,8),(7,9),(7,10),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 13 - 1
[1,3,4,5,2] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 11 - 1
[1,3,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(2,3),(3,9),(4,9),(4,11),(4,12),(4,13),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,10),(6,12),(6,13),(7,8),(7,10),(7,11),(7,13),(8,10),(8,11),(8,12),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13),(11,12),(11,13),(12,13)],14)
=> ? = 15 - 1
[1,3,5,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(2,3),(2,11),(3,10),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,10),(6,7),(6,8),(6,11),(7,8),(7,9),(7,10),(8,9),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 13 - 1
[1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ([(2,3),(3,7),(3,11),(4,5),(4,6),(4,10),(4,11),(5,6),(5,9),(5,11),(6,8),(6,11),(7,8),(7,9),(7,10),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 13 - 1
[1,4,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(2,3),(3,9),(4,9),(4,11),(4,12),(4,13),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,10),(6,12),(6,13),(7,8),(7,10),(7,11),(7,13),(8,10),(8,11),(8,12),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13),(11,12),(11,13),(12,13)],14)
=> ? = 15 - 1
[1,4,3,2,5] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(2,10),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(7,8),(7,10),(8,10),(9,10)],11)
=> ? = 12 - 1
[1,4,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 14 - 1
[1,4,5,2,3] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ([(2,3),(3,10),(4,5),(4,8),(4,9),(5,7),(5,9),(6,7),(6,8),(6,9),(6,10),(7,8),(7,10),(8,10),(9,10)],11)
=> ? = 12 - 1
[1,4,5,3,2] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(2,10),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(7,8),(7,10),(8,10),(9,10)],11)
=> ? = 12 - 1
[1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 11 - 1
[1,5,2,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(2,3),(2,11),(3,10),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,10),(6,7),(6,8),(6,11),(7,8),(7,9),(7,10),(8,9),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 13 - 1
[1,5,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 14 - 1
[1,5,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 14 - 1
[1,5,4,2,3] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(2,10),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(7,8),(7,10),(8,10),(9,10)],11)
=> ? = 12 - 1
[1,5,4,3,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 9 - 1
[2,1,3,4,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 9 - 1
[2,1,3,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(2,3),(3,9),(4,5),(4,7),(4,8),(5,6),(5,8),(6,7),(6,9),(7,9),(8,9)],10)
=> ? = 11 - 1
[2,1,4,3,5] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(2,5),(3,6),(3,9),(4,7),(4,8),(5,9),(6,8),(6,9),(7,8),(7,9)],10)
=> ? = 11 - 1
[2,1,4,5,3] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(3,10),(4,6),(4,7),(4,8),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 12 - 1
[2,1,5,3,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(3,10),(4,6),(4,7),(4,8),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 12 - 1
[2,1,5,4,3] => ([(0,3),(0,4),(1,8),(2,7),(2,8),(3,1),(3,5),(4,2),(4,5),(5,7),(5,8),(7,6),(8,6)],9)
=> ([(2,6),(3,4),(3,8),(4,7),(5,7),(5,8),(6,8),(7,8)],9)
=> ? = 10 - 1
[2,3,1,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 11 - 1
[2,3,1,5,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(3,10),(4,6),(4,7),(4,8),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 12 - 1
[2,3,4,1,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 11 - 1
[2,3,4,5,1] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 9 - 1
[2,3,5,1,4] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ([(2,3),(3,11),(4,6),(4,9),(4,10),(4,11),(5,7),(5,8),(5,10),(5,11),(5,12),(6,8),(6,9),(6,10),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,11),(8,12),(9,10),(9,12),(10,12),(11,12)],13)
=> ? = 14 - 1
[2,3,5,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(2,10),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(7,8),(7,10),(8,10),(9,10)],11)
=> ? = 12 - 1
[2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(2,3),(3,9),(4,9),(4,11),(4,12),(4,13),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,10),(6,12),(6,13),(7,8),(7,10),(7,11),(7,13),(8,10),(8,11),(8,12),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13),(11,12),(11,13),(12,13)],14)
=> ? = 15 - 1
[2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ([(2,3),(3,13),(4,5),(4,6),(4,11),(4,12),(4,13),(5,6),(5,10),(5,11),(5,13),(6,9),(6,11),(6,13),(7,8),(7,9),(7,10),(7,12),(7,13),(8,9),(8,10),(8,12),(8,13),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12),(11,13),(12,13)],14)
=> ? = 15 - 1
[2,4,3,1,5] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 14 - 1
[2,4,3,5,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 14 - 1
[2,4,5,1,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ([(2,3),(3,12),(4,7),(4,9),(4,11),(4,12),(5,6),(5,8),(5,10),(5,12),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 14 - 1
[2,4,5,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(2,3),(2,11),(3,10),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,10),(6,7),(6,8),(6,11),(7,8),(7,9),(7,10),(8,9),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 13 - 1
[2,5,1,3,4] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ([(2,3),(3,11),(4,6),(4,9),(4,10),(4,11),(5,7),(5,8),(5,10),(5,11),(5,12),(6,8),(6,9),(6,10),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,11),(8,12),(9,10),(9,12),(10,12),(11,12)],13)
=> ? = 14 - 1
[2,5,1,4,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ([(2,3),(3,12),(4,7),(4,9),(4,11),(4,12),(5,6),(5,8),(5,10),(5,12),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 14 - 1
[2,5,3,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,12),(2,7),(2,11),(2,12),(3,7),(3,9),(3,10),(4,6),(4,10),(4,12),(5,6),(5,9),(5,11),(6,14),(7,13),(9,13),(9,14),(10,13),(10,14),(11,13),(11,14),(12,13),(12,14),(13,8),(14,8)],15)
=> ([(2,3),(2,14),(3,13),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(5,6),(5,7),(5,8),(5,10),(5,12),(5,13),(5,14),(6,7),(6,8),(6,10),(6,11),(6,13),(6,14),(7,8),(7,9),(7,11),(7,13),(7,14),(8,9),(8,12),(8,13),(8,14),(9,10),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13),(11,12),(11,14),(12,14),(13,14)],15)
=> ? = 16 - 1
[2,5,3,4,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 14 - 1
[2,5,4,1,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ([(2,3),(3,11),(4,6),(4,9),(4,10),(4,11),(5,7),(5,8),(5,10),(5,11),(5,12),(6,8),(6,9),(6,10),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,11),(8,12),(9,10),(9,12),(10,12),(11,12)],13)
=> ? = 14 - 1
[2,5,4,3,1] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 11 - 1
[3,1,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 11 - 1
[5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5 = 6 - 1
[1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 6 = 7 - 1
[6,5,4,3,2,1] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 6 = 7 - 1
[1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([],7)
=> 7 = 8 - 1
Description
The number of vertices in the center of a graph. The center of a graph is the set of vertices whose maximal distance to any other vertex is minimal. In particular, if the graph is disconnected, all vertices are in the certer.
Mp00209: Permutations pattern posetPosets
Mp00195: Posets order idealsLattices
St001622: Lattices ⟶ ℤResult quality: 3% values known / values provided: 3%distinct values known / distinct values provided: 12%
Values
[1,2] => ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[2,1] => ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 4 = 5 - 1
[2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 4 = 5 - 1
[2,3,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 4 = 5 - 1
[3,1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 4 = 5 - 1
[3,2,1] => ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> 6 = 7 - 1
[1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,7),(2,12),(3,10),(4,9),(4,11),(5,8),(5,11),(6,8),(6,9),(7,4),(7,5),(7,6),(8,13),(9,13),(10,12),(11,3),(11,13),(12,1),(13,2),(13,10)],14)
=> 7 = 8 - 1
[1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,7),(2,12),(3,10),(4,9),(4,11),(5,8),(5,11),(6,8),(6,9),(7,4),(7,5),(7,6),(8,13),(9,13),(10,12),(11,3),(11,13),(12,1),(13,2),(13,10)],14)
=> 7 = 8 - 1
[1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,7),(2,12),(3,10),(4,9),(4,11),(5,8),(5,11),(6,8),(6,9),(7,4),(7,5),(7,6),(8,13),(9,13),(10,12),(11,3),(11,13),(12,1),(13,2),(13,10)],14)
=> 7 = 8 - 1
[1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> 6 = 7 - 1
[2,1,3,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> 6 = 7 - 1
[2,1,4,3] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,6),(1,8),(2,8),(3,7),(4,7),(6,1),(6,2),(7,5),(8,3),(8,4)],9)
=> 6 = 7 - 1
[2,3,1,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,7),(2,12),(3,10),(4,9),(4,11),(5,8),(5,11),(6,8),(6,9),(7,4),(7,5),(7,6),(8,13),(9,13),(10,12),(11,3),(11,13),(12,1),(13,2),(13,10)],14)
=> 7 = 8 - 1
[2,3,4,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> 6 = 7 - 1
[2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ?
=> ? = 9 - 1
[2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,7),(2,12),(3,10),(4,9),(4,11),(5,8),(5,11),(6,8),(6,9),(7,4),(7,5),(7,6),(8,13),(9,13),(10,12),(11,3),(11,13),(12,1),(13,2),(13,10)],14)
=> 7 = 8 - 1
[3,1,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,7),(2,12),(3,10),(4,9),(4,11),(5,8),(5,11),(6,8),(6,9),(7,4),(7,5),(7,6),(8,13),(9,13),(10,12),(11,3),(11,13),(12,1),(13,2),(13,10)],14)
=> 7 = 8 - 1
[3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ?
=> ? = 9 - 1
[3,2,1,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> 6 = 7 - 1
[3,2,4,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,7),(2,12),(3,10),(4,9),(4,11),(5,8),(5,11),(6,8),(6,9),(7,4),(7,5),(7,6),(8,13),(9,13),(10,12),(11,3),(11,13),(12,1),(13,2),(13,10)],14)
=> 7 = 8 - 1
[3,4,1,2] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,6),(1,8),(2,8),(3,7),(4,7),(6,1),(6,2),(7,5),(8,3),(8,4)],9)
=> 6 = 7 - 1
[3,4,2,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> 6 = 7 - 1
[4,1,2,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> 6 = 7 - 1
[4,1,3,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,7),(2,12),(3,10),(4,9),(4,11),(5,8),(5,11),(6,8),(6,9),(7,4),(7,5),(7,6),(8,13),(9,13),(10,12),(11,3),(11,13),(12,1),(13,2),(13,10)],14)
=> 7 = 8 - 1
[4,2,1,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,7),(2,12),(3,10),(4,9),(4,11),(5,8),(5,11),(6,8),(6,9),(7,4),(7,5),(7,6),(8,13),(9,13),(10,12),(11,3),(11,13),(12,1),(13,2),(13,10)],14)
=> 7 = 8 - 1
[4,2,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,7),(2,12),(3,10),(4,9),(4,11),(5,8),(5,11),(6,8),(6,9),(7,4),(7,5),(7,6),(8,13),(9,13),(10,12),(11,3),(11,13),(12,1),(13,2),(13,10)],14)
=> 7 = 8 - 1
[4,3,1,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> 6 = 7 - 1
[4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,8),(1,14),(3,13),(4,12),(5,11),(6,7),(6,12),(7,5),(7,9),(8,4),(8,6),(9,11),(9,13),(10,14),(11,10),(12,3),(12,9),(13,1),(13,10),(14,2)],15)
=> ? = 9 - 1
[1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ?
=> ? = 11 - 1
[1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ?
=> ? = 11 - 1
[1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ?
=> ? = 11 - 1
[1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,9),(2,16),(2,17),(3,13),(4,12),(5,10),(6,11),(7,5),(7,15),(8,6),(8,15),(9,7),(9,8),(10,14),(10,16),(11,14),(11,17),(12,18),(13,18),(14,19),(15,2),(15,10),(15,11),(16,4),(16,19),(17,3),(17,19),(18,1),(19,12),(19,13)],20)
=> ? = 10 - 1
[1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ?
=> ? = 11 - 1
[1,3,2,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ?
=> ? = 11 - 1
[1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ?
=> ? = 13 - 1
[1,3,4,5,2] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ?
=> ? = 11 - 1
[1,3,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ?
=> ? = 15 - 1
[1,3,5,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ?
=> ? = 13 - 1
[1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ?
=> ? = 13 - 1
[1,4,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ?
=> ? = 15 - 1
[1,4,3,2,5] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ?
=> ? = 12 - 1
[1,4,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ?
=> ? = 14 - 1
[1,4,5,2,3] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ?
=> ? = 12 - 1
[1,4,5,3,2] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ?
=> ? = 12 - 1
[1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ?
=> ? = 11 - 1
[1,5,2,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ?
=> ? = 13 - 1
[1,5,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ?
=> ? = 14 - 1
[1,5,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ?
=> ? = 14 - 1
[1,5,4,2,3] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ?
=> ? = 12 - 1
[1,5,4,3,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,8),(1,14),(3,13),(4,12),(5,11),(6,7),(6,12),(7,5),(7,9),(8,4),(8,6),(9,11),(9,13),(10,14),(11,10),(12,3),(12,9),(13,1),(13,10),(14,2)],15)
=> ? = 9 - 1
[2,1,3,4,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,8),(1,14),(3,13),(4,12),(5,11),(6,7),(6,12),(7,5),(7,9),(8,4),(8,6),(9,11),(9,13),(10,14),(11,10),(12,3),(12,9),(13,1),(13,10),(14,2)],15)
=> ? = 9 - 1
[2,1,3,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ?
=> ? = 11 - 1
[2,1,4,3,5] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ?
=> ? = 11 - 1
[2,1,4,5,3] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ?
=> ? = 12 - 1
[2,1,5,3,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ?
=> ? = 12 - 1
[2,1,5,4,3] => ([(0,3),(0,4),(1,8),(2,7),(2,8),(3,1),(3,5),(4,2),(4,5),(5,7),(5,8),(7,6),(8,6)],9)
=> ([(0,9),(1,13),(1,17),(3,16),(4,12),(5,10),(6,11),(7,5),(7,15),(8,6),(8,15),(9,7),(9,8),(10,14),(10,17),(11,13),(11,14),(12,16),(13,18),(14,18),(15,1),(15,10),(15,11),(16,2),(17,4),(17,18),(18,3),(18,12)],19)
=> ? = 10 - 1
[2,3,1,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ?
=> ? = 11 - 1
[2,3,1,5,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ?
=> ? = 12 - 1
[2,3,4,1,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ?
=> ? = 11 - 1
[2,3,4,5,1] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,8),(1,14),(3,13),(4,12),(5,11),(6,7),(6,12),(7,5),(7,9),(8,4),(8,6),(9,11),(9,13),(10,14),(11,10),(12,3),(12,9),(13,1),(13,10),(14,2)],15)
=> ? = 9 - 1
[2,3,5,1,4] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ?
=> ? = 14 - 1
[2,3,5,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ?
=> ? = 12 - 1
[2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ?
=> ? = 15 - 1
[2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ?
=> ? = 15 - 1
[2,4,3,1,5] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ?
=> ? = 14 - 1
[2,4,3,5,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ?
=> ? = 14 - 1
[2,4,5,1,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ?
=> ? = 14 - 1
[2,4,5,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ?
=> ? = 13 - 1
[2,5,1,3,4] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ?
=> ? = 14 - 1
[2,5,1,4,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ?
=> ? = 14 - 1
[2,5,3,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,12),(2,7),(2,11),(2,12),(3,7),(3,9),(3,10),(4,6),(4,10),(4,12),(5,6),(5,9),(5,11),(6,14),(7,13),(9,13),(9,14),(10,13),(10,14),(11,13),(11,14),(12,13),(12,14),(13,8),(14,8)],15)
=> ?
=> ? = 16 - 1
[2,5,3,4,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ?
=> ? = 14 - 1
[2,5,4,1,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ?
=> ? = 14 - 1
[2,5,4,3,1] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ?
=> ? = 11 - 1
[3,1,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ?
=> ? = 11 - 1
[5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 7 - 1
[6,5,4,3,2,1] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 7 - 1
[1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> 7 = 8 - 1
Description
The number of join-irreducible elements of a lattice. An element $j$ of a lattice $L$ is '''join irreducible''' if it is not the least element and if $j=x\vee y$, then $j\in\{x,y\}$ for all $x,y\in L$.
Mp00209: Permutations pattern posetPosets
Mp00074: Posets to graphGraphs
St001707: Graphs ⟶ ℤResult quality: 3% values known / values provided: 3%distinct values known / distinct values provided: 12%
Values
[1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 3 - 1
[2,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 3 - 1
[1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 3 = 4 - 1
[1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4 = 5 - 1
[2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4 = 5 - 1
[2,3,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4 = 5 - 1
[3,1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4 = 5 - 1
[3,2,1] => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 3 = 4 - 1
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 4 = 5 - 1
[1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 7 - 1
[1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> 7 = 8 - 1
[1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> 7 = 8 - 1
[1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> 7 = 8 - 1
[1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 7 - 1
[2,1,3,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 7 - 1
[2,1,4,3] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 6 = 7 - 1
[2,3,1,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> 7 = 8 - 1
[2,3,4,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 7 - 1
[2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ([(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 9 - 1
[2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> 7 = 8 - 1
[3,1,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> 7 = 8 - 1
[3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ([(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 9 - 1
[3,2,1,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 7 - 1
[3,2,4,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> 7 = 8 - 1
[3,4,1,2] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 6 = 7 - 1
[3,4,2,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 7 - 1
[4,1,2,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 7 - 1
[4,1,3,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> 7 = 8 - 1
[4,2,1,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> 7 = 8 - 1
[4,2,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> 7 = 8 - 1
[4,3,1,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 7 - 1
[4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 4 = 5 - 1
[1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 5 = 6 - 1
[1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 9 - 1
[1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,5),(0,9),(1,4),(1,8),(2,4),(2,7),(2,8),(3,5),(3,6),(3,9),(4,6),(5,7),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 11 - 1
[1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,5),(0,9),(1,4),(1,8),(2,4),(2,7),(2,8),(3,5),(3,6),(3,9),(4,6),(5,7),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 11 - 1
[1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,5),(0,9),(1,4),(1,8),(2,4),(2,7),(2,8),(3,5),(3,6),(3,9),(4,6),(5,7),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 11 - 1
[1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,6),(0,7),(1,4),(1,5),(2,5),(2,7),(3,4),(3,6),(4,8),(5,8),(6,8),(7,8)],9)
=> ? = 10 - 1
[1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,5),(0,9),(1,4),(1,8),(2,4),(2,7),(2,8),(3,5),(3,6),(3,9),(4,6),(5,7),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 11 - 1
[1,3,2,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(0,5),(0,8),(1,2),(1,3),(1,9),(2,4),(2,7),(3,7),(3,8),(4,6),(4,9),(5,6),(5,9),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 11 - 1
[1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ([(0,9),(0,11),(1,8),(1,10),(2,6),(2,7),(2,8),(2,10),(3,5),(3,7),(3,8),(3,10),(4,5),(4,6),(4,8),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(10,11)],12)
=> ? = 13 - 1
[1,3,4,5,2] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,5),(0,9),(1,4),(1,8),(2,4),(2,7),(2,8),(3,5),(3,6),(3,9),(4,6),(5,7),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 11 - 1
[1,3,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(0,11),(0,12),(1,9),(1,10),(1,13),(2,7),(2,8),(2,11),(2,12),(3,6),(3,8),(3,11),(3,12),(4,5),(4,8),(4,11),(4,12),(5,9),(5,10),(5,13),(6,9),(6,10),(6,13),(7,9),(7,10),(7,13),(8,9),(8,13),(10,12),(11,13),(12,13)],14)
=> ? = 15 - 1
[1,3,5,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(0,9),(0,10),(1,4),(1,7),(1,10),(2,3),(2,6),(2,9),(3,8),(3,11),(4,8),(4,11),(5,6),(5,7),(5,9),(5,10),(6,8),(6,11),(7,8),(7,11),(9,11),(10,11)],12)
=> ? = 13 - 1
[1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ([(0,9),(0,11),(1,8),(1,10),(2,6),(2,7),(2,8),(2,10),(3,5),(3,7),(3,8),(3,10),(4,5),(4,6),(4,8),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(10,11)],12)
=> ? = 13 - 1
[1,4,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(0,11),(0,12),(1,9),(1,10),(1,13),(2,7),(2,8),(2,11),(2,12),(3,6),(3,8),(3,11),(3,12),(4,5),(4,8),(4,11),(4,12),(5,9),(5,10),(5,13),(6,9),(6,10),(6,13),(7,9),(7,10),(7,13),(8,9),(8,13),(10,12),(11,13),(12,13)],14)
=> ? = 15 - 1
[1,4,3,2,5] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,9),(0,10),(1,8),(1,10),(2,4),(2,5),(2,7),(3,4),(3,5),(3,6),(4,8),(5,9),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10)],11)
=> ? = 12 - 1
[1,4,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(0,11),(0,12),(1,4),(1,5),(1,11),(2,3),(2,9),(2,12),(3,8),(3,10),(4,7),(4,8),(4,10),(5,6),(5,8),(5,10),(6,9),(6,11),(6,12),(7,9),(7,11),(7,12),(8,9),(10,11),(10,12)],13)
=> ? = 14 - 1
[1,4,5,2,3] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ([(0,9),(0,10),(1,5),(1,6),(1,10),(2,3),(2,5),(2,6),(3,7),(3,8),(4,5),(4,6),(4,9),(4,10),(5,8),(6,7),(7,9),(7,10),(8,9),(8,10)],11)
=> ? = 12 - 1
[1,4,5,3,2] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,9),(0,10),(1,8),(1,10),(2,4),(2,5),(2,7),(3,4),(3,5),(3,6),(4,8),(5,9),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10)],11)
=> ? = 12 - 1
[1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,5),(0,9),(1,4),(1,8),(2,4),(2,7),(2,8),(3,5),(3,6),(3,9),(4,6),(5,7),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 11 - 1
[1,5,2,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(0,9),(0,10),(1,4),(1,7),(1,10),(2,3),(2,6),(2,9),(3,8),(3,11),(4,8),(4,11),(5,6),(5,7),(5,9),(5,10),(6,8),(6,11),(7,8),(7,11),(9,11),(10,11)],12)
=> ? = 13 - 1
[1,5,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(0,11),(0,12),(1,4),(1,5),(1,11),(2,3),(2,9),(2,12),(3,8),(3,10),(4,7),(4,8),(4,10),(5,6),(5,8),(5,10),(6,9),(6,11),(6,12),(7,9),(7,11),(7,12),(8,9),(10,11),(10,12)],13)
=> ? = 14 - 1
[1,5,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(0,11),(0,12),(1,4),(1,5),(1,11),(2,3),(2,9),(2,12),(3,8),(3,10),(4,7),(4,8),(4,10),(5,6),(5,8),(5,10),(6,9),(6,11),(6,12),(7,9),(7,11),(7,12),(8,9),(10,11),(10,12)],13)
=> ? = 14 - 1
[1,5,4,2,3] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,9),(0,10),(1,8),(1,10),(2,4),(2,5),(2,7),(3,4),(3,5),(3,6),(4,8),(5,9),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10)],11)
=> ? = 12 - 1
[1,5,4,3,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 9 - 1
[2,1,3,4,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 9 - 1
[2,1,3,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(0,6),(0,9),(1,3),(1,4),(1,5),(2,3),(2,4),(2,9),(3,8),(4,7),(5,7),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 11 - 1
[2,1,4,3,5] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(0,5),(0,8),(1,2),(1,3),(1,9),(2,4),(2,7),(3,7),(3,8),(4,6),(4,9),(5,6),(5,9),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 11 - 1
[2,1,4,5,3] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,9),(0,10),(1,2),(1,3),(1,6),(2,5),(2,7),(3,7),(3,10),(4,7),(4,9),(4,10),(5,6),(5,8),(6,9),(6,10),(7,8),(8,9),(8,10)],11)
=> ? = 12 - 1
[2,1,5,3,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,9),(0,10),(1,2),(1,3),(1,6),(2,5),(2,7),(3,7),(3,10),(4,7),(4,9),(4,10),(5,6),(5,8),(6,9),(6,10),(7,8),(8,9),(8,10)],11)
=> ? = 12 - 1
[2,1,5,4,3] => ([(0,3),(0,4),(1,8),(2,7),(2,8),(3,1),(3,5),(4,2),(4,5),(5,7),(5,8),(7,6),(8,6)],9)
=> ([(0,5),(0,8),(1,4),(1,6),(2,6),(2,8),(3,4),(3,5),(3,8),(4,7),(5,7),(6,7),(7,8)],9)
=> ? = 10 - 1
[2,3,1,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,5),(0,9),(1,4),(1,8),(2,4),(2,7),(2,8),(3,5),(3,6),(3,9),(4,6),(5,7),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 11 - 1
[2,3,1,5,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,9),(0,10),(1,2),(1,3),(1,6),(2,5),(2,7),(3,7),(3,10),(4,7),(4,9),(4,10),(5,6),(5,8),(6,9),(6,10),(7,8),(8,9),(8,10)],11)
=> ? = 12 - 1
[2,3,4,1,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,5),(0,9),(1,4),(1,8),(2,4),(2,7),(2,8),(3,5),(3,6),(3,9),(4,6),(5,7),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 11 - 1
[2,3,4,5,1] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 9 - 1
[2,3,5,1,4] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ([(0,11),(0,12),(1,6),(1,7),(1,8),(2,7),(2,8),(2,10),(3,9),(3,11),(3,12),(4,5),(4,7),(4,8),(4,10),(5,9),(5,11),(5,12),(6,9),(6,11),(6,12),(7,12),(8,9),(9,10),(10,11),(10,12)],13)
=> ? = 14 - 1
[2,3,5,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,9),(0,10),(1,8),(1,10),(2,4),(2,5),(2,7),(3,4),(3,5),(3,6),(4,8),(5,9),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10)],11)
=> ? = 12 - 1
[2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(0,11),(0,12),(1,9),(1,10),(1,13),(2,7),(2,8),(2,11),(2,12),(3,6),(3,8),(3,11),(3,12),(4,5),(4,8),(4,11),(4,12),(5,9),(5,10),(5,13),(6,9),(6,10),(6,13),(7,9),(7,10),(7,13),(8,9),(8,13),(10,12),(11,13),(12,13)],14)
=> ? = 15 - 1
[2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ([(0,9),(0,13),(1,8),(1,11),(1,12),(2,4),(2,5),(2,13),(3,6),(3,7),(3,9),(3,13),(4,8),(4,10),(4,12),(5,8),(5,10),(5,11),(6,8),(6,10),(6,11),(6,12),(7,8),(7,10),(7,11),(7,12),(9,10),(9,11),(9,12),(10,13),(11,13),(12,13)],14)
=> ? = 15 - 1
[2,4,3,1,5] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(0,11),(0,12),(1,4),(1,5),(1,11),(2,3),(2,9),(2,12),(3,8),(3,10),(4,7),(4,8),(4,10),(5,6),(5,8),(5,10),(6,9),(6,11),(6,12),(7,9),(7,11),(7,12),(8,9),(10,11),(10,12)],13)
=> ? = 14 - 1
[2,4,3,5,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(0,11),(0,12),(1,4),(1,5),(1,11),(2,3),(2,9),(2,12),(3,8),(3,10),(4,7),(4,8),(4,10),(5,6),(5,8),(5,10),(6,9),(6,11),(6,12),(7,9),(7,11),(7,12),(8,9),(10,11),(10,12)],13)
=> ? = 14 - 1
[2,4,5,1,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ([(0,10),(0,12),(1,9),(1,10),(1,12),(2,3),(2,8),(2,12),(3,6),(3,11),(4,5),(4,6),(4,11),(5,9),(5,10),(5,12),(6,8),(6,9),(7,8),(7,9),(7,10),(7,12),(8,11),(9,11),(10,11),(11,12)],13)
=> ? = 14 - 1
[2,4,5,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(0,9),(0,10),(1,4),(1,7),(1,10),(2,3),(2,6),(2,9),(3,8),(3,11),(4,8),(4,11),(5,6),(5,7),(5,9),(5,10),(6,8),(6,11),(7,8),(7,11),(9,11),(10,11)],12)
=> ? = 13 - 1
[2,5,1,3,4] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ([(0,11),(0,12),(1,6),(1,7),(1,8),(2,7),(2,8),(2,10),(3,9),(3,11),(3,12),(4,5),(4,7),(4,8),(4,10),(5,9),(5,11),(5,12),(6,9),(6,11),(6,12),(7,12),(8,9),(9,10),(10,11),(10,12)],13)
=> ? = 14 - 1
[2,5,1,4,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ([(0,10),(0,12),(1,9),(1,10),(1,12),(2,3),(2,8),(2,12),(3,6),(3,11),(4,5),(4,6),(4,11),(5,9),(5,10),(5,12),(6,8),(6,9),(7,8),(7,9),(7,10),(7,12),(8,11),(9,11),(10,11),(11,12)],13)
=> ? = 14 - 1
[2,5,3,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,12),(2,7),(2,11),(2,12),(3,7),(3,9),(3,10),(4,6),(4,10),(4,12),(5,6),(5,9),(5,11),(6,14),(7,13),(9,13),(9,14),(10,13),(10,14),(11,13),(11,14),(12,13),(12,14),(13,8),(14,8)],15)
=> ([(0,13),(0,14),(1,5),(1,6),(1,14),(2,3),(2,4),(2,13),(3,10),(3,11),(3,12),(4,8),(4,9),(4,12),(5,9),(5,11),(5,12),(6,8),(6,10),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,13),(8,14),(9,13),(9,14),(10,13),(10,14),(11,13),(11,14)],15)
=> ? = 16 - 1
[2,5,3,4,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(0,11),(0,12),(1,4),(1,5),(1,11),(2,3),(2,9),(2,12),(3,8),(3,10),(4,7),(4,8),(4,10),(5,6),(5,8),(5,10),(6,9),(6,11),(6,12),(7,9),(7,11),(7,12),(8,9),(10,11),(10,12)],13)
=> ? = 14 - 1
[2,5,4,1,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ([(0,11),(0,12),(1,6),(1,7),(1,8),(2,7),(2,8),(2,10),(3,9),(3,11),(3,12),(4,5),(4,7),(4,8),(4,10),(5,9),(5,11),(5,12),(6,9),(6,11),(6,12),(7,12),(8,9),(9,10),(10,11),(10,12)],13)
=> ? = 14 - 1
[2,5,4,3,1] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,5),(0,9),(1,4),(1,8),(2,4),(2,7),(2,8),(3,5),(3,6),(3,9),(4,6),(5,7),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 11 - 1
[3,1,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,5),(0,9),(1,4),(1,8),(2,4),(2,7),(2,8),(3,5),(3,6),(3,9),(4,6),(5,7),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 11 - 1
[5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 5 = 6 - 1
[1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 6 = 7 - 1
[6,5,4,3,2,1] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 6 = 7 - 1
[1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 7 = 8 - 1
Description
The length of a longest path in a graph such that the remaining vertices can be partitioned into two sets of the same size without edges between them. Such a partition always exists because of a construction due to Dudek and Pralat [1] and independently Pokrovskiy [2].
Mp00209: Permutations pattern posetPosets
Mp00074: Posets to graphGraphs
St000987: Graphs ⟶ ℤResult quality: 3% values known / values provided: 3%distinct values known / distinct values provided: 12%
Values
[1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 3 - 2
[2,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 3 - 2
[1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2 = 4 - 2
[1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 3 = 5 - 2
[2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 3 = 5 - 2
[2,3,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 3 = 5 - 2
[3,1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 3 = 5 - 2
[3,2,1] => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2 = 4 - 2
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 5 - 2
[1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 5 = 7 - 2
[1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> 6 = 8 - 2
[1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> 6 = 8 - 2
[1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> 6 = 8 - 2
[1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 5 = 7 - 2
[2,1,3,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 5 = 7 - 2
[2,1,4,3] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 5 = 7 - 2
[2,3,1,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> 6 = 8 - 2
[2,3,4,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 5 = 7 - 2
[2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ([(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 9 - 2
[2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> 6 = 8 - 2
[3,1,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> 6 = 8 - 2
[3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ([(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 9 - 2
[3,2,1,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 5 = 7 - 2
[3,2,4,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> 6 = 8 - 2
[3,4,1,2] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 5 = 7 - 2
[3,4,2,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 5 = 7 - 2
[4,1,2,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 5 = 7 - 2
[4,1,3,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> 6 = 8 - 2
[4,2,1,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> 6 = 8 - 2
[4,2,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> 6 = 8 - 2
[4,3,1,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 5 = 7 - 2
[4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 5 - 2
[1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4 = 6 - 2
[1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 9 - 2
[1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,5),(0,9),(1,4),(1,8),(2,4),(2,7),(2,8),(3,5),(3,6),(3,9),(4,6),(5,7),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 11 - 2
[1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,5),(0,9),(1,4),(1,8),(2,4),(2,7),(2,8),(3,5),(3,6),(3,9),(4,6),(5,7),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 11 - 2
[1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,5),(0,9),(1,4),(1,8),(2,4),(2,7),(2,8),(3,5),(3,6),(3,9),(4,6),(5,7),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 11 - 2
[1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,6),(0,7),(1,4),(1,5),(2,5),(2,7),(3,4),(3,6),(4,8),(5,8),(6,8),(7,8)],9)
=> ? = 10 - 2
[1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,5),(0,9),(1,4),(1,8),(2,4),(2,7),(2,8),(3,5),(3,6),(3,9),(4,6),(5,7),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 11 - 2
[1,3,2,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(0,5),(0,8),(1,2),(1,3),(1,9),(2,4),(2,7),(3,7),(3,8),(4,6),(4,9),(5,6),(5,9),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 11 - 2
[1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ([(0,9),(0,11),(1,8),(1,10),(2,6),(2,7),(2,8),(2,10),(3,5),(3,7),(3,8),(3,10),(4,5),(4,6),(4,8),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(10,11)],12)
=> ? = 13 - 2
[1,3,4,5,2] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,5),(0,9),(1,4),(1,8),(2,4),(2,7),(2,8),(3,5),(3,6),(3,9),(4,6),(5,7),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 11 - 2
[1,3,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(0,11),(0,12),(1,9),(1,10),(1,13),(2,7),(2,8),(2,11),(2,12),(3,6),(3,8),(3,11),(3,12),(4,5),(4,8),(4,11),(4,12),(5,9),(5,10),(5,13),(6,9),(6,10),(6,13),(7,9),(7,10),(7,13),(8,9),(8,13),(10,12),(11,13),(12,13)],14)
=> ? = 15 - 2
[1,3,5,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(0,9),(0,10),(1,4),(1,7),(1,10),(2,3),(2,6),(2,9),(3,8),(3,11),(4,8),(4,11),(5,6),(5,7),(5,9),(5,10),(6,8),(6,11),(7,8),(7,11),(9,11),(10,11)],12)
=> ? = 13 - 2
[1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ([(0,9),(0,11),(1,8),(1,10),(2,6),(2,7),(2,8),(2,10),(3,5),(3,7),(3,8),(3,10),(4,5),(4,6),(4,8),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(10,11)],12)
=> ? = 13 - 2
[1,4,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(0,11),(0,12),(1,9),(1,10),(1,13),(2,7),(2,8),(2,11),(2,12),(3,6),(3,8),(3,11),(3,12),(4,5),(4,8),(4,11),(4,12),(5,9),(5,10),(5,13),(6,9),(6,10),(6,13),(7,9),(7,10),(7,13),(8,9),(8,13),(10,12),(11,13),(12,13)],14)
=> ? = 15 - 2
[1,4,3,2,5] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,9),(0,10),(1,8),(1,10),(2,4),(2,5),(2,7),(3,4),(3,5),(3,6),(4,8),(5,9),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10)],11)
=> ? = 12 - 2
[1,4,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(0,11),(0,12),(1,4),(1,5),(1,11),(2,3),(2,9),(2,12),(3,8),(3,10),(4,7),(4,8),(4,10),(5,6),(5,8),(5,10),(6,9),(6,11),(6,12),(7,9),(7,11),(7,12),(8,9),(10,11),(10,12)],13)
=> ? = 14 - 2
[1,4,5,2,3] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ([(0,9),(0,10),(1,5),(1,6),(1,10),(2,3),(2,5),(2,6),(3,7),(3,8),(4,5),(4,6),(4,9),(4,10),(5,8),(6,7),(7,9),(7,10),(8,9),(8,10)],11)
=> ? = 12 - 2
[1,4,5,3,2] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,9),(0,10),(1,8),(1,10),(2,4),(2,5),(2,7),(3,4),(3,5),(3,6),(4,8),(5,9),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10)],11)
=> ? = 12 - 2
[1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,5),(0,9),(1,4),(1,8),(2,4),(2,7),(2,8),(3,5),(3,6),(3,9),(4,6),(5,7),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 11 - 2
[1,5,2,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(0,9),(0,10),(1,4),(1,7),(1,10),(2,3),(2,6),(2,9),(3,8),(3,11),(4,8),(4,11),(5,6),(5,7),(5,9),(5,10),(6,8),(6,11),(7,8),(7,11),(9,11),(10,11)],12)
=> ? = 13 - 2
[1,5,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(0,11),(0,12),(1,4),(1,5),(1,11),(2,3),(2,9),(2,12),(3,8),(3,10),(4,7),(4,8),(4,10),(5,6),(5,8),(5,10),(6,9),(6,11),(6,12),(7,9),(7,11),(7,12),(8,9),(10,11),(10,12)],13)
=> ? = 14 - 2
[1,5,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(0,11),(0,12),(1,4),(1,5),(1,11),(2,3),(2,9),(2,12),(3,8),(3,10),(4,7),(4,8),(4,10),(5,6),(5,8),(5,10),(6,9),(6,11),(6,12),(7,9),(7,11),(7,12),(8,9),(10,11),(10,12)],13)
=> ? = 14 - 2
[1,5,4,2,3] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,9),(0,10),(1,8),(1,10),(2,4),(2,5),(2,7),(3,4),(3,5),(3,6),(4,8),(5,9),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10)],11)
=> ? = 12 - 2
[1,5,4,3,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 9 - 2
[2,1,3,4,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 9 - 2
[2,1,3,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(0,6),(0,9),(1,3),(1,4),(1,5),(2,3),(2,4),(2,9),(3,8),(4,7),(5,7),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 11 - 2
[2,1,4,3,5] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(0,5),(0,8),(1,2),(1,3),(1,9),(2,4),(2,7),(3,7),(3,8),(4,6),(4,9),(5,6),(5,9),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 11 - 2
[2,1,4,5,3] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,9),(0,10),(1,2),(1,3),(1,6),(2,5),(2,7),(3,7),(3,10),(4,7),(4,9),(4,10),(5,6),(5,8),(6,9),(6,10),(7,8),(8,9),(8,10)],11)
=> ? = 12 - 2
[2,1,5,3,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,9),(0,10),(1,2),(1,3),(1,6),(2,5),(2,7),(3,7),(3,10),(4,7),(4,9),(4,10),(5,6),(5,8),(6,9),(6,10),(7,8),(8,9),(8,10)],11)
=> ? = 12 - 2
[2,1,5,4,3] => ([(0,3),(0,4),(1,8),(2,7),(2,8),(3,1),(3,5),(4,2),(4,5),(5,7),(5,8),(7,6),(8,6)],9)
=> ([(0,5),(0,8),(1,4),(1,6),(2,6),(2,8),(3,4),(3,5),(3,8),(4,7),(5,7),(6,7),(7,8)],9)
=> ? = 10 - 2
[2,3,1,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,5),(0,9),(1,4),(1,8),(2,4),(2,7),(2,8),(3,5),(3,6),(3,9),(4,6),(5,7),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 11 - 2
[2,3,1,5,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,9),(0,10),(1,2),(1,3),(1,6),(2,5),(2,7),(3,7),(3,10),(4,7),(4,9),(4,10),(5,6),(5,8),(6,9),(6,10),(7,8),(8,9),(8,10)],11)
=> ? = 12 - 2
[2,3,4,1,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,5),(0,9),(1,4),(1,8),(2,4),(2,7),(2,8),(3,5),(3,6),(3,9),(4,6),(5,7),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 11 - 2
[2,3,4,5,1] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 9 - 2
[2,3,5,1,4] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ([(0,11),(0,12),(1,6),(1,7),(1,8),(2,7),(2,8),(2,10),(3,9),(3,11),(3,12),(4,5),(4,7),(4,8),(4,10),(5,9),(5,11),(5,12),(6,9),(6,11),(6,12),(7,12),(8,9),(9,10),(10,11),(10,12)],13)
=> ? = 14 - 2
[2,3,5,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,9),(0,10),(1,8),(1,10),(2,4),(2,5),(2,7),(3,4),(3,5),(3,6),(4,8),(5,9),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10)],11)
=> ? = 12 - 2
[2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(0,11),(0,12),(1,9),(1,10),(1,13),(2,7),(2,8),(2,11),(2,12),(3,6),(3,8),(3,11),(3,12),(4,5),(4,8),(4,11),(4,12),(5,9),(5,10),(5,13),(6,9),(6,10),(6,13),(7,9),(7,10),(7,13),(8,9),(8,13),(10,12),(11,13),(12,13)],14)
=> ? = 15 - 2
[2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ([(0,9),(0,13),(1,8),(1,11),(1,12),(2,4),(2,5),(2,13),(3,6),(3,7),(3,9),(3,13),(4,8),(4,10),(4,12),(5,8),(5,10),(5,11),(6,8),(6,10),(6,11),(6,12),(7,8),(7,10),(7,11),(7,12),(9,10),(9,11),(9,12),(10,13),(11,13),(12,13)],14)
=> ? = 15 - 2
[2,4,3,1,5] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(0,11),(0,12),(1,4),(1,5),(1,11),(2,3),(2,9),(2,12),(3,8),(3,10),(4,7),(4,8),(4,10),(5,6),(5,8),(5,10),(6,9),(6,11),(6,12),(7,9),(7,11),(7,12),(8,9),(10,11),(10,12)],13)
=> ? = 14 - 2
[2,4,3,5,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(0,11),(0,12),(1,4),(1,5),(1,11),(2,3),(2,9),(2,12),(3,8),(3,10),(4,7),(4,8),(4,10),(5,6),(5,8),(5,10),(6,9),(6,11),(6,12),(7,9),(7,11),(7,12),(8,9),(10,11),(10,12)],13)
=> ? = 14 - 2
[2,4,5,1,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ([(0,10),(0,12),(1,9),(1,10),(1,12),(2,3),(2,8),(2,12),(3,6),(3,11),(4,5),(4,6),(4,11),(5,9),(5,10),(5,12),(6,8),(6,9),(7,8),(7,9),(7,10),(7,12),(8,11),(9,11),(10,11),(11,12)],13)
=> ? = 14 - 2
[2,4,5,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(0,9),(0,10),(1,4),(1,7),(1,10),(2,3),(2,6),(2,9),(3,8),(3,11),(4,8),(4,11),(5,6),(5,7),(5,9),(5,10),(6,8),(6,11),(7,8),(7,11),(9,11),(10,11)],12)
=> ? = 13 - 2
[2,5,1,3,4] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ([(0,11),(0,12),(1,6),(1,7),(1,8),(2,7),(2,8),(2,10),(3,9),(3,11),(3,12),(4,5),(4,7),(4,8),(4,10),(5,9),(5,11),(5,12),(6,9),(6,11),(6,12),(7,12),(8,9),(9,10),(10,11),(10,12)],13)
=> ? = 14 - 2
[2,5,1,4,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ([(0,10),(0,12),(1,9),(1,10),(1,12),(2,3),(2,8),(2,12),(3,6),(3,11),(4,5),(4,6),(4,11),(5,9),(5,10),(5,12),(6,8),(6,9),(7,8),(7,9),(7,10),(7,12),(8,11),(9,11),(10,11),(11,12)],13)
=> ? = 14 - 2
[2,5,3,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,12),(2,7),(2,11),(2,12),(3,7),(3,9),(3,10),(4,6),(4,10),(4,12),(5,6),(5,9),(5,11),(6,14),(7,13),(9,13),(9,14),(10,13),(10,14),(11,13),(11,14),(12,13),(12,14),(13,8),(14,8)],15)
=> ([(0,13),(0,14),(1,5),(1,6),(1,14),(2,3),(2,4),(2,13),(3,10),(3,11),(3,12),(4,8),(4,9),(4,12),(5,9),(5,11),(5,12),(6,8),(6,10),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,13),(8,14),(9,13),(9,14),(10,13),(10,14),(11,13),(11,14)],15)
=> ? = 16 - 2
[2,5,3,4,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(0,11),(0,12),(1,4),(1,5),(1,11),(2,3),(2,9),(2,12),(3,8),(3,10),(4,7),(4,8),(4,10),(5,6),(5,8),(5,10),(6,9),(6,11),(6,12),(7,9),(7,11),(7,12),(8,9),(10,11),(10,12)],13)
=> ? = 14 - 2
[2,5,4,1,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ([(0,11),(0,12),(1,6),(1,7),(1,8),(2,7),(2,8),(2,10),(3,9),(3,11),(3,12),(4,5),(4,7),(4,8),(4,10),(5,9),(5,11),(5,12),(6,9),(6,11),(6,12),(7,12),(8,9),(9,10),(10,11),(10,12)],13)
=> ? = 14 - 2
[2,5,4,3,1] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,5),(0,9),(1,4),(1,8),(2,4),(2,7),(2,8),(3,5),(3,6),(3,9),(4,6),(5,7),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 11 - 2
[3,1,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,5),(0,9),(1,4),(1,8),(2,4),(2,7),(2,8),(3,5),(3,6),(3,9),(4,6),(5,7),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 11 - 2
[5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4 = 6 - 2
[1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 5 = 7 - 2
[6,5,4,3,2,1] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 5 = 7 - 2
[1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 6 = 8 - 2
Description
The number of positive eigenvalues of the Laplacian matrix of the graph. This is the number of vertices minus the number of connected components of the graph.
Mp00209: Permutations pattern posetPosets
Mp00074: Posets to graphGraphs
St001120: Graphs ⟶ ℤResult quality: 3% values known / values provided: 3%distinct values known / distinct values provided: 12%
Values
[1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 3 - 2
[2,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 3 - 2
[1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2 = 4 - 2
[1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 3 = 5 - 2
[2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 3 = 5 - 2
[2,3,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 3 = 5 - 2
[3,1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 3 = 5 - 2
[3,2,1] => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2 = 4 - 2
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 5 - 2
[1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 5 = 7 - 2
[1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> 6 = 8 - 2
[1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> 6 = 8 - 2
[1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> 6 = 8 - 2
[1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 5 = 7 - 2
[2,1,3,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 5 = 7 - 2
[2,1,4,3] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 5 = 7 - 2
[2,3,1,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> 6 = 8 - 2
[2,3,4,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 5 = 7 - 2
[2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ([(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 9 - 2
[2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> 6 = 8 - 2
[3,1,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> 6 = 8 - 2
[3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ([(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 9 - 2
[3,2,1,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 5 = 7 - 2
[3,2,4,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> 6 = 8 - 2
[3,4,1,2] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 5 = 7 - 2
[3,4,2,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 5 = 7 - 2
[4,1,2,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 5 = 7 - 2
[4,1,3,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> 6 = 8 - 2
[4,2,1,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> 6 = 8 - 2
[4,2,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> 6 = 8 - 2
[4,3,1,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 5 = 7 - 2
[4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 3 = 5 - 2
[1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4 = 6 - 2
[1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 9 - 2
[1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,5),(0,9),(1,4),(1,8),(2,4),(2,7),(2,8),(3,5),(3,6),(3,9),(4,6),(5,7),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 11 - 2
[1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,5),(0,9),(1,4),(1,8),(2,4),(2,7),(2,8),(3,5),(3,6),(3,9),(4,6),(5,7),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 11 - 2
[1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,5),(0,9),(1,4),(1,8),(2,4),(2,7),(2,8),(3,5),(3,6),(3,9),(4,6),(5,7),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 11 - 2
[1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,6),(0,7),(1,4),(1,5),(2,5),(2,7),(3,4),(3,6),(4,8),(5,8),(6,8),(7,8)],9)
=> ? = 10 - 2
[1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,5),(0,9),(1,4),(1,8),(2,4),(2,7),(2,8),(3,5),(3,6),(3,9),(4,6),(5,7),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 11 - 2
[1,3,2,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(0,5),(0,8),(1,2),(1,3),(1,9),(2,4),(2,7),(3,7),(3,8),(4,6),(4,9),(5,6),(5,9),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 11 - 2
[1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ([(0,9),(0,11),(1,8),(1,10),(2,6),(2,7),(2,8),(2,10),(3,5),(3,7),(3,8),(3,10),(4,5),(4,6),(4,8),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(10,11)],12)
=> ? = 13 - 2
[1,3,4,5,2] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,5),(0,9),(1,4),(1,8),(2,4),(2,7),(2,8),(3,5),(3,6),(3,9),(4,6),(5,7),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 11 - 2
[1,3,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(0,11),(0,12),(1,9),(1,10),(1,13),(2,7),(2,8),(2,11),(2,12),(3,6),(3,8),(3,11),(3,12),(4,5),(4,8),(4,11),(4,12),(5,9),(5,10),(5,13),(6,9),(6,10),(6,13),(7,9),(7,10),(7,13),(8,9),(8,13),(10,12),(11,13),(12,13)],14)
=> ? = 15 - 2
[1,3,5,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(0,9),(0,10),(1,4),(1,7),(1,10),(2,3),(2,6),(2,9),(3,8),(3,11),(4,8),(4,11),(5,6),(5,7),(5,9),(5,10),(6,8),(6,11),(7,8),(7,11),(9,11),(10,11)],12)
=> ? = 13 - 2
[1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ([(0,9),(0,11),(1,8),(1,10),(2,6),(2,7),(2,8),(2,10),(3,5),(3,7),(3,8),(3,10),(4,5),(4,6),(4,8),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(10,11)],12)
=> ? = 13 - 2
[1,4,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(0,11),(0,12),(1,9),(1,10),(1,13),(2,7),(2,8),(2,11),(2,12),(3,6),(3,8),(3,11),(3,12),(4,5),(4,8),(4,11),(4,12),(5,9),(5,10),(5,13),(6,9),(6,10),(6,13),(7,9),(7,10),(7,13),(8,9),(8,13),(10,12),(11,13),(12,13)],14)
=> ? = 15 - 2
[1,4,3,2,5] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,9),(0,10),(1,8),(1,10),(2,4),(2,5),(2,7),(3,4),(3,5),(3,6),(4,8),(5,9),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10)],11)
=> ? = 12 - 2
[1,4,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(0,11),(0,12),(1,4),(1,5),(1,11),(2,3),(2,9),(2,12),(3,8),(3,10),(4,7),(4,8),(4,10),(5,6),(5,8),(5,10),(6,9),(6,11),(6,12),(7,9),(7,11),(7,12),(8,9),(10,11),(10,12)],13)
=> ? = 14 - 2
[1,4,5,2,3] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ([(0,9),(0,10),(1,5),(1,6),(1,10),(2,3),(2,5),(2,6),(3,7),(3,8),(4,5),(4,6),(4,9),(4,10),(5,8),(6,7),(7,9),(7,10),(8,9),(8,10)],11)
=> ? = 12 - 2
[1,4,5,3,2] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,9),(0,10),(1,8),(1,10),(2,4),(2,5),(2,7),(3,4),(3,5),(3,6),(4,8),(5,9),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10)],11)
=> ? = 12 - 2
[1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,5),(0,9),(1,4),(1,8),(2,4),(2,7),(2,8),(3,5),(3,6),(3,9),(4,6),(5,7),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 11 - 2
[1,5,2,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(0,9),(0,10),(1,4),(1,7),(1,10),(2,3),(2,6),(2,9),(3,8),(3,11),(4,8),(4,11),(5,6),(5,7),(5,9),(5,10),(6,8),(6,11),(7,8),(7,11),(9,11),(10,11)],12)
=> ? = 13 - 2
[1,5,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(0,11),(0,12),(1,4),(1,5),(1,11),(2,3),(2,9),(2,12),(3,8),(3,10),(4,7),(4,8),(4,10),(5,6),(5,8),(5,10),(6,9),(6,11),(6,12),(7,9),(7,11),(7,12),(8,9),(10,11),(10,12)],13)
=> ? = 14 - 2
[1,5,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(0,11),(0,12),(1,4),(1,5),(1,11),(2,3),(2,9),(2,12),(3,8),(3,10),(4,7),(4,8),(4,10),(5,6),(5,8),(5,10),(6,9),(6,11),(6,12),(7,9),(7,11),(7,12),(8,9),(10,11),(10,12)],13)
=> ? = 14 - 2
[1,5,4,2,3] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,9),(0,10),(1,8),(1,10),(2,4),(2,5),(2,7),(3,4),(3,5),(3,6),(4,8),(5,9),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10)],11)
=> ? = 12 - 2
[1,5,4,3,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 9 - 2
[2,1,3,4,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 9 - 2
[2,1,3,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(0,6),(0,9),(1,3),(1,4),(1,5),(2,3),(2,4),(2,9),(3,8),(4,7),(5,7),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 11 - 2
[2,1,4,3,5] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(0,5),(0,8),(1,2),(1,3),(1,9),(2,4),(2,7),(3,7),(3,8),(4,6),(4,9),(5,6),(5,9),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 11 - 2
[2,1,4,5,3] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,9),(0,10),(1,2),(1,3),(1,6),(2,5),(2,7),(3,7),(3,10),(4,7),(4,9),(4,10),(5,6),(5,8),(6,9),(6,10),(7,8),(8,9),(8,10)],11)
=> ? = 12 - 2
[2,1,5,3,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,9),(0,10),(1,2),(1,3),(1,6),(2,5),(2,7),(3,7),(3,10),(4,7),(4,9),(4,10),(5,6),(5,8),(6,9),(6,10),(7,8),(8,9),(8,10)],11)
=> ? = 12 - 2
[2,1,5,4,3] => ([(0,3),(0,4),(1,8),(2,7),(2,8),(3,1),(3,5),(4,2),(4,5),(5,7),(5,8),(7,6),(8,6)],9)
=> ([(0,5),(0,8),(1,4),(1,6),(2,6),(2,8),(3,4),(3,5),(3,8),(4,7),(5,7),(6,7),(7,8)],9)
=> ? = 10 - 2
[2,3,1,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,5),(0,9),(1,4),(1,8),(2,4),(2,7),(2,8),(3,5),(3,6),(3,9),(4,6),(5,7),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 11 - 2
[2,3,1,5,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,9),(0,10),(1,2),(1,3),(1,6),(2,5),(2,7),(3,7),(3,10),(4,7),(4,9),(4,10),(5,6),(5,8),(6,9),(6,10),(7,8),(8,9),(8,10)],11)
=> ? = 12 - 2
[2,3,4,1,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,5),(0,9),(1,4),(1,8),(2,4),(2,7),(2,8),(3,5),(3,6),(3,9),(4,6),(5,7),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 11 - 2
[2,3,4,5,1] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 9 - 2
[2,3,5,1,4] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ([(0,11),(0,12),(1,6),(1,7),(1,8),(2,7),(2,8),(2,10),(3,9),(3,11),(3,12),(4,5),(4,7),(4,8),(4,10),(5,9),(5,11),(5,12),(6,9),(6,11),(6,12),(7,12),(8,9),(9,10),(10,11),(10,12)],13)
=> ? = 14 - 2
[2,3,5,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,9),(0,10),(1,8),(1,10),(2,4),(2,5),(2,7),(3,4),(3,5),(3,6),(4,8),(5,9),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10)],11)
=> ? = 12 - 2
[2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(0,11),(0,12),(1,9),(1,10),(1,13),(2,7),(2,8),(2,11),(2,12),(3,6),(3,8),(3,11),(3,12),(4,5),(4,8),(4,11),(4,12),(5,9),(5,10),(5,13),(6,9),(6,10),(6,13),(7,9),(7,10),(7,13),(8,9),(8,13),(10,12),(11,13),(12,13)],14)
=> ? = 15 - 2
[2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ([(0,9),(0,13),(1,8),(1,11),(1,12),(2,4),(2,5),(2,13),(3,6),(3,7),(3,9),(3,13),(4,8),(4,10),(4,12),(5,8),(5,10),(5,11),(6,8),(6,10),(6,11),(6,12),(7,8),(7,10),(7,11),(7,12),(9,10),(9,11),(9,12),(10,13),(11,13),(12,13)],14)
=> ? = 15 - 2
[2,4,3,1,5] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(0,11),(0,12),(1,4),(1,5),(1,11),(2,3),(2,9),(2,12),(3,8),(3,10),(4,7),(4,8),(4,10),(5,6),(5,8),(5,10),(6,9),(6,11),(6,12),(7,9),(7,11),(7,12),(8,9),(10,11),(10,12)],13)
=> ? = 14 - 2
[2,4,3,5,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(0,11),(0,12),(1,4),(1,5),(1,11),(2,3),(2,9),(2,12),(3,8),(3,10),(4,7),(4,8),(4,10),(5,6),(5,8),(5,10),(6,9),(6,11),(6,12),(7,9),(7,11),(7,12),(8,9),(10,11),(10,12)],13)
=> ? = 14 - 2
[2,4,5,1,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ([(0,10),(0,12),(1,9),(1,10),(1,12),(2,3),(2,8),(2,12),(3,6),(3,11),(4,5),(4,6),(4,11),(5,9),(5,10),(5,12),(6,8),(6,9),(7,8),(7,9),(7,10),(7,12),(8,11),(9,11),(10,11),(11,12)],13)
=> ? = 14 - 2
[2,4,5,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(0,9),(0,10),(1,4),(1,7),(1,10),(2,3),(2,6),(2,9),(3,8),(3,11),(4,8),(4,11),(5,6),(5,7),(5,9),(5,10),(6,8),(6,11),(7,8),(7,11),(9,11),(10,11)],12)
=> ? = 13 - 2
[2,5,1,3,4] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ([(0,11),(0,12),(1,6),(1,7),(1,8),(2,7),(2,8),(2,10),(3,9),(3,11),(3,12),(4,5),(4,7),(4,8),(4,10),(5,9),(5,11),(5,12),(6,9),(6,11),(6,12),(7,12),(8,9),(9,10),(10,11),(10,12)],13)
=> ? = 14 - 2
[2,5,1,4,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ([(0,10),(0,12),(1,9),(1,10),(1,12),(2,3),(2,8),(2,12),(3,6),(3,11),(4,5),(4,6),(4,11),(5,9),(5,10),(5,12),(6,8),(6,9),(7,8),(7,9),(7,10),(7,12),(8,11),(9,11),(10,11),(11,12)],13)
=> ? = 14 - 2
[2,5,3,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,12),(2,7),(2,11),(2,12),(3,7),(3,9),(3,10),(4,6),(4,10),(4,12),(5,6),(5,9),(5,11),(6,14),(7,13),(9,13),(9,14),(10,13),(10,14),(11,13),(11,14),(12,13),(12,14),(13,8),(14,8)],15)
=> ([(0,13),(0,14),(1,5),(1,6),(1,14),(2,3),(2,4),(2,13),(3,10),(3,11),(3,12),(4,8),(4,9),(4,12),(5,9),(5,11),(5,12),(6,8),(6,10),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,13),(8,14),(9,13),(9,14),(10,13),(10,14),(11,13),(11,14)],15)
=> ? = 16 - 2
[2,5,3,4,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(0,11),(0,12),(1,4),(1,5),(1,11),(2,3),(2,9),(2,12),(3,8),(3,10),(4,7),(4,8),(4,10),(5,6),(5,8),(5,10),(6,9),(6,11),(6,12),(7,9),(7,11),(7,12),(8,9),(10,11),(10,12)],13)
=> ? = 14 - 2
[2,5,4,1,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ([(0,11),(0,12),(1,6),(1,7),(1,8),(2,7),(2,8),(2,10),(3,9),(3,11),(3,12),(4,5),(4,7),(4,8),(4,10),(5,9),(5,11),(5,12),(6,9),(6,11),(6,12),(7,12),(8,9),(9,10),(10,11),(10,12)],13)
=> ? = 14 - 2
[2,5,4,3,1] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,5),(0,9),(1,4),(1,8),(2,4),(2,7),(2,8),(3,5),(3,6),(3,9),(4,6),(5,7),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 11 - 2
[3,1,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,5),(0,9),(1,4),(1,8),(2,4),(2,7),(2,8),(3,5),(3,6),(3,9),(4,6),(5,7),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 11 - 2
[5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4 = 6 - 2
[1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 5 = 7 - 2
[6,5,4,3,2,1] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 5 = 7 - 2
[1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 6 = 8 - 2
Description
The length of a longest path in a graph.
Matching statistic: St000479
Mp00209: Permutations pattern posetPosets
Mp00198: Posets incomparability graphGraphs
Mp00157: Graphs connected complementGraphs
St000479: Graphs ⟶ ℤResult quality: 3% values known / values provided: 3%distinct values known / distinct values provided: 12%
Values
[1,2] => ([(0,1)],2)
=> ([],2)
=> ([],2)
=> 2 = 3 - 1
[2,1] => ([(0,1)],2)
=> ([],2)
=> ([],2)
=> 2 = 3 - 1
[1,2,3] => ([(0,2),(2,1)],3)
=> ([],3)
=> ([],3)
=> 3 = 4 - 1
[1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 4 = 5 - 1
[2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 4 = 5 - 1
[2,3,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 4 = 5 - 1
[3,1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 4 = 5 - 1
[3,2,1] => ([(0,2),(2,1)],3)
=> ([],3)
=> ([],3)
=> 3 = 4 - 1
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],4)
=> 4 = 5 - 1
[1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 6 = 7 - 1
[1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> 7 = 8 - 1
[1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> 7 = 8 - 1
[1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> 7 = 8 - 1
[1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 6 = 7 - 1
[2,1,3,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 6 = 7 - 1
[2,1,4,3] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> ([(2,5),(3,4)],6)
=> 6 = 7 - 1
[2,3,1,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> 7 = 8 - 1
[2,3,4,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 6 = 7 - 1
[2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ([(2,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(2,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 9 - 1
[2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> 7 = 8 - 1
[3,1,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> 7 = 8 - 1
[3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ([(2,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(2,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 9 - 1
[3,2,1,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 6 = 7 - 1
[3,2,4,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> 7 = 8 - 1
[3,4,1,2] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> ([(2,5),(3,4)],6)
=> 6 = 7 - 1
[3,4,2,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 6 = 7 - 1
[4,1,2,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 6 = 7 - 1
[4,1,3,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> 7 = 8 - 1
[4,2,1,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> 7 = 8 - 1
[4,2,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> 7 = 8 - 1
[4,3,1,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 6 = 7 - 1
[4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],4)
=> 4 = 5 - 1
[1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],5)
=> 5 = 6 - 1
[1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(2,5),(2,7),(3,4),(3,6),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 9 - 1
[1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ([(2,7),(2,9),(3,6),(3,8),(3,9),(4,5),(4,6),(4,7),(4,9),(5,6),(5,8),(5,9),(6,8),(7,8),(7,9),(8,9)],10)
=> ? = 11 - 1
[1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ([(2,7),(2,9),(3,6),(3,8),(3,9),(4,5),(4,6),(4,7),(4,9),(5,6),(5,8),(5,9),(6,8),(7,8),(7,9),(8,9)],10)
=> ? = 11 - 1
[1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ([(2,7),(2,9),(3,6),(3,8),(3,9),(4,5),(4,6),(4,7),(4,9),(5,6),(5,8),(5,9),(6,8),(7,8),(7,9),(8,9)],10)
=> ? = 11 - 1
[1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(2,5),(2,8),(3,4),(3,8),(4,7),(5,7),(6,7),(6,8),(7,8)],9)
=> ([(2,7),(2,8),(3,5),(3,6),(4,5),(4,6),(4,7),(4,8),(5,6),(5,8),(6,7),(7,8)],9)
=> ? = 10 - 1
[1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ([(2,7),(2,9),(3,6),(3,8),(3,9),(4,5),(4,6),(4,7),(4,9),(5,6),(5,8),(5,9),(6,8),(7,8),(7,9),(8,9)],10)
=> ? = 11 - 1
[1,3,2,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(2,5),(3,6),(3,9),(4,7),(4,8),(5,9),(6,8),(6,9),(7,8),(7,9)],10)
=> ([(2,5),(2,8),(2,9),(3,4),(3,6),(3,8),(3,9),(4,6),(4,7),(4,9),(5,6),(5,7),(5,9),(6,7),(6,8),(7,8),(7,9),(8,9)],10)
=> ? = 11 - 1
[1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ([(2,3),(3,7),(3,11),(4,5),(4,6),(4,10),(4,11),(5,6),(5,9),(5,11),(6,8),(6,11),(7,8),(7,9),(7,10),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ([(2,9),(2,11),(3,7),(3,8),(3,10),(3,11),(4,6),(4,8),(4,10),(4,11),(5,6),(5,7),(5,10),(5,11),(6,9),(6,10),(6,11),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,11)],12)
=> ? = 13 - 1
[1,3,4,5,2] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ([(2,7),(2,9),(3,6),(3,8),(3,9),(4,5),(4,6),(4,7),(4,9),(5,6),(5,8),(5,9),(6,8),(7,8),(7,9),(8,9)],10)
=> ? = 11 - 1
[1,3,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(2,3),(3,9),(4,9),(4,11),(4,12),(4,13),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,10),(6,12),(6,13),(7,8),(7,10),(7,11),(7,13),(8,10),(8,11),(8,12),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13),(11,12),(11,13),(12,13)],14)
=> ([(2,9),(2,11),(2,12),(2,13),(3,8),(3,10),(3,12),(3,13),(4,7),(4,10),(4,12),(4,13),(5,6),(5,10),(5,12),(5,13),(6,9),(6,11),(6,12),(6,13),(7,9),(7,11),(7,12),(7,13),(8,9),(8,11),(8,12),(8,13),(9,13),(10,11),(10,12),(10,13),(11,12),(11,13)],14)
=> ? = 15 - 1
[1,3,5,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(2,3),(2,11),(3,10),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,10),(6,7),(6,8),(6,11),(7,8),(7,9),(7,10),(8,9),(8,11),(9,10),(9,11),(10,11)],12)
=> ([(2,6),(2,8),(2,11),(3,5),(3,7),(3,10),(4,7),(4,8),(4,10),(4,11),(5,9),(5,10),(5,11),(6,9),(6,10),(6,11),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11)],12)
=> ? = 13 - 1
[1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ([(2,3),(3,7),(3,11),(4,5),(4,6),(4,10),(4,11),(5,6),(5,9),(5,11),(6,8),(6,11),(7,8),(7,9),(7,10),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ([(2,9),(2,11),(3,7),(3,8),(3,10),(3,11),(4,6),(4,8),(4,10),(4,11),(5,6),(5,7),(5,10),(5,11),(6,9),(6,10),(6,11),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,11)],12)
=> ? = 13 - 1
[1,4,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(2,3),(3,9),(4,9),(4,11),(4,12),(4,13),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,10),(6,12),(6,13),(7,8),(7,10),(7,11),(7,13),(8,10),(8,11),(8,12),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13),(11,12),(11,13),(12,13)],14)
=> ([(2,9),(2,11),(2,12),(2,13),(3,8),(3,10),(3,12),(3,13),(4,7),(4,10),(4,12),(4,13),(5,6),(5,10),(5,12),(5,13),(6,9),(6,11),(6,12),(6,13),(7,9),(7,11),(7,12),(7,13),(8,9),(8,11),(8,12),(8,13),(9,13),(10,11),(10,12),(10,13),(11,12),(11,13)],14)
=> ? = 15 - 1
[1,4,3,2,5] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(2,10),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(7,8),(7,10),(8,10),(9,10)],11)
=> ([(2,8),(2,10),(3,6),(3,7),(3,9),(4,7),(4,8),(4,9),(4,10),(5,6),(5,8),(5,9),(5,10),(6,9),(6,10),(7,9),(7,10),(8,9),(8,10)],11)
=> ? = 12 - 1
[1,4,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ([(2,8),(2,9),(2,11),(3,6),(3,10),(3,12),(4,9),(4,10),(4,11),(4,12),(5,8),(5,10),(5,11),(5,12),(6,7),(6,11),(6,12),(7,8),(7,9),(7,11),(7,12),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12)],13)
=> ? = 14 - 1
[1,4,5,2,3] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ([(2,3),(3,10),(4,5),(4,8),(4,9),(5,7),(5,9),(6,7),(6,8),(6,9),(6,10),(7,8),(7,10),(8,10),(9,10)],11)
=> ([(2,7),(2,8),(2,10),(3,4),(3,5),(3,9),(3,10),(4,8),(4,9),(4,10),(5,7),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,9),(7,10),(8,9),(8,10)],11)
=> ? = 12 - 1
[1,4,5,3,2] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(2,10),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(7,8),(7,10),(8,10),(9,10)],11)
=> ([(2,8),(2,10),(3,6),(3,7),(3,9),(4,7),(4,8),(4,9),(4,10),(5,6),(5,8),(5,9),(5,10),(6,9),(6,10),(7,9),(7,10),(8,9),(8,10)],11)
=> ? = 12 - 1
[1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ([(2,7),(2,9),(3,6),(3,8),(3,9),(4,5),(4,6),(4,7),(4,9),(5,6),(5,8),(5,9),(6,8),(7,8),(7,9),(8,9)],10)
=> ? = 11 - 1
[1,5,2,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(2,3),(2,11),(3,10),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,10),(6,7),(6,8),(6,11),(7,8),(7,9),(7,10),(8,9),(8,11),(9,10),(9,11),(10,11)],12)
=> ([(2,6),(2,8),(2,11),(3,5),(3,7),(3,10),(4,7),(4,8),(4,10),(4,11),(5,9),(5,10),(5,11),(6,9),(6,10),(6,11),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11)],12)
=> ? = 13 - 1
[1,5,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ([(2,8),(2,9),(2,11),(3,6),(3,10),(3,12),(4,9),(4,10),(4,11),(4,12),(5,8),(5,10),(5,11),(5,12),(6,7),(6,11),(6,12),(7,8),(7,9),(7,11),(7,12),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12)],13)
=> ? = 14 - 1
[1,5,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ([(2,8),(2,9),(2,11),(3,6),(3,10),(3,12),(4,9),(4,10),(4,11),(4,12),(5,8),(5,10),(5,11),(5,12),(6,7),(6,11),(6,12),(7,8),(7,9),(7,11),(7,12),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12)],13)
=> ? = 14 - 1
[1,5,4,2,3] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(2,10),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(7,8),(7,10),(8,10),(9,10)],11)
=> ([(2,8),(2,10),(3,6),(3,7),(3,9),(4,7),(4,8),(4,9),(4,10),(5,6),(5,8),(5,9),(5,10),(6,9),(6,10),(7,9),(7,10),(8,9),(8,10)],11)
=> ? = 12 - 1
[1,5,4,3,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(2,5),(2,7),(3,4),(3,6),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 9 - 1
[2,1,3,4,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(2,5),(2,7),(3,4),(3,6),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 9 - 1
[2,1,3,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(2,3),(3,9),(4,5),(4,7),(4,8),(5,6),(5,8),(6,7),(6,9),(7,9),(8,9)],10)
=> ([(2,6),(2,7),(2,9),(3,4),(3,5),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9)],10)
=> ? = 11 - 1
[2,1,4,3,5] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(2,5),(3,6),(3,9),(4,7),(4,8),(5,9),(6,8),(6,9),(7,8),(7,9)],10)
=> ([(2,5),(2,8),(2,9),(3,4),(3,6),(3,8),(3,9),(4,6),(4,7),(4,9),(5,6),(5,7),(5,9),(6,7),(6,8),(7,8),(7,9),(8,9)],10)
=> ? = 11 - 1
[2,1,4,5,3] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(3,10),(4,6),(4,7),(4,8),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ([(2,7),(2,8),(2,10),(3,8),(3,9),(3,10),(4,5),(4,6),(4,9),(4,10),(5,7),(5,9),(5,10),(6,8),(6,9),(6,10),(7,9),(7,10),(8,9),(8,10)],11)
=> ? = 12 - 1
[2,1,5,3,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(3,10),(4,6),(4,7),(4,8),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ([(2,7),(2,8),(2,10),(3,8),(3,9),(3,10),(4,5),(4,6),(4,9),(4,10),(5,7),(5,9),(5,10),(6,8),(6,9),(6,10),(7,9),(7,10),(8,9),(8,10)],11)
=> ? = 12 - 1
[2,1,5,4,3] => ([(0,3),(0,4),(1,8),(2,7),(2,8),(3,1),(3,5),(4,2),(4,5),(5,7),(5,8),(7,6),(8,6)],9)
=> ([(2,6),(3,4),(3,8),(4,7),(5,7),(5,8),(6,8),(7,8)],9)
=> ([(2,7),(2,8),(3,5),(3,6),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 10 - 1
[2,3,1,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ([(2,7),(2,9),(3,6),(3,8),(3,9),(4,5),(4,6),(4,7),(4,9),(5,6),(5,8),(5,9),(6,8),(7,8),(7,9),(8,9)],10)
=> ? = 11 - 1
[2,3,1,5,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(3,10),(4,6),(4,7),(4,8),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ([(2,7),(2,8),(2,10),(3,8),(3,9),(3,10),(4,5),(4,6),(4,9),(4,10),(5,7),(5,9),(5,10),(6,8),(6,9),(6,10),(7,9),(7,10),(8,9),(8,10)],11)
=> ? = 12 - 1
[2,3,4,1,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ([(2,7),(2,9),(3,6),(3,8),(3,9),(4,5),(4,6),(4,7),(4,9),(5,6),(5,8),(5,9),(6,8),(7,8),(7,9),(8,9)],10)
=> ? = 11 - 1
[2,3,4,5,1] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(2,5),(2,7),(3,4),(3,6),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 9 - 1
[2,3,5,1,4] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ([(2,3),(3,11),(4,6),(4,9),(4,10),(4,11),(5,7),(5,8),(5,10),(5,11),(5,12),(6,8),(6,9),(6,10),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,11),(8,12),(9,10),(9,12),(10,12),(11,12)],13)
=> ([(2,10),(2,11),(2,12),(3,4),(3,5),(3,11),(3,12),(4,10),(4,11),(4,12),(5,6),(5,8),(5,12),(6,9),(6,11),(6,12),(7,8),(7,10),(7,11),(7,12),(8,9),(8,11),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12)],13)
=> ? = 14 - 1
[2,3,5,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(2,10),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(7,8),(7,10),(8,10),(9,10)],11)
=> ([(2,8),(2,10),(3,6),(3,7),(3,9),(4,7),(4,8),(4,9),(4,10),(5,6),(5,8),(5,9),(5,10),(6,9),(6,10),(7,9),(7,10),(8,9),(8,10)],11)
=> ? = 12 - 1
[2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(2,3),(3,9),(4,9),(4,11),(4,12),(4,13),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,10),(6,12),(6,13),(7,8),(7,10),(7,11),(7,13),(8,10),(8,11),(8,12),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13),(11,12),(11,13),(12,13)],14)
=> ([(2,9),(2,11),(2,12),(2,13),(3,8),(3,10),(3,12),(3,13),(4,7),(4,10),(4,12),(4,13),(5,6),(5,10),(5,12),(5,13),(6,9),(6,11),(6,12),(6,13),(7,9),(7,11),(7,12),(7,13),(8,9),(8,11),(8,12),(8,13),(9,13),(10,11),(10,12),(10,13),(11,12),(11,13)],14)
=> ? = 15 - 1
[2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ([(2,3),(3,13),(4,5),(4,6),(4,11),(4,12),(4,13),(5,6),(5,10),(5,11),(5,13),(6,9),(6,11),(6,13),(7,8),(7,9),(7,10),(7,12),(7,13),(8,9),(8,10),(8,12),(8,13),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12),(11,13),(12,13)],14)
=> ([(2,5),(2,6),(2,13),(3,8),(3,9),(3,12),(3,13),(4,10),(4,11),(4,12),(4,13),(5,7),(5,11),(5,12),(5,13),(6,7),(6,10),(6,12),(6,13),(7,8),(7,9),(7,12),(7,13),(8,10),(8,11),(8,12),(8,13),(9,10),(9,11),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13)],14)
=> ? = 15 - 1
[2,4,3,1,5] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ([(2,8),(2,9),(2,11),(3,6),(3,10),(3,12),(4,9),(4,10),(4,11),(4,12),(5,8),(5,10),(5,11),(5,12),(6,7),(6,11),(6,12),(7,8),(7,9),(7,11),(7,12),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12)],13)
=> ? = 14 - 1
[2,4,3,5,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ([(2,8),(2,9),(2,11),(3,6),(3,10),(3,12),(4,9),(4,10),(4,11),(4,12),(5,8),(5,10),(5,11),(5,12),(6,7),(6,11),(6,12),(7,8),(7,9),(7,11),(7,12),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12)],13)
=> ? = 14 - 1
[2,4,5,1,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ([(2,3),(3,12),(4,7),(4,9),(4,11),(4,12),(5,6),(5,8),(5,10),(5,12),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ([(2,10),(2,11),(2,12),(3,7),(3,8),(3,12),(4,5),(4,10),(4,11),(4,12),(5,9),(5,11),(5,12),(6,8),(6,10),(6,11),(6,12),(7,9),(7,11),(7,12),(8,9),(8,11),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12)],13)
=> ? = 14 - 1
[2,4,5,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(2,3),(2,11),(3,10),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,10),(6,7),(6,8),(6,11),(7,8),(7,9),(7,10),(8,9),(8,11),(9,10),(9,11),(10,11)],12)
=> ([(2,6),(2,8),(2,11),(3,5),(3,7),(3,10),(4,7),(4,8),(4,10),(4,11),(5,9),(5,10),(5,11),(6,9),(6,10),(6,11),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11),(9,10),(9,11)],12)
=> ? = 13 - 1
[2,5,1,3,4] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ([(2,3),(3,11),(4,6),(4,9),(4,10),(4,11),(5,7),(5,8),(5,10),(5,11),(5,12),(6,8),(6,9),(6,10),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,11),(8,12),(9,10),(9,12),(10,12),(11,12)],13)
=> ([(2,10),(2,11),(2,12),(3,4),(3,5),(3,11),(3,12),(4,10),(4,11),(4,12),(5,6),(5,8),(5,12),(6,9),(6,11),(6,12),(7,8),(7,10),(7,11),(7,12),(8,9),(8,11),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12)],13)
=> ? = 14 - 1
[2,5,1,4,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ([(2,3),(3,12),(4,7),(4,9),(4,11),(4,12),(5,6),(5,8),(5,10),(5,12),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ([(2,10),(2,11),(2,12),(3,7),(3,8),(3,12),(4,5),(4,10),(4,11),(4,12),(5,9),(5,11),(5,12),(6,8),(6,10),(6,11),(6,12),(7,9),(7,11),(7,12),(8,9),(8,11),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12)],13)
=> ? = 14 - 1
[2,5,3,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,12),(2,7),(2,11),(2,12),(3,7),(3,9),(3,10),(4,6),(4,10),(4,12),(5,6),(5,9),(5,11),(6,14),(7,13),(9,13),(9,14),(10,13),(10,14),(11,13),(11,14),(12,13),(12,14),(13,8),(14,8)],15)
=> ([(2,3),(2,14),(3,13),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(5,6),(5,7),(5,8),(5,10),(5,12),(5,13),(5,14),(6,7),(6,8),(6,10),(6,11),(6,13),(6,14),(7,8),(7,9),(7,11),(7,13),(7,14),(8,9),(8,12),(8,13),(8,14),(9,10),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13),(11,12),(11,14),(12,14),(13,14)],15)
=> ([(2,10),(2,11),(2,14),(3,8),(3,9),(3,13),(4,9),(4,11),(4,12),(4,13),(4,14),(5,9),(5,10),(5,12),(5,13),(5,14),(6,8),(6,10),(6,12),(6,13),(6,14),(7,8),(7,11),(7,12),(7,13),(7,14),(8,13),(8,14),(9,13),(9,14),(10,13),(10,14),(11,13),(11,14),(12,13),(12,14)],15)
=> ? = 16 - 1
[2,5,3,4,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ([(2,8),(2,9),(2,11),(3,6),(3,10),(3,12),(4,9),(4,10),(4,11),(4,12),(5,8),(5,10),(5,11),(5,12),(6,7),(6,11),(6,12),(7,8),(7,9),(7,11),(7,12),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12)],13)
=> ? = 14 - 1
[2,5,4,1,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ([(2,3),(3,11),(4,6),(4,9),(4,10),(4,11),(5,7),(5,8),(5,10),(5,11),(5,12),(6,8),(6,9),(6,10),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,11),(8,12),(9,10),(9,12),(10,12),(11,12)],13)
=> ([(2,10),(2,11),(2,12),(3,4),(3,5),(3,11),(3,12),(4,10),(4,11),(4,12),(5,6),(5,8),(5,12),(6,9),(6,11),(6,12),(7,8),(7,10),(7,11),(7,12),(8,9),(8,11),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12)],13)
=> ? = 14 - 1
[2,5,4,3,1] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ([(2,7),(2,9),(3,6),(3,8),(3,9),(4,5),(4,6),(4,7),(4,9),(5,6),(5,8),(5,9),(6,8),(7,8),(7,9),(8,9)],10)
=> ? = 11 - 1
[3,1,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ([(2,7),(2,9),(3,6),(3,8),(3,9),(4,5),(4,6),(4,7),(4,9),(5,6),(5,8),(5,9),(6,8),(7,8),(7,9),(8,9)],10)
=> ? = 11 - 1
[5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],5)
=> 5 = 6 - 1
[1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],6)
=> 6 = 7 - 1
[6,5,4,3,2,1] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([],6)
=> 6 = 7 - 1
[1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([],7)
=> ([],7)
=> 7 = 8 - 1
Description
The Ramsey number of a graph. This is the smallest integer $n$ such that every two-colouring of the edges of the complete graph $K_n$ contains a (not necessarily induced) monochromatic copy of the given graph. [1] Thus, the Ramsey number of the complete graph $K_n$ is the ordinary Ramsey number $R(n,n)$. Very few of these numbers are known, in particular, it is only known that $43\leq R(5,5)\leq 48$. [2,3,4,5]
Matching statistic: St000718
Mp00209: Permutations pattern posetPosets
Mp00198: Posets incomparability graphGraphs
Mp00111: Graphs complementGraphs
St000718: Graphs ⟶ ℤResult quality: 3% values known / values provided: 3%distinct values known / distinct values provided: 12%
Values
[1,2] => ([(0,1)],2)
=> ([],2)
=> ([(0,1)],2)
=> 2 = 3 - 1
[2,1] => ([(0,1)],2)
=> ([],2)
=> ([(0,1)],2)
=> 2 = 3 - 1
[1,2,3] => ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 4 - 1
[1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
[2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
[2,3,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
[3,1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
[3,2,1] => ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 4 - 1
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
[1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
[1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 8 - 1
[1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 8 - 1
[1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 8 - 1
[1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
[2,1,3,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
[2,1,4,3] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
[2,3,1,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 8 - 1
[2,3,4,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
[2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ([(2,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 9 - 1
[2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 8 - 1
[3,1,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 8 - 1
[3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ([(2,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 9 - 1
[3,2,1,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
[3,2,4,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 8 - 1
[3,4,1,2] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
[3,4,2,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
[4,1,2,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
[4,1,3,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 8 - 1
[4,2,1,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 8 - 1
[4,2,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 8 - 1
[4,3,1,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
[4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 5 - 1
[1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
[1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 9 - 1
[1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ([(0,5),(0,7),(0,8),(0,9),(1,4),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,7),(2,8),(2,9),(3,4),(3,6),(3,7),(3,8),(3,9),(4,6),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 11 - 1
[1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ([(0,5),(0,7),(0,8),(0,9),(1,4),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,7),(2,8),(2,9),(3,4),(3,6),(3,7),(3,8),(3,9),(4,6),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 11 - 1
[1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ([(0,5),(0,7),(0,8),(0,9),(1,4),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,7),(2,8),(2,9),(3,4),(3,6),(3,7),(3,8),(3,9),(4,6),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 11 - 1
[1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(2,5),(2,8),(3,4),(3,8),(4,7),(5,7),(6,7),(6,8),(7,8)],9)
=> ([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 10 - 1
[1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ([(0,5),(0,7),(0,8),(0,9),(1,4),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,7),(2,8),(2,9),(3,4),(3,6),(3,7),(3,8),(3,9),(4,6),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 11 - 1
[1,3,2,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(2,5),(3,6),(3,9),(4,7),(4,8),(5,9),(6,8),(6,9),(7,8),(7,9)],10)
=> ([(0,3),(0,6),(0,7),(0,8),(0,9),(1,2),(1,4),(1,6),(1,7),(1,8),(1,9),(2,4),(2,5),(2,7),(2,8),(2,9),(3,4),(3,5),(3,7),(3,8),(3,9),(4,5),(4,6),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 11 - 1
[1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ([(2,3),(3,7),(3,11),(4,5),(4,6),(4,10),(4,11),(5,6),(5,9),(5,11),(6,8),(6,11),(7,8),(7,9),(7,10),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ([(0,7),(0,9),(0,10),(0,11),(1,5),(1,6),(1,8),(1,9),(1,10),(1,11),(2,4),(2,6),(2,8),(2,9),(2,10),(2,11),(3,4),(3,5),(3,8),(3,9),(3,10),(3,11),(4,7),(4,8),(4,9),(4,10),(4,11),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,9),(6,10),(6,11),(7,9),(7,10),(7,11),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 13 - 1
[1,3,4,5,2] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ([(0,5),(0,7),(0,8),(0,9),(1,4),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,7),(2,8),(2,9),(3,4),(3,6),(3,7),(3,8),(3,9),(4,6),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 11 - 1
[1,3,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(2,3),(3,9),(4,9),(4,11),(4,12),(4,13),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,10),(6,12),(6,13),(7,8),(7,10),(7,11),(7,13),(8,10),(8,11),(8,12),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13),(11,12),(11,13),(12,13)],14)
=> ([(0,7),(0,9),(0,10),(0,11),(0,12),(0,13),(1,6),(1,8),(1,10),(1,11),(1,12),(1,13),(2,5),(2,8),(2,10),(2,11),(2,12),(2,13),(3,4),(3,8),(3,10),(3,11),(3,12),(3,13),(4,7),(4,9),(4,10),(4,11),(4,12),(4,13),(5,7),(5,9),(5,10),(5,11),(5,12),(5,13),(6,7),(6,9),(6,10),(6,11),(6,12),(6,13),(7,11),(7,12),(7,13),(8,9),(8,10),(8,11),(8,12),(8,13),(9,10),(9,11),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,13)],14)
=> ? = 15 - 1
[1,3,5,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(2,3),(2,11),(3,10),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,10),(6,7),(6,8),(6,11),(7,8),(7,9),(7,10),(8,9),(8,11),(9,10),(9,11),(10,11)],12)
=> ([(0,4),(0,6),(0,9),(0,10),(0,11),(1,3),(1,5),(1,8),(1,10),(1,11),(2,5),(2,6),(2,8),(2,9),(2,10),(2,11),(3,7),(3,8),(3,9),(3,10),(3,11),(4,7),(4,8),(4,9),(4,10),(4,11),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 13 - 1
[1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ([(2,3),(3,7),(3,11),(4,5),(4,6),(4,10),(4,11),(5,6),(5,9),(5,11),(6,8),(6,11),(7,8),(7,9),(7,10),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ([(0,7),(0,9),(0,10),(0,11),(1,5),(1,6),(1,8),(1,9),(1,10),(1,11),(2,4),(2,6),(2,8),(2,9),(2,10),(2,11),(3,4),(3,5),(3,8),(3,9),(3,10),(3,11),(4,7),(4,8),(4,9),(4,10),(4,11),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,9),(6,10),(6,11),(7,9),(7,10),(7,11),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 13 - 1
[1,4,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(2,3),(3,9),(4,9),(4,11),(4,12),(4,13),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,10),(6,12),(6,13),(7,8),(7,10),(7,11),(7,13),(8,10),(8,11),(8,12),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13),(11,12),(11,13),(12,13)],14)
=> ([(0,7),(0,9),(0,10),(0,11),(0,12),(0,13),(1,6),(1,8),(1,10),(1,11),(1,12),(1,13),(2,5),(2,8),(2,10),(2,11),(2,12),(2,13),(3,4),(3,8),(3,10),(3,11),(3,12),(3,13),(4,7),(4,9),(4,10),(4,11),(4,12),(4,13),(5,7),(5,9),(5,10),(5,11),(5,12),(5,13),(6,7),(6,9),(6,10),(6,11),(6,12),(6,13),(7,11),(7,12),(7,13),(8,9),(8,10),(8,11),(8,12),(8,13),(9,10),(9,11),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,13)],14)
=> ? = 15 - 1
[1,4,3,2,5] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(2,10),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(7,8),(7,10),(8,10),(9,10)],11)
=> ([(0,6),(0,8),(0,9),(0,10),(1,4),(1,5),(1,7),(1,9),(1,10),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(3,4),(3,6),(3,7),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 12 - 1
[1,4,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ([(0,6),(0,7),(0,9),(0,11),(0,12),(1,4),(1,8),(1,10),(1,11),(1,12),(2,7),(2,8),(2,9),(2,10),(2,11),(2,12),(3,6),(3,8),(3,9),(3,10),(3,11),(3,12),(4,5),(4,9),(4,10),(4,11),(4,12),(5,6),(5,7),(5,9),(5,10),(5,11),(5,12),(6,9),(6,10),(6,11),(6,12),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 14 - 1
[1,4,5,2,3] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ([(2,3),(3,10),(4,5),(4,8),(4,9),(5,7),(5,9),(6,7),(6,8),(6,9),(6,10),(7,8),(7,10),(8,10),(9,10)],11)
=> ([(0,5),(0,6),(0,8),(0,9),(0,10),(1,2),(1,3),(1,7),(1,8),(1,9),(1,10),(2,6),(2,7),(2,8),(2,9),(2,10),(3,5),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 12 - 1
[1,4,5,3,2] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(2,10),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(7,8),(7,10),(8,10),(9,10)],11)
=> ([(0,6),(0,8),(0,9),(0,10),(1,4),(1,5),(1,7),(1,9),(1,10),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(3,4),(3,6),(3,7),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 12 - 1
[1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ([(0,5),(0,7),(0,8),(0,9),(1,4),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,7),(2,8),(2,9),(3,4),(3,6),(3,7),(3,8),(3,9),(4,6),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 11 - 1
[1,5,2,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(2,3),(2,11),(3,10),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,10),(6,7),(6,8),(6,11),(7,8),(7,9),(7,10),(8,9),(8,11),(9,10),(9,11),(10,11)],12)
=> ([(0,4),(0,6),(0,9),(0,10),(0,11),(1,3),(1,5),(1,8),(1,10),(1,11),(2,5),(2,6),(2,8),(2,9),(2,10),(2,11),(3,7),(3,8),(3,9),(3,10),(3,11),(4,7),(4,8),(4,9),(4,10),(4,11),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 13 - 1
[1,5,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ([(0,6),(0,7),(0,9),(0,11),(0,12),(1,4),(1,8),(1,10),(1,11),(1,12),(2,7),(2,8),(2,9),(2,10),(2,11),(2,12),(3,6),(3,8),(3,9),(3,10),(3,11),(3,12),(4,5),(4,9),(4,10),(4,11),(4,12),(5,6),(5,7),(5,9),(5,10),(5,11),(5,12),(6,9),(6,10),(6,11),(6,12),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 14 - 1
[1,5,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ([(0,6),(0,7),(0,9),(0,11),(0,12),(1,4),(1,8),(1,10),(1,11),(1,12),(2,7),(2,8),(2,9),(2,10),(2,11),(2,12),(3,6),(3,8),(3,9),(3,10),(3,11),(3,12),(4,5),(4,9),(4,10),(4,11),(4,12),(5,6),(5,7),(5,9),(5,10),(5,11),(5,12),(6,9),(6,10),(6,11),(6,12),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 14 - 1
[1,5,4,2,3] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(2,10),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(7,8),(7,10),(8,10),(9,10)],11)
=> ([(0,6),(0,8),(0,9),(0,10),(1,4),(1,5),(1,7),(1,9),(1,10),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(3,4),(3,6),(3,7),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 12 - 1
[1,5,4,3,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 9 - 1
[2,1,3,4,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 9 - 1
[2,1,3,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(2,3),(3,9),(4,5),(4,7),(4,8),(5,6),(5,8),(6,7),(6,9),(7,9),(8,9)],10)
=> ([(0,4),(0,5),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,6),(3,7),(3,8),(3,9),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 11 - 1
[2,1,4,3,5] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(2,5),(3,6),(3,9),(4,7),(4,8),(5,9),(6,8),(6,9),(7,8),(7,9)],10)
=> ([(0,3),(0,6),(0,7),(0,8),(0,9),(1,2),(1,4),(1,6),(1,7),(1,8),(1,9),(2,4),(2,5),(2,7),(2,8),(2,9),(3,4),(3,5),(3,7),(3,8),(3,9),(4,5),(4,6),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 11 - 1
[2,1,4,5,3] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(3,10),(4,6),(4,7),(4,8),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ([(0,5),(0,6),(0,8),(0,9),(0,10),(1,6),(1,7),(1,8),(1,9),(1,10),(2,3),(2,4),(2,7),(2,8),(2,9),(2,10),(3,5),(3,7),(3,8),(3,9),(3,10),(4,6),(4,7),(4,8),(4,9),(4,10),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 12 - 1
[2,1,5,3,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(3,10),(4,6),(4,7),(4,8),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ([(0,5),(0,6),(0,8),(0,9),(0,10),(1,6),(1,7),(1,8),(1,9),(1,10),(2,3),(2,4),(2,7),(2,8),(2,9),(2,10),(3,5),(3,7),(3,8),(3,9),(3,10),(4,6),(4,7),(4,8),(4,9),(4,10),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 12 - 1
[2,1,5,4,3] => ([(0,3),(0,4),(1,8),(2,7),(2,8),(3,1),(3,5),(4,2),(4,5),(5,7),(5,8),(7,6),(8,6)],9)
=> ([(2,6),(3,4),(3,8),(4,7),(5,7),(5,8),(6,8),(7,8)],9)
=> ([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 10 - 1
[2,3,1,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ([(0,5),(0,7),(0,8),(0,9),(1,4),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,7),(2,8),(2,9),(3,4),(3,6),(3,7),(3,8),(3,9),(4,6),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 11 - 1
[2,3,1,5,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(3,10),(4,6),(4,7),(4,8),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ([(0,5),(0,6),(0,8),(0,9),(0,10),(1,6),(1,7),(1,8),(1,9),(1,10),(2,3),(2,4),(2,7),(2,8),(2,9),(2,10),(3,5),(3,7),(3,8),(3,9),(3,10),(4,6),(4,7),(4,8),(4,9),(4,10),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 12 - 1
[2,3,4,1,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ([(0,5),(0,7),(0,8),(0,9),(1,4),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,7),(2,8),(2,9),(3,4),(3,6),(3,7),(3,8),(3,9),(4,6),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 11 - 1
[2,3,4,5,1] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 9 - 1
[2,3,5,1,4] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ([(2,3),(3,11),(4,6),(4,9),(4,10),(4,11),(5,7),(5,8),(5,10),(5,11),(5,12),(6,8),(6,9),(6,10),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,11),(8,12),(9,10),(9,12),(10,12),(11,12)],13)
=> ([(0,8),(0,9),(0,10),(0,11),(0,12),(1,2),(1,3),(1,9),(1,10),(1,11),(1,12),(2,8),(2,9),(2,10),(2,11),(2,12),(3,4),(3,6),(3,10),(3,11),(3,12),(4,7),(4,9),(4,10),(4,11),(4,12),(5,6),(5,8),(5,9),(5,10),(5,11),(5,12),(6,7),(6,9),(6,10),(6,11),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 14 - 1
[2,3,5,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(2,10),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(7,8),(7,10),(8,10),(9,10)],11)
=> ([(0,6),(0,8),(0,9),(0,10),(1,4),(1,5),(1,7),(1,9),(1,10),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(3,4),(3,6),(3,7),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 12 - 1
[2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(2,3),(3,9),(4,9),(4,11),(4,12),(4,13),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,10),(6,12),(6,13),(7,8),(7,10),(7,11),(7,13),(8,10),(8,11),(8,12),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13),(11,12),(11,13),(12,13)],14)
=> ([(0,7),(0,9),(0,10),(0,11),(0,12),(0,13),(1,6),(1,8),(1,10),(1,11),(1,12),(1,13),(2,5),(2,8),(2,10),(2,11),(2,12),(2,13),(3,4),(3,8),(3,10),(3,11),(3,12),(3,13),(4,7),(4,9),(4,10),(4,11),(4,12),(4,13),(5,7),(5,9),(5,10),(5,11),(5,12),(5,13),(6,7),(6,9),(6,10),(6,11),(6,12),(6,13),(7,11),(7,12),(7,13),(8,9),(8,10),(8,11),(8,12),(8,13),(9,10),(9,11),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,13)],14)
=> ? = 15 - 1
[2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ([(2,3),(3,13),(4,5),(4,6),(4,11),(4,12),(4,13),(5,6),(5,10),(5,11),(5,13),(6,9),(6,11),(6,13),(7,8),(7,9),(7,10),(7,12),(7,13),(8,9),(8,10),(8,12),(8,13),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12),(11,13),(12,13)],14)
=> ([(0,3),(0,4),(0,11),(0,12),(0,13),(1,6),(1,7),(1,10),(1,11),(1,12),(1,13),(2,8),(2,9),(2,10),(2,11),(2,12),(2,13),(3,5),(3,9),(3,10),(3,11),(3,12),(3,13),(4,5),(4,8),(4,10),(4,11),(4,12),(4,13),(5,6),(5,7),(5,10),(5,11),(5,12),(5,13),(6,8),(6,9),(6,10),(6,11),(6,12),(6,13),(7,8),(7,9),(7,10),(7,11),(7,12),(7,13),(8,10),(8,11),(8,12),(8,13),(9,10),(9,11),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,13)],14)
=> ? = 15 - 1
[2,4,3,1,5] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ([(0,6),(0,7),(0,9),(0,11),(0,12),(1,4),(1,8),(1,10),(1,11),(1,12),(2,7),(2,8),(2,9),(2,10),(2,11),(2,12),(3,6),(3,8),(3,9),(3,10),(3,11),(3,12),(4,5),(4,9),(4,10),(4,11),(4,12),(5,6),(5,7),(5,9),(5,10),(5,11),(5,12),(6,9),(6,10),(6,11),(6,12),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 14 - 1
[2,4,3,5,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ([(0,6),(0,7),(0,9),(0,11),(0,12),(1,4),(1,8),(1,10),(1,11),(1,12),(2,7),(2,8),(2,9),(2,10),(2,11),(2,12),(3,6),(3,8),(3,9),(3,10),(3,11),(3,12),(4,5),(4,9),(4,10),(4,11),(4,12),(5,6),(5,7),(5,9),(5,10),(5,11),(5,12),(6,9),(6,10),(6,11),(6,12),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 14 - 1
[2,4,5,1,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ([(2,3),(3,12),(4,7),(4,9),(4,11),(4,12),(5,6),(5,8),(5,10),(5,12),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ([(0,8),(0,9),(0,10),(0,11),(0,12),(1,5),(1,6),(1,10),(1,11),(1,12),(2,3),(2,8),(2,9),(2,10),(2,11),(2,12),(3,7),(3,9),(3,10),(3,11),(3,12),(4,6),(4,8),(4,9),(4,10),(4,11),(4,12),(5,7),(5,9),(5,10),(5,11),(5,12),(6,7),(6,9),(6,10),(6,11),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 14 - 1
[2,4,5,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(2,3),(2,11),(3,10),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,10),(6,7),(6,8),(6,11),(7,8),(7,9),(7,10),(8,9),(8,11),(9,10),(9,11),(10,11)],12)
=> ([(0,4),(0,6),(0,9),(0,10),(0,11),(1,3),(1,5),(1,8),(1,10),(1,11),(2,5),(2,6),(2,8),(2,9),(2,10),(2,11),(3,7),(3,8),(3,9),(3,10),(3,11),(4,7),(4,8),(4,9),(4,10),(4,11),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 13 - 1
[2,5,1,3,4] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ([(2,3),(3,11),(4,6),(4,9),(4,10),(4,11),(5,7),(5,8),(5,10),(5,11),(5,12),(6,8),(6,9),(6,10),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,11),(8,12),(9,10),(9,12),(10,12),(11,12)],13)
=> ([(0,8),(0,9),(0,10),(0,11),(0,12),(1,2),(1,3),(1,9),(1,10),(1,11),(1,12),(2,8),(2,9),(2,10),(2,11),(2,12),(3,4),(3,6),(3,10),(3,11),(3,12),(4,7),(4,9),(4,10),(4,11),(4,12),(5,6),(5,8),(5,9),(5,10),(5,11),(5,12),(6,7),(6,9),(6,10),(6,11),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 14 - 1
[2,5,1,4,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ([(2,3),(3,12),(4,7),(4,9),(4,11),(4,12),(5,6),(5,8),(5,10),(5,12),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ([(0,8),(0,9),(0,10),(0,11),(0,12),(1,5),(1,6),(1,10),(1,11),(1,12),(2,3),(2,8),(2,9),(2,10),(2,11),(2,12),(3,7),(3,9),(3,10),(3,11),(3,12),(4,6),(4,8),(4,9),(4,10),(4,11),(4,12),(5,7),(5,9),(5,10),(5,11),(5,12),(6,7),(6,9),(6,10),(6,11),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 14 - 1
[2,5,3,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,12),(2,7),(2,11),(2,12),(3,7),(3,9),(3,10),(4,6),(4,10),(4,12),(5,6),(5,9),(5,11),(6,14),(7,13),(9,13),(9,14),(10,13),(10,14),(11,13),(11,14),(12,13),(12,14),(13,8),(14,8)],15)
=> ([(2,3),(2,14),(3,13),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(5,6),(5,7),(5,8),(5,10),(5,12),(5,13),(5,14),(6,7),(6,8),(6,10),(6,11),(6,13),(6,14),(7,8),(7,9),(7,11),(7,13),(7,14),(8,9),(8,12),(8,13),(8,14),(9,10),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13),(11,12),(11,14),(12,14),(13,14)],15)
=> ([(0,8),(0,9),(0,12),(0,13),(0,14),(1,6),(1,7),(1,11),(1,13),(1,14),(2,7),(2,9),(2,10),(2,11),(2,12),(2,13),(2,14),(3,7),(3,8),(3,10),(3,11),(3,12),(3,13),(3,14),(4,6),(4,8),(4,10),(4,11),(4,12),(4,13),(4,14),(5,6),(5,9),(5,10),(5,11),(5,12),(5,13),(5,14),(6,11),(6,12),(6,13),(6,14),(7,11),(7,12),(7,13),(7,14),(8,11),(8,12),(8,13),(8,14),(9,11),(9,12),(9,13),(9,14),(10,11),(10,12),(10,13),(10,14),(11,13),(11,14),(12,13),(12,14),(13,14)],15)
=> ? = 16 - 1
[2,5,3,4,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ([(0,6),(0,7),(0,9),(0,11),(0,12),(1,4),(1,8),(1,10),(1,11),(1,12),(2,7),(2,8),(2,9),(2,10),(2,11),(2,12),(3,6),(3,8),(3,9),(3,10),(3,11),(3,12),(4,5),(4,9),(4,10),(4,11),(4,12),(5,6),(5,7),(5,9),(5,10),(5,11),(5,12),(6,9),(6,10),(6,11),(6,12),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 14 - 1
[2,5,4,1,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ([(2,3),(3,11),(4,6),(4,9),(4,10),(4,11),(5,7),(5,8),(5,10),(5,11),(5,12),(6,8),(6,9),(6,10),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,11),(8,12),(9,10),(9,12),(10,12),(11,12)],13)
=> ([(0,8),(0,9),(0,10),(0,11),(0,12),(1,2),(1,3),(1,9),(1,10),(1,11),(1,12),(2,8),(2,9),(2,10),(2,11),(2,12),(3,4),(3,6),(3,10),(3,11),(3,12),(4,7),(4,9),(4,10),(4,11),(4,12),(5,6),(5,8),(5,9),(5,10),(5,11),(5,12),(6,7),(6,9),(6,10),(6,11),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 14 - 1
[2,5,4,3,1] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ([(0,5),(0,7),(0,8),(0,9),(1,4),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,7),(2,8),(2,9),(3,4),(3,6),(3,7),(3,8),(3,9),(4,6),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 11 - 1
[3,1,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ([(0,5),(0,7),(0,8),(0,9),(1,4),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,7),(2,8),(2,9),(3,4),(3,6),(3,7),(3,8),(3,9),(4,6),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 11 - 1
[5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 6 - 1
[1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
[6,5,4,3,2,1] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 7 - 1
[1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 7 = 8 - 1
Description
The largest Laplacian eigenvalue of a graph if it is integral. This statistic is undefined if the largest Laplacian eigenvalue of the graph is not integral. Various results are collected in Section 3.9 of [1]
The following 13 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001746The coalition number of a graph. St000171The degree of the graph. St000362The size of a minimal vertex cover of a graph. St001723The differential of a graph. St001724The 2-packing differential of a graph. St001717The largest size of an interval in a poset. St001300The rank of the boundary operator in degree 1 of the chain complex of the order complex of the poset. St001645The pebbling number of a connected graph. St000189The number of elements in the poset. St000656The number of cuts of a poset. St001706The number of closed sets in a graph. St001725The harmonious chromatic number of a graph. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice.