searching the database
Your data matches 1 statistic following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000525
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
([],2)
=> 1
([(0,1)],2)
=> 1
([],3)
=> 1
([(1,2)],3)
=> 1
([(0,1),(0,2)],3)
=> 2
([(0,2),(2,1)],3)
=> 1
([(0,2),(1,2)],3)
=> 2
([],4)
=> 1
([(2,3)],4)
=> 1
([(1,2),(1,3)],4)
=> 3
([(0,1),(0,2),(0,3)],4)
=> 3
([(0,2),(0,3),(3,1)],4)
=> 2
([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
([(1,2),(2,3)],4)
=> 1
([(0,3),(3,1),(3,2)],4)
=> 3
([(1,3),(2,3)],4)
=> 3
([(0,3),(1,3),(3,2)],4)
=> 3
([(0,3),(1,3),(2,3)],4)
=> 3
([(0,3),(1,2)],4)
=> 3
([(0,3),(1,2),(1,3)],4)
=> 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> 1
([(0,3),(2,1),(3,2)],4)
=> 1
([(0,3),(1,2),(2,3)],4)
=> 2
([],5)
=> 1
([(3,4)],5)
=> 1
([(2,3),(2,4)],5)
=> 3
([(1,2),(1,3),(1,4)],5)
=> 5
([(0,1),(0,2),(0,3),(0,4)],5)
=> 7
([(0,2),(0,3),(0,4),(4,1)],5)
=> 5
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> 8
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 5
([(1,3),(1,4),(4,2)],5)
=> 3
([(0,3),(0,4),(4,1),(4,2)],5)
=> 8
([(1,2),(1,3),(2,4),(3,4)],5)
=> 3
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 4
([(0,3),(0,4),(3,2),(4,1)],5)
=> 8
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> 5
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 3
([(2,3),(3,4)],5)
=> 1
([(1,4),(4,2),(4,3)],5)
=> 3
([(0,4),(4,1),(4,2),(4,3)],5)
=> 5
([(2,4),(3,4)],5)
=> 3
([(1,4),(2,4),(4,3)],5)
=> 3
([(0,4),(1,4),(4,2),(4,3)],5)
=> 3
([(1,4),(2,4),(3,4)],5)
=> 5
([(0,4),(1,4),(2,4),(4,3)],5)
=> 5
([(0,4),(1,4),(2,4),(3,4)],5)
=> 7
([(0,4),(1,4),(2,3)],5)
=> 5
([(0,4),(1,3),(2,3),(2,4)],5)
=> 7
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
Description
The number of posets with the same zeta polynomial.
The zeta polynomial $Z$ is the polynomial such that $Z(m)$ is the number of weakly increasing sequences $x_1\leq x_2\leq\dots\leq x_{m−1}$ of elements of the poset.
See section 3.12 of [1].
Since
$$
Z(q) = \sum_{k\geq 1} \binom{q-2}{k-1} c_k,
$$
where $c_k$ is the number of chains of length $k$, this statistic is the same as the number of posets with the same chain polynomial.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!