Your data matches 172 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St001088: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> 1 = 0 + 1
[1,0,1,0]
=> 1 = 0 + 1
[1,1,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,0,0]
=> 1 = 0 + 1
[1,1,1,0,0,0]
=> 3 = 2 + 1
[1,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> 3 = 2 + 1
[1,1,0,1,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[1,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[1,1,1,0,1,0,0,0]
=> 1 = 0 + 1
[1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[1,0,1,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,0,1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> 3 = 2 + 1
[1,0,1,1,0,1,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[1,1,0,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> 3 = 2 + 1
[1,1,0,0,1,1,0,0,1,0]
=> 3 = 2 + 1
[1,1,0,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> 4 = 3 + 1
[1,1,0,1,0,0,1,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,1,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,0,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,1,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,0]
=> 3 = 2 + 1
Description
Number of indecomposable projective non-injective modules with dominant dimension equal to the injective dimension in the corresponding Nakayama algebra.
Mp00201: Dyck paths RingelPermutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
St000052: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [2,1] => [1,1,0,0]
=> 0
[1,0,1,0]
=> [3,1,2] => [1,1,1,0,0,0]
=> 0
[1,1,0,0]
=> [2,3,1] => [1,1,0,1,0,0]
=> 1
[1,0,1,0,1,0]
=> [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> 0
[1,0,1,1,0,0]
=> [3,1,4,2] => [1,1,1,0,0,1,0,0]
=> 1
[1,1,0,0,1,0]
=> [2,4,1,3] => [1,1,0,1,1,0,0,0]
=> 1
[1,1,0,1,0,0]
=> [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> 0
[1,1,1,0,0,0]
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> 2
[1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [1,1,1,1,0,0,0,1,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [1,1,1,0,0,1,1,0,0,0]
=> 1
[1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [1,1,1,0,0,1,0,1,0,0]
=> 2
[1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => [1,1,0,1,1,1,0,0,0,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [1,1,0,1,1,0,0,1,0,0]
=> 2
[1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => [1,1,1,1,0,0,0,1,0,0]
=> 1
[1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [1,1,0,1,0,1,1,0,0,0]
=> 2
[1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [1,1,0,1,1,1,0,0,0,0]
=> 1
[1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 3
[1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => [1,1,1,1,0,0,0,1,1,0,0,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [1,1,1,1,0,0,0,1,0,1,0,0]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => [1,1,1,0,0,1,1,1,0,0,0,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [1,1,1,0,0,1,1,0,0,1,0,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => [1,1,1,0,0,1,0,1,1,0,0,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => [1,1,1,0,0,1,1,1,0,0,0,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => [1,1,1,0,0,1,0,1,0,1,0,0]
=> 3
[1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => [1,1,0,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [1,1,0,1,1,1,0,0,0,1,0,0]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => [1,1,0,1,1,0,0,1,1,0,0,0]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => [1,1,0,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [1,1,0,1,1,0,0,1,0,1,0,0]
=> 3
[1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => [1,1,1,1,0,0,0,1,1,0,0,0]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => [1,1,1,1,0,0,0,1,0,1,0,0]
=> 2
Description
The number of valleys of a Dyck path not on the x-axis. That is, the number of valleys of nonminimal height. This corresponds to the number of -1's in an inclusion of Dyck paths into alternating sign matrices.
Mp00201: Dyck paths RingelPermutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
St000053: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [2,1] => [1,1,0,0]
=> 0
[1,0,1,0]
=> [3,1,2] => [1,1,1,0,0,0]
=> 0
[1,1,0,0]
=> [2,3,1] => [1,1,0,1,0,0]
=> 1
[1,0,1,0,1,0]
=> [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> 0
[1,0,1,1,0,0]
=> [3,1,4,2] => [1,1,1,0,0,1,0,0]
=> 1
[1,1,0,0,1,0]
=> [2,4,1,3] => [1,1,0,1,1,0,0,0]
=> 1
[1,1,0,1,0,0]
=> [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> 0
[1,1,1,0,0,0]
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> 2
[1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [1,1,1,1,0,0,0,1,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [1,1,1,0,0,1,1,0,0,0]
=> 1
[1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [1,1,1,0,0,1,0,1,0,0]
=> 2
[1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => [1,1,0,1,1,1,0,0,0,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [1,1,0,1,1,0,0,1,0,0]
=> 2
[1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => [1,1,1,1,0,0,0,1,0,0]
=> 1
[1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [1,1,0,1,0,1,1,0,0,0]
=> 2
[1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [1,1,0,1,1,1,0,0,0,0]
=> 1
[1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 3
[1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => [1,1,1,1,0,0,0,1,1,0,0,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [1,1,1,1,0,0,0,1,0,1,0,0]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => [1,1,1,0,0,1,1,1,0,0,0,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [1,1,1,0,0,1,1,0,0,1,0,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => [1,1,1,0,0,1,0,1,1,0,0,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => [1,1,1,0,0,1,1,1,0,0,0,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => [1,1,1,0,0,1,0,1,0,1,0,0]
=> 3
[1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => [1,1,0,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [1,1,0,1,1,1,0,0,0,1,0,0]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => [1,1,0,1,1,0,0,1,1,0,0,0]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => [1,1,0,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [1,1,0,1,1,0,0,1,0,1,0,0]
=> 3
[1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => [1,1,1,1,0,0,0,1,1,0,0,0]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => [1,1,1,1,0,0,0,1,0,1,0,0]
=> 2
Description
The number of valleys of the Dyck path.
Mp00201: Dyck paths RingelPermutations
Mp00069: Permutations complementPermutations
St000541: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [2,1] => [1,2] => 0
[1,0,1,0]
=> [3,1,2] => [1,3,2] => 0
[1,1,0,0]
=> [2,3,1] => [2,1,3] => 1
[1,0,1,0,1,0]
=> [4,1,2,3] => [1,4,3,2] => 0
[1,0,1,1,0,0]
=> [3,1,4,2] => [2,4,1,3] => 1
[1,1,0,0,1,0]
=> [2,4,1,3] => [3,1,4,2] => 1
[1,1,0,1,0,0]
=> [4,3,1,2] => [1,2,4,3] => 0
[1,1,1,0,0,0]
=> [2,3,4,1] => [3,2,1,4] => 2
[1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [1,5,4,3,2] => 0
[1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [2,5,4,1,3] => 1
[1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [3,5,1,4,2] => 1
[1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => [1,5,2,4,3] => 0
[1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [3,5,2,1,4] => 2
[1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => [4,1,5,3,2] => 1
[1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [4,2,5,1,3] => 2
[1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => [1,3,5,4,2] => 0
[1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [1,2,5,4,3] => 0
[1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => [2,3,5,1,4] => 1
[1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [4,3,1,5,2] => 2
[1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [4,1,2,5,3] => 1
[1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [1,3,2,5,4] => 0
[1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [4,3,2,1,5] => 3
[1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [1,6,5,4,3,2] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => [2,6,5,4,1,3] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => [3,6,5,1,4,2] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => [1,6,5,2,4,3] => 0
[1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [3,6,5,2,1,4] => 2
[1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => [4,6,1,5,3,2] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [4,6,2,5,1,3] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => [1,6,3,5,4,2] => 0
[1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => [1,6,2,5,4,3] => 0
[1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => [2,6,3,5,1,4] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => [4,6,3,1,5,2] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => [4,6,1,2,5,3] => 1
[1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => [1,6,3,2,5,4] => 0
[1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => [4,6,3,2,1,5] => 3
[1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => [5,1,6,4,3,2] => 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [5,2,6,4,1,3] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => [5,3,6,1,4,2] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => [5,1,6,2,4,3] => 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [5,3,6,2,1,4] => 3
[1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => [1,4,6,5,3,2] => 0
[1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => [2,4,6,5,1,3] => 1
[1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [1,3,6,5,4,2] => 0
[1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [2,1,6,5,4,3] => 1
[1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => [2,3,6,5,1,4] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => [3,4,6,1,5,2] => 1
[1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => [1,4,6,2,5,3] => 0
[1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => [1,3,6,2,5,4] => 0
[1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => [3,4,6,2,1,5] => 2
Description
The number of indices greater than or equal to 2 of a permutation such that all smaller indices appear to its right. For a permutation $\pi$ of length $n$, this is the number of indices $2 \leq j \leq n$ such that for all $1 \leq i < j$, the pair $(i,j)$ is an inversion of $\pi$.
Mp00201: Dyck paths RingelPermutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
St001506: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [2,1] => [1,1,0,0]
=> 0
[1,0,1,0]
=> [3,1,2] => [1,1,1,0,0,0]
=> 0
[1,1,0,0]
=> [2,3,1] => [1,1,0,1,0,0]
=> 1
[1,0,1,0,1,0]
=> [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> 0
[1,0,1,1,0,0]
=> [3,1,4,2] => [1,1,1,0,0,1,0,0]
=> 1
[1,1,0,0,1,0]
=> [2,4,1,3] => [1,1,0,1,1,0,0,0]
=> 1
[1,1,0,1,0,0]
=> [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> 0
[1,1,1,0,0,0]
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> 2
[1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [1,1,1,1,0,0,0,1,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [1,1,1,0,0,1,1,0,0,0]
=> 1
[1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [1,1,1,0,0,1,0,1,0,0]
=> 2
[1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => [1,1,0,1,1,1,0,0,0,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [1,1,0,1,1,0,0,1,0,0]
=> 2
[1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => [1,1,1,1,0,0,0,1,0,0]
=> 1
[1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [1,1,0,1,0,1,1,0,0,0]
=> 2
[1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [1,1,0,1,1,1,0,0,0,0]
=> 1
[1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 3
[1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => [1,1,1,1,0,0,0,1,1,0,0,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [1,1,1,1,0,0,0,1,0,1,0,0]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => [1,1,1,0,0,1,1,1,0,0,0,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [1,1,1,0,0,1,1,0,0,1,0,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => [1,1,1,0,0,1,0,1,1,0,0,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => [1,1,1,0,0,1,1,1,0,0,0,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => [1,1,1,0,0,1,0,1,0,1,0,0]
=> 3
[1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => [1,1,0,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [1,1,0,1,1,1,0,0,0,1,0,0]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => [1,1,0,1,1,0,0,1,1,0,0,0]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => [1,1,0,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [1,1,0,1,1,0,0,1,0,1,0,0]
=> 3
[1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => [1,1,1,1,0,0,0,1,1,0,0,0]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => [1,1,1,1,0,0,0,1,0,1,0,0]
=> 2
Description
Half the projective dimension of the unique simple module with even projective dimension in a magnitude 1 Nakayama algebra.
Mp00201: Dyck paths RingelPermutations
Mp00069: Permutations complementPermutations
St000542: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [2,1] => [1,2] => 1 = 0 + 1
[1,0,1,0]
=> [3,1,2] => [1,3,2] => 1 = 0 + 1
[1,1,0,0]
=> [2,3,1] => [2,1,3] => 2 = 1 + 1
[1,0,1,0,1,0]
=> [4,1,2,3] => [1,4,3,2] => 1 = 0 + 1
[1,0,1,1,0,0]
=> [3,1,4,2] => [2,4,1,3] => 2 = 1 + 1
[1,1,0,0,1,0]
=> [2,4,1,3] => [3,1,4,2] => 2 = 1 + 1
[1,1,0,1,0,0]
=> [4,3,1,2] => [1,2,4,3] => 1 = 0 + 1
[1,1,1,0,0,0]
=> [2,3,4,1] => [3,2,1,4] => 3 = 2 + 1
[1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [1,5,4,3,2] => 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [2,5,4,1,3] => 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [3,5,1,4,2] => 2 = 1 + 1
[1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => [1,5,2,4,3] => 1 = 0 + 1
[1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [3,5,2,1,4] => 3 = 2 + 1
[1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => [4,1,5,3,2] => 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [4,2,5,1,3] => 3 = 2 + 1
[1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => [1,3,5,4,2] => 1 = 0 + 1
[1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [1,2,5,4,3] => 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => [2,3,5,1,4] => 2 = 1 + 1
[1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [4,3,1,5,2] => 3 = 2 + 1
[1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [4,1,2,5,3] => 2 = 1 + 1
[1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [1,3,2,5,4] => 1 = 0 + 1
[1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [4,3,2,1,5] => 4 = 3 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [1,6,5,4,3,2] => 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => [2,6,5,4,1,3] => 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => [3,6,5,1,4,2] => 2 = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => [1,6,5,2,4,3] => 1 = 0 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [3,6,5,2,1,4] => 3 = 2 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => [4,6,1,5,3,2] => 2 = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [4,6,2,5,1,3] => 3 = 2 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => [1,6,3,5,4,2] => 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => [1,6,2,5,4,3] => 1 = 0 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => [2,6,3,5,1,4] => 2 = 1 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => [4,6,3,1,5,2] => 3 = 2 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => [4,6,1,2,5,3] => 2 = 1 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => [1,6,3,2,5,4] => 1 = 0 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => [4,6,3,2,1,5] => 4 = 3 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => [5,1,6,4,3,2] => 2 = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [5,2,6,4,1,3] => 3 = 2 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => [5,3,6,1,4,2] => 3 = 2 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => [5,1,6,2,4,3] => 2 = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [5,3,6,2,1,4] => 4 = 3 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => [1,4,6,5,3,2] => 1 = 0 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => [2,4,6,5,1,3] => 2 = 1 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [1,3,6,5,4,2] => 1 = 0 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [2,1,6,5,4,3] => 2 = 1 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => [2,3,6,5,1,4] => 2 = 1 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => [3,4,6,1,5,2] => 2 = 1 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => [1,4,6,2,5,3] => 1 = 0 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => [1,3,6,2,5,4] => 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => [3,4,6,2,1,5] => 3 = 2 + 1
Description
The number of left-to-right-minima of a permutation. An integer $\sigma_i$ in the one-line notation of a permutation $\sigma$ is a left-to-right-minimum if there does not exist a j < i such that $\sigma_j < \sigma_i$.
Mp00201: Dyck paths RingelPermutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
St001068: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [2,1] => [1,1,0,0]
=> 1 = 0 + 1
[1,0,1,0]
=> [3,1,2] => [1,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,0,0]
=> [2,3,1] => [1,1,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,0]
=> [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> [3,1,4,2] => [1,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0]
=> [2,4,1,3] => [1,1,0,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,0]
=> [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,1,0,0,0]
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [1,1,1,1,0,0,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [1,1,1,0,0,1,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [1,1,1,0,0,1,0,1,0,0]
=> 3 = 2 + 1
[1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => [1,1,0,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [1,1,0,1,1,0,0,1,0,0]
=> 3 = 2 + 1
[1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => [1,1,1,1,0,0,0,1,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [1,1,0,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> 1 = 0 + 1
[1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 4 = 3 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => [1,1,1,1,0,0,0,1,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [1,1,1,1,0,0,0,1,0,1,0,0]
=> 3 = 2 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => [1,1,1,0,0,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [1,1,1,0,0,1,1,0,0,1,0,0]
=> 3 = 2 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => [1,1,1,0,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => [1,1,1,0,0,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => [1,1,1,0,0,1,0,1,0,1,0,0]
=> 4 = 3 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => [1,1,0,1,1,1,1,0,0,0,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [1,1,0,1,1,1,0,0,0,1,0,0]
=> 3 = 2 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => [1,1,0,1,1,0,0,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => [1,1,0,1,1,1,1,0,0,0,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [1,1,0,1,1,0,0,1,0,1,0,0]
=> 4 = 3 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => [1,1,1,1,0,0,0,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => [1,1,1,1,0,0,0,1,0,1,0,0]
=> 3 = 2 + 1
Description
Number of torsionless simple modules in the corresponding Nakayama algebra.
Mp00201: Dyck paths RingelPermutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
St001499: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [2,1] => [1,1,0,0]
=> 1 = 0 + 1
[1,0,1,0]
=> [3,1,2] => [1,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,0,0]
=> [2,3,1] => [1,1,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,0]
=> [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> [3,1,4,2] => [1,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0]
=> [2,4,1,3] => [1,1,0,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,0]
=> [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,1,0,0,0]
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [1,1,1,1,0,0,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [1,1,1,0,0,1,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [1,1,1,0,0,1,0,1,0,0]
=> 3 = 2 + 1
[1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => [1,1,0,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [1,1,0,1,1,0,0,1,0,0]
=> 3 = 2 + 1
[1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => [1,1,1,1,0,0,0,1,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [1,1,0,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> 1 = 0 + 1
[1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 4 = 3 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => [1,1,1,1,0,0,0,1,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [1,1,1,1,0,0,0,1,0,1,0,0]
=> 3 = 2 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => [1,1,1,0,0,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [1,1,1,0,0,1,1,0,0,1,0,0]
=> 3 = 2 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => [1,1,1,0,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => [1,1,1,0,0,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => [1,1,1,0,0,1,0,1,0,1,0,0]
=> 4 = 3 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => [1,1,0,1,1,1,1,0,0,0,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [1,1,0,1,1,1,0,0,0,1,0,0]
=> 3 = 2 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => [1,1,0,1,1,0,0,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => [1,1,0,1,1,1,1,0,0,0,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [1,1,0,1,1,0,0,1,0,1,0,0]
=> 4 = 3 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => [1,1,1,1,0,0,0,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => [1,1,1,1,0,0,0,1,0,1,0,0]
=> 3 = 2 + 1
Description
The number of indecomposable projective-injective modules of a magnitude 1 Nakayama algebra. We use the bijection in the code by Christian Stump to have a bijection to Dyck paths.
Mp00201: Dyck paths RingelPermutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00030: Dyck paths zeta mapDyck paths
St000024: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [2,1] => [1,1,0,0]
=> [1,0,1,0]
=> 0
[1,0,1,0]
=> [3,1,2] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 0
[1,1,0,0]
=> [2,3,1] => [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> 1
[1,0,1,0,1,0]
=> [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,0,1,1,0,0]
=> [3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1
[1,1,0,0,1,0]
=> [2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[1,1,0,1,0,0]
=> [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,1,1,0,0,0]
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 2
[1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 2
[1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 2
[1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 1
[1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 3
[1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0,1,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> 3
[1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,0]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> 3
[1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 0
[1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> 2
Description
The number of double up and double down steps of a Dyck path. In other words, this is the number of double rises (and, equivalently, the number of double falls) of a Dyck path.
Matching statistic: St000065
Mp00201: Dyck paths RingelPermutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00035: Dyck paths to alternating sign matrixAlternating sign matrices
St000065: Alternating sign matrices ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [2,1] => [1,1,0,0]
=> [[0,1],[1,0]]
=> 0
[1,0,1,0]
=> [3,1,2] => [1,1,1,0,0,0]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> 0
[1,1,0,0]
=> [2,3,1] => [1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> 1
[1,0,1,0,1,0]
=> [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> 0
[1,0,1,1,0,0]
=> [3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> 1
[1,1,0,0,1,0]
=> [2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> 1
[1,1,0,1,0,0]
=> [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> 0
[1,1,1,0,0,0]
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> 2
[1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> [[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> 0
[1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [1,1,1,1,0,0,0,1,0,0]
=> [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> 1
[1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [1,1,1,0,0,1,1,0,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> 1
[1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> [[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> 0
[1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [1,1,1,0,0,1,0,1,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> 2
[1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => [1,1,0,1,1,1,0,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> 1
[1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [1,1,0,1,1,0,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> 2
[1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> [[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> 0
[1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> [[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> 0
[1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => [1,1,1,1,0,0,0,1,0,0]
=> [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> 1
[1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [1,1,0,1,0,1,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> 2
[1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [1,1,0,1,1,1,0,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> 1
[1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> [[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> 0
[1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> 3
[1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [[0,0,0,0,0,1],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> [[0,0,0,0,1,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => [1,1,1,1,0,0,0,1,1,0,0,0]
=> [[0,0,0,1,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [[0,0,0,0,0,1],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [1,1,1,1,0,0,0,1,0,1,0,0]
=> [[0,0,0,1,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => [1,1,1,0,0,1,1,1,0,0,0,0]
=> [[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,0,0,1],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [1,1,1,0,0,1,1,0,0,1,0,0]
=> [[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,0,1,0],[0,0,1,0,0,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [[0,0,0,0,0,1],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [[0,0,0,0,0,1],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> [[0,0,0,0,1,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => [1,1,1,0,0,1,1,1,0,0,0,0]
=> [[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,0,0,1],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [[0,0,0,0,0,1],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => [1,1,1,0,0,1,0,1,0,1,0,0]
=> [[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> 3
[1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => [1,1,0,1,1,1,1,0,0,0,0,0]
=> [[0,1,0,0,0,0],[1,-1,0,0,0,1],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [1,1,0,1,1,1,0,0,0,1,0,0]
=> [[0,1,0,0,0,0],[1,-1,0,0,1,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => [1,1,0,1,1,0,0,1,1,0,0,0]
=> [[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,0,0,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => [1,1,0,1,1,1,1,0,0,0,0,0]
=> [[0,1,0,0,0,0],[1,-1,0,0,0,1],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [1,1,0,1,1,0,0,1,0,1,0,0]
=> [[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,0,0,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> 3
[1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [[0,0,0,0,0,1],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> [[0,0,0,0,1,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [[0,0,0,0,0,1],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> [[0,0,0,0,1,0],[1,0,0,0,-1,1],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> [[0,0,0,0,1,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => [1,1,1,1,0,0,0,1,1,0,0,0]
=> [[0,0,0,1,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [[0,0,0,0,0,1],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [[0,0,0,0,0,1],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> 0
[1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => [1,1,1,1,0,0,0,1,0,1,0,0]
=> [[0,0,0,1,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> 2
Description
The number of entries equal to -1 in an alternating sign matrix. The number of nonzero entries, [[St000890]] is twice this number plus the dimension of the matrix.
The following 162 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000159The number of distinct parts of the integer partition. St000245The number of ascents of a permutation. St000306The bounce count of a Dyck path. St000340The number of non-final maximal constant sub-paths of length greater than one. St000354The number of recoils of a permutation. St000442The maximal area to the right of an up step of a Dyck path. St000497The lcb statistic of a set partition. St000585The number of occurrences of the pattern {{1,3},{2}} such that 2 is maximal, (1,3) are consecutive in a block. St000672The number of minimal elements in Bruhat order not less than the permutation. St000711The number of big exceedences of a permutation. St000970Number of peaks minus the dominant dimension of the corresponding LNakayama algebra. St000996The number of exclusive left-to-right maxima of a permutation. St001036The number of inner corners of the parallelogram polyomino associated with the Dyck path. St001167The number of simple modules that appear as the top of an indecomposable non-projective modules that is reflexive in the corresponding Nakayama algebra. St001197The global dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001253The number of non-projective indecomposable reflexive modules in the corresponding Nakayama algebra. St001489The maximum of the number of descents and the number of inverse descents. St000010The length of the partition. St000011The number of touch points (or returns) of a Dyck path. St000013The height of a Dyck path. St000069The number of maximal elements of a poset. St000105The number of blocks in the set partition. St000167The number of leaves of an ordered tree. St000318The number of addable cells of the Ferrers diagram of an integer partition. St000444The length of the maximal rise of a Dyck path. St000470The number of runs in a permutation. St000619The number of cyclic descents of a permutation. St000695The number of blocks in the first part of the atomic decomposition of a set partition. St000925The number of topologically connected components of a set partition. St000991The number of right-to-left minima of a permutation. St001007Number of simple modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path. St001058The breadth of the ordered tree. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001203We associate to a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n-1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a Dyck path as follows: St001498The normalised height of a Nakayama algebra with magnitude 1. St000203The number of external nodes of a binary tree. St000684The global dimension of the LNakayama algebra associated to a Dyck path. St001004The number of indices that are either left-to-right maxima or right-to-left minima. St001028Number of simple modules with injective dimension equal to the dominant dimension in the Nakayama algebra corresponding to the Dyck path. St001135The projective dimension of the first simple module in the Nakayama algebra corresponding to the Dyck path. St001505The number of elements generated by the Dyck path as a map in the full transformation monoid. St000969We make a CNakayama algebra out of the LNakayama algebra (corresponding to the Dyck path) $[c_0,c_1,...,c_{n-1}]$ by adding $c_0$ to $c_{n-1}$. St000998Number of indecomposable projective modules with injective dimension smaller than or equal to the dominant dimension in the Nakayama algebra corresponding to the Dyck path. St001012Number of simple modules with projective dimension at most 2 in the Nakayama algebra corresponding to the Dyck path. St000031The number of cycles in the cycle decomposition of a permutation. St000007The number of saliances of the permutation. St000546The number of global descents of a permutation. St000314The number of left-to-right-maxima of a permutation. St001169Number of simple modules with projective dimension at least two in the corresponding Nakayama algebra. St000015The number of peaks of a Dyck path. St000374The number of exclusive right-to-left minima of a permutation. St001461The number of topologically connected components of the chord diagram of a permutation. St000021The number of descents of a permutation. St000039The number of crossings of a permutation. St000083The number of left oriented leafs of a binary tree except the first one. St000155The number of exceedances (also excedences) of a permutation. St000292The number of ascents of a binary word. St000329The number of evenly positioned ascents of the Dyck path, with the initial position equal to 1. St000338The number of pixed points of a permutation. St001089Number of indecomposable projective non-injective modules minus the number of indecomposable projective non-injective modules with dominant dimension equal to the injective dimension in the corresponding Nakayama algebra. St001142The projective dimension of the socle of the regular module as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001164Number of indecomposable injective modules whose socle has projective dimension at most g-1 (g the global dimension) minus the number of indecomposable projective-injective modules. St001205The number of non-simple indecomposable projective-injective modules of the algebra $eAe$ in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001687The number of distinct positions of the pattern letter 2 in occurrences of 213 in a permutation. St000061The number of nodes on the left branch of a binary tree. St000062The length of the longest increasing subsequence of the permutation. St000084The number of subtrees. St000157The number of descents of a standard tableau. St000164The number of short pairs. St000239The number of small weak excedances. St000291The number of descents of a binary word. St000308The height of the tree associated to a permutation. St000325The width of the tree associated to a permutation. St000328The maximum number of child nodes in a tree. St000331The number of upper interactions of a Dyck path. St000390The number of runs of ones in a binary word. St000443The number of long tunnels of a Dyck path. St000654The first descent of a permutation. St001184Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra. St001187The number of simple modules with grade at least one in the corresponding Nakayama algebra. St001215Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001224Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001390The number of bumps occurring when Schensted-inserting the letter 1 of a permutation. St001509The degree of the standard monomial associated to a Dyck path relative to the trivial lower boundary. St000236The number of cyclical small weak excedances. St001005The number of indices for a permutation that are either left-to-right maxima or right-to-left minima but not both. St001180Number of indecomposable injective modules with projective dimension at most 1. St001183The maximum of $projdim(S)+injdim(S)$ over all simple modules in the Nakayama algebra corresponding to the Dyck path. St001258Gives the maximum of injective plus projective dimension of an indecomposable module over the corresponding Nakayama algebra. St000068The number of minimal elements in a poset. St000337The lec statistic, the sum of the inversion numbers of the hook factors of a permutation. St000703The number of deficiencies of a permutation. St000451The length of the longest pattern of the form k 1 2. St000806The semiperimeter of the associated bargraph. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St001889The size of the connectivity set of a signed permutation. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St000383The last part of an integer composition. St001355Number of non-empty prefixes of a binary word that contain equally many 0's and 1's. St001462The number of factors of a standard tableaux under concatenation. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St000894The trace of an alternating sign matrix. St000989The number of final rises of a permutation. St001188The number of simple modules $S$ with grade $\inf \{ i \geq 0 | Ext^i(S,A) \neq 0 \}$ at least two in the Nakayama algebra $A$ corresponding to the Dyck path. St001244The number of simple modules of projective dimension one that are not 1-regular for the Nakayama algebra associated to a Dyck path. St000702The number of weak deficiencies of a permutation. St000710The number of big deficiencies of a permutation. St000942The number of critical left to right maxima of the parking functions. St001231The number of simple modules that are non-projective and non-injective with the property that they have projective dimension equal to one and that also the Auslander-Reiten translates of the module and the inverse Auslander-Reiten translate of the module have the same projective dimension. St001234The number of indecomposable three dimensional modules with projective dimension one. St001804The minimal height of the rectangular inner shape in a cylindrical tableau associated to a tableau. St001904The length of the initial strictly increasing segment of a parking function. St001937The size of the center of a parking function. St000193The row of the unique '1' in the first column of the alternating sign matrix. St000199The column of the unique '1' in the last row of the alternating sign matrix. St001210Gives the maximal vector space dimension of the first Ext-group between an indecomposable module X and the regular module A, when A is the Nakayama algebra corresponding to the Dyck path. St001240The number of indecomposable modules e_i J^2 that have injective dimension at most one in the corresponding Nakayama algebra St001875The number of simple modules with projective dimension at most 1. St001330The hat guessing number of a graph. St000441The number of successions of a permutation. St000907The number of maximal antichains of minimal length in a poset. St000075The orbit size of a standard tableau under promotion. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St000214The number of adjacencies of a permutation. St000215The number of adjacencies of a permutation, zero appended. St001086The number of occurrences of the consecutive pattern 132 in a permutation. St001867The number of alignments of type EN of a signed permutation. St000352The Elizalde-Pak rank of a permutation. St000054The first entry of the permutation. St000366The number of double descents of a permutation. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St001816Eigenvalues of the top-to-random operator acting on a simple module. St001882The number of occurrences of a type-B 231 pattern in a signed permutation. St001652The length of a longest interval of consecutive numbers. St001662The length of the longest factor of consecutive numbers in a permutation. St000234The number of global ascents of a permutation. St000986The multiplicity of the eigenvalue zero of the adjacency matrix of the graph. St001712The number of natural descents of a standard Young tableau. St001728The number of invisible descents of a permutation. St001781The interlacing number of a set partition. St001795The binary logarithm of the evaluation of the Tutte polynomial of the graph at (x,y) equal to (-1,-1). St001866The nesting alignments of a signed permutation. St001903The number of fixed points of a parking function. St000056The decomposition (or block) number of a permutation. St000492The rob statistic of a set partition. St000723The maximal cardinality of a set of vertices with the same neighbourhood in a graph. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St001479The number of bridges of a graph. St001514The dimension of the top of the Auslander-Reiten translate of the regular modules as a bimodule. St001665The number of pure excedances of a permutation. St001737The number of descents of type 2 in a permutation. St001826The maximal number of leaves on a vertex of a graph. St001859The number of factors of the Stanley symmetric function associated with a permutation. St001896The number of right descents of a signed permutations. St000839The largest opener of a set partition. St001784The minimum of the smallest closer and the second element of the block containing 1 in a set partition. St000230Sum of the minimal elements of the blocks of a set partition. St000882The number of connected components of short braid edges in the graph of braid moves of a permutation. St001644The dimension of a graph. St000264The girth of a graph, which is not a tree.