Your data matches 105 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000553: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> 1
([],2)
=> 2
([(0,1)],2)
=> 1
([],3)
=> 3
([(1,2)],3)
=> 2
([(0,2),(1,2)],3)
=> 2
([(0,1),(0,2),(1,2)],3)
=> 1
([],4)
=> 4
([(2,3)],4)
=> 3
([(1,3),(2,3)],4)
=> 3
([(0,3),(1,3),(2,3)],4)
=> 3
([(0,3),(1,2)],4)
=> 2
([(0,3),(1,2),(2,3)],4)
=> 3
([(1,2),(1,3),(2,3)],4)
=> 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([],5)
=> 5
([(3,4)],5)
=> 4
([(2,4),(3,4)],5)
=> 4
([(1,4),(2,4),(3,4)],5)
=> 4
([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
([(1,4),(2,3)],5)
=> 3
([(1,4),(2,3),(3,4)],5)
=> 4
([(0,1),(2,4),(3,4)],5)
=> 3
([(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> 4
([(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(1,3),(1,4),(2,3),(2,4)],5)
=> 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> 4
([(0,1),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 1
Description
The number of blocks of a graph. A cut vertex is a vertex whose deletion increases the number of connected components. A block is a maximal connected subgraph which itself has no cut vertices. Two distinct blocks cannot overlap in more than a single cut vertex.
Mp00274: Graphs block-cut treeGraphs
Mp00111: Graphs complementGraphs
St000097: Graphs ⟶ ℤResult quality: 67% values known / values provided: 97%distinct values known / distinct values provided: 67%
Values
([],1)
=> ([],1)
=> ([],1)
=> 1
([],2)
=> ([],2)
=> ([(0,1)],2)
=> 2
([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1
([],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
([(1,2)],3)
=> ([],2)
=> ([(0,1)],2)
=> 2
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> 1
([],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
([(2,3)],4)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 3
([(0,3),(1,2)],4)
=> ([],2)
=> ([(0,1)],2)
=> 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ([(0,1)],2)
=> 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([],1)
=> ([],1)
=> 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> 1
([],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
([(3,4)],5)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(1,4),(2,3)],5)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,1),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 4
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 3
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([],2)
=> ([(0,1)],2)
=> 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([(0,1)],2)
=> 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ([(0,1),(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([(0,1)],2)
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([],1)
=> ([],1)
=> 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([(0,1)],2)
=> 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> 1
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,7),(4,5),(5,6),(6,7)],8)
=> ([(0,2),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6
([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,8),(1,8),(2,8),(3,4),(4,6),(5,7),(5,8),(6,7)],9)
=> ([(0,2),(0,3),(0,4),(0,8),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,5),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 6
([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,6),(4,6),(5,6),(5,7)],8)
=> ([(0,1),(0,6),(0,7),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> ([(0,7),(1,7),(2,8),(3,8),(4,6),(4,8),(5,6),(5,7)],9)
=> ([(0,1),(0,3),(0,4),(0,7),(0,8),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 6
([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,8),(1,8),(2,5),(3,4),(4,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(0,7),(0,8),(1,2),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 6
([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)
=> ([(0,8),(1,9),(2,9),(3,4),(3,5),(4,6),(5,7),(6,8),(7,9)],10)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,9),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8),(4,9),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 6
([(0,6),(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(3,4),(4,7),(5,7),(6,7)],8)
=> ([(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,6),(1,7),(2,3),(2,4),(2,5),(2,7),(3,4),(3,5),(3,6),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> ([(0,7),(1,8),(2,9),(3,4),(3,5),(4,8),(5,9),(6,7),(6,9)],10)
=> ([(0,3),(0,4),(0,5),(0,6),(0,8),(0,9),(1,2),(1,3),(1,4),(1,6),(1,7),(1,8),(1,9),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,7),(4,9),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 6
([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,8),(1,7),(2,7),(3,6),(4,7),(4,8),(5,6),(5,8)],9)
=> ([(0,1),(0,4),(0,5),(0,6),(0,8),(1,3),(1,4),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 6
([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> ([(0,8),(1,7),(2,6),(3,6),(3,9),(4,7),(4,9),(5,8),(5,9)],10)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,7),(3,8),(3,9),(4,5),(4,6),(4,8),(4,9),(5,6),(5,7),(5,8),(6,7),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 6
([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ([(0,10),(1,9),(2,3),(2,4),(3,5),(4,6),(5,7),(6,8),(7,9),(8,10)],11)
=> ([(0,1),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,10),(1,2),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,6),(2,7),(2,8),(2,9),(2,10),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,8),(4,9),(4,10),(5,7),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 6
([(0,5),(1,4),(2,3),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,6),(2,5),(3,4),(3,5),(4,8),(6,8),(7,8)],9)
=> ?
=> ? = 5
([(0,8),(1,6),(2,6),(3,7),(4,5),(5,8),(6,7),(7,8)],9)
=> ?
=> ?
=> ? = 8
([(0,6),(1,6),(2,7),(3,7),(4,8),(5,7),(5,8),(6,8)],9)
=> ?
=> ?
=> ? = 8
([(0,7),(1,7),(2,6),(3,6),(4,5),(5,8),(6,8),(7,8)],9)
=> ?
=> ?
=> ? = 8
([(0,10),(1,7),(2,7),(3,8),(4,9),(5,6),(6,10),(7,9),(8,9),(8,10)],11)
=> ?
=> ?
=> ? = 10
([(0,10),(1,8),(2,8),(3,7),(4,7),(5,6),(6,10),(7,9),(8,9),(9,10)],11)
=> ?
=> ?
=> ? = 10
([(0,8),(1,8),(2,9),(3,7),(4,7),(5,6),(6,10),(7,10),(8,9),(9,10)],11)
=> ?
=> ?
=> ? = 10
([(0,10),(1,9),(2,9),(3,7),(4,8),(5,8),(6,9),(6,10),(7,8),(7,10)],11)
=> ?
=> ?
=> ? = 10
([(0,9),(1,9),(2,8),(3,8),(4,7),(5,7),(6,9),(6,10),(7,10),(8,10)],11)
=> ?
=> ?
=> ? = 10
([(0,10),(1,9),(2,7),(3,7),(4,8),(5,8),(6,9),(6,10),(7,9),(8,10)],11)
=> ?
=> ?
=> ? = 10
([(0,12),(1,8),(2,8),(3,9),(4,10),(5,11),(6,7),(7,12),(8,10),(9,11),(9,12),(10,11)],13)
=> ?
=> ?
=> ? = 12
([(0,12),(1,9),(2,9),(3,8),(4,8),(5,10),(6,7),(7,12),(8,11),(9,11),(10,11),(10,12)],13)
=> ?
=> ?
=> ? = 12
([(0,12),(1,8),(2,8),(3,9),(4,9),(5,10),(6,7),(7,12),(8,11),(9,10),(10,11),(11,12)],13)
=> ?
=> ?
=> ? = 12
([(0,9),(1,9),(2,10),(3,11),(4,8),(5,8),(6,7),(7,12),(8,12),(9,11),(10,11),(10,12)],13)
=> ?
=> ?
=> ? = 12
([(0,10),(1,10),(2,9),(3,9),(4,8),(5,8),(6,7),(7,12),(8,12),(9,11),(10,11),(11,12)],13)
=> ?
=> ?
=> ? = 12
([(0,8),(1,8),(2,9),(3,9),(4,11),(5,10),(6,7),(7,12),(8,10),(9,11),(10,12),(11,12)],13)
=> ?
=> ?
=> ? = 12
([(0,12),(1,11),(2,11),(3,8),(4,8),(5,9),(6,10),(7,11),(7,12),(8,10),(9,10),(9,12)],13)
=> ?
=> ?
=> ? = 12
([(0,11),(1,12),(2,12),(3,9),(4,9),(5,8),(6,8),(7,11),(7,12),(8,10),(9,10),(10,11)],13)
=> ?
=> ?
=> ? = 12
([(0,11),(1,11),(2,9),(3,9),(4,10),(5,8),(6,8),(7,11),(7,12),(8,12),(9,10),(10,12)],13)
=> ?
=> ?
=> ? = 12
([(0,12),(1,11),(2,9),(3,9),(4,10),(5,8),(6,8),(7,11),(7,12),(8,11),(9,10),(10,12)],13)
=> ?
=> ?
=> ? = 12
([(0,11),(1,9),(2,9),(3,8),(4,8),(5,10),(6,10),(7,11),(7,12),(8,12),(9,12),(10,11)],13)
=> ?
=> ?
=> ? = 12
Description
The order of the largest clique of the graph. A clique in a graph $G$ is a subset $U \subseteq V(G)$ such that any pair of vertices in $U$ are adjacent. I.e. the subgraph induced by $U$ is a complete graph.
Mp00274: Graphs block-cut treeGraphs
St000093: Graphs ⟶ ℤResult quality: 67% values known / values provided: 96%distinct values known / distinct values provided: 67%
Values
([],1)
=> ([],1)
=> 1
([],2)
=> ([],2)
=> 2
([(0,1)],2)
=> ([],1)
=> 1
([],3)
=> ([],3)
=> 3
([(1,2)],3)
=> ([],2)
=> 2
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> 1
([],4)
=> ([],4)
=> 4
([(2,3)],4)
=> ([],3)
=> 3
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 3
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 3
([(0,3),(1,2)],4)
=> ([],2)
=> 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3
([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([],1)
=> 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> 1
([],5)
=> ([],5)
=> 5
([(3,4)],5)
=> ([],4)
=> 4
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 4
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 4
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
([(1,4),(2,3)],5)
=> ([],3)
=> 3
([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 4
([(0,1),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> 3
([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 4
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 3
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([],2)
=> 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 4
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([],1)
=> 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> ? = 5
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,7),(2,6),(3,4),(3,5),(4,6),(5,7)],8)
=> ? = 5
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(2,7),(3,5),(3,7),(4,6),(4,7)],8)
=> ? = 5
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,8),(1,7),(2,3),(2,4),(3,5),(4,6),(5,7),(6,8)],9)
=> ? = 5
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,7),(4,5),(5,6),(6,7)],8)
=> ? = 6
([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,8),(1,8),(2,8),(3,4),(4,6),(5,7),(5,8),(6,7)],9)
=> ? = 6
([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,6),(4,6),(5,6),(5,7)],8)
=> ? = 6
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> ([(0,7),(1,7),(2,8),(3,8),(4,6),(4,8),(5,6),(5,7)],9)
=> ? = 6
([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,8),(1,8),(2,5),(3,4),(4,6),(5,7),(6,8),(7,8)],9)
=> ? = 6
([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)
=> ([(0,8),(1,9),(2,9),(3,4),(3,5),(4,6),(5,7),(6,8),(7,9)],10)
=> ? = 6
([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> ? = 5
([(0,6),(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(3,4),(4,7),(5,7),(6,7)],8)
=> ? = 5
([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> ([(0,7),(1,8),(2,9),(3,4),(3,5),(4,8),(5,9),(6,7),(6,9)],10)
=> ? = 6
([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,8),(1,7),(2,7),(3,6),(4,7),(4,8),(5,6),(5,8)],9)
=> ? = 6
([(0,5),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> ? = 5
([(0,6),(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,7),(3,5),(3,7),(4,6),(4,7)],8)
=> ? = 5
([(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6)],7)
=> ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> ? = 5
([(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(5,6)],7)
=> ([(0,8),(1,7),(2,3),(2,4),(3,5),(4,6),(5,7),(6,8)],9)
=> ? = 5
([(0,4),(1,4),(2,5),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> ? = 5
([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> ([(0,8),(1,7),(2,6),(3,6),(3,9),(4,7),(4,9),(5,8),(5,9)],10)
=> ? = 6
([(0,5),(1,4),(2,3),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,7),(3,5),(3,7),(4,6),(4,7)],8)
=> ? = 5
([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ([(0,10),(1,9),(2,3),(2,4),(3,5),(4,6),(5,7),(6,8),(7,9),(8,10)],11)
=> ? = 6
([(0,4),(1,3),(2,5),(2,6),(3,5),(4,6),(5,6)],7)
=> ([(0,8),(1,7),(2,3),(2,4),(3,5),(4,6),(5,7),(6,8)],9)
=> ? = 5
([(0,6),(1,4),(2,3),(2,5),(3,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,7),(3,5),(3,7),(4,6),(4,7)],8)
=> ? = 5
([(0,5),(1,4),(1,5),(2,3),(2,6),(3,6),(4,6)],7)
=> ([(0,8),(1,7),(2,3),(2,4),(3,5),(4,6),(5,7),(6,8)],9)
=> ? = 5
([(0,5),(1,4),(2,3),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,6),(2,5),(3,4),(3,5),(4,8),(6,8),(7,8)],9)
=> ? = 5
([(0,8),(1,6),(2,6),(3,7),(4,5),(5,8),(6,7),(7,8)],9)
=> ?
=> ? = 8
([(0,6),(1,6),(2,7),(3,7),(4,8),(5,7),(5,8),(6,8)],9)
=> ?
=> ? = 8
([(0,7),(1,7),(2,6),(3,6),(4,5),(5,8),(6,8),(7,8)],9)
=> ?
=> ? = 8
([(0,10),(1,7),(2,7),(3,8),(4,9),(5,6),(6,10),(7,9),(8,9),(8,10)],11)
=> ?
=> ? = 10
([(0,10),(1,8),(2,8),(3,7),(4,7),(5,6),(6,10),(7,9),(8,9),(9,10)],11)
=> ?
=> ? = 10
([(0,8),(1,8),(2,9),(3,7),(4,7),(5,6),(6,10),(7,10),(8,9),(9,10)],11)
=> ?
=> ? = 10
([(0,10),(1,9),(2,9),(3,7),(4,8),(5,8),(6,9),(6,10),(7,8),(7,10)],11)
=> ?
=> ? = 10
([(0,9),(1,9),(2,8),(3,8),(4,7),(5,7),(6,9),(6,10),(7,10),(8,10)],11)
=> ?
=> ? = 10
([(0,10),(1,9),(2,7),(3,7),(4,8),(5,8),(6,9),(6,10),(7,9),(8,10)],11)
=> ?
=> ? = 10
([(0,12),(1,8),(2,8),(3,9),(4,10),(5,11),(6,7),(7,12),(8,10),(9,11),(9,12),(10,11)],13)
=> ?
=> ? = 12
([(0,12),(1,9),(2,9),(3,8),(4,8),(5,10),(6,7),(7,12),(8,11),(9,11),(10,11),(10,12)],13)
=> ?
=> ? = 12
([(0,12),(1,8),(2,8),(3,9),(4,9),(5,10),(6,7),(7,12),(8,11),(9,10),(10,11),(11,12)],13)
=> ?
=> ? = 12
([(0,9),(1,9),(2,10),(3,11),(4,8),(5,8),(6,7),(7,12),(8,12),(9,11),(10,11),(10,12)],13)
=> ?
=> ? = 12
([(0,10),(1,10),(2,9),(3,9),(4,8),(5,8),(6,7),(7,12),(8,12),(9,11),(10,11),(11,12)],13)
=> ?
=> ? = 12
([(0,8),(1,8),(2,9),(3,9),(4,11),(5,10),(6,7),(7,12),(8,10),(9,11),(10,12),(11,12)],13)
=> ?
=> ? = 12
([(0,12),(1,11),(2,11),(3,8),(4,8),(5,9),(6,10),(7,11),(7,12),(8,10),(9,10),(9,12)],13)
=> ?
=> ? = 12
([(0,11),(1,12),(2,12),(3,9),(4,9),(5,8),(6,8),(7,11),(7,12),(8,10),(9,10),(10,11)],13)
=> ?
=> ? = 12
([(0,11),(1,11),(2,9),(3,9),(4,10),(5,8),(6,8),(7,11),(7,12),(8,12),(9,10),(10,12)],13)
=> ?
=> ? = 12
([(0,12),(1,11),(2,9),(3,9),(4,10),(5,8),(6,8),(7,11),(7,12),(8,11),(9,10),(10,12)],13)
=> ?
=> ? = 12
([(0,11),(1,9),(2,9),(3,8),(4,8),(5,10),(6,10),(7,11),(7,12),(8,12),(9,12),(10,11)],13)
=> ?
=> ? = 12
Description
The cardinality of a maximal independent set of vertices of a graph. An independent set of a graph is a set of pairwise non-adjacent vertices. A maximum independent set is an independent set of maximum cardinality. This statistic is also called the independence number or stability number $\alpha(G)$ of $G$.
Mp00274: Graphs block-cut treeGraphs
St000786: Graphs ⟶ ℤResult quality: 67% values known / values provided: 96%distinct values known / distinct values provided: 67%
Values
([],1)
=> ([],1)
=> 1
([],2)
=> ([],2)
=> 2
([(0,1)],2)
=> ([],1)
=> 1
([],3)
=> ([],3)
=> 3
([(1,2)],3)
=> ([],2)
=> 2
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> 1
([],4)
=> ([],4)
=> 4
([(2,3)],4)
=> ([],3)
=> 3
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 3
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 3
([(0,3),(1,2)],4)
=> ([],2)
=> 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3
([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([],1)
=> 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> 1
([],5)
=> ([],5)
=> 5
([(3,4)],5)
=> ([],4)
=> 4
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 4
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 4
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
([(1,4),(2,3)],5)
=> ([],3)
=> 3
([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 4
([(0,1),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> 3
([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 4
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 3
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([],2)
=> 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 4
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([],1)
=> 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> ? = 5
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,7),(2,6),(3,4),(3,5),(4,6),(5,7)],8)
=> ? = 5
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(2,7),(3,5),(3,7),(4,6),(4,7)],8)
=> ? = 5
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,8),(1,7),(2,3),(2,4),(3,5),(4,6),(5,7),(6,8)],9)
=> ? = 5
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,7),(4,5),(5,6),(6,7)],8)
=> ? = 6
([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,8),(1,8),(2,8),(3,4),(4,6),(5,7),(5,8),(6,7)],9)
=> ? = 6
([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,6),(4,6),(5,6),(5,7)],8)
=> ? = 6
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> ([(0,7),(1,7),(2,8),(3,8),(4,6),(4,8),(5,6),(5,7)],9)
=> ? = 6
([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,8),(1,8),(2,5),(3,4),(4,6),(5,7),(6,8),(7,8)],9)
=> ? = 6
([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)
=> ([(0,8),(1,9),(2,9),(3,4),(3,5),(4,6),(5,7),(6,8),(7,9)],10)
=> ? = 6
([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> ? = 5
([(0,6),(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(3,4),(4,7),(5,7),(6,7)],8)
=> ? = 5
([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> ([(0,7),(1,8),(2,9),(3,4),(3,5),(4,8),(5,9),(6,7),(6,9)],10)
=> ? = 6
([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,8),(1,7),(2,7),(3,6),(4,7),(4,8),(5,6),(5,8)],9)
=> ? = 6
([(0,5),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> ? = 5
([(0,6),(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,7),(3,5),(3,7),(4,6),(4,7)],8)
=> ? = 5
([(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6)],7)
=> ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> ? = 5
([(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(5,6)],7)
=> ([(0,8),(1,7),(2,3),(2,4),(3,5),(4,6),(5,7),(6,8)],9)
=> ? = 5
([(0,4),(1,4),(2,5),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> ? = 5
([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> ([(0,8),(1,7),(2,6),(3,6),(3,9),(4,7),(4,9),(5,8),(5,9)],10)
=> ? = 6
([(0,5),(1,4),(2,3),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,7),(3,5),(3,7),(4,6),(4,7)],8)
=> ? = 5
([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ([(0,10),(1,9),(2,3),(2,4),(3,5),(4,6),(5,7),(6,8),(7,9),(8,10)],11)
=> ? = 6
([(0,4),(1,3),(2,5),(2,6),(3,5),(4,6),(5,6)],7)
=> ([(0,8),(1,7),(2,3),(2,4),(3,5),(4,6),(5,7),(6,8)],9)
=> ? = 5
([(0,6),(1,4),(2,3),(2,5),(3,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,7),(3,5),(3,7),(4,6),(4,7)],8)
=> ? = 5
([(0,5),(1,4),(1,5),(2,3),(2,6),(3,6),(4,6)],7)
=> ([(0,8),(1,7),(2,3),(2,4),(3,5),(4,6),(5,7),(6,8)],9)
=> ? = 5
([(0,5),(1,4),(2,3),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,6),(2,5),(3,4),(3,5),(4,8),(6,8),(7,8)],9)
=> ? = 5
([(0,8),(1,6),(2,6),(3,7),(4,5),(5,8),(6,7),(7,8)],9)
=> ?
=> ? = 8
([(0,6),(1,6),(2,7),(3,7),(4,8),(5,7),(5,8),(6,8)],9)
=> ?
=> ? = 8
([(0,7),(1,7),(2,6),(3,6),(4,5),(5,8),(6,8),(7,8)],9)
=> ?
=> ? = 8
([(0,10),(1,7),(2,7),(3,8),(4,9),(5,6),(6,10),(7,9),(8,9),(8,10)],11)
=> ?
=> ? = 10
([(0,10),(1,8),(2,8),(3,7),(4,7),(5,6),(6,10),(7,9),(8,9),(9,10)],11)
=> ?
=> ? = 10
([(0,8),(1,8),(2,9),(3,7),(4,7),(5,6),(6,10),(7,10),(8,9),(9,10)],11)
=> ?
=> ? = 10
([(0,10),(1,9),(2,9),(3,7),(4,8),(5,8),(6,9),(6,10),(7,8),(7,10)],11)
=> ?
=> ? = 10
([(0,9),(1,9),(2,8),(3,8),(4,7),(5,7),(6,9),(6,10),(7,10),(8,10)],11)
=> ?
=> ? = 10
([(0,10),(1,9),(2,7),(3,7),(4,8),(5,8),(6,9),(6,10),(7,9),(8,10)],11)
=> ?
=> ? = 10
([(0,12),(1,8),(2,8),(3,9),(4,10),(5,11),(6,7),(7,12),(8,10),(9,11),(9,12),(10,11)],13)
=> ?
=> ? = 12
([(0,12),(1,9),(2,9),(3,8),(4,8),(5,10),(6,7),(7,12),(8,11),(9,11),(10,11),(10,12)],13)
=> ?
=> ? = 12
([(0,12),(1,8),(2,8),(3,9),(4,9),(5,10),(6,7),(7,12),(8,11),(9,10),(10,11),(11,12)],13)
=> ?
=> ? = 12
([(0,9),(1,9),(2,10),(3,11),(4,8),(5,8),(6,7),(7,12),(8,12),(9,11),(10,11),(10,12)],13)
=> ?
=> ? = 12
([(0,10),(1,10),(2,9),(3,9),(4,8),(5,8),(6,7),(7,12),(8,12),(9,11),(10,11),(11,12)],13)
=> ?
=> ? = 12
([(0,8),(1,8),(2,9),(3,9),(4,11),(5,10),(6,7),(7,12),(8,10),(9,11),(10,12),(11,12)],13)
=> ?
=> ? = 12
([(0,12),(1,11),(2,11),(3,8),(4,8),(5,9),(6,10),(7,11),(7,12),(8,10),(9,10),(9,12)],13)
=> ?
=> ? = 12
([(0,11),(1,12),(2,12),(3,9),(4,9),(5,8),(6,8),(7,11),(7,12),(8,10),(9,10),(10,11)],13)
=> ?
=> ? = 12
([(0,11),(1,11),(2,9),(3,9),(4,10),(5,8),(6,8),(7,11),(7,12),(8,12),(9,10),(10,12)],13)
=> ?
=> ? = 12
([(0,12),(1,11),(2,9),(3,9),(4,10),(5,8),(6,8),(7,11),(7,12),(8,11),(9,10),(10,12)],13)
=> ?
=> ? = 12
([(0,11),(1,9),(2,9),(3,8),(4,8),(5,10),(6,10),(7,11),(7,12),(8,12),(9,12),(10,11)],13)
=> ?
=> ? = 12
Description
The maximal number of occurrences of a colour in a proper colouring of a graph. To any proper colouring with the minimal number of colours possible we associate the integer partition recording how often each colour is used. This statistic records the largest part occurring in any of these partitions. For example, the graph on six vertices consisting of a square together with two attached triangles - ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6) in the list of values - is three-colourable and admits two colouring schemes, $[2,2,2]$ and $[3,2,1]$. Therefore, the statistic on this graph is $3$.
Mp00274: Graphs block-cut treeGraphs
St001286: Graphs ⟶ ℤResult quality: 67% values known / values provided: 96%distinct values known / distinct values provided: 67%
Values
([],1)
=> ([],1)
=> 1
([],2)
=> ([],2)
=> 2
([(0,1)],2)
=> ([],1)
=> 1
([],3)
=> ([],3)
=> 3
([(1,2)],3)
=> ([],2)
=> 2
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> 1
([],4)
=> ([],4)
=> 4
([(2,3)],4)
=> ([],3)
=> 3
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 3
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 3
([(0,3),(1,2)],4)
=> ([],2)
=> 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3
([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([],1)
=> 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> 1
([],5)
=> ([],5)
=> 5
([(3,4)],5)
=> ([],4)
=> 4
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 4
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 4
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
([(1,4),(2,3)],5)
=> ([],3)
=> 3
([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 4
([(0,1),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> 3
([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 4
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 3
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([],2)
=> 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 4
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([],1)
=> 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> ? = 5
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,7),(2,6),(3,4),(3,5),(4,6),(5,7)],8)
=> ? = 5
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(2,7),(3,5),(3,7),(4,6),(4,7)],8)
=> ? = 5
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,8),(1,7),(2,3),(2,4),(3,5),(4,6),(5,7),(6,8)],9)
=> ? = 5
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,7),(4,5),(5,6),(6,7)],8)
=> ? = 6
([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,8),(1,8),(2,8),(3,4),(4,6),(5,7),(5,8),(6,7)],9)
=> ? = 6
([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,6),(4,6),(5,6),(5,7)],8)
=> ? = 6
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> ([(0,7),(1,7),(2,8),(3,8),(4,6),(4,8),(5,6),(5,7)],9)
=> ? = 6
([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,8),(1,8),(2,5),(3,4),(4,6),(5,7),(6,8),(7,8)],9)
=> ? = 6
([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)
=> ([(0,8),(1,9),(2,9),(3,4),(3,5),(4,6),(5,7),(6,8),(7,9)],10)
=> ? = 6
([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> ? = 5
([(0,6),(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(3,4),(4,7),(5,7),(6,7)],8)
=> ? = 5
([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> ([(0,7),(1,8),(2,9),(3,4),(3,5),(4,8),(5,9),(6,7),(6,9)],10)
=> ? = 6
([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,8),(1,7),(2,7),(3,6),(4,7),(4,8),(5,6),(5,8)],9)
=> ? = 6
([(0,5),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> ? = 5
([(0,6),(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,7),(3,5),(3,7),(4,6),(4,7)],8)
=> ? = 5
([(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6)],7)
=> ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> ? = 5
([(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(5,6)],7)
=> ([(0,8),(1,7),(2,3),(2,4),(3,5),(4,6),(5,7),(6,8)],9)
=> ? = 5
([(0,4),(1,4),(2,5),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> ? = 5
([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> ([(0,8),(1,7),(2,6),(3,6),(3,9),(4,7),(4,9),(5,8),(5,9)],10)
=> ? = 6
([(0,5),(1,4),(2,3),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,7),(3,5),(3,7),(4,6),(4,7)],8)
=> ? = 5
([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ([(0,10),(1,9),(2,3),(2,4),(3,5),(4,6),(5,7),(6,8),(7,9),(8,10)],11)
=> ? = 6
([(0,4),(1,3),(2,5),(2,6),(3,5),(4,6),(5,6)],7)
=> ([(0,8),(1,7),(2,3),(2,4),(3,5),(4,6),(5,7),(6,8)],9)
=> ? = 5
([(0,6),(1,4),(2,3),(2,5),(3,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,7),(3,5),(3,7),(4,6),(4,7)],8)
=> ? = 5
([(0,5),(1,4),(1,5),(2,3),(2,6),(3,6),(4,6)],7)
=> ([(0,8),(1,7),(2,3),(2,4),(3,5),(4,6),(5,7),(6,8)],9)
=> ? = 5
([(0,5),(1,4),(2,3),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,6),(2,5),(3,4),(3,5),(4,8),(6,8),(7,8)],9)
=> ? = 5
([(0,8),(1,6),(2,6),(3,7),(4,5),(5,8),(6,7),(7,8)],9)
=> ?
=> ? = 8
([(0,6),(1,6),(2,7),(3,7),(4,8),(5,7),(5,8),(6,8)],9)
=> ?
=> ? = 8
([(0,7),(1,7),(2,6),(3,6),(4,5),(5,8),(6,8),(7,8)],9)
=> ?
=> ? = 8
([(0,10),(1,7),(2,7),(3,8),(4,9),(5,6),(6,10),(7,9),(8,9),(8,10)],11)
=> ?
=> ? = 10
([(0,10),(1,8),(2,8),(3,7),(4,7),(5,6),(6,10),(7,9),(8,9),(9,10)],11)
=> ?
=> ? = 10
([(0,8),(1,8),(2,9),(3,7),(4,7),(5,6),(6,10),(7,10),(8,9),(9,10)],11)
=> ?
=> ? = 10
([(0,10),(1,9),(2,9),(3,7),(4,8),(5,8),(6,9),(6,10),(7,8),(7,10)],11)
=> ?
=> ? = 10
([(0,9),(1,9),(2,8),(3,8),(4,7),(5,7),(6,9),(6,10),(7,10),(8,10)],11)
=> ?
=> ? = 10
([(0,10),(1,9),(2,7),(3,7),(4,8),(5,8),(6,9),(6,10),(7,9),(8,10)],11)
=> ?
=> ? = 10
([(0,12),(1,8),(2,8),(3,9),(4,10),(5,11),(6,7),(7,12),(8,10),(9,11),(9,12),(10,11)],13)
=> ?
=> ? = 12
([(0,12),(1,9),(2,9),(3,8),(4,8),(5,10),(6,7),(7,12),(8,11),(9,11),(10,11),(10,12)],13)
=> ?
=> ? = 12
([(0,12),(1,8),(2,8),(3,9),(4,9),(5,10),(6,7),(7,12),(8,11),(9,10),(10,11),(11,12)],13)
=> ?
=> ? = 12
([(0,9),(1,9),(2,10),(3,11),(4,8),(5,8),(6,7),(7,12),(8,12),(9,11),(10,11),(10,12)],13)
=> ?
=> ? = 12
([(0,10),(1,10),(2,9),(3,9),(4,8),(5,8),(6,7),(7,12),(8,12),(9,11),(10,11),(11,12)],13)
=> ?
=> ? = 12
([(0,8),(1,8),(2,9),(3,9),(4,11),(5,10),(6,7),(7,12),(8,10),(9,11),(10,12),(11,12)],13)
=> ?
=> ? = 12
([(0,12),(1,11),(2,11),(3,8),(4,8),(5,9),(6,10),(7,11),(7,12),(8,10),(9,10),(9,12)],13)
=> ?
=> ? = 12
([(0,11),(1,12),(2,12),(3,9),(4,9),(5,8),(6,8),(7,11),(7,12),(8,10),(9,10),(10,11)],13)
=> ?
=> ? = 12
([(0,11),(1,11),(2,9),(3,9),(4,10),(5,8),(6,8),(7,11),(7,12),(8,12),(9,10),(10,12)],13)
=> ?
=> ? = 12
([(0,12),(1,11),(2,9),(3,9),(4,10),(5,8),(6,8),(7,11),(7,12),(8,11),(9,10),(10,12)],13)
=> ?
=> ? = 12
([(0,11),(1,9),(2,9),(3,8),(4,8),(5,10),(6,10),(7,11),(7,12),(8,12),(9,12),(10,11)],13)
=> ?
=> ? = 12
Description
The annihilation number of a graph. For a graph on $m$ edges with degree sequence $d_1\leq\dots\leq d_n$, this is the largest number $k\leq n$ such that $\sum_{i=1}^k d_i \leq m$.
Mp00274: Graphs block-cut treeGraphs
St001337: Graphs ⟶ ℤResult quality: 67% values known / values provided: 96%distinct values known / distinct values provided: 67%
Values
([],1)
=> ([],1)
=> 1
([],2)
=> ([],2)
=> 2
([(0,1)],2)
=> ([],1)
=> 1
([],3)
=> ([],3)
=> 3
([(1,2)],3)
=> ([],2)
=> 2
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> 1
([],4)
=> ([],4)
=> 4
([(2,3)],4)
=> ([],3)
=> 3
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 3
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 3
([(0,3),(1,2)],4)
=> ([],2)
=> 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3
([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([],1)
=> 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> 1
([],5)
=> ([],5)
=> 5
([(3,4)],5)
=> ([],4)
=> 4
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 4
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 4
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
([(1,4),(2,3)],5)
=> ([],3)
=> 3
([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 4
([(0,1),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> 3
([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 4
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 3
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([],2)
=> 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 4
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([],1)
=> 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> ? = 5
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,7),(2,6),(3,4),(3,5),(4,6),(5,7)],8)
=> ? = 5
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(2,7),(3,5),(3,7),(4,6),(4,7)],8)
=> ? = 5
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,8),(1,7),(2,3),(2,4),(3,5),(4,6),(5,7),(6,8)],9)
=> ? = 5
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,7),(4,5),(5,6),(6,7)],8)
=> ? = 6
([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,8),(1,8),(2,8),(3,4),(4,6),(5,7),(5,8),(6,7)],9)
=> ? = 6
([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,6),(4,6),(5,6),(5,7)],8)
=> ? = 6
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> ([(0,7),(1,7),(2,8),(3,8),(4,6),(4,8),(5,6),(5,7)],9)
=> ? = 6
([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,8),(1,8),(2,5),(3,4),(4,6),(5,7),(6,8),(7,8)],9)
=> ? = 6
([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)
=> ([(0,8),(1,9),(2,9),(3,4),(3,5),(4,6),(5,7),(6,8),(7,9)],10)
=> ? = 6
([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> ? = 5
([(0,6),(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(3,4),(4,7),(5,7),(6,7)],8)
=> ? = 5
([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> ([(0,7),(1,8),(2,9),(3,4),(3,5),(4,8),(5,9),(6,7),(6,9)],10)
=> ? = 6
([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,8),(1,7),(2,7),(3,6),(4,7),(4,8),(5,6),(5,8)],9)
=> ? = 6
([(0,5),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> ? = 5
([(0,6),(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,7),(3,5),(3,7),(4,6),(4,7)],8)
=> ? = 5
([(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6)],7)
=> ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> ? = 5
([(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(5,6)],7)
=> ([(0,8),(1,7),(2,3),(2,4),(3,5),(4,6),(5,7),(6,8)],9)
=> ? = 5
([(0,4),(1,4),(2,5),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> ? = 5
([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> ([(0,8),(1,7),(2,6),(3,6),(3,9),(4,7),(4,9),(5,8),(5,9)],10)
=> ? = 6
([(0,5),(1,4),(2,3),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,7),(3,5),(3,7),(4,6),(4,7)],8)
=> ? = 5
([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ([(0,10),(1,9),(2,3),(2,4),(3,5),(4,6),(5,7),(6,8),(7,9),(8,10)],11)
=> ? = 6
([(0,4),(1,3),(2,5),(2,6),(3,5),(4,6),(5,6)],7)
=> ([(0,8),(1,7),(2,3),(2,4),(3,5),(4,6),(5,7),(6,8)],9)
=> ? = 5
([(0,6),(1,4),(2,3),(2,5),(3,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,7),(3,5),(3,7),(4,6),(4,7)],8)
=> ? = 5
([(0,5),(1,4),(1,5),(2,3),(2,6),(3,6),(4,6)],7)
=> ([(0,8),(1,7),(2,3),(2,4),(3,5),(4,6),(5,7),(6,8)],9)
=> ? = 5
([(0,5),(1,4),(2,3),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,6),(2,5),(3,4),(3,5),(4,8),(6,8),(7,8)],9)
=> ? = 5
([(0,8),(1,6),(2,6),(3,7),(4,5),(5,8),(6,7),(7,8)],9)
=> ?
=> ? = 8
([(0,6),(1,6),(2,7),(3,7),(4,8),(5,7),(5,8),(6,8)],9)
=> ?
=> ? = 8
([(0,7),(1,7),(2,6),(3,6),(4,5),(5,8),(6,8),(7,8)],9)
=> ?
=> ? = 8
([(0,10),(1,7),(2,7),(3,8),(4,9),(5,6),(6,10),(7,9),(8,9),(8,10)],11)
=> ?
=> ? = 10
([(0,10),(1,8),(2,8),(3,7),(4,7),(5,6),(6,10),(7,9),(8,9),(9,10)],11)
=> ?
=> ? = 10
([(0,8),(1,8),(2,9),(3,7),(4,7),(5,6),(6,10),(7,10),(8,9),(9,10)],11)
=> ?
=> ? = 10
([(0,10),(1,9),(2,9),(3,7),(4,8),(5,8),(6,9),(6,10),(7,8),(7,10)],11)
=> ?
=> ? = 10
([(0,9),(1,9),(2,8),(3,8),(4,7),(5,7),(6,9),(6,10),(7,10),(8,10)],11)
=> ?
=> ? = 10
([(0,10),(1,9),(2,7),(3,7),(4,8),(5,8),(6,9),(6,10),(7,9),(8,10)],11)
=> ?
=> ? = 10
([(0,12),(1,8),(2,8),(3,9),(4,10),(5,11),(6,7),(7,12),(8,10),(9,11),(9,12),(10,11)],13)
=> ?
=> ? = 12
([(0,12),(1,9),(2,9),(3,8),(4,8),(5,10),(6,7),(7,12),(8,11),(9,11),(10,11),(10,12)],13)
=> ?
=> ? = 12
([(0,12),(1,8),(2,8),(3,9),(4,9),(5,10),(6,7),(7,12),(8,11),(9,10),(10,11),(11,12)],13)
=> ?
=> ? = 12
([(0,9),(1,9),(2,10),(3,11),(4,8),(5,8),(6,7),(7,12),(8,12),(9,11),(10,11),(10,12)],13)
=> ?
=> ? = 12
([(0,10),(1,10),(2,9),(3,9),(4,8),(5,8),(6,7),(7,12),(8,12),(9,11),(10,11),(11,12)],13)
=> ?
=> ? = 12
([(0,8),(1,8),(2,9),(3,9),(4,11),(5,10),(6,7),(7,12),(8,10),(9,11),(10,12),(11,12)],13)
=> ?
=> ? = 12
([(0,12),(1,11),(2,11),(3,8),(4,8),(5,9),(6,10),(7,11),(7,12),(8,10),(9,10),(9,12)],13)
=> ?
=> ? = 12
([(0,11),(1,12),(2,12),(3,9),(4,9),(5,8),(6,8),(7,11),(7,12),(8,10),(9,10),(10,11)],13)
=> ?
=> ? = 12
([(0,11),(1,11),(2,9),(3,9),(4,10),(5,8),(6,8),(7,11),(7,12),(8,12),(9,10),(10,12)],13)
=> ?
=> ? = 12
([(0,12),(1,11),(2,9),(3,9),(4,10),(5,8),(6,8),(7,11),(7,12),(8,11),(9,10),(10,12)],13)
=> ?
=> ? = 12
([(0,11),(1,9),(2,9),(3,8),(4,8),(5,10),(6,10),(7,11),(7,12),(8,12),(9,12),(10,11)],13)
=> ?
=> ? = 12
Description
The upper domination number of a graph. This is the maximum cardinality of a minimal dominating set of $G$. The smallest graph with different upper irredundance number and upper domination number has eight vertices. It is obtained from the disjoint union of two copies of $K_4$ by joining three of the four vertices of the first with three of the four vertices of the second. For bipartite graphs the two parameters always coincide [1].
Mp00274: Graphs block-cut treeGraphs
St001338: Graphs ⟶ ℤResult quality: 67% values known / values provided: 96%distinct values known / distinct values provided: 67%
Values
([],1)
=> ([],1)
=> 1
([],2)
=> ([],2)
=> 2
([(0,1)],2)
=> ([],1)
=> 1
([],3)
=> ([],3)
=> 3
([(1,2)],3)
=> ([],2)
=> 2
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 2
([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> 1
([],4)
=> ([],4)
=> 4
([(2,3)],4)
=> ([],3)
=> 3
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 3
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 3
([(0,3),(1,2)],4)
=> ([],2)
=> 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3
([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([],1)
=> 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> 1
([],5)
=> ([],5)
=> 5
([(3,4)],5)
=> ([],4)
=> 4
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 4
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 4
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
([(1,4),(2,3)],5)
=> ([],3)
=> 3
([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 4
([(0,1),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> 3
([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 4
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 3
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([],2)
=> 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 4
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([],1)
=> 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> ? = 5
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,7),(2,6),(3,4),(3,5),(4,6),(5,7)],8)
=> ? = 5
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(2,7),(3,5),(3,7),(4,6),(4,7)],8)
=> ? = 5
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,8),(1,7),(2,3),(2,4),(3,5),(4,6),(5,7),(6,8)],9)
=> ? = 5
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,7),(4,5),(5,6),(6,7)],8)
=> ? = 6
([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,8),(1,8),(2,8),(3,4),(4,6),(5,7),(5,8),(6,7)],9)
=> ? = 6
([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,6),(4,6),(5,6),(5,7)],8)
=> ? = 6
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> ([(0,7),(1,7),(2,8),(3,8),(4,6),(4,8),(5,6),(5,7)],9)
=> ? = 6
([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,8),(1,8),(2,5),(3,4),(4,6),(5,7),(6,8),(7,8)],9)
=> ? = 6
([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)
=> ([(0,8),(1,9),(2,9),(3,4),(3,5),(4,6),(5,7),(6,8),(7,9)],10)
=> ? = 6
([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> ? = 5
([(0,6),(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(3,4),(4,7),(5,7),(6,7)],8)
=> ? = 5
([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> ([(0,7),(1,8),(2,9),(3,4),(3,5),(4,8),(5,9),(6,7),(6,9)],10)
=> ? = 6
([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,8),(1,7),(2,7),(3,6),(4,7),(4,8),(5,6),(5,8)],9)
=> ? = 6
([(0,5),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> ? = 5
([(0,6),(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,7),(3,5),(3,7),(4,6),(4,7)],8)
=> ? = 5
([(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6)],7)
=> ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> ? = 5
([(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(5,6)],7)
=> ([(0,8),(1,7),(2,3),(2,4),(3,5),(4,6),(5,7),(6,8)],9)
=> ? = 5
([(0,4),(1,4),(2,5),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> ? = 5
([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> ([(0,8),(1,7),(2,6),(3,6),(3,9),(4,7),(4,9),(5,8),(5,9)],10)
=> ? = 6
([(0,5),(1,4),(2,3),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,7),(3,5),(3,7),(4,6),(4,7)],8)
=> ? = 5
([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ([(0,10),(1,9),(2,3),(2,4),(3,5),(4,6),(5,7),(6,8),(7,9),(8,10)],11)
=> ? = 6
([(0,4),(1,3),(2,5),(2,6),(3,5),(4,6),(5,6)],7)
=> ([(0,8),(1,7),(2,3),(2,4),(3,5),(4,6),(5,7),(6,8)],9)
=> ? = 5
([(0,6),(1,4),(2,3),(2,5),(3,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,7),(3,5),(3,7),(4,6),(4,7)],8)
=> ? = 5
([(0,5),(1,4),(1,5),(2,3),(2,6),(3,6),(4,6)],7)
=> ([(0,8),(1,7),(2,3),(2,4),(3,5),(4,6),(5,7),(6,8)],9)
=> ? = 5
([(0,5),(1,4),(2,3),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,6),(2,5),(3,4),(3,5),(4,8),(6,8),(7,8)],9)
=> ? = 5
([(0,8),(1,6),(2,6),(3,7),(4,5),(5,8),(6,7),(7,8)],9)
=> ?
=> ? = 8
([(0,6),(1,6),(2,7),(3,7),(4,8),(5,7),(5,8),(6,8)],9)
=> ?
=> ? = 8
([(0,7),(1,7),(2,6),(3,6),(4,5),(5,8),(6,8),(7,8)],9)
=> ?
=> ? = 8
([(0,10),(1,7),(2,7),(3,8),(4,9),(5,6),(6,10),(7,9),(8,9),(8,10)],11)
=> ?
=> ? = 10
([(0,10),(1,8),(2,8),(3,7),(4,7),(5,6),(6,10),(7,9),(8,9),(9,10)],11)
=> ?
=> ? = 10
([(0,8),(1,8),(2,9),(3,7),(4,7),(5,6),(6,10),(7,10),(8,9),(9,10)],11)
=> ?
=> ? = 10
([(0,10),(1,9),(2,9),(3,7),(4,8),(5,8),(6,9),(6,10),(7,8),(7,10)],11)
=> ?
=> ? = 10
([(0,9),(1,9),(2,8),(3,8),(4,7),(5,7),(6,9),(6,10),(7,10),(8,10)],11)
=> ?
=> ? = 10
([(0,10),(1,9),(2,7),(3,7),(4,8),(5,8),(6,9),(6,10),(7,9),(8,10)],11)
=> ?
=> ? = 10
([(0,12),(1,8),(2,8),(3,9),(4,10),(5,11),(6,7),(7,12),(8,10),(9,11),(9,12),(10,11)],13)
=> ?
=> ? = 12
([(0,12),(1,9),(2,9),(3,8),(4,8),(5,10),(6,7),(7,12),(8,11),(9,11),(10,11),(10,12)],13)
=> ?
=> ? = 12
([(0,12),(1,8),(2,8),(3,9),(4,9),(5,10),(6,7),(7,12),(8,11),(9,10),(10,11),(11,12)],13)
=> ?
=> ? = 12
([(0,9),(1,9),(2,10),(3,11),(4,8),(5,8),(6,7),(7,12),(8,12),(9,11),(10,11),(10,12)],13)
=> ?
=> ? = 12
([(0,10),(1,10),(2,9),(3,9),(4,8),(5,8),(6,7),(7,12),(8,12),(9,11),(10,11),(11,12)],13)
=> ?
=> ? = 12
([(0,8),(1,8),(2,9),(3,9),(4,11),(5,10),(6,7),(7,12),(8,10),(9,11),(10,12),(11,12)],13)
=> ?
=> ? = 12
([(0,12),(1,11),(2,11),(3,8),(4,8),(5,9),(6,10),(7,11),(7,12),(8,10),(9,10),(9,12)],13)
=> ?
=> ? = 12
([(0,11),(1,12),(2,12),(3,9),(4,9),(5,8),(6,8),(7,11),(7,12),(8,10),(9,10),(10,11)],13)
=> ?
=> ? = 12
([(0,11),(1,11),(2,9),(3,9),(4,10),(5,8),(6,8),(7,11),(7,12),(8,12),(9,10),(10,12)],13)
=> ?
=> ? = 12
([(0,12),(1,11),(2,9),(3,9),(4,10),(5,8),(6,8),(7,11),(7,12),(8,11),(9,10),(10,12)],13)
=> ?
=> ? = 12
([(0,11),(1,9),(2,9),(3,8),(4,8),(5,10),(6,10),(7,11),(7,12),(8,12),(9,12),(10,11)],13)
=> ?
=> ? = 12
Description
The upper irredundance number of a graph. A set $S$ of vertices is irredundant, if there is no vertex in $S$, whose closed neighbourhood is contained in the union of the closed neighbourhoods of the other vertices of $S$. The upper irredundance number is the largest size of a maximal irredundant set. The smallest graph with different upper irredundance number and upper domination number [[St001337]] has eight vertices. It is obtained from the disjoint union of two copies of $K_4$ by joining three of the four vertices of the first with three of the four vertices of the second. For bipartite graphs the two parameters always coincide [2].
Mp00274: Graphs block-cut treeGraphs
Mp00111: Graphs complementGraphs
St000098: Graphs ⟶ ℤResult quality: 67% values known / values provided: 96%distinct values known / distinct values provided: 67%
Values
([],1)
=> ([],1)
=> ([],1)
=> 1
([],2)
=> ([],2)
=> ([(0,1)],2)
=> 2
([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1
([],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
([(1,2)],3)
=> ([],2)
=> ([(0,1)],2)
=> 2
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> 1
([],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
([(2,3)],4)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 3
([(0,3),(1,2)],4)
=> ([],2)
=> ([(0,1)],2)
=> 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ([(0,1)],2)
=> 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([],1)
=> ([],1)
=> 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> 1
([],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
([(3,4)],5)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(1,4),(2,3)],5)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,1),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 4
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 3
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([],2)
=> ([(0,1)],2)
=> 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([(0,1)],2)
=> 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ([(0,1),(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([(0,1)],2)
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([],1)
=> ([],1)
=> 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([(0,1)],2)
=> 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> ([(0,2),(0,3),(0,4),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,5),(2,6),(2,7),(3,5),(3,6),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,7),(2,6),(3,4),(3,5),(4,6),(5,7)],8)
=> ([(0,1),(0,3),(0,4),(0,6),(0,7),(1,2),(1,4),(1,5),(1,7),(2,3),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(2,7),(3,5),(3,7),(4,6),(4,7)],8)
=> ([(0,3),(0,4),(0,6),(0,7),(1,2),(1,4),(1,5),(1,6),(1,7),(2,3),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,8),(1,7),(2,3),(2,4),(3,5),(4,6),(5,7),(6,8)],9)
=> ([(0,1),(0,3),(0,4),(0,5),(0,6),(0,8),(1,2),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 5
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,7),(4,5),(5,6),(6,7)],8)
=> ([(0,2),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6
([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,8),(1,8),(2,8),(3,4),(4,6),(5,7),(5,8),(6,7)],9)
=> ([(0,2),(0,3),(0,4),(0,8),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,5),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 6
([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,6),(4,6),(5,6),(5,7)],8)
=> ([(0,1),(0,6),(0,7),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> ([(0,7),(1,7),(2,8),(3,8),(4,6),(4,8),(5,6),(5,7)],9)
=> ([(0,1),(0,3),(0,4),(0,7),(0,8),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 6
([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,8),(1,8),(2,5),(3,4),(4,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(0,7),(0,8),(1,2),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 6
([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)
=> ([(0,8),(1,9),(2,9),(3,4),(3,5),(4,6),(5,7),(6,8),(7,9)],10)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,9),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8),(4,9),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 6
([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> ([(0,2),(0,3),(0,4),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,5),(2,6),(2,7),(3,5),(3,6),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
([(0,6),(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(3,4),(4,7),(5,7),(6,7)],8)
=> ([(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,6),(1,7),(2,3),(2,4),(2,5),(2,7),(3,4),(3,5),(3,6),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> ([(0,7),(1,8),(2,9),(3,4),(3,5),(4,8),(5,9),(6,7),(6,9)],10)
=> ([(0,3),(0,4),(0,5),(0,6),(0,8),(0,9),(1,2),(1,3),(1,4),(1,6),(1,7),(1,8),(1,9),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,7),(4,9),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 6
([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,8),(1,7),(2,7),(3,6),(4,7),(4,8),(5,6),(5,8)],9)
=> ([(0,1),(0,4),(0,5),(0,6),(0,8),(1,3),(1,4),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 6
([(0,5),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> ([(0,2),(0,3),(0,4),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,5),(2,6),(2,7),(3,5),(3,6),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
([(0,6),(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,7),(3,5),(3,7),(4,6),(4,7)],8)
=> ([(0,3),(0,4),(0,6),(0,7),(1,2),(1,4),(1,5),(1,6),(1,7),(2,3),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
([(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6)],7)
=> ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> ([(0,2),(0,3),(0,4),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,5),(2,6),(2,7),(3,5),(3,6),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
([(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(5,6)],7)
=> ([(0,8),(1,7),(2,3),(2,4),(3,5),(4,6),(5,7),(6,8)],9)
=> ([(0,1),(0,3),(0,4),(0,5),(0,6),(0,8),(1,2),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 5
([(0,4),(1,4),(2,5),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> ([(0,2),(0,3),(0,4),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,5),(2,6),(2,7),(3,5),(3,6),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> ([(0,8),(1,7),(2,6),(3,6),(3,9),(4,7),(4,9),(5,8),(5,9)],10)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,7),(3,8),(3,9),(4,5),(4,6),(4,8),(4,9),(5,6),(5,7),(5,8),(6,7),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 6
([(0,5),(1,4),(2,3),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,7),(3,5),(3,7),(4,6),(4,7)],8)
=> ([(0,3),(0,4),(0,6),(0,7),(1,2),(1,4),(1,5),(1,6),(1,7),(2,3),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ([(0,10),(1,9),(2,3),(2,4),(3,5),(4,6),(5,7),(6,8),(7,9),(8,10)],11)
=> ([(0,1),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,10),(1,2),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,6),(2,7),(2,8),(2,9),(2,10),(3,5),(3,6),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,8),(4,9),(4,10),(5,7),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 6
([(0,4),(1,3),(2,5),(2,6),(3,5),(4,6),(5,6)],7)
=> ([(0,8),(1,7),(2,3),(2,4),(3,5),(4,6),(5,7),(6,8)],9)
=> ([(0,1),(0,3),(0,4),(0,5),(0,6),(0,8),(1,2),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 5
([(0,6),(1,4),(2,3),(2,5),(3,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,7),(3,5),(3,7),(4,6),(4,7)],8)
=> ([(0,3),(0,4),(0,6),(0,7),(1,2),(1,4),(1,5),(1,6),(1,7),(2,3),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
([(0,5),(1,4),(1,5),(2,3),(2,6),(3,6),(4,6)],7)
=> ([(0,8),(1,7),(2,3),(2,4),(3,5),(4,6),(5,7),(6,8)],9)
=> ([(0,1),(0,3),(0,4),(0,5),(0,6),(0,8),(1,2),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 5
([(0,5),(1,4),(2,3),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,6),(2,5),(3,4),(3,5),(4,8),(6,8),(7,8)],9)
=> ?
=> ? = 5
([(0,8),(1,6),(2,6),(3,7),(4,5),(5,8),(6,7),(7,8)],9)
=> ?
=> ?
=> ? = 8
([(0,6),(1,6),(2,7),(3,7),(4,8),(5,7),(5,8),(6,8)],9)
=> ?
=> ?
=> ? = 8
([(0,7),(1,7),(2,6),(3,6),(4,5),(5,8),(6,8),(7,8)],9)
=> ?
=> ?
=> ? = 8
([(0,10),(1,7),(2,7),(3,8),(4,9),(5,6),(6,10),(7,9),(8,9),(8,10)],11)
=> ?
=> ?
=> ? = 10
([(0,10),(1,8),(2,8),(3,7),(4,7),(5,6),(6,10),(7,9),(8,9),(9,10)],11)
=> ?
=> ?
=> ? = 10
([(0,8),(1,8),(2,9),(3,7),(4,7),(5,6),(6,10),(7,10),(8,9),(9,10)],11)
=> ?
=> ?
=> ? = 10
([(0,10),(1,9),(2,9),(3,7),(4,8),(5,8),(6,9),(6,10),(7,8),(7,10)],11)
=> ?
=> ?
=> ? = 10
([(0,9),(1,9),(2,8),(3,8),(4,7),(5,7),(6,9),(6,10),(7,10),(8,10)],11)
=> ?
=> ?
=> ? = 10
([(0,10),(1,9),(2,7),(3,7),(4,8),(5,8),(6,9),(6,10),(7,9),(8,10)],11)
=> ?
=> ?
=> ? = 10
([(0,12),(1,8),(2,8),(3,9),(4,10),(5,11),(6,7),(7,12),(8,10),(9,11),(9,12),(10,11)],13)
=> ?
=> ?
=> ? = 12
([(0,12),(1,9),(2,9),(3,8),(4,8),(5,10),(6,7),(7,12),(8,11),(9,11),(10,11),(10,12)],13)
=> ?
=> ?
=> ? = 12
([(0,12),(1,8),(2,8),(3,9),(4,9),(5,10),(6,7),(7,12),(8,11),(9,10),(10,11),(11,12)],13)
=> ?
=> ?
=> ? = 12
([(0,9),(1,9),(2,10),(3,11),(4,8),(5,8),(6,7),(7,12),(8,12),(9,11),(10,11),(10,12)],13)
=> ?
=> ?
=> ? = 12
([(0,10),(1,10),(2,9),(3,9),(4,8),(5,8),(6,7),(7,12),(8,12),(9,11),(10,11),(11,12)],13)
=> ?
=> ?
=> ? = 12
([(0,8),(1,8),(2,9),(3,9),(4,11),(5,10),(6,7),(7,12),(8,10),(9,11),(10,12),(11,12)],13)
=> ?
=> ?
=> ? = 12
([(0,12),(1,11),(2,11),(3,8),(4,8),(5,9),(6,10),(7,11),(7,12),(8,10),(9,10),(9,12)],13)
=> ?
=> ?
=> ? = 12
([(0,11),(1,12),(2,12),(3,9),(4,9),(5,8),(6,8),(7,11),(7,12),(8,10),(9,10),(10,11)],13)
=> ?
=> ?
=> ? = 12
([(0,11),(1,11),(2,9),(3,9),(4,10),(5,8),(6,8),(7,11),(7,12),(8,12),(9,10),(10,12)],13)
=> ?
=> ?
=> ? = 12
([(0,12),(1,11),(2,9),(3,9),(4,10),(5,8),(6,8),(7,11),(7,12),(8,11),(9,10),(10,12)],13)
=> ?
=> ?
=> ? = 12
([(0,11),(1,9),(2,9),(3,8),(4,8),(5,10),(6,10),(7,11),(7,12),(8,12),(9,12),(10,11)],13)
=> ?
=> ?
=> ? = 12
Description
The chromatic number of a graph. The minimal number of colors needed to color the vertices of the graph such that no two vertices which share an edge have the same color.
Matching statistic: St000381
Mp00274: Graphs block-cut treeGraphs
Mp00324: Graphs chromatic difference sequenceInteger compositions
St000381: Integer compositions ⟶ ℤResult quality: 67% values known / values provided: 96%distinct values known / distinct values provided: 67%
Values
([],1)
=> ([],1)
=> [1] => 1
([],2)
=> ([],2)
=> [2] => 2
([(0,1)],2)
=> ([],1)
=> [1] => 1
([],3)
=> ([],3)
=> [3] => 3
([(1,2)],3)
=> ([],2)
=> [2] => 2
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [2,1] => 2
([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> [1] => 1
([],4)
=> ([],4)
=> [4] => 4
([(2,3)],4)
=> ([],3)
=> [3] => 3
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [3,1] => 3
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [3,1] => 3
([(0,3),(1,2)],4)
=> ([],2)
=> [2] => 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [3,2] => 3
([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> [2] => 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> [2,1] => 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([],1)
=> [1] => 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> [1] => 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> [1] => 1
([],5)
=> ([],5)
=> [5] => 5
([(3,4)],5)
=> ([],4)
=> [4] => 4
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [4,1] => 4
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1] => 4
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [4,1] => 4
([(1,4),(2,3)],5)
=> ([],3)
=> [3] => 3
([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> [4,2] => 4
([(0,1),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> [3,1] => 3
([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> [3] => 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,2] => 4
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> [3,1] => 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> [3,1] => 3
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([],2)
=> [2] => 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> [2,1] => 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> [2] => 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [3,2] => 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> [2,1] => 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> [1] => 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> [1] => 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> [4,3] => 4
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> [2] => 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [3,2] => 3
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> [2,1] => 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([],1)
=> [1] => 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> [1] => 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> [1] => 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> [2,1] => 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> [2] => 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> [2,1] => 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> [1] => 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> [1] => 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> [1] => 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> ? => ? = 5
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,7),(2,6),(3,4),(3,5),(4,6),(5,7)],8)
=> ? => ? = 5
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(2,7),(3,5),(3,7),(4,6),(4,7)],8)
=> ? => ? = 5
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,8),(1,7),(2,3),(2,4),(3,5),(4,6),(5,7),(6,8)],9)
=> ? => ? = 5
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,7),(4,5),(5,6),(6,7)],8)
=> ? => ? = 6
([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,8),(1,8),(2,8),(3,4),(4,6),(5,7),(5,8),(6,7)],9)
=> ? => ? = 6
([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,6),(4,6),(5,6),(5,7)],8)
=> ? => ? = 6
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> ([(0,7),(1,7),(2,8),(3,8),(4,6),(4,8),(5,6),(5,7)],9)
=> ? => ? = 6
([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,8),(1,8),(2,5),(3,4),(4,6),(5,7),(6,8),(7,8)],9)
=> ? => ? = 6
([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)
=> ([(0,8),(1,9),(2,9),(3,4),(3,5),(4,6),(5,7),(6,8),(7,9)],10)
=> ? => ? = 6
([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> ? => ? = 5
([(0,6),(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(3,4),(4,7),(5,7),(6,7)],8)
=> ? => ? = 5
([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> ([(0,7),(1,8),(2,9),(3,4),(3,5),(4,8),(5,9),(6,7),(6,9)],10)
=> ? => ? = 6
([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,8),(1,7),(2,7),(3,6),(4,7),(4,8),(5,6),(5,8)],9)
=> ? => ? = 6
([(0,5),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> ? => ? = 5
([(0,6),(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,7),(3,5),(3,7),(4,6),(4,7)],8)
=> ? => ? = 5
([(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6)],7)
=> ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> ? => ? = 5
([(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(5,6)],7)
=> ([(0,8),(1,7),(2,3),(2,4),(3,5),(4,6),(5,7),(6,8)],9)
=> ? => ? = 5
([(0,4),(1,4),(2,5),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> ? => ? = 5
([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> ([(0,8),(1,7),(2,6),(3,6),(3,9),(4,7),(4,9),(5,8),(5,9)],10)
=> ? => ? = 6
([(0,5),(1,4),(2,3),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,7),(3,5),(3,7),(4,6),(4,7)],8)
=> ? => ? = 5
([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ([(0,10),(1,9),(2,3),(2,4),(3,5),(4,6),(5,7),(6,8),(7,9),(8,10)],11)
=> ? => ? = 6
([(0,4),(1,3),(2,5),(2,6),(3,5),(4,6),(5,6)],7)
=> ([(0,8),(1,7),(2,3),(2,4),(3,5),(4,6),(5,7),(6,8)],9)
=> ? => ? = 5
([(0,6),(1,4),(2,3),(2,5),(3,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,7),(3,5),(3,7),(4,6),(4,7)],8)
=> ? => ? = 5
([(0,5),(1,4),(1,5),(2,3),(2,6),(3,6),(4,6)],7)
=> ([(0,8),(1,7),(2,3),(2,4),(3,5),(4,6),(5,7),(6,8)],9)
=> ? => ? = 5
([(0,5),(1,4),(2,3),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,6),(2,5),(3,4),(3,5),(4,8),(6,8),(7,8)],9)
=> ? => ? = 5
([(0,8),(1,6),(2,6),(3,7),(4,5),(5,8),(6,7),(7,8)],9)
=> ?
=> ? => ? = 8
([(0,6),(1,6),(2,7),(3,7),(4,8),(5,7),(5,8),(6,8)],9)
=> ?
=> ? => ? = 8
([(0,7),(1,7),(2,6),(3,6),(4,5),(5,8),(6,8),(7,8)],9)
=> ?
=> ? => ? = 8
([(0,10),(1,7),(2,7),(3,8),(4,9),(5,6),(6,10),(7,9),(8,9),(8,10)],11)
=> ?
=> ? => ? = 10
([(0,10),(1,8),(2,8),(3,7),(4,7),(5,6),(6,10),(7,9),(8,9),(9,10)],11)
=> ?
=> ? => ? = 10
([(0,8),(1,8),(2,9),(3,7),(4,7),(5,6),(6,10),(7,10),(8,9),(9,10)],11)
=> ?
=> ? => ? = 10
([(0,10),(1,9),(2,9),(3,7),(4,8),(5,8),(6,9),(6,10),(7,8),(7,10)],11)
=> ?
=> ? => ? = 10
([(0,9),(1,9),(2,8),(3,8),(4,7),(5,7),(6,9),(6,10),(7,10),(8,10)],11)
=> ?
=> ? => ? = 10
([(0,10),(1,9),(2,7),(3,7),(4,8),(5,8),(6,9),(6,10),(7,9),(8,10)],11)
=> ?
=> ? => ? = 10
([(0,12),(1,8),(2,8),(3,9),(4,10),(5,11),(6,7),(7,12),(8,10),(9,11),(9,12),(10,11)],13)
=> ?
=> ? => ? = 12
([(0,12),(1,9),(2,9),(3,8),(4,8),(5,10),(6,7),(7,12),(8,11),(9,11),(10,11),(10,12)],13)
=> ?
=> ? => ? = 12
([(0,12),(1,8),(2,8),(3,9),(4,9),(5,10),(6,7),(7,12),(8,11),(9,10),(10,11),(11,12)],13)
=> ?
=> ? => ? = 12
([(0,9),(1,9),(2,10),(3,11),(4,8),(5,8),(6,7),(7,12),(8,12),(9,11),(10,11),(10,12)],13)
=> ?
=> ? => ? = 12
([(0,10),(1,10),(2,9),(3,9),(4,8),(5,8),(6,7),(7,12),(8,12),(9,11),(10,11),(11,12)],13)
=> ?
=> ? => ? = 12
([(0,8),(1,8),(2,9),(3,9),(4,11),(5,10),(6,7),(7,12),(8,10),(9,11),(10,12),(11,12)],13)
=> ?
=> ? => ? = 12
([(0,12),(1,11),(2,11),(3,8),(4,8),(5,9),(6,10),(7,11),(7,12),(8,10),(9,10),(9,12)],13)
=> ?
=> ? => ? = 12
([(0,11),(1,12),(2,12),(3,9),(4,9),(5,8),(6,8),(7,11),(7,12),(8,10),(9,10),(10,11)],13)
=> ?
=> ? => ? = 12
([(0,11),(1,11),(2,9),(3,9),(4,10),(5,8),(6,8),(7,11),(7,12),(8,12),(9,10),(10,12)],13)
=> ?
=> ? => ? = 12
([(0,12),(1,11),(2,9),(3,9),(4,10),(5,8),(6,8),(7,11),(7,12),(8,11),(9,10),(10,12)],13)
=> ?
=> ? => ? = 12
([(0,11),(1,9),(2,9),(3,8),(4,8),(5,10),(6,10),(7,11),(7,12),(8,12),(9,12),(10,11)],13)
=> ?
=> ? => ? = 12
Description
The largest part of an integer composition.
Matching statistic: St000382
Mp00274: Graphs block-cut treeGraphs
Mp00324: Graphs chromatic difference sequenceInteger compositions
St000382: Integer compositions ⟶ ℤResult quality: 67% values known / values provided: 96%distinct values known / distinct values provided: 67%
Values
([],1)
=> ([],1)
=> [1] => 1
([],2)
=> ([],2)
=> [2] => 2
([(0,1)],2)
=> ([],1)
=> [1] => 1
([],3)
=> ([],3)
=> [3] => 3
([(1,2)],3)
=> ([],2)
=> [2] => 2
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [2,1] => 2
([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> [1] => 1
([],4)
=> ([],4)
=> [4] => 4
([(2,3)],4)
=> ([],3)
=> [3] => 3
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [3,1] => 3
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [3,1] => 3
([(0,3),(1,2)],4)
=> ([],2)
=> [2] => 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [3,2] => 3
([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> [2] => 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> [2,1] => 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([],1)
=> [1] => 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> [1] => 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> [1] => 1
([],5)
=> ([],5)
=> [5] => 5
([(3,4)],5)
=> ([],4)
=> [4] => 4
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [4,1] => 4
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1] => 4
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [4,1] => 4
([(1,4),(2,3)],5)
=> ([],3)
=> [3] => 3
([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> [4,2] => 4
([(0,1),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> [3,1] => 3
([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> [3] => 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,2] => 4
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> [3,1] => 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> [3,1] => 3
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([],2)
=> [2] => 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> [2,1] => 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> [2] => 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [3,2] => 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> [2,1] => 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> [1] => 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> [1] => 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> [4,3] => 4
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> [2] => 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [3,2] => 3
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> [2,1] => 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([],1)
=> [1] => 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> [1] => 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> [1] => 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> [2,1] => 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> [2] => 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> [2,1] => 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> [1] => 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> [1] => 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> [1] => 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> ? => ? = 5
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,7),(2,6),(3,4),(3,5),(4,6),(5,7)],8)
=> ? => ? = 5
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(2,7),(3,5),(3,7),(4,6),(4,7)],8)
=> ? => ? = 5
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,8),(1,7),(2,3),(2,4),(3,5),(4,6),(5,7),(6,8)],9)
=> ? => ? = 5
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,7),(4,5),(5,6),(6,7)],8)
=> ? => ? = 6
([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,8),(1,8),(2,8),(3,4),(4,6),(5,7),(5,8),(6,7)],9)
=> ? => ? = 6
([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,6),(4,6),(5,6),(5,7)],8)
=> ? => ? = 6
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> ([(0,7),(1,7),(2,8),(3,8),(4,6),(4,8),(5,6),(5,7)],9)
=> ? => ? = 6
([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,8),(1,8),(2,5),(3,4),(4,6),(5,7),(6,8),(7,8)],9)
=> ? => ? = 6
([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)
=> ([(0,8),(1,9),(2,9),(3,4),(3,5),(4,6),(5,7),(6,8),(7,9)],10)
=> ? => ? = 6
([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> ? => ? = 5
([(0,6),(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(3,4),(4,7),(5,7),(6,7)],8)
=> ? => ? = 5
([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> ([(0,7),(1,8),(2,9),(3,4),(3,5),(4,8),(5,9),(6,7),(6,9)],10)
=> ? => ? = 6
([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(0,8),(1,7),(2,7),(3,6),(4,7),(4,8),(5,6),(5,8)],9)
=> ? => ? = 6
([(0,5),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> ? => ? = 5
([(0,6),(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,7),(3,5),(3,7),(4,6),(4,7)],8)
=> ? => ? = 5
([(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6)],7)
=> ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> ? => ? = 5
([(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(5,6)],7)
=> ([(0,8),(1,7),(2,3),(2,4),(3,5),(4,6),(5,7),(6,8)],9)
=> ? => ? = 5
([(0,4),(1,4),(2,5),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> ? => ? = 5
([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> ([(0,8),(1,7),(2,6),(3,6),(3,9),(4,7),(4,9),(5,8),(5,9)],10)
=> ? => ? = 6
([(0,5),(1,4),(2,3),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,7),(3,5),(3,7),(4,6),(4,7)],8)
=> ? => ? = 5
([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ([(0,10),(1,9),(2,3),(2,4),(3,5),(4,6),(5,7),(6,8),(7,9),(8,10)],11)
=> ? => ? = 6
([(0,4),(1,3),(2,5),(2,6),(3,5),(4,6),(5,6)],7)
=> ([(0,8),(1,7),(2,3),(2,4),(3,5),(4,6),(5,7),(6,8)],9)
=> ? => ? = 5
([(0,6),(1,4),(2,3),(2,5),(3,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,7),(3,5),(3,7),(4,6),(4,7)],8)
=> ? => ? = 5
([(0,5),(1,4),(1,5),(2,3),(2,6),(3,6),(4,6)],7)
=> ([(0,8),(1,7),(2,3),(2,4),(3,5),(4,6),(5,7),(6,8)],9)
=> ? => ? = 5
([(0,5),(1,4),(2,3),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,6),(2,5),(3,4),(3,5),(4,8),(6,8),(7,8)],9)
=> ? => ? = 5
([(0,8),(1,6),(2,6),(3,7),(4,5),(5,8),(6,7),(7,8)],9)
=> ?
=> ? => ? = 8
([(0,6),(1,6),(2,7),(3,7),(4,8),(5,7),(5,8),(6,8)],9)
=> ?
=> ? => ? = 8
([(0,7),(1,7),(2,6),(3,6),(4,5),(5,8),(6,8),(7,8)],9)
=> ?
=> ? => ? = 8
([(0,10),(1,7),(2,7),(3,8),(4,9),(5,6),(6,10),(7,9),(8,9),(8,10)],11)
=> ?
=> ? => ? = 10
([(0,10),(1,8),(2,8),(3,7),(4,7),(5,6),(6,10),(7,9),(8,9),(9,10)],11)
=> ?
=> ? => ? = 10
([(0,8),(1,8),(2,9),(3,7),(4,7),(5,6),(6,10),(7,10),(8,9),(9,10)],11)
=> ?
=> ? => ? = 10
([(0,10),(1,9),(2,9),(3,7),(4,8),(5,8),(6,9),(6,10),(7,8),(7,10)],11)
=> ?
=> ? => ? = 10
([(0,9),(1,9),(2,8),(3,8),(4,7),(5,7),(6,9),(6,10),(7,10),(8,10)],11)
=> ?
=> ? => ? = 10
([(0,10),(1,9),(2,7),(3,7),(4,8),(5,8),(6,9),(6,10),(7,9),(8,10)],11)
=> ?
=> ? => ? = 10
([(0,12),(1,8),(2,8),(3,9),(4,10),(5,11),(6,7),(7,12),(8,10),(9,11),(9,12),(10,11)],13)
=> ?
=> ? => ? = 12
([(0,12),(1,9),(2,9),(3,8),(4,8),(5,10),(6,7),(7,12),(8,11),(9,11),(10,11),(10,12)],13)
=> ?
=> ? => ? = 12
([(0,12),(1,8),(2,8),(3,9),(4,9),(5,10),(6,7),(7,12),(8,11),(9,10),(10,11),(11,12)],13)
=> ?
=> ? => ? = 12
([(0,9),(1,9),(2,10),(3,11),(4,8),(5,8),(6,7),(7,12),(8,12),(9,11),(10,11),(10,12)],13)
=> ?
=> ? => ? = 12
([(0,10),(1,10),(2,9),(3,9),(4,8),(5,8),(6,7),(7,12),(8,12),(9,11),(10,11),(11,12)],13)
=> ?
=> ? => ? = 12
([(0,8),(1,8),(2,9),(3,9),(4,11),(5,10),(6,7),(7,12),(8,10),(9,11),(10,12),(11,12)],13)
=> ?
=> ? => ? = 12
([(0,12),(1,11),(2,11),(3,8),(4,8),(5,9),(6,10),(7,11),(7,12),(8,10),(9,10),(9,12)],13)
=> ?
=> ? => ? = 12
([(0,11),(1,12),(2,12),(3,9),(4,9),(5,8),(6,8),(7,11),(7,12),(8,10),(9,10),(10,11)],13)
=> ?
=> ? => ? = 12
([(0,11),(1,11),(2,9),(3,9),(4,10),(5,8),(6,8),(7,11),(7,12),(8,12),(9,10),(10,12)],13)
=> ?
=> ? => ? = 12
([(0,12),(1,11),(2,9),(3,9),(4,10),(5,8),(6,8),(7,11),(7,12),(8,11),(9,10),(10,12)],13)
=> ?
=> ? => ? = 12
([(0,11),(1,9),(2,9),(3,8),(4,8),(5,10),(6,10),(7,11),(7,12),(8,12),(9,12),(10,11)],13)
=> ?
=> ? => ? = 12
Description
The first part of an integer composition.
The following 95 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000808The number of up steps of the associated bargraph. St001029The size of the core of a graph. St001116The game chromatic number of a graph. St001494The Alon-Tarsi number of a graph. St001655The general position number of a graph. St001656The monophonic position number of a graph. St001277The degeneracy of a graph. St001323The independence gap of a graph. St001358The largest degree of a regular subgraph of a graph. St001674The number of vertices of the largest induced star graph in the graph. St000087The number of induced subgraphs. St000172The Grundy number of a graph. St000286The number of connected components of the complement of a graph. St000363The number of minimal vertex covers of a graph. St000469The distinguishing number of a graph. St000636The hull number of a graph. St000722The number of different neighbourhoods in a graph. St000822The Hadwiger number of the graph. St000926The clique-coclique number of a graph. St001108The 2-dynamic chromatic number of a graph. St001110The 3-dynamic chromatic number of a graph. St001302The number of minimally dominating sets of vertices of a graph. St001304The number of maximally independent sets of vertices of a graph. St001316The domatic number of a graph. St001330The hat guessing number of a graph. St001342The number of vertices in the center of a graph. St001366The maximal multiplicity of a degree of a vertex of a graph. St001368The number of vertices of maximal degree in a graph. St001580The acyclic chromatic number of a graph. St001581The achromatic number of a graph. St001645The pebbling number of a connected graph. St001654The monophonic hull number of a graph. St001670The connected partition number of a graph. St001707The length of a longest path in a graph such that the remaining vertices can be partitioned into two sets of the same size without edges between them. St001725The harmonious chromatic number of a graph. St001746The coalition number of a graph. St001844The maximal degree of a generator of the invariant ring of the automorphism group of a graph. St001883The mutual visibility number of a graph. St001963The tree-depth of a graph. St000171The degree of the graph. St000261The edge connectivity of a graph. St000262The vertex connectivity of a graph. St000272The treewidth of a graph. St000300The number of independent sets of vertices of a graph. St000301The number of facets of the stable set polytope of a graph. St000310The minimal degree of a vertex of a graph. St000362The size of a minimal vertex cover of a graph. St000454The largest eigenvalue of a graph if it is integral. St000536The pathwidth of a graph. St000741The Colin de Verdière graph invariant. St000778The metric dimension of a graph. St000987The number of positive eigenvalues of the Laplacian matrix of the graph. St001119The length of a shortest maximal path in a graph. St001120The length of a longest path in a graph. St001270The bandwidth of a graph. St001357The maximal degree of a regular spanning subgraph of a graph. St001391The disjunction number of a graph. St001644The dimension of a graph. St001702The absolute value of the determinant of the adjacency matrix of a graph. St001949The rigidity index of a graph. St001962The proper pathwidth of a graph. St001812The biclique partition number of a graph. St000618The number of self-evacuating tableaux of given shape. St000781The number of proper colouring schemes of a Ferrers diagram. St001432The order dimension of the partition. St001609The number of coloured trees such that the multiplicities of colours are given by a partition. St001780The order of promotion on the set of standard tableaux of given shape. St001899The total number of irreducible representations contained in the higher Lie character for an integer partition. St001900The number of distinct irreducible representations contained in the higher Lie character for an integer partition. St001901The largest multiplicity of an irreducible representation contained in the higher Lie character for an integer partition. St001908The number of semistandard tableaux of distinct weight whose maximal entry is the length of the partition. St001913The number of preimages of an integer partition in Bulgarian solitaire. St001924The number of cells in an integer partition whose arm and leg length coincide. St001936The number of transitive factorisations of a permutation of given cycle type into star transpositions. St000175Degree of the polynomial counting the number of semistandard Young tableaux when stretching the shape. St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. St000206Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000225Difference between largest and smallest parts in a partition. St000749The smallest integer d such that the restriction of the representation corresponding to a partition of n to the symmetric group on n-d letters has a constituent of odd degree. St001175The size of a partition minus the hook length of the base cell. St001178Twelve times the variance of the major index among all standard Young tableaux of a partition. St001586The number of odd parts smaller than the largest even part in an integer partition. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St000284The Plancherel distribution on integer partitions. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000901The cube of the number of standard Young tableaux with shape given by the partition. St001128The exponens consonantiae of a partition. St000514The number of invariant simple graphs when acting with a permutation of given cycle type. St000515The number of invariant set partitions when acting with a permutation of given cycle type. St000936The number of even values of the symmetric group character corresponding to the partition. St000938The number of zeros of the symmetric group character corresponding to the partition. St000940The number of characters of the symmetric group whose value on the partition is zero. St000941The number of characters of the symmetric group whose value on the partition is even. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition.