Your data matches 55 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000617: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> 1
[1,0,1,0]
=> 2
[1,1,0,0]
=> 1
[1,0,1,0,1,0]
=> 3
[1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> 1
[1,1,0,1,0,0]
=> 2
[1,1,1,0,0,0]
=> 1
[1,0,1,0,1,0,1,0]
=> 4
[1,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,0]
=> 2
[1,0,1,1,1,0,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> 1
[1,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,0,1,0]
=> 2
[1,1,0,1,0,1,0,0]
=> 3
[1,1,0,1,1,0,0,0]
=> 1
[1,1,1,0,0,0,1,0]
=> 1
[1,1,1,0,0,1,0,0]
=> 1
[1,1,1,0,1,0,0,0]
=> 2
[1,1,1,1,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> 3
[1,1,0,0,1,1,1,0,0,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> 4
[1,1,0,1,0,1,1,0,0,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> 1
Description
The number of global maxima of a Dyck path.
Matching statistic: St000382
Mp00031: Dyck paths to 312-avoiding permutationPermutations
Mp00175: Permutations inverse Foata bijectionPermutations
Mp00071: Permutations descent compositionInteger compositions
St000382: Integer compositions ⟶ ℤResult quality: 78% values known / values provided: 78%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => [1] => 1
[1,0,1,0]
=> [1,2] => [1,2] => [2] => 2
[1,1,0,0]
=> [2,1] => [2,1] => [1,1] => 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => [3] => 3
[1,0,1,1,0,0]
=> [1,3,2] => [3,1,2] => [1,2] => 1
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => [1,2] => 1
[1,1,0,1,0,0]
=> [2,3,1] => [2,3,1] => [2,1] => 2
[1,1,1,0,0,0]
=> [3,2,1] => [3,2,1] => [1,1,1] => 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => [4] => 4
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [4,1,2,3] => [1,3] => 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [3,1,2,4] => [1,3] => 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [3,4,1,2] => [2,2] => 2
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [4,3,1,2] => [1,1,2] => 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => [1,3] => 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,4,1,3] => [2,2] => 2
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [2,3,1,4] => [2,2] => 2
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [2,3,4,1] => [3,1] => 3
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [4,2,3,1] => [1,2,1] => 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [3,2,1,4] => [1,1,2] => 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [3,2,4,1] => [1,2,1] => 1
[1,1,1,0,1,0,0,0]
=> [3,4,2,1] => [3,4,2,1] => [2,1,1] => 2
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [4,3,2,1] => [1,1,1,1] => 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => [5] => 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [5,1,2,3,4] => [1,4] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [4,1,2,3,5] => [1,4] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [4,5,1,2,3] => [2,3] => 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [5,4,1,2,3] => [1,1,3] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [3,1,2,4,5] => [1,4] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [3,5,1,2,4] => [2,3] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [3,4,1,2,5] => [2,3] => 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [3,4,5,1,2] => [3,2] => 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [5,3,4,1,2] => [1,2,2] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [4,3,1,2,5] => [1,1,3] => 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [4,3,5,1,2] => [1,2,2] => 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => [4,5,3,1,2] => [2,1,2] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [5,4,3,1,2] => [1,1,1,2] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => [1,4] => 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,5,1,3,4] => [2,3] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,4,1,3,5] => [2,3] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,4,5,1,3] => [3,2] => 3
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [5,2,4,1,3] => [1,2,2] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [2,3,1,4,5] => [2,3] => 2
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [2,3,5,1,4] => [3,2] => 3
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [2,3,4,1,5] => [3,2] => 3
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [2,3,4,5,1] => [4,1] => 4
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [5,2,3,4,1] => [1,3,1] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [4,2,3,1,5] => [1,2,2] => 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [4,2,3,5,1] => [1,3,1] => 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => [4,5,2,3,1] => [2,2,1] => 2
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [5,4,2,3,1] => [1,1,2,1] => 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,2,6,5,4,7,3,8] => ? => ? => ? = 1
[1,0,1,0,1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,2,6,5,7,4,3,8] => ? => ? => ? = 1
[1,1,0,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [2,1,6,8,7,5,4,3] => [8,6,7,5,2,4,1,3] => ? => ? = 1
[1,1,0,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [2,1,7,8,6,5,4,3] => [7,8,6,5,2,4,1,3] => ? => ? = 2
[1,1,0,1,0,0,1,1,1,0,1,0,0,1,0,0]
=> [2,3,1,6,7,5,8,4] => [6,7,2,3,5,8,1,4] => ? => ? = 2
[1,1,1,1,1,0,0,1,0,0,0,0,1,1,0,0]
=> [5,4,6,3,2,1,8,7] => [5,4,6,3,2,8,1,7] => ? => ? = 1
[1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,1,0]
=> [7,9,8,6,5,4,3,2,1,10] => [9,7,8,6,5,4,3,2,1,10] => ? => ? = 1
[1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,1,0]
=> [5,8,7,6,4,3,2,1,9] => [8,7,5,6,4,3,2,1,9] => ? => ? = 1
[1,0,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0]
=> [1,9,8,10,7,6,5,4,3,2] => [9,8,10,7,6,5,4,3,1,2] => ? => ? = 1
[1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0,1,0]
=> [6,5,8,7,4,3,2,1,9] => [6,8,5,7,4,3,2,1,9] => ? => ? = 2
[1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,1,0,0]
=> [6,7,5,4,3,2,1,9,8] => [6,7,5,4,3,2,9,1,8] => ? => ? = 2
[1,1,0,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [2,1,8,9,7,6,5,4,3] => [8,9,7,6,5,2,4,1,3] => ? => ? = 2
[1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,1,0,0]
=> [6,5,7,4,3,2,1,9,8] => [6,5,7,4,3,2,9,1,8] => ? => ? = 1
[1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,1,0,0]
=> [5,7,6,4,3,2,1,9,8] => [7,5,6,4,3,2,9,1,8] => ? => ? = 1
[1,1,0,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [2,1,8,7,9,6,5,4,3] => [8,7,9,6,5,2,4,1,3] => ? => ? = 1
[1,1,0,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [2,1,7,9,8,6,5,4,3] => [9,7,8,6,5,2,4,1,3] => ? => ? = 1
[1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,1,0,0]
=> [7,8,6,5,4,3,2,1,10,9] => [7,8,6,5,4,3,2,10,1,9] => ? => ? = 2
[1,1,0,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [2,1,9,10,8,7,6,5,4,3] => [9,10,8,7,6,5,2,4,1,3] => ? => ? = 2
[]
=> [] => [] => [] => ? = 1
[1,1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [2,8,7,9,6,5,4,3,1] => [8,7,9,6,5,4,2,3,1] => ? => ? = 1
[1,1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [2,8,9,7,6,5,4,3,1] => [8,9,7,6,5,4,2,3,1] => ? => ? = 2
[1,1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [3,9,8,7,6,5,4,2,1] => [9,8,7,6,5,3,4,2,1] => ? => ? = 1
[1,1,1,1,1,0,1,1,1,0,1,0,0,0,0,0,0,0]
=> [5,8,9,7,6,4,3,2,1] => [8,9,7,5,6,4,3,2,1] => ? => ? = 2
[1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0,0]
=> [6,8,7,5,4,3,2,9,1] => [8,6,7,5,4,3,2,9,1] => ? => ? = 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,4,5,6,7,8,10,11,9] => [10,11,1,2,3,4,5,6,7,8,9] => [2,9] => ? = 2
[1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,7,6,5,4,3,2,9,8] => [7,6,5,4,3,9,1,2,8] => ? => ? = 1
[1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [2,1,8,7,6,5,4,3,9] => [8,7,6,5,2,4,1,3,9] => ? => ? = 1
[1,0,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,2,9,8,7,6,5,4,3,10] => ? => ? => ? = 1
[1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,1,0]
=> [1,8,7,6,5,4,3,2,9,10] => ? => ? => ? = 1
[1,1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,0]
=> [10,9,11,8,7,6,5,4,3,2,1] => [10,9,11,8,7,6,5,4,3,2,1] => [1,2,1,1,1,1,1,1,1,1] => ? = 1
[1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [2,3,1,4,5,6,8,9,7] => [2,3,8,9,1,4,5,6,7] => ? => ? = 4
[1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,0]
=> [10,9,8,7,6,5,4,3,2,11,1] => [10,9,8,7,6,5,4,3,2,11,1] => [1,1,1,1,1,1,1,1,2,1] => ? = 1
[1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0,0]
=> [8,9,7,6,5,4,3,2,10,1] => [8,9,7,6,5,4,3,2,10,1] => [2,1,1,1,1,1,2,1] => ? = 2
[1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0]
=> [10,11,9,8,7,6,5,4,3,2,1] => [10,11,9,8,7,6,5,4,3,2,1] => [2,1,1,1,1,1,1,1,1,1] => ? = 2
[1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [3,4,5,6,7,8,9,10,11,2,1] => [3,4,5,6,7,8,9,10,11,2,1] => [9,1,1] => ? = 9
[1,0,1,1,0,1,1,0,1,1,1,0,1,0,0,1,0,0,0,0]
=> ? => ? => ? => ? = 2
[1,0,1,1,0,1,1,1,0,1,0,0,1,1,0,1,0,0,0,0]
=> [1,3,6,7,5,9,10,8,4,2] => [6,7,9,10,5,8,3,4,1,2] => ? => ? = 4
[1,0,1,1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0,0]
=> ? => ? => ? => ? = 2
[1,0,1,1,0,1,1,1,1,0,1,0,0,1,0,0,1,0,0,0]
=> ? => ? => ? => ? = 2
[1,0,1,1,1,0,1,0,0,1,1,0,1,1,0,1,0,0,0,0]
=> [1,4,5,3,7,9,10,8,6,2] => [9,10,4,5,7,8,3,6,1,2] => ? => ? = 2
[1,0,1,1,1,0,1,0,0,1,1,1,0,1,0,0,1,0,0,0]
=> ? => ? => ? => ? = 2
[1,0,1,1,1,0,1,1,0,1,0,0,0,1,1,0,1,0,0,0]
=> [1,4,6,7,5,3,9,10,8,2] => [6,7,4,5,9,10,3,8,1,2] => ? => ? = 2
[1,0,1,1,1,1,0,1,0,0,1,0,0,1,1,0,1,0,0,0]
=> [1,5,6,4,7,3,9,10,8,2] => [5,6,4,7,9,10,3,8,1,2] => ? => ? = 2
[1,0,1,1,1,1,0,1,0,0,1,1,0,1,0,0,0,1,0,0]
=> [1,5,6,4,8,9,7,3,10,2] => [5,6,8,9,4,7,3,10,1,2] => ? => ? = 4
[1,1,0,1,0,0,1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [2,3,1,5,7,9,10,8,6,4] => [9,10,7,8,2,3,5,6,1,4] => ? => ? = 2
[1,1,0,1,0,0,1,1,0,1,1,1,0,1,0,0,1,0,0,0]
=> ? => ? => ? => ? = 2
[1,1,0,1,0,0,1,1,1,0,1,0,0,1,1,0,1,0,0,0]
=> [2,3,1,6,7,5,9,10,8,4] => [6,7,9,10,2,3,5,8,1,4] => ? => ? = 4
[1,1,0,1,0,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> [2,3,1,6,8,9,7,5,10,4] => [8,9,6,7,2,3,5,10,1,4] => ? => ? = 2
[1,1,0,1,0,0,1,1,1,1,0,1,0,0,1,0,0,1,0,0]
=> [2,3,1,7,8,6,9,5,10,4] => [7,8,6,9,2,3,5,10,1,4] => ? => ? = 2
[1,1,0,1,1,0,1,0,0,0,1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1,7,9,10,8,6] => [4,5,9,10,2,3,7,8,1,6] => ? => ? = 4
Description
The first part of an integer composition.
Matching statistic: St000326
Mp00031: Dyck paths to 312-avoiding permutationPermutations
Mp00175: Permutations inverse Foata bijectionPermutations
Mp00109: Permutations descent wordBinary words
St000326: Binary words ⟶ ℤResult quality: 75% values known / values provided: 75%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => => ? = 1
[1,0,1,0]
=> [1,2] => [1,2] => 0 => 2
[1,1,0,0]
=> [2,1] => [2,1] => 1 => 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => 00 => 3
[1,0,1,1,0,0]
=> [1,3,2] => [3,1,2] => 10 => 1
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => 10 => 1
[1,1,0,1,0,0]
=> [2,3,1] => [2,3,1] => 01 => 2
[1,1,1,0,0,0]
=> [3,2,1] => [3,2,1] => 11 => 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => 000 => 4
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [4,1,2,3] => 100 => 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [3,1,2,4] => 100 => 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [3,4,1,2] => 010 => 2
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [4,3,1,2] => 110 => 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => 100 => 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,4,1,3] => 010 => 2
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [2,3,1,4] => 010 => 2
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [2,3,4,1] => 001 => 3
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [4,2,3,1] => 101 => 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [3,2,1,4] => 110 => 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [3,2,4,1] => 101 => 1
[1,1,1,0,1,0,0,0]
=> [3,4,2,1] => [3,4,2,1] => 011 => 2
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [4,3,2,1] => 111 => 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => 0000 => 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [5,1,2,3,4] => 1000 => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [4,1,2,3,5] => 1000 => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [4,5,1,2,3] => 0100 => 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [5,4,1,2,3] => 1100 => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [3,1,2,4,5] => 1000 => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [3,5,1,2,4] => 0100 => 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [3,4,1,2,5] => 0100 => 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [3,4,5,1,2] => 0010 => 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [5,3,4,1,2] => 1010 => 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [4,3,1,2,5] => 1100 => 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [4,3,5,1,2] => 1010 => 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => [4,5,3,1,2] => 0110 => 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [5,4,3,1,2] => 1110 => 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => 1000 => 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,5,1,3,4] => 0100 => 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,4,1,3,5] => 0100 => 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,4,5,1,3] => 0010 => 3
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [5,2,4,1,3] => 1010 => 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [2,3,1,4,5] => 0100 => 2
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [2,3,5,1,4] => 0010 => 3
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [2,3,4,1,5] => 0010 => 3
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [2,3,4,5,1] => 0001 => 4
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [5,2,3,4,1] => 1001 => 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [4,2,3,1,5] => 1010 => 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [4,2,3,5,1] => 1001 => 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => [4,5,2,3,1] => 0101 => 2
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [5,4,2,3,1] => 1101 => 1
[1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [3,2,1,4,5] => 1100 => 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,2,6,5,4,7,3,8] => ? => ? => ? = 1
[1,0,1,0,1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,2,6,5,7,4,3,8] => ? => ? => ? = 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,2,6,7,5,4,3,8] => [6,7,5,4,1,2,3,8] => ? => ? = 2
[1,0,1,1,0,1,1,1,0,0,0,0,1,0,1,0]
=> [1,3,6,5,4,2,7,8] => [6,5,3,4,1,2,7,8] => ? => ? = 1
[1,0,1,1,1,0,1,0,0,1,1,0,1,0,0,0]
=> [1,4,5,3,7,8,6,2] => [4,5,7,8,3,6,1,2] => ? => ? = 4
[1,0,1,1,1,0,1,0,1,0,0,0,1,0,1,0]
=> [1,4,5,6,3,2,7,8] => [4,5,6,3,1,2,7,8] => ? => ? = 3
[1,0,1,1,1,1,0,1,0,0,0,0,1,0,1,0]
=> [1,5,6,4,3,2,7,8] => [5,6,4,3,1,2,7,8] => ? => ? = 2
[1,1,0,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [2,1,3,4,5,8,7,6] => [8,2,7,1,3,4,5,6] => ? => ? = 1
[1,1,0,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [2,1,6,8,7,5,4,3] => [8,6,7,5,2,4,1,3] => ? => ? = 1
[1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,7,6,5,4,3,8] => [7,6,5,2,4,1,3,8] => ? => ? = 1
[1,1,0,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [2,1,7,8,6,5,4,3] => [7,8,6,5,2,4,1,3] => ? => ? = 2
[1,1,0,1,0,0,1,1,1,0,1,0,0,1,0,0]
=> [2,3,1,6,7,5,8,4] => [6,7,2,3,5,8,1,4] => ? => ? = 2
[1,1,0,1,1,0,1,0,0,0,1,1,0,1,0,0]
=> [2,4,5,3,1,7,8,6] => [4,5,2,3,7,8,1,6] => ? => ? = 2
[1,1,0,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [2,6,5,4,3,1,8,7] => [6,5,4,2,3,8,1,7] => ? => ? = 1
[1,1,1,0,1,0,0,1,0,0,1,1,0,1,0,0]
=> [3,4,2,5,1,7,8,6] => [3,4,2,5,7,8,1,6] => ? => ? = 2
[1,1,1,0,1,0,0,1,1,0,1,0,0,0,1,0]
=> [3,4,2,6,7,5,1,8] => [3,4,6,7,2,5,1,8] => ? => ? = 4
[1,1,1,0,1,1,1,0,0,1,1,0,0,0,0,0]
=> [3,6,5,8,7,4,2,1] => [6,8,5,7,3,4,2,1] => ? => ? = 2
[1,1,1,1,0,1,0,1,1,0,1,0,0,0,0,0]
=> [4,5,7,8,6,3,2,1] => [7,8,4,5,6,3,2,1] => ? => ? = 2
[1,1,1,1,0,1,1,1,0,0,0,0,1,0,0,0]
=> [4,7,6,5,3,8,2,1] => [7,6,4,5,3,8,2,1] => ? => ? = 1
[1,1,1,1,1,0,0,0,1,0,0,0,1,1,0,0]
=> [5,4,3,6,2,1,8,7] => [5,4,3,6,2,8,1,7] => ? => ? = 1
[1,1,1,1,1,0,0,1,0,0,0,0,1,1,0,0]
=> [5,4,6,3,2,1,8,7] => [5,4,6,3,2,8,1,7] => ? => ? = 1
[1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,1,0]
=> [7,9,8,6,5,4,3,2,1,10] => [9,7,8,6,5,4,3,2,1,10] => ? => ? = 1
[1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0,1,0]
=> [6,5,8,7,4,3,2,1,9] => [6,8,5,7,4,3,2,1,9] => ? => ? = 2
[1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,1,0,0]
=> [6,7,5,4,3,2,1,9,8] => [6,7,5,4,3,2,9,1,8] => ? => ? = 2
[1,1,0,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [2,1,8,9,7,6,5,4,3] => [8,9,7,6,5,2,4,1,3] => ? => ? = 2
[1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,1,0,0]
=> [6,5,7,4,3,2,1,9,8] => [6,5,7,4,3,2,9,1,8] => ? => ? = 1
[1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,1,0,0]
=> [5,7,6,4,3,2,1,9,8] => [7,5,6,4,3,2,9,1,8] => ? => ? = 1
[1,1,0,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [2,1,8,7,9,6,5,4,3] => [8,7,9,6,5,2,4,1,3] => ? => ? = 1
[1,1,0,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [2,1,7,9,8,6,5,4,3] => [9,7,8,6,5,2,4,1,3] => ? => ? = 1
[1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,1,0,0]
=> [7,8,6,5,4,3,2,1,10,9] => [7,8,6,5,4,3,2,10,1,9] => ? => ? = 2
[1,1,0,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [2,1,9,10,8,7,6,5,4,3] => [9,10,8,7,6,5,2,4,1,3] => ? => ? = 2
[]
=> [] => [] => ? => ? = 1
[1,1,1,1,1,0,1,1,1,0,1,0,0,0,0,0,0,0]
=> [5,8,9,7,6,4,3,2,1] => [8,9,7,5,6,4,3,2,1] => ? => ? = 2
[1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0,0]
=> [6,8,7,5,4,3,2,9,1] => [8,6,7,5,4,3,2,9,1] => ? => ? = 1
[1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> [1,7,6,5,4,3,2,8,9] => [7,6,5,4,3,1,2,8,9] => ? => ? = 1
[1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,7,6,5,4,3,2,9,8] => [7,6,5,4,3,9,1,2,8] => ? => ? = 1
[1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [2,1,8,7,6,5,4,3,9] => [8,7,6,5,2,4,1,3,9] => ? => ? = 1
[1,0,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,2,9,8,7,6,5,4,3,10] => ? => ? => ? = 1
[1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,1,0]
=> [1,8,7,6,5,4,3,2,9,10] => ? => ? => ? = 1
[1,1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,0]
=> [10,9,11,8,7,6,5,4,3,2,1] => [10,9,11,8,7,6,5,4,3,2,1] => 1011111111 => ? = 1
[1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [2,3,1,4,5,6,8,9,7] => [2,3,8,9,1,4,5,6,7] => ? => ? = 4
[1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,3,2,4,5,6,8,9,7] => [3,8,9,1,2,4,5,6,7] => ? => ? = 3
[1,0,1,1,0,1,1,0,1,1,1,0,1,0,0,1,0,0,0,0]
=> ? => ? => ? => ? = 2
[1,0,1,1,0,1,1,1,0,1,0,0,1,1,0,1,0,0,0,0]
=> [1,3,6,7,5,9,10,8,4,2] => [6,7,9,10,5,8,3,4,1,2] => ? => ? = 4
[1,0,1,1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0,0]
=> ? => ? => ? => ? = 2
[1,0,1,1,0,1,1,1,1,0,1,0,0,1,0,0,1,0,0,0]
=> ? => ? => ? => ? = 2
[1,0,1,1,1,0,1,0,0,1,1,0,1,1,0,1,0,0,0,0]
=> [1,4,5,3,7,9,10,8,6,2] => [9,10,4,5,7,8,3,6,1,2] => ? => ? = 2
[1,0,1,1,1,0,1,0,0,1,1,1,0,1,0,0,1,0,0,0]
=> ? => ? => ? => ? = 2
[1,0,1,1,1,0,1,1,0,1,0,0,0,1,1,0,1,0,0,0]
=> [1,4,6,7,5,3,9,10,8,2] => [6,7,4,5,9,10,3,8,1,2] => ? => ? = 2
Description
The position of the first one in a binary word after appending a 1 at the end. Regarding the binary word as a subset of $\{1,\dots,n,n+1\}$ that contains $n+1$, this is the minimal element of the set.
Mp00025: Dyck paths to 132-avoiding permutationPermutations
Mp00175: Permutations inverse Foata bijectionPermutations
Mp00109: Permutations descent wordBinary words
St000297: Binary words ⟶ ℤResult quality: 74% values known / values provided: 74%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => => ? = 1 - 1
[1,0,1,0]
=> [2,1] => [2,1] => 1 => 1 = 2 - 1
[1,1,0,0]
=> [1,2] => [1,2] => 0 => 0 = 1 - 1
[1,0,1,0,1,0]
=> [3,2,1] => [3,2,1] => 11 => 2 = 3 - 1
[1,0,1,1,0,0]
=> [2,3,1] => [2,3,1] => 01 => 0 = 1 - 1
[1,1,0,0,1,0]
=> [3,1,2] => [1,3,2] => 01 => 0 = 1 - 1
[1,1,0,1,0,0]
=> [2,1,3] => [2,1,3] => 10 => 1 = 2 - 1
[1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => 00 => 0 = 1 - 1
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [4,3,2,1] => 111 => 3 = 4 - 1
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [3,4,2,1] => 011 => 0 = 1 - 1
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [2,4,3,1] => 011 => 0 = 1 - 1
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [3,2,4,1] => 101 => 1 = 2 - 1
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [2,3,4,1] => 001 => 0 = 1 - 1
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [1,4,3,2] => 011 => 0 = 1 - 1
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [3,1,4,2] => 101 => 1 = 2 - 1
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [2,1,4,3] => 101 => 1 = 2 - 1
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [3,2,1,4] => 110 => 2 = 3 - 1
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [2,3,1,4] => 010 => 0 = 1 - 1
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [1,2,4,3] => 001 => 0 = 1 - 1
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [1,3,2,4] => 010 => 0 = 1 - 1
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [2,1,3,4] => 100 => 1 = 2 - 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => 000 => 0 = 1 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [5,4,3,2,1] => 1111 => 4 = 5 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [4,5,3,2,1] => 0111 => 0 = 1 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [3,5,4,2,1] => 0111 => 0 = 1 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => [4,3,5,2,1] => 1011 => 1 = 2 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [3,4,5,2,1] => 0011 => 0 = 1 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [2,5,4,3,1] => 0111 => 0 = 1 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [4,2,5,3,1] => 1011 => 1 = 2 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => [3,2,5,4,1] => 1011 => 1 = 2 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => [4,3,2,5,1] => 1101 => 2 = 3 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [3,4,2,5,1] => 0101 => 0 = 1 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [2,3,5,4,1] => 0011 => 0 = 1 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [2,4,3,5,1] => 0101 => 0 = 1 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [3,2,4,5,1] => 1001 => 1 = 2 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [2,3,4,5,1] => 0001 => 0 = 1 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [1,5,4,3,2] => 0111 => 0 = 1 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => [4,1,5,3,2] => 1011 => 1 = 2 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [3,1,5,4,2] => 1011 => 1 = 2 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [4,3,1,5,2] => 1101 => 2 = 3 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [3,4,1,5,2] => 0101 => 0 = 1 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => [2,1,5,4,3] => 1011 => 1 = 2 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [4,2,1,5,3] => 1101 => 2 = 3 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => [3,2,1,5,4] => 1101 => 2 = 3 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => [4,3,2,1,5] => 1110 => 3 = 4 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => [3,4,2,1,5] => 0110 => 0 = 1 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [2,3,1,5,4] => 0101 => 0 = 1 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => [2,4,3,1,5] => 0110 => 0 = 1 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => [3,2,4,1,5] => 1010 => 1 = 2 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => [2,3,4,1,5] => 0010 => 0 = 1 - 1
[1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => [1,2,5,4,3] => 0011 => 0 = 1 - 1
[1,0,1,0,1,1,0,1,1,1,0,0,0,0,1,0]
=> [8,4,5,6,3,7,2,1] => ? => ? => ? = 1 - 1
[1,0,1,0,1,1,1,0,1,1,0,0,0,0,1,0]
=> [8,4,5,3,6,7,2,1] => ? => ? => ? = 1 - 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,0,1,0]
=> [8,6,3,4,5,7,2,1] => [3,4,6,5,8,7,2,1] => ? => ? = 1 - 1
[1,0,1,0,1,1,1,1,0,0,1,0,0,0,1,0]
=> [8,5,3,4,6,7,2,1] => [3,5,4,6,8,7,2,1] => ? => ? = 1 - 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [8,4,3,5,6,7,2,1] => [4,3,5,6,8,7,2,1] => ? => ? = 2 - 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [7,6,8,5,4,2,3,1] => [7,6,2,8,5,4,3,1] => ? => ? = 3 - 1
[1,0,1,1,0,1,1,1,0,0,0,0,1,0,1,0]
=> [8,7,3,4,5,2,6,1] => ? => ? => ? = 1 - 1
[1,0,1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> [8,7,5,2,3,4,6,1] => ? => ? => ? = 1 - 1
[1,0,1,1,1,1,0,0,1,0,0,0,1,0,1,0]
=> [8,7,4,2,3,5,6,1] => ? => ? => ? = 1 - 1
[1,0,1,1,1,1,0,1,0,0,0,0,1,0,1,0]
=> [8,7,3,2,4,5,6,1] => ? => ? => ? = 2 - 1
[1,1,0,1,0,0,1,1,0,1,1,0,1,0,0,0]
=> [6,5,7,4,8,2,1,3] => [6,5,7,4,2,1,8,3] => ? => ? = 2 - 1
[1,1,0,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [7,6,5,3,4,2,1,8] => [3,7,6,5,4,2,1,8] => ? => ? = 1 - 1
[1,1,0,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [4,2,3,5,6,7,1,8] => [2,4,3,5,6,7,1,8] => ? => ? = 1 - 1
[1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> [7,8,6,5,4,1,2,3] => [1,7,2,8,6,5,4,3] => ? => ? = 1 - 1
[1,1,1,0,1,0,0,1,0,0,1,1,0,1,0,0]
=> [7,6,8,4,2,1,3,5] => [2,1,7,6,4,3,8,5] => ? => ? = 2 - 1
[1,1,1,0,1,0,0,1,1,0,1,0,0,0,1,0]
=> [8,5,4,6,2,1,3,7] => [5,4,2,1,6,3,8,7] => ? => ? = 4 - 1
[1,1,1,0,1,1,0,0,1,0,0,0,1,1,0,0]
=> [7,8,4,2,3,1,5,6] => [2,4,3,1,7,5,8,6] => ? => ? = 1 - 1
[1,1,1,0,1,1,1,0,0,1,0,1,0,0,0,0]
=> [5,4,2,3,6,1,7,8] => [2,5,4,3,6,1,7,8] => ? => ? = 1 - 1
[1,1,1,0,1,1,1,1,0,0,1,0,0,0,0,0]
=> [4,2,3,5,6,1,7,8] => [2,4,3,5,6,1,7,8] => ? => ? = 1 - 1
[1,1,1,1,0,1,0,1,1,0,0,0,0,0,1,0]
=> [8,3,4,2,1,5,6,7] => [3,4,2,1,5,6,8,7] => ? => ? = 1 - 1
[1,1,1,1,0,1,0,1,1,0,0,0,1,0,0,0]
=> [6,3,4,2,1,5,7,8] => [3,4,2,1,6,5,7,8] => ? => ? = 1 - 1
[1,1,1,1,0,1,1,0,0,0,0,0,1,1,0,0]
=> [7,8,2,3,1,4,5,6] => [2,3,1,4,7,5,8,6] => ? => ? = 1 - 1
[1,1,1,1,1,0,0,0,1,1,0,0,1,0,0,0]
=> [6,4,5,1,2,3,7,8] => [1,4,2,6,5,3,7,8] => ? => ? = 1 - 1
[1,1,1,1,1,0,0,1,1,0,0,0,0,0,1,0]
=> [8,3,4,1,2,5,6,7] => [3,1,4,2,5,6,8,7] => ? => ? = 2 - 1
[1,1,1,1,1,0,1,0,1,0,0,0,0,1,0,0]
=> [7,3,2,1,4,5,6,8] => [3,2,1,4,5,7,6,8] => ? => ? = 3 - 1
[1,1,1,1,1,0,1,1,0,0,0,0,1,0,0,0]
=> [6,2,3,1,4,5,7,8] => [2,3,1,4,6,5,7,8] => ? => ? = 1 - 1
[1,1,1,1,1,1,0,1,0,0,0,1,0,0,0,0]
=> [5,2,1,3,4,6,7,8] => [2,1,3,5,4,6,7,8] => ? => ? = 2 - 1
[1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,1,0]
=> [10,2,3,1,4,5,6,7,8,9] => [2,3,1,4,5,6,7,8,10,9] => ? => ? = 1 - 1
[1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,1,0]
=> [9,2,3,4,1,5,6,7,8] => [2,3,4,1,5,6,7,9,8] => ? => ? = 1 - 1
[1,0,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0]
=> [4,2,3,5,6,7,8,9,10,1] => [2,4,3,5,6,7,8,9,10,1] => ? => ? = 1 - 1
[1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0,1,0]
=> [9,3,4,1,2,5,6,7,8] => [3,1,4,2,5,6,7,9,8] => ? => ? = 2 - 1
[1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,1,0,0]
=> [8,9,2,1,3,4,5,6,7] => [2,1,3,4,5,8,6,9,7] => ? => ? = 2 - 1
[1,1,0,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [4,3,5,6,7,8,9,1,2] => [4,3,5,6,7,8,1,9,2] => ? => ? = 2 - 1
[1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,1,0,0]
=> [8,9,3,1,2,4,5,6,7] => [1,3,2,4,5,8,6,9,7] => ? => ? = 1 - 1
[1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,1,0,0]
=> [8,9,2,3,1,4,5,6,7] => [2,3,1,4,5,8,6,9,7] => ? => ? = 1 - 1
[1,1,0,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [5,3,4,6,7,8,9,1,2] => [3,5,4,6,7,8,1,9,2] => ? => ? = 1 - 1
[1,1,0,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [4,5,3,6,7,8,9,1,2] => [4,5,3,6,7,8,1,9,2] => ? => ? = 1 - 1
[1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,1,0,0]
=> [9,10,2,1,3,4,5,6,7,8] => [2,1,3,4,5,6,9,7,10,8] => ? => ? = 2 - 1
[1,1,0,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [4,3,5,6,7,8,9,10,1,2] => [4,3,5,6,7,8,9,1,10,2] => ? => ? = 2 - 1
[]
=> [] => [] => ? => ? = 1 - 1
[1,1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [4,2,3,5,6,7,8,1,9] => [2,4,3,5,6,7,8,1,9] => ? => ? = 1 - 1
[1,1,1,1,1,0,1,1,1,0,1,0,0,0,0,0,0,0]
=> [3,2,4,5,1,6,7,8,9] => [3,2,4,5,1,6,7,8,9] => ? => ? = 2 - 1
[1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0,0]
=> [8,2,3,1,4,5,6,7,9] => [2,3,1,4,5,6,8,7,9] => ? => ? = 1 - 1
[1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0,0]
=> [8,3,1,2,4,5,6,7,9] => [1,3,2,4,5,6,8,7,9] => ? => ? = 1 - 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [10,9,11,8,7,6,5,4,3,2,1] => [10,9,11,8,7,6,5,4,3,2,1] => 1011111111 => ? = 2 - 1
[1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [9,3,4,5,6,7,8,2,1] => [3,4,5,6,7,9,8,2,1] => ? => ? = 1 - 1
[1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [8,9,2,3,4,5,6,7,1] => [2,3,4,5,8,6,9,7,1] => ? => ? = 1 - 1
[1,0,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [10,3,4,5,6,7,8,9,2,1] => [3,4,5,6,7,8,10,9,2,1] => ? => ? = 1 - 1
[1,1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,0]
=> [3,1,2,4,5,6,7,8,9,10,11] => [1,3,2,4,5,6,7,8,9,10,11] => ? => ? = 1 - 1
Description
The number of leading ones in a binary word.
Mp00030: Dyck paths zeta mapDyck paths
Mp00099: Dyck paths bounce pathDyck paths
St000439: Dyck paths ⟶ ℤResult quality: 71% values known / values provided: 71%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1,0]
=> 2 = 1 + 1
[1,0,1,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> 3 = 2 + 1
[1,1,0,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 4 = 3 + 1
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 3 = 2 + 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 5 = 4 + 1
[1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 3 = 2 + 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 3 = 2 + 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 4 = 3 + 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 3 = 2 + 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 6 = 5 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 4 = 3 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 3 = 2 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 4 = 3 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 4 = 3 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 4 = 3 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 5 = 4 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 3 = 2 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 3 + 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 3 + 1
[1,0,1,0,1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 3 + 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 3 + 1
[1,0,1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,1,1,0,0,1,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 3 + 1
[1,0,1,1,1,0,1,0,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 3 + 1
[1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 3 + 1
[1,1,0,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0]
=> ? = 5 + 1
[1,1,0,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 3 + 1
[1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 3 + 1
[1,1,0,1,0,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0]
=> ? = 5 + 1
[1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0]
=> ? = 5 + 1
[1,1,1,0,1,0,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 3 + 1
[1,1,1,0,1,0,1,0,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,1,1,0,0,0]
=> ? = 4 + 1
[1,1,1,0,1,0,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,1,0,0]
=> ? = 5 + 1
[1,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0,1,0]
=> ? = 5 + 1
[1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 6 + 1
[1,1,1,1,0,1,0,1,0,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 3 + 1
[1,1,1,1,1,0,1,0,1,0,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 3 + 1
[1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 4 + 1
[1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1 + 1
[1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1 + 1
[1,0,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1 + 1
[1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2 + 1
[1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1 + 1
[1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 2 + 1
[1,1,0,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 2 + 1
[1,0,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1 + 1
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 1 + 1
[1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 1 + 1
[1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 1 + 1
[1,1,0,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 1 + 1
[1,1,0,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 1 + 1
[1,1,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 1 + 1
[1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1 + 1
[1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 2 + 1
[1,1,0,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 2 + 1
[1,0,1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1 + 1
[]
=> []
=> []
=> ? = 1 + 1
[1,1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 1 + 1
[1,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 1 + 1
[1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0,1,0]
=> ? = 6 + 1
[1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,1,0]
=> ? = 7 + 1
[1,1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 1 + 1
[1,1,1,1,1,0,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 2 + 1
[1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 1 + 1
[1,1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 2 + 1
[1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 1 + 1
[1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1 + 1
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 1 + 1
Description
The position of the first down step of a Dyck path.
Matching statistic: St000678
Mp00030: Dyck paths zeta mapDyck paths
Mp00099: Dyck paths bounce pathDyck paths
Mp00032: Dyck paths inverse zeta mapDyck paths
St000678: Dyck paths ⟶ ℤResult quality: 59% values known / values provided: 59%distinct values known / distinct values provided: 60%
Values
[1,0]
=> [1,0]
=> [1,0]
=> [1,0]
=> ? = 1
[1,0,1,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 2
[1,1,0,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 3
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> 2
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 2
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 2
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 2
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 3
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 4
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 7
[1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> ? = 1
[1,1,0,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> ? = 1
[1,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 2
[1,1,0,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> ? = 1
[1,1,0,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> ? = 1
[1,1,0,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 3
[1,1,0,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> ? = 1
[1,1,0,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> ? = 1
[1,1,0,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> ? = 1
[1,1,0,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ? = 2
[1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 1
[1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> ? = 1
[1,1,1,0,0,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 2
[1,1,1,0,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 2
[1,1,1,0,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 3
[1,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> ? = 5
[1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> ? = 6
[1,1,1,0,1,0,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,1,0,0,0,0]
=> ? = 1
[1,1,1,0,1,1,0,0,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,1,1,0,1,0,0,0,0]
=> ? = 2
[1,1,1,0,1,1,0,0,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,0,1,1,0,0,0,0,0]
=> ? = 1
[1,1,1,0,1,1,1,0,0,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,1,0,1,1,0,0,0,0,0]
=> ? = 1
[1,1,1,0,1,1,1,0,0,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,1,1,0,1,0,0,0,0,0]
=> ? = 2
[1,1,1,0,1,1,1,1,0,0,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,1,1,0,0,0,0,0,0]
=> ? = 1
[1,1,1,0,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,1,1,1,0,0,0,0,0,0]
=> ? = 1
[1,1,1,0,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,1,1,0,0,0,0,0,0]
=> ? = 1
[1,1,1,0,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,0,1,0,0,0,0,0,0]
=> ? = 2
[1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 1
[1,1,1,1,0,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,1,0,0,0,0]
=> ? = 1
[1,1,1,1,0,1,0,1,1,0,0,0,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,1,0,1,1,0,0,0,0,0]
=> ? = 1
[1,1,1,1,0,1,0,1,1,0,1,0,0,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,1,1,0,1,0,0,0,0,0]
=> ? = 2
[1,1,1,1,0,1,0,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,1,1,1,0,0,0,0,0,0]
=> ? = 1
[1,1,1,1,0,1,1,0,1,0,0,1,0,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,1,1,0,1,0,0,0,0,0]
=> ? = 2
[1,1,1,1,0,1,1,0,1,1,0,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,1,1,0,0,0,0,0,0]
=> ? = 1
[1,1,1,1,0,1,1,1,0,0,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> ? = 1
[1,1,1,1,0,1,1,1,0,0,0,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,1,1,1,0,0,0,0,0,0]
=> ? = 1
[1,1,1,1,0,1,1,1,0,0,0,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,1,1,1,0,0,0,0,0,0]
=> ? = 1
[1,1,1,1,0,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,1,0,1,0,0,0,0,0,0]
=> ? = 2
[1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 1
[1,1,1,1,1,0,0,0,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,0,1,1,0,0,0,0,0]
=> ? = 1
[1,1,1,1,1,0,0,0,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,1,1,0,1,0,0,0,0,0]
=> ? = 2
[1,1,1,1,1,0,0,1,1,0,0,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,1,1,0,1,0,0,0,0,0]
=> ? = 2
[1,1,1,1,1,0,0,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,1,1,0,0,0,0,0,0]
=> ? = 1
[1,1,1,1,1,0,1,0,1,0,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> ? = 3
[1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0]
=> ? = 4
[1,1,1,1,1,0,1,0,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,0,1,1,0,0,0,0,0,0]
=> ? = 1
[1,1,1,1,1,0,1,1,0,0,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> ? = 1
[1,1,1,1,1,0,1,1,0,0,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,1,1,0,0,0,0,0,0]
=> ? = 1
[1,1,1,1,1,0,1,1,0,0,0,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,1,1,0,0,0,0,0,0]
=> ? = 1
Description
The number of up steps after the last double rise of a Dyck path.
Matching statistic: St000505
Mp00030: Dyck paths zeta mapDyck paths
Mp00099: Dyck paths bounce pathDyck paths
Mp00138: Dyck paths to noncrossing partitionSet partitions
St000505: Set partitions ⟶ ℤResult quality: 55% values known / values provided: 55%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1,0]
=> {{1}}
=> 1
[1,0,1,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> {{1,2}}
=> 2
[1,1,0,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> {{1},{2}}
=> 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> {{1,2,3}}
=> 3
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> {{1},{2,3}}
=> 1
[1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> {{1},{2,3}}
=> 1
[1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> {{1,2},{3}}
=> 2
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> {{1},{2},{3}}
=> 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 4
[1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> {{1,2},{3,4}}
=> 2
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> {{1},{2},{3,4}}
=> 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> {{1,2},{3,4}}
=> 2
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> {{1,2},{3,4}}
=> 2
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> {{1,2,3},{4}}
=> 3
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> {{1},{2,3},{4}}
=> 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> {{1},{2},{3,4}}
=> 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> {{1},{2,3},{4}}
=> 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> {{1,2},{3},{4}}
=> 2
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4}}
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3,4,5}}
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3,4,5}}
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5}}
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5}}
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3,4,5}}
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5}}
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5}}
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> {{1,2,3},{4,5}}
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4,5}}
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5}}
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4,5}}
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> {{1,2},{3},{4,5}}
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4,5}}
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3,4,5}}
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5}}
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5}}
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> {{1,2,3},{4,5}}
=> 3
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4,5}}
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5}}
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> {{1,2,3},{4,5}}
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> {{1,2,3},{4,5}}
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> {{1,2,3,4},{5}}
=> 4
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> {{1},{2,3,4},{5}}
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4,5}}
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> {{1},{2,3,4},{5}}
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> {{1,2},{3,4},{5}}
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> {{1},{2},{3,4},{5}}
=> 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3},{4,5,6,7,8}}
=> ? = 3
[1,0,1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> {{1},{2,3},{4,5,6,7,8}}
=> ? = 1
[1,0,1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> {{1},{2},{3,4},{5,6,7,8}}
=> ? = 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3},{4,5,6,7,8}}
=> ? = 3
[1,0,1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> {{1},{2,3,4,5},{6,7,8}}
=> ? = 1
[1,0,1,0,1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> {{1},{2},{3,4},{5,6,7,8}}
=> ? = 1
[1,0,1,0,1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,1,1,0,0,0,0]
=> {{1,2,3},{4},{5,6,7,8}}
=> ? = 3
[1,0,1,0,1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3},{4},{5,6,7,8}}
=> ? = 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> {{1},{2},{3,4},{5,6,7,8}}
=> ? = 1
[1,0,1,0,1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3},{4},{5,6,7,8}}
=> ? = 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> {{1,2},{3},{4},{5,6,7,8}}
=> ? = 2
[1,0,1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> {{1},{2},{3},{4},{5,6,7,8}}
=> ? = 1
[1,0,1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> {{1},{2,3},{4},{5},{6,7,8}}
=> ? = 1
[1,0,1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> {{1,2},{3},{4},{5},{6,7,8}}
=> ? = 2
[1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3},{4},{5},{6,7,8}}
=> ? = 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3},{4,5,6,7,8}}
=> ? = 3
[1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> {{1},{2},{3},{4,5},{6,7,8}}
=> ? = 1
[1,0,1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,1,1,0,0,1,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3},{4,5,6,7,8}}
=> ? = 3
[1,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,1,1,0,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> {{1,2,3,4},{5,6,7,8}}
=> ? = 4
[1,0,1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> {{1},{2,3,4,5,6},{7,8}}
=> ? = 1
[1,0,1,1,0,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> {{1},{2},{3,4},{5,6,7,8}}
=> ? = 1
[1,0,1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> {{1},{2,3},{4,5},{6,7,8}}
=> ? = 1
[1,0,1,1,1,0,1,0,0,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> {{1,2,3,4},{5,6},{7,8}}
=> ? = 4
[1,0,1,1,1,0,1,0,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,1,1,0,0,0,0]
=> {{1,2,3},{4},{5,6,7,8}}
=> ? = 3
[1,0,1,1,1,0,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3},{4},{5,6,7,8}}
=> ? = 1
[1,0,1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> {{1},{2},{3,4},{5,6,7,8}}
=> ? = 1
[1,0,1,1,1,1,0,0,1,0,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3},{4},{5,6,7,8}}
=> ? = 1
[1,0,1,1,1,1,0,1,0,0,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> {{1,2},{3},{4},{5,6,7,8}}
=> ? = 2
[1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3,4},{5},{6},{7,8}}
=> ? = 1
[1,0,1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> {{1},{2},{3},{4},{5,6,7,8}}
=> ? = 1
[1,0,1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> {{1},{2},{3},{4,5},{6,7,8}}
=> ? = 1
[1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> {{1,2,3},{4},{5},{6},{7,8}}
=> ? = 3
[1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> {{1},{2,3},{4},{5},{6},{7,8}}
=> ? = 1
[1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3},{4},{5},{6,7,8}}
=> ? = 1
[1,0,1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3,4},{5},{6},{7,8}}
=> ? = 1
[1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> {{1},{2,3},{4},{5},{6},{7,8}}
=> ? = 1
[1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> {{1,2},{3},{4},{5},{6},{7,8}}
=> ? = 2
[1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4},{5},{6},{7,8}}
=> ? = 1
[1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3},{4,5,6,7,8}}
=> ? = 3
[1,1,0,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> {{1},{2,3},{4,5,6,7,8}}
=> ? = 1
[1,1,0,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> {{1,2,3,4},{5,6,7,8}}
=> ? = 4
[1,1,0,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0]
=> {{1,2,3,4,5},{6,7,8}}
=> ? = 5
[1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> {{1,2,3,4},{5,6,7,8}}
=> ? = 4
[1,1,0,0,1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5},{6,7,8}}
=> ? = 2
[1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5},{6,7,8}}
=> ? = 1
[1,1,0,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> {{1},{2,3},{4,5,6,7,8}}
=> ? = 1
[1,1,0,0,1,1,1,0,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5},{6,7,8}}
=> ? = 2
[1,1,0,0,1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3,4},{5,6},{7,8}}
=> ? = 1
[1,1,0,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> {{1},{2},{3,4},{5,6},{7,8}}
=> ? = 1
[1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5},{6,7,8}}
=> ? = 1
Description
The biggest entry in the block containing the 1.
Matching statistic: St000971
Mp00030: Dyck paths zeta mapDyck paths
Mp00099: Dyck paths bounce pathDyck paths
Mp00138: Dyck paths to noncrossing partitionSet partitions
St000971: Set partitions ⟶ ℤResult quality: 55% values known / values provided: 55%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1,0]
=> {{1}}
=> 1
[1,0,1,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> {{1,2}}
=> 2
[1,1,0,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> {{1},{2}}
=> 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> {{1,2,3}}
=> 3
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> {{1},{2,3}}
=> 1
[1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> {{1},{2,3}}
=> 1
[1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> {{1,2},{3}}
=> 2
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> {{1},{2},{3}}
=> 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 4
[1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> {{1,2},{3,4}}
=> 2
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> {{1},{2},{3,4}}
=> 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> {{1,2},{3,4}}
=> 2
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> {{1,2},{3,4}}
=> 2
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> {{1,2,3},{4}}
=> 3
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> {{1},{2,3},{4}}
=> 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> {{1},{2},{3,4}}
=> 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> {{1},{2,3},{4}}
=> 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> {{1,2},{3},{4}}
=> 2
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4}}
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3,4,5}}
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3,4,5}}
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5}}
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5}}
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3,4,5}}
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5}}
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5}}
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> {{1,2,3},{4,5}}
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4,5}}
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5}}
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4,5}}
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> {{1,2},{3},{4,5}}
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4,5}}
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3,4,5}}
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5}}
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5}}
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> {{1,2,3},{4,5}}
=> 3
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4,5}}
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5}}
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> {{1,2,3},{4,5}}
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> {{1,2,3},{4,5}}
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> {{1,2,3,4},{5}}
=> 4
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> {{1},{2,3,4},{5}}
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4,5}}
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> {{1},{2,3,4},{5}}
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> {{1,2},{3,4},{5}}
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> {{1},{2},{3,4},{5}}
=> 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3},{4,5,6,7,8}}
=> ? = 3
[1,0,1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> {{1},{2,3},{4,5,6,7,8}}
=> ? = 1
[1,0,1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> {{1},{2},{3,4},{5,6,7,8}}
=> ? = 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3},{4,5,6,7,8}}
=> ? = 3
[1,0,1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> {{1},{2,3,4,5},{6,7,8}}
=> ? = 1
[1,0,1,0,1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> {{1},{2},{3,4},{5,6,7,8}}
=> ? = 1
[1,0,1,0,1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,1,1,0,0,0,0]
=> {{1,2,3},{4},{5,6,7,8}}
=> ? = 3
[1,0,1,0,1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3},{4},{5,6,7,8}}
=> ? = 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> {{1},{2},{3,4},{5,6,7,8}}
=> ? = 1
[1,0,1,0,1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3},{4},{5,6,7,8}}
=> ? = 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> {{1,2},{3},{4},{5,6,7,8}}
=> ? = 2
[1,0,1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> {{1},{2},{3},{4},{5,6,7,8}}
=> ? = 1
[1,0,1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> {{1},{2,3},{4},{5},{6,7,8}}
=> ? = 1
[1,0,1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> {{1,2},{3},{4},{5},{6,7,8}}
=> ? = 2
[1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3},{4},{5},{6,7,8}}
=> ? = 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3},{4,5,6,7,8}}
=> ? = 3
[1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> {{1},{2},{3},{4,5},{6,7,8}}
=> ? = 1
[1,0,1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,1,1,0,0,1,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3},{4,5,6,7,8}}
=> ? = 3
[1,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,1,1,0,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> {{1,2,3,4},{5,6,7,8}}
=> ? = 4
[1,0,1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> {{1},{2,3,4,5,6},{7,8}}
=> ? = 1
[1,0,1,1,0,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> {{1},{2},{3,4},{5,6,7,8}}
=> ? = 1
[1,0,1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> {{1},{2,3},{4,5},{6,7,8}}
=> ? = 1
[1,0,1,1,1,0,1,0,0,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> {{1,2,3,4},{5,6},{7,8}}
=> ? = 4
[1,0,1,1,1,0,1,0,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,1,1,0,0,0,0]
=> {{1,2,3},{4},{5,6,7,8}}
=> ? = 3
[1,0,1,1,1,0,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3},{4},{5,6,7,8}}
=> ? = 1
[1,0,1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> {{1},{2},{3,4},{5,6,7,8}}
=> ? = 1
[1,0,1,1,1,1,0,0,1,0,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3},{4},{5,6,7,8}}
=> ? = 1
[1,0,1,1,1,1,0,1,0,0,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> {{1,2},{3},{4},{5,6,7,8}}
=> ? = 2
[1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3,4},{5},{6},{7,8}}
=> ? = 1
[1,0,1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> {{1},{2},{3},{4},{5,6,7,8}}
=> ? = 1
[1,0,1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> {{1},{2},{3},{4,5},{6,7,8}}
=> ? = 1
[1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> {{1,2,3},{4},{5},{6},{7,8}}
=> ? = 3
[1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> {{1},{2,3},{4},{5},{6},{7,8}}
=> ? = 1
[1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3},{4},{5},{6,7,8}}
=> ? = 1
[1,0,1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3,4},{5},{6},{7,8}}
=> ? = 1
[1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> {{1},{2,3},{4},{5},{6},{7,8}}
=> ? = 1
[1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> {{1,2},{3},{4},{5},{6},{7,8}}
=> ? = 2
[1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4},{5},{6},{7,8}}
=> ? = 1
[1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3},{4,5,6,7,8}}
=> ? = 3
[1,1,0,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> {{1},{2,3},{4,5,6,7,8}}
=> ? = 1
[1,1,0,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> {{1,2,3,4},{5,6,7,8}}
=> ? = 4
[1,1,0,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0]
=> {{1,2,3,4,5},{6,7,8}}
=> ? = 5
[1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> {{1,2,3,4},{5,6,7,8}}
=> ? = 4
[1,1,0,0,1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5},{6,7,8}}
=> ? = 2
[1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5},{6,7,8}}
=> ? = 1
[1,1,0,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> {{1},{2,3},{4,5,6,7,8}}
=> ? = 1
[1,1,0,0,1,1,1,0,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5},{6,7,8}}
=> ? = 2
[1,1,0,0,1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3,4},{5,6},{7,8}}
=> ? = 1
[1,1,0,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> {{1},{2},{3,4},{5,6},{7,8}}
=> ? = 1
[1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5},{6,7,8}}
=> ? = 1
Description
The smallest closer of a set partition. A closer (or right hand endpoint) of a set partition is a number that is maximal in its block. For this statistic, singletons are considered as closers. In other words, this is the smallest among the maximal elements of the blocks.
Matching statistic: St000069
Mp00030: Dyck paths zeta mapDyck paths
Mp00099: Dyck paths bounce pathDyck paths
Mp00242: Dyck paths Hessenberg posetPosets
St000069: Posets ⟶ ℤResult quality: 54% values known / values provided: 54%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1,0]
=> ([],1)
=> 1
[1,0,1,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> ([],2)
=> 2
[1,1,0,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> ([(0,1)],2)
=> 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> ([],3)
=> 3
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> ([(0,2),(1,2)],3)
=> 1
[1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> ([(0,2),(1,2)],3)
=> 1
[1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> ([(0,1),(0,2)],3)
=> 2
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> ([],4)
=> 4
[1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> ([(0,3),(1,3),(2,3)],4)
=> 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> ([(0,3),(1,3),(2,3)],4)
=> 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> ([(0,3),(1,3),(3,2)],4)
=> 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> ([(0,3),(1,3),(2,3)],4)
=> 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3)],4)
=> 3
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> ([(0,3),(1,3),(3,2)],4)
=> 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> ([(0,3),(3,1),(3,2)],4)
=> 2
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ([],5)
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(1,4),(4,2),(4,3)],5)
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> 3
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(0,4)],5)
=> 4
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 3
[1,0,1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ? = 1
[1,0,1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(5,4),(6,5),(7,5)],8)
=> ? = 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 3
[1,0,1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 1
[1,0,1,0,1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(5,4),(6,5),(7,5)],8)
=> ? = 1
[1,0,1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(7,6)],8)
=> ? = 1
[1,0,1,0,1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,1,1,0,0,0,0]
=> ([(0,7),(1,7),(2,7),(3,7),(7,4),(7,5),(7,6)],8)
=> ? = 3
[1,0,1,0,1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> ([(0,7),(1,7),(2,7),(3,7),(4,6),(5,6),(7,4),(7,5)],8)
=> ? = 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(5,4),(6,5),(7,5)],8)
=> ? = 1
[1,0,1,0,1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> ([(0,7),(1,7),(2,7),(3,7),(4,6),(5,6),(7,4),(7,5)],8)
=> ? = 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ([(0,7),(1,7),(2,7),(3,7),(4,5),(4,6),(7,4)],8)
=> ? = 2
[1,0,1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> ([(0,7),(1,7),(2,7),(3,4),(3,5),(4,6),(5,6),(7,3)],8)
=> ? = 1
[1,0,1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ([(0,7),(1,7),(2,7),(5,6),(6,3),(6,4),(7,5)],8)
=> ? = 2
[1,0,1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 3
[1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(5,3),(6,5),(7,5)],8)
=> ? = 1
[1,0,1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,1,1,0,0,1,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 3
[1,0,1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 1
[1,0,1,1,0,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(5,4),(6,5),(7,5)],8)
=> ? = 1
[1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(7,6)],8)
=> ? = 1
[1,0,1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,5),(4,5),(6,3),(6,4),(7,3),(7,4)],8)
=> ? = 1
[1,0,1,1,1,0,1,0,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,1,1,0,0,0,0]
=> ([(0,7),(1,7),(2,7),(3,7),(7,4),(7,5),(7,6)],8)
=> ? = 3
[1,0,1,1,1,0,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> ([(0,7),(1,7),(2,7),(3,7),(4,6),(5,6),(7,4),(7,5)],8)
=> ? = 1
[1,0,1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(5,4),(6,5),(7,5)],8)
=> ? = 1
[1,0,1,1,1,1,0,0,1,0,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> ([(0,7),(1,7),(2,7),(3,7),(4,6),(5,6),(7,4),(7,5)],8)
=> ? = 1
[1,0,1,1,1,1,0,1,0,0,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ([(0,7),(1,7),(2,7),(3,7),(4,5),(4,6),(7,4)],8)
=> ? = 2
[1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ([(0,6),(1,6),(3,7),(4,7),(5,3),(5,4),(6,5),(7,2)],8)
=> ? = 1
[1,0,1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(5,3),(6,5),(7,5)],8)
=> ? = 1
[1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,7),(1,7),(5,6),(6,2),(6,3),(6,4),(7,5)],8)
=> ? = 3
[1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,7),(1,7),(2,6),(3,6),(4,5),(5,2),(5,3),(7,4)],8)
=> ? = 1
[1,0,1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ([(0,6),(1,6),(3,7),(4,7),(5,3),(5,4),(6,5),(7,2)],8)
=> ? = 1
[1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,7),(1,7),(2,6),(3,6),(4,5),(5,2),(5,3),(7,4)],8)
=> ? = 1
[1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,7),(1,7),(4,6),(5,4),(6,2),(6,3),(7,5)],8)
=> ? = 2
[1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 3
[1,1,0,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ? = 1
[1,1,0,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0]
=> ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7)],8)
=> ? = 5
[1,1,0,0,1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(5,3),(5,4),(6,3),(6,4),(7,3),(7,4)],8)
=> ? = 2
[1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(4,3),(5,4),(6,4),(7,4)],8)
=> ? = 1
[1,1,0,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ? = 1
[1,1,0,0,1,1,1,0,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(5,3),(5,4),(6,3),(6,4),(7,3),(7,4)],8)
=> ? = 2
[1,1,0,0,1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> ([(0,5),(0,6),(1,5),(1,6),(2,7),(3,7),(4,7),(5,2),(5,3),(5,4),(6,2),(6,3),(6,4)],8)
=> ? = 1
[1,1,0,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ([(0,6),(0,7),(1,6),(1,7),(3,2),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ? = 1
[1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(4,3),(5,4),(6,4),(7,4)],8)
=> ? = 1
[1,1,0,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0,1,1,0,0]
=> ([(0,5),(0,6),(1,5),(1,6),(5,7),(6,7),(7,2),(7,3),(7,4)],8)
=> ? = 3
[1,1,0,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> ([(0,6),(0,7),(1,6),(1,7),(2,5),(3,5),(4,2),(4,3),(6,4),(7,4)],8)
=> ? = 1
[1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(5,3),(6,5),(7,5)],8)
=> ? = 1
[1,1,0,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(4,7),(5,7),(6,7),(7,2)],8)
=> ? = 1
[1,1,0,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ([(0,6),(0,7),(1,6),(1,7),(3,2),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ? = 1
[1,1,0,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> ([(0,6),(0,7),(1,6),(1,7),(2,5),(3,5),(4,2),(4,3),(6,4),(7,4)],8)
=> ? = 1
[1,1,0,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ([(0,6),(0,7),(1,6),(1,7),(4,2),(4,3),(5,4),(6,5),(7,5)],8)
=> ? = 2
Description
The number of maximal elements of a poset.
Matching statistic: St000550
Mp00242: Dyck paths Hessenberg posetPosets
Mp00206: Posets antichains of maximal sizeLattices
St000550: Lattices ⟶ ℤResult quality: 50% values known / values provided: 50%distinct values known / distinct values provided: 70%
Values
[1,0]
=> ([],1)
=> ([],1)
=> 1
[1,0,1,0]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[1,1,0,0]
=> ([],2)
=> ([],1)
=> 1
[1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 3
[1,0,1,1,0,0]
=> ([(0,2),(1,2)],3)
=> ([],1)
=> 1
[1,1,0,0,1,0]
=> ([(0,1),(0,2)],3)
=> ([],1)
=> 1
[1,1,0,1,0,0]
=> ([(1,2)],3)
=> ([(0,1)],2)
=> 2
[1,1,1,0,0,0]
=> ([],3)
=> ([],1)
=> 1
[1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,0,1,0,1,1,0,0]
=> ([(0,3),(1,3),(3,2)],4)
=> ([],1)
=> 1
[1,0,1,1,0,0,1,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],1)
=> 1
[1,0,1,1,0,1,0,0]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> 2
[1,0,1,1,1,0,0,0]
=> ([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> 1
[1,1,0,0,1,0,1,0]
=> ([(0,3),(3,1),(3,2)],4)
=> ([],1)
=> 1
[1,1,0,0,1,1,0,0]
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> 2
[1,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> 2
[1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 3
[1,1,0,1,1,0,0,0]
=> ([(1,3),(2,3)],4)
=> ([],1)
=> 1
[1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3)],4)
=> ([],1)
=> 1
[1,1,1,0,0,1,0,0]
=> ([(1,2),(1,3)],4)
=> ([],1)
=> 1
[1,1,1,0,1,0,0,0]
=> ([(2,3)],4)
=> ([(0,1)],2)
=> 2
[1,1,1,1,0,0,0,0]
=> ([],4)
=> ([],1)
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([],1)
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([],1)
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([],1)
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([],1)
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,1)],2)
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1)],2)
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([],1)
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([],1)
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> ([(0,3),(3,4),(4,1),(4,2)],5)
=> ([],1)
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,1)],2)
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
[1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,1)],2)
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
[1,1,0,1,0,1,1,0,0,0]
=> ([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([],1)
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ([],1)
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> ([(1,4),(2,4),(3,4)],5)
=> ([],1)
=> 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,7),(1,7),(3,5),(4,3),(5,2),(6,4),(7,6)],8)
=> ?
=> ? = 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,7),(1,3),(3,7),(4,5),(5,2),(6,4),(7,6)],8)
=> ?
=> ? = 2
[1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ([(0,5),(0,6),(1,5),(1,6),(3,4),(4,2),(5,7),(6,7),(7,3)],8)
=> ?
=> ? = 2
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> ([(0,7),(1,3),(1,7),(3,6),(4,2),(5,4),(6,5),(7,6)],8)
=> ?
=> ? = 3
[1,0,1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> ([(0,7),(1,3),(1,4),(3,7),(4,7),(5,2),(6,5),(7,6)],8)
=> ?
=> ? = 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> ([(0,7),(1,7),(3,6),(4,6),(5,2),(6,5),(7,3),(7,4)],8)
=> ?
=> ? = 2
[1,0,1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> ([(0,7),(1,3),(1,4),(1,5),(3,7),(4,7),(5,7),(6,2),(7,6)],8)
=> ?
=> ? = 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ([(0,6),(1,6),(3,7),(4,7),(5,3),(5,4),(6,5),(7,2)],8)
=> ?
=> ? = 2
[1,0,1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> ([(0,7),(1,2),(2,7),(3,6),(4,6),(6,5),(7,3),(7,4)],8)
=> ?
=> ? = 3
[1,0,1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> ([(0,5),(0,7),(1,4),(1,7),(2,4),(2,7),(4,5),(5,6),(6,3),(7,6)],8)
=> ?
=> ? = 1
[1,0,1,0,1,1,0,1,1,1,0,0,0,0,1,0]
=> ([(0,2),(0,3),(0,4),(0,5),(2,7),(3,7),(4,7),(5,6),(6,1),(7,6)],8)
=> ?
=> ? = 1
[1,0,1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> ([(0,5),(1,7),(2,7),(3,7),(5,6),(6,1),(6,2),(6,3),(7,4)],8)
=> ?
=> ? = 1
[1,0,1,0,1,1,1,0,1,0,1,0,0,0,1,0]
=> ([(0,3),(0,4),(0,5),(1,7),(3,7),(4,6),(5,1),(5,6),(6,7),(7,2)],8)
=> ?
=> ? = 3
[1,0,1,0,1,1,1,0,1,1,0,0,0,0,1,0]
=> ([(0,2),(0,3),(0,4),(0,5),(2,7),(3,7),(4,6),(5,6),(6,7),(7,1)],8)
=> ?
=> ? = 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,0,1,0]
=> ([(0,5),(0,6),(1,7),(2,7),(3,7),(5,7),(6,1),(6,2),(6,3),(7,4)],8)
=> ?
=> ? = 1
[1,0,1,0,1,1,1,1,0,0,1,0,0,0,1,0]
=> ([(0,4),(0,5),(0,6),(1,7),(2,7),(4,7),(5,7),(6,1),(6,2),(7,3)],8)
=> ?
=> ? = 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> ([(0,3),(0,4),(0,5),(0,6),(1,7),(3,7),(4,7),(5,7),(6,1),(7,2)],8)
=> ?
=> ? = 2
[1,0,1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(2,7),(3,7),(4,7),(5,7),(6,7),(7,1)],8)
=> ?
=> ? = 1
[1,0,1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> ([(0,7),(1,7),(2,7),(3,4),(3,5),(4,7),(5,7),(7,6)],8)
=> ?
=> ? = 1
[1,0,1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> ([(0,7),(1,7),(2,7),(3,7),(4,5),(5,7),(7,6)],8)
=> ?
=> ? = 2
[1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(7,6)],8)
=> ?
=> ? = 1
[1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,7),(1,7),(2,6),(3,6),(4,5),(5,2),(5,3),(7,4)],8)
=> ?
=> ? = 2
[1,0,1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,7),(1,2),(2,7),(3,6),(4,6),(5,3),(5,4),(7,5)],8)
=> ?
=> ? = 3
[1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ?
=> ? = 1
[1,0,1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> ([(0,7),(1,7),(2,6),(3,6),(4,3),(5,2),(5,4),(7,5)],8)
=> ?
=> ? = 3
[1,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> ([(0,7),(1,2),(2,7),(3,6),(4,6),(5,4),(7,3),(7,5)],8)
=> ?
=> ? = 4
[1,0,1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> ([(0,5),(0,7),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4)],8)
=> ?
=> ? = 1
[1,0,1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,6),(4,7),(6,5),(7,5)],8)
=> ?
=> ? = 2
[1,0,1,1,0,1,1,1,0,0,0,0,1,0,1,0]
=> ([(0,5),(1,7),(2,7),(3,7),(4,6),(5,1),(5,2),(5,3),(5,4),(7,6)],8)
=> ?
=> ? = 1
[1,0,1,1,0,1,1,1,0,1,0,0,1,0,0,0]
=> ([(0,7),(1,5),(1,7),(2,3),(2,4),(2,5),(3,7),(4,7),(5,6),(7,6)],8)
=> ?
=> ? = 2
[1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ([(0,5),(1,7),(2,7),(3,7),(4,6),(5,4),(6,1),(6,2),(6,3)],8)
=> ?
=> ? = 1
[1,0,1,1,1,0,1,0,0,1,1,0,1,0,0,0]
=> ([(0,3),(0,5),(0,6),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,7),(5,4),(6,4),(7,4)],8)
=> ?
=> ? = 4
[1,0,1,1,1,0,1,0,1,0,0,0,1,0,1,0]
=> ([(0,5),(1,7),(2,7),(3,6),(4,2),(4,6),(5,1),(5,3),(5,4),(6,7)],8)
=> ?
=> ? = 3
[1,0,1,1,1,0,1,1,0,0,0,0,1,0,1,0]
=> ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4),(6,7)],8)
=> ?
=> ? = 1
[1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> ([(0,5),(0,7),(1,2),(1,3),(1,4),(1,5),(2,7),(3,7),(4,6),(5,6),(7,6)],8)
=> ?
=> ? = 2
[1,0,1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> ([(0,5),(1,7),(2,7),(3,7),(4,7),(5,4),(5,6),(6,1),(6,2),(6,3)],8)
=> ?
=> ? = 1
[1,0,1,1,1,1,0,0,1,0,0,0,1,0,1,0]
=> ([(0,6),(1,7),(2,7),(3,7),(4,7),(5,3),(5,4),(6,1),(6,2),(6,5)],8)
=> ?
=> ? = 1
[1,0,1,1,1,1,0,1,0,0,0,0,1,0,1,0]
=> ([(0,6),(1,7),(2,7),(3,7),(4,7),(5,4),(6,1),(6,2),(6,3),(6,5)],8)
=> ?
=> ? = 2
[1,0,1,1,1,1,0,1,0,0,1,0,0,1,0,0]
=> ([(0,2),(0,3),(0,5),(0,6),(1,4),(1,5),(1,6),(2,7),(3,4),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 2
[1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> ([(0,7),(1,7),(2,7),(3,6),(4,6),(5,6),(6,7)],8)
=> ?
=> ? = 1
[1,0,1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ([(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,1),(6,2),(6,3),(6,4),(6,5)],8)
=> ?
=> ? = 1
[1,0,1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> ([(0,7),(1,7),(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> ([(0,7),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ?
=> ? = 1
[1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,0,1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> ([(0,7),(1,7),(2,7),(3,4),(3,5),(3,6),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> ([(0,7),(1,7),(2,7),(3,7),(4,5),(4,6),(5,7),(6,7)],8)
=> ?
=> ? = 1
[1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(6,7)],8)
=> ?
=> ? = 2
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,6),(3,5),(4,3),(5,7),(6,4),(7,1),(7,2)],8)
=> ?
=> ? = 1
[1,1,0,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ([(0,3),(0,4),(3,7),(4,7),(5,6),(6,1),(6,2),(7,5)],8)
=> ?
=> ? = 2
Description
The number of modular elements of a lattice. A pair $(x, y)$ of elements of a lattice $L$ is a modular pair if for every $z\geq y$ we have that $(y\vee x) \wedge z = y \vee (x \wedge z)$. An element $x$ is left-modular if $(x, y)$ is a modular pair for every $y\in L$, and is modular if both $(x, y)$ and $(y, x)$ are modular pairs for every $y\in L$.
The following 45 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000551The number of left modular elements of a lattice. St001616The number of neutral elements in a lattice. St001720The minimal length of a chain of small intervals in a lattice. St001615The number of join prime elements of a lattice. St001617The dimension of the space of valuations of a lattice. St001619The number of non-isomorphic sublattices of a lattice. St001622The number of join-irreducible elements of a lattice. St001666The number of non-isomorphic subposets of a lattice which are lattices. St000883The number of longest increasing subsequences of a permutation. St000504The cardinality of the first block of a set partition. St000823The number of unsplittable factors of the set partition. St000026The position of the first return of a Dyck path. St000363The number of minimal vertex covers of a graph. St000054The first entry of the permutation. St000909The number of maximal chains of maximal size in a poset. St001498The normalised height of a Nakayama algebra with magnitude 1. St000911The number of maximal antichains of maximal size in a poset. St000501The size of the first part in the decomposition of a permutation. St000542The number of left-to-right-minima of a permutation. St000990The first ascent of a permutation. St000541The number of indices greater than or equal to 2 of a permutation such that all smaller indices appear to its right. St000066The column of the unique '1' in the first row of the alternating sign matrix. St000989The number of final rises of a permutation. St000654The first descent of a permutation. St000738The first entry in the last row of a standard tableau. St001651The Frankl number of a lattice. St000025The number of initial rises of a Dyck path. St000335The difference of lower and upper interactions. St000740The last entry of a permutation. St000991The number of right-to-left minima of a permutation. St001184Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra. St001201The grade of the simple module $S_0$ in the special CNakayama algebra corresponding to the Dyck path. St001390The number of bumps occurring when Schensted-inserting the letter 1 of a permutation. St000051The size of the left subtree of a binary tree. St001226The number of integers i such that the radical of the i-th indecomposable projective module has vanishing first extension group with the Jacobson radical J in the corresponding Nakayama algebra. St001640The number of ascent tops in the permutation such that all smaller elements appear before. St000061The number of nodes on the left branch of a binary tree. St001875The number of simple modules with projective dimension at most 1. St000193The row of the unique '1' in the first column of the alternating sign matrix. St000906The length of the shortest maximal chain in a poset. St000643The size of the largest orbit of antichains under Panyushev complementation. St001637The number of (upper) dissectors of a poset. St001668The number of points of the poset minus the width of the poset. St001267The length of the Lyndon factorization of the binary word. St001904The length of the initial strictly increasing segment of a parking function.