Your data matches 1 statistic following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000624: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,2] => 0
[2,1] => 0
[1,2,3] => 0
[1,3,2] => 1
[2,1,3] => 0
[2,3,1] => 1
[3,1,2] => 0
[3,2,1] => 0
[1,2,3,4] => 0
[1,2,4,3] => 1
[1,3,2,4] => 1
[1,3,4,2] => 1
[1,4,2,3] => 1
[1,4,3,2] => 1
[2,1,3,4] => 0
[2,1,4,3] => 1
[2,3,1,4] => 1
[2,3,4,1] => 1
[2,4,1,3] => 1
[2,4,3,1] => 1
[3,1,2,4] => 0
[3,1,4,2] => 1
[3,2,1,4] => 0
[3,2,4,1] => 1
[3,4,1,2] => 1
[3,4,2,1] => 1
[4,1,2,3] => 0
[4,1,3,2] => 1
[4,2,1,3] => 0
[4,2,3,1] => 1
[4,3,1,2] => 0
[4,3,2,1] => 0
[1,2,3,4,5] => 0
[1,2,3,5,4] => 1
[1,2,4,3,5] => 1
[1,2,4,5,3] => 1
[1,2,5,3,4] => 2
[1,2,5,4,3] => 2
[1,3,2,4,5] => 1
[1,3,2,5,4] => 2
[1,3,4,2,5] => 1
[1,3,4,5,2] => 1
[1,3,5,2,4] => 2
[1,3,5,4,2] => 2
[1,4,2,3,5] => 1
[1,4,2,5,3] => 2
[1,4,3,2,5] => 1
[1,4,3,5,2] => 2
[1,4,5,2,3] => 2
[1,4,5,3,2] => 2
Description
The normalized sum of the minimal distances to a greater element. Set $\pi_0 = \pi_{n+1} = n+1$, then this statistic is $$ \sum_{i=1}^n \min_d(\pi_{i-1-d}>\pi_i\text{ or }\pi_{i+1+d}>\pi_i) $$ A closely related statistic appears in [1]. The generating function for the sequence of maximal values attained on $\mathfrak S_r$, $r\geq 0$ apparently satisfies the functional equation $$ (x-1)^2 (x+1)^3 f(x^2) - (x-1)^2 (x+1) f(x) + x^3 = 0. $$