searching the database
Your data matches 67 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000645
Mp00214: Semistandard tableaux —subcrystal⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St000645: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St000645: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[1,2]]
=> ([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> 2
[[2,2]]
=> ([(0,2),(2,1)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 3
[[1],[2]]
=> ([],1)
=> [1]
=> [1,0,1,0]
=> 1
[[1,3]]
=> ([(0,2),(2,1)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 3
[[2,3]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 4
[[3,3]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> 5
[[1],[3]]
=> ([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> 2
[[2],[3]]
=> ([(0,2),(2,1)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 3
[[1,1,2]]
=> ([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> 2
[[1,2,2]]
=> ([(0,2),(2,1)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 3
[[2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 4
[[1,1],[2]]
=> ([],1)
=> [1]
=> [1,0,1,0]
=> 1
[[1,2],[2]]
=> ([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> 2
[[1,4]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 4
[[2,4]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> [5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> 5
[[3,4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> [6,3]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> 6
[[4,4]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> [7,3]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0]
=> 7
[[1],[4]]
=> ([(0,2),(2,1)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 3
[[2],[4]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 4
[[3],[4]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> 5
[[1,1,3]]
=> ([(0,2),(2,1)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 3
[[1,2,3]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 4
[[1,3,3]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> 5
[[2,2,3]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> [5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> 5
[[2,3,3]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> [6,3]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> 6
[[3,3,3]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> [7,3]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0]
=> 7
[[1,1],[3]]
=> ([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> 2
[[1,2],[3]]
=> ([(0,2),(2,1)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 3
[[1,3],[2]]
=> ([(0,2),(2,1)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 3
[[1,3],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 4
[[2,2],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 4
[[2,3],[3]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> [5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> 5
[[1],[2],[3]]
=> ([],1)
=> [1]
=> [1,0,1,0]
=> 1
[[1,1,1,2]]
=> ([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> 2
[[1,1,2,2]]
=> ([(0,2),(2,1)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 3
[[1,2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 4
[[2,2,2,2]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 5
[[1,1,1],[2]]
=> ([],1)
=> [1]
=> [1,0,1,0]
=> 1
[[1,1,2],[2]]
=> ([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> 2
[[1,2,2],[2]]
=> ([(0,2),(2,1)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 3
[[1,1],[2,2]]
=> ([],1)
=> [1]
=> [1,0,1,0]
=> 1
[[1,5]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 5
[[2,5]]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> [6,3]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> 6
[[1],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 4
[[2],[5]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> [5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> 5
[[3],[5]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> [6,3]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> 6
[[4],[5]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> [7,3]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0]
=> 7
[[1,1,4]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 4
[[1,2,4]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> [5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> 5
[[1,3,4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> [6,3]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> 6
Description
The sum of the areas of the rectangles formed by two consecutive peaks and the valley in between.
For a Dyck path $D = D_1 \cdots D_{2n}$ with peaks in positions $i_1 < \ldots < i_k$ and valleys in positions $j_1 < \ldots < j_{k-1}$, this statistic is given by
$$
\sum_{a=1}^{k-1} (j_a-i_a)(i_{a+1}-j_a)
$$
Matching statistic: St000093
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Values
[[1,2]]
=> ([(0,1)],2)
=> ([],2)
=> 2
[[2,2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[1],[2]]
=> ([],1)
=> ([],1)
=> 1
[[1,3]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[2,3]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 4
[[3,3]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> 5
[[1],[3]]
=> ([(0,1)],2)
=> ([],2)
=> 2
[[2],[3]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[1,1,2]]
=> ([(0,1)],2)
=> ([],2)
=> 2
[[1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[[1,1],[2]]
=> ([],1)
=> ([],1)
=> 1
[[1,2],[2]]
=> ([(0,1)],2)
=> ([],2)
=> 2
[[1,4]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[[2,4]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> 5
[[3,4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> 6
[[4,4]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> 7
[[1],[4]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[2],[4]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 4
[[3],[4]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> 5
[[1,1,3]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[1,2,3]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 4
[[1,3,3]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> 5
[[2,2,3]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> 5
[[2,3,3]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> 6
[[3,3,3]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> 7
[[1,1],[3]]
=> ([(0,1)],2)
=> ([],2)
=> 2
[[1,2],[3]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[1,3],[2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[1,3],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[[2,2],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[[2,3],[3]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> 5
[[1],[2],[3]]
=> ([],1)
=> ([],1)
=> 1
[[1,1,1,2]]
=> ([(0,1)],2)
=> ([],2)
=> 2
[[1,1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[1,2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[[2,2,2,2]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
[[1,1,1],[2]]
=> ([],1)
=> ([],1)
=> 1
[[1,1,2],[2]]
=> ([(0,1)],2)
=> ([],2)
=> 2
[[1,2,2],[2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[1,1],[2,2]]
=> ([],1)
=> ([],1)
=> 1
[[1,5]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
[[2,5]]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(3,8),(4,7),(5,6),(5,7),(6,8),(7,8)],9)
=> 6
[[1],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[[2],[5]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> 5
[[3],[5]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> 6
[[4],[5]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> 7
[[1,1,4]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[[1,2,4]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> 5
[[1,3,4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> 6
[[2,2,2,2,2,2,2]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ? = 8
[[1,8]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ? = 8
[[1,2,3],[2],[5]]
=> ([(0,3),(0,4),(1,11),(2,10),(3,2),(3,9),(4,1),(4,9),(5,7),(5,8),(6,12),(7,12),(8,12),(9,5),(9,10),(9,11),(10,6),(10,7),(11,6),(11,8)],13)
=> ([(2,11),(2,12),(3,4),(3,12),(4,11),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(6,11),(7,8),(7,10),(7,12),(8,9),(8,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 6
[[1,2],[2,5],[4]]
=> ([(0,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,2),(4,3),(4,6),(5,1),(5,4),(6,8),(6,9),(7,10),(8,10),(9,10)],11)
=> ([(3,10),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(6,7),(6,9),(7,8),(7,10),(8,10),(9,10)],11)
=> ? = 6
[[1,2],[3,3],[5]]
=> ([(0,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,2),(4,3),(4,6),(5,1),(5,4),(6,8),(6,9),(7,10),(8,10),(9,10)],11)
=> ([(3,10),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(6,7),(6,9),(7,8),(7,10),(8,10),(9,10)],11)
=> ? = 6
[[1,1,4],[2,4],[4]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ([(6,7)],8)
=> ? = 7
[[1,1,4],[3,3],[4]]
=> ([(0,3),(0,8),(1,10),(2,9),(3,11),(4,2),(5,4),(6,7),(7,1),(7,9),(8,5),(8,11),(9,10),(11,6)],12)
=> ([(2,8),(3,7),(4,9),(4,10),(4,11),(5,9),(5,10),(5,11),(6,9),(6,10),(6,11),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11)],12)
=> ? = 7
[[1,2,3],[3,3],[4]]
=> ([(0,3),(0,8),(1,10),(2,9),(3,11),(4,2),(5,4),(6,7),(7,1),(7,9),(8,5),(8,11),(9,10),(11,6)],12)
=> ([(2,8),(3,7),(4,9),(4,10),(4,11),(5,9),(5,10),(5,11),(6,9),(6,10),(6,11),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11)],12)
=> ? = 7
[[2,2,2],[3,3],[4]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ([(6,7)],8)
=> ? = 7
[[2,2,2,2,2,2],[3]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ? = 8
[[1,2,2,2,2,2,2,2]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ? = 8
[[2,2,2,2,2,2,2,2]]
=> ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9)
=> ([],9)
=> ? = 9
[[1,1,1,4],[2,2,4],[3,4],[4]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ([(6,7)],8)
=> ? = 7
[[1,1,2,3],[2,3,3],[3,4],[4]]
=> ([(0,3),(0,8),(1,10),(2,9),(3,11),(4,2),(5,4),(6,7),(7,1),(7,9),(8,5),(8,11),(9,10),(11,6)],12)
=> ([(2,8),(3,7),(4,9),(4,10),(4,11),(5,9),(5,10),(5,11),(6,9),(6,10),(6,11),(7,9),(7,10),(7,11),(8,9),(8,10),(8,11)],12)
=> ? = 7
[[1,2,2,2],[2,3,3],[3,4],[4]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ([(6,7)],8)
=> ? = 7
[[1,1,1,1,4],[2,2,2,4],[3,3,4],[4,4],[5]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ([(6,7)],8)
=> ? = 7
[[1,1,2,2,2],[2,2,3,3],[3,3,4],[4,4],[5]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ([(6,7)],8)
=> ? = 7
[[1,1,1,1,1],[2,2,2,5],[3,3,5],[4,5],[5]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ([(6,7)],8)
=> ? = 7
[[1,1,1,1,1],[2,3,3,3],[3,4,4],[4,5],[5]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ([(6,7)],8)
=> ? = 7
[[1,1,1,1,1,4],[2,2,2,2,4],[3,3,3,4],[4,4,4],[5,5],[6]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ([(6,7)],8)
=> ? = 7
[[1,1,1,1,1,1],[2,2,2,2,5],[3,3,3,5],[4,4,5],[5,5],[6]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ([(6,7)],8)
=> ? = 7
[[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,4],[4,4,4],[5,6],[6]]
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(2,5),(2,6),(2,7),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6)],8)
=> ? = 6
[[1,1,1,1,1,3],[2,2,2,2,3],[3,3,3,4],[4,4,4],[5,6],[6]]
=> ([(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(3,7),(3,8),(4,6),(4,8),(5,1),(5,9),(6,11),(7,11),(8,5),(8,11),(9,10),(11,9)],12)
=> ([(2,11),(3,7),(3,11),(4,8),(4,9),(4,10),(5,6),(5,9),(5,10),(6,8),(6,10),(7,8),(7,9),(7,10),(8,9),(8,11),(9,11),(10,11)],12)
=> ? = 6
[[1,1,1,1,1,2],[2,2,2,2,4],[3,3,3,4],[4,4,4],[5,6],[6]]
=> ([(0,1),(0,2),(1,11),(2,3),(2,4),(2,11),(3,8),(3,10),(4,5),(4,9),(4,10),(5,6),(5,7),(6,13),(7,13),(8,12),(9,7),(9,12),(10,6),(10,12),(11,8),(11,9),(12,13)],14)
=> ([(2,12),(3,7),(3,11),(3,13),(4,6),(4,9),(4,10),(4,12),(5,8),(5,9),(5,10),(5,11),(5,13),(6,8),(6,10),(6,11),(6,13),(7,8),(7,9),(7,10),(7,11),(8,9),(8,12),(8,13),(9,11),(9,13),(10,12),(10,13),(11,12),(12,13)],14)
=> ? = 6
[[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,5],[4,4,5],[5,6],[6]]
=> ([(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(3,7),(3,8),(4,6),(4,8),(5,1),(5,9),(6,11),(7,11),(8,5),(8,11),(9,10),(11,9)],12)
=> ([(2,11),(3,7),(3,11),(4,8),(4,9),(4,10),(5,6),(5,9),(5,10),(6,8),(6,10),(7,8),(7,9),(7,10),(8,9),(8,11),(9,11),(10,11)],12)
=> ? = 6
[[1,1,1,1,1,3],[2,2,2,2,3],[3,3,3,3],[4,4,6],[5,6],[6]]
=> ([(0,5),(0,6),(1,4),(1,15),(2,3),(2,14),(3,8),(4,9),(5,2),(5,13),(6,1),(6,13),(8,10),(9,11),(10,7),(11,7),(12,10),(12,11),(13,14),(13,15),(14,8),(14,12),(15,9),(15,12)],16)
=> ([(2,3),(2,11),(2,15),(3,10),(3,14),(4,5),(4,13),(4,14),(5,12),(5,15),(6,12),(6,13),(6,14),(6,15),(7,10),(7,11),(7,14),(7,15),(8,9),(8,10),(8,13),(8,14),(8,15),(9,11),(9,12),(9,14),(9,15),(10,11),(10,12),(10,15),(11,13),(11,14),(12,13),(12,14),(13,15),(14,15)],16)
=> ? = 7
[[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,4],[4,4,6],[5,6],[6]]
=> ([(0,1),(0,2),(1,11),(2,3),(2,4),(2,11),(3,8),(3,10),(4,5),(4,9),(4,10),(5,6),(5,7),(6,13),(7,13),(8,12),(9,7),(9,12),(10,6),(10,12),(11,8),(11,9),(12,13)],14)
=> ([(2,12),(3,7),(3,11),(3,13),(4,6),(4,9),(4,10),(4,12),(5,8),(5,9),(5,10),(5,11),(5,13),(6,8),(6,10),(6,11),(6,13),(7,8),(7,9),(7,10),(7,11),(8,9),(8,12),(8,13),(9,11),(9,13),(10,12),(10,13),(11,12),(12,13)],14)
=> ? = 6
[[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,6],[4,4,6],[5,6],[6]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ([(6,7)],8)
=> ? = 7
[[1,1,1,1,2,2,2],[3,3],[4]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ([(6,7)],8)
=> ? = 7
Description
The cardinality of a maximal independent set of vertices of a graph.
An independent set of a graph is a set of pairwise non-adjacent vertices. A maximum independent set is an independent set of maximum cardinality. This statistic is also called the independence number or stability number $\alpha(G)$ of $G$.
Matching statistic: St001622
Values
[[1,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
[[2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[[1],[2]]
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
[[1,3]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[[2,3]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 3 = 4 - 1
[[3,3]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 4 = 5 - 1
[[1],[3]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
[[2],[3]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[[1,1,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
[[1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[[2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[[1,1],[2]]
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
[[1,2],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
[[1,4]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[[2,4]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> 4 = 5 - 1
[[3,4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> 5 = 6 - 1
[[4,4]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> 6 = 7 - 1
[[1],[4]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[[2],[4]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 3 = 4 - 1
[[3],[4]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 4 = 5 - 1
[[1,1,3]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[[1,2,3]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 3 = 4 - 1
[[1,3,3]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 4 = 5 - 1
[[2,2,3]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> 4 = 5 - 1
[[2,3,3]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> 5 = 6 - 1
[[3,3,3]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> 6 = 7 - 1
[[1,1],[3]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
[[1,2],[3]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[[1,3],[2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[[1,3],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[[2,2],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[[2,3],[3]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 5 - 1
[[1],[2],[3]]
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
[[1,1,1,2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
[[1,1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[[1,2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[[2,2,2,2]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[[1,1,1],[2]]
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
[[1,1,2],[2]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
[[1,2,2],[2]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[[1,1],[2,2]]
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
[[1,5]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[[2,5]]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> 5 = 6 - 1
[[1],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[[2],[5]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> 4 = 5 - 1
[[3],[5]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> 5 = 6 - 1
[[4],[5]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> 6 = 7 - 1
[[1,1,4]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[[1,2,4]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> 4 = 5 - 1
[[1,3,4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> 5 = 6 - 1
[[1,4,4]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> 6 = 7 - 1
[[2,4],[3]]
=> ([(0,5),(0,6),(1,8),(2,9),(3,8),(3,9),(4,1),(5,4),(6,7),(7,2),(7,3),(8,10),(9,10)],11)
=> ([(0,5),(0,6),(1,8),(2,9),(3,8),(3,9),(4,1),(5,4),(6,7),(7,2),(7,3),(8,10),(9,10)],11)
=> ? = 6 - 1
[[1,2,3],[3]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 5 - 1
[[2,2,3],[3]]
=> ([(0,6),(0,7),(1,9),(2,8),(3,5),(4,2),(5,1),(5,8),(6,3),(7,4),(8,9)],10)
=> ([(0,6),(0,7),(1,9),(2,8),(3,5),(4,2),(5,1),(5,8),(6,3),(7,4),(8,9)],10)
=> ? = 6 - 1
[[2,6]]
=> ([(0,6),(1,7),(2,8),(3,4),(3,7),(4,5),(4,10),(5,2),(5,9),(6,1),(6,3),(7,10),(9,8),(10,9)],11)
=> ([(0,6),(1,7),(2,8),(3,4),(3,7),(4,5),(4,10),(5,2),(5,9),(6,1),(6,3),(7,10),(9,8),(10,9)],11)
=> ? = 7 - 1
[[1,2,4],[3]]
=> ([(0,5),(0,6),(1,8),(2,9),(3,8),(3,9),(4,1),(5,4),(6,7),(7,2),(7,3),(8,10),(9,10)],11)
=> ([(0,5),(0,6),(1,8),(2,9),(3,8),(3,9),(4,1),(5,4),(6,7),(7,2),(7,3),(8,10),(9,10)],11)
=> ? = 6 - 1
[[1,3,4],[3]]
=> ([(0,6),(1,7),(2,8),(3,9),(4,3),(4,7),(5,2),(5,10),(6,1),(6,4),(7,5),(7,9),(9,10),(10,8)],11)
=> ([(0,6),(1,7),(2,8),(3,9),(4,3),(4,7),(5,2),(5,10),(6,1),(6,4),(7,5),(7,9),(9,10),(10,8)],11)
=> ? = 7 - 1
[[1,2],[3,4]]
=> ([(0,4),(1,6),(2,5),(3,5),(3,6),(4,1),(4,2),(4,3),(5,7),(6,7)],8)
=> ([(0,4),(1,6),(2,5),(3,5),(3,6),(4,1),(4,2),(4,3),(5,7),(6,7)],8)
=> ? = 5 - 1
[[1,2],[4,4]]
=> ([(0,5),(1,6),(2,9),(3,6),(3,9),(4,7),(5,1),(5,2),(5,3),(6,8),(8,7),(9,4),(9,8)],10)
=> ([(0,5),(1,6),(2,9),(3,6),(3,9),(4,7),(5,1),(5,2),(5,3),(6,8),(8,7),(9,4),(9,8)],10)
=> ? = 6 - 1
[[2,2],[3,4]]
=> ([(0,5),(1,6),(2,9),(3,6),(3,9),(4,7),(5,1),(5,2),(5,3),(6,8),(8,7),(9,4),(9,8)],10)
=> ([(0,5),(1,6),(2,9),(3,6),(3,9),(4,7),(5,1),(5,2),(5,3),(6,8),(8,7),(9,4),(9,8)],10)
=> ? = 6 - 1
[[1,4],[3],[4]]
=> ([(0,3),(0,7),(1,8),(2,8),(3,9),(4,5),(5,1),(6,2),(7,4),(7,9),(9,6)],10)
=> ([(0,3),(0,7),(1,8),(2,8),(3,9),(4,5),(5,1),(6,2),(7,4),(7,9),(9,6)],10)
=> ? = 6 - 1
[[2,3],[3],[4]]
=> ([(0,3),(0,7),(1,8),(2,8),(3,9),(4,5),(5,1),(6,2),(7,4),(7,9),(9,6)],10)
=> ([(0,3),(0,7),(1,8),(2,8),(3,9),(4,5),(5,1),(6,2),(7,4),(7,9),(9,6)],10)
=> ? = 6 - 1
[[2,2,2,2,3]]
=> ([(0,6),(1,7),(2,8),(3,4),(3,7),(4,5),(4,10),(5,2),(5,9),(6,1),(6,3),(7,10),(9,8),(10,9)],11)
=> ([(0,6),(1,7),(2,8),(3,4),(3,7),(4,5),(4,10),(5,2),(5,9),(6,1),(6,3),(7,10),(9,8),(10,9)],11)
=> ? = 7 - 1
[[1,1,2,3],[3]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 5 - 1
[[1,2,2,3],[3]]
=> ([(0,6),(0,7),(1,9),(2,8),(3,5),(4,2),(5,1),(5,8),(6,3),(7,4),(8,9)],10)
=> ([(0,6),(0,7),(1,9),(2,8),(3,5),(4,2),(5,1),(5,8),(6,3),(7,4),(8,9)],10)
=> ? = 6 - 1
[[2,2,2,3],[3]]
=> ([(0,7),(0,8),(1,9),(2,10),(3,6),(3,9),(4,3),(5,1),(6,2),(6,11),(7,4),(8,5),(9,11),(11,10)],12)
=> ([(0,7),(0,8),(1,9),(2,10),(3,6),(3,9),(4,3),(5,1),(6,2),(6,11),(7,4),(8,5),(9,11),(11,10)],12)
=> ? = 7 - 1
[[1,2,3],[2,3]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 5 - 1
[[1,2,3],[3,3]]
=> ([(0,6),(0,7),(1,9),(2,8),(3,5),(4,2),(5,1),(5,8),(6,3),(7,4),(8,9)],10)
=> ([(0,6),(0,7),(1,9),(2,8),(3,5),(4,2),(5,1),(5,8),(6,3),(7,4),(8,9)],10)
=> ? = 6 - 1
[[2],[7]]
=> ([(0,6),(1,7),(2,8),(3,4),(3,7),(4,5),(4,10),(5,2),(5,9),(6,1),(6,3),(7,10),(9,8),(10,9)],11)
=> ([(0,6),(1,7),(2,8),(3,4),(3,7),(4,5),(4,10),(5,2),(5,9),(6,1),(6,3),(7,10),(9,8),(10,9)],11)
=> ? = 7 - 1
[[1,2,6]]
=> ([(0,6),(1,7),(2,8),(3,4),(3,7),(4,5),(4,10),(5,2),(5,9),(6,1),(6,3),(7,10),(9,8),(10,9)],11)
=> ([(0,6),(1,7),(2,8),(3,4),(3,7),(4,5),(4,10),(5,2),(5,9),(6,1),(6,3),(7,10),(9,8),(10,9)],11)
=> ? = 7 - 1
[[1,3],[3,5]]
=> ([(0,6),(1,7),(2,8),(3,9),(4,3),(4,7),(5,2),(5,10),(6,1),(6,4),(7,5),(7,9),(9,10),(10,8)],11)
=> ([(0,6),(1,7),(2,8),(3,9),(4,3),(4,7),(5,2),(5,10),(6,1),(6,4),(7,5),(7,9),(9,10),(10,8)],11)
=> ? = 7 - 1
[[1,3],[2],[5]]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ?
=> ? = 5 - 1
[[1,4],[2],[5]]
=> ([(0,4),(0,5),(1,6),(3,7),(4,8),(5,1),(5,8),(6,7),(7,2),(8,3),(8,6)],9)
=> ?
=> ? = 6 - 1
[[1,3],[3],[5]]
=> ([(0,3),(0,5),(1,8),(2,7),(3,6),(4,2),(4,9),(5,1),(5,6),(6,4),(6,8),(8,9),(9,7)],10)
=> ?
=> ? = 6 - 1
[[1,1,2,4],[3]]
=> ([(0,5),(0,6),(1,8),(2,9),(3,8),(3,9),(4,1),(5,4),(6,7),(7,2),(7,3),(8,10),(9,10)],11)
=> ([(0,5),(0,6),(1,8),(2,9),(3,8),(3,9),(4,1),(5,4),(6,7),(7,2),(7,3),(8,10),(9,10)],11)
=> ? = 6 - 1
[[1,1,3,4],[3]]
=> ([(0,6),(1,7),(2,8),(3,9),(4,3),(4,7),(5,2),(5,10),(6,1),(6,4),(7,5),(7,9),(9,10),(10,8)],11)
=> ([(0,6),(1,7),(2,8),(3,9),(4,3),(4,7),(5,2),(5,10),(6,1),(6,4),(7,5),(7,9),(9,10),(10,8)],11)
=> ? = 7 - 1
[[2,2,2,2],[4]]
=> ([(0,6),(1,7),(2,8),(3,4),(3,7),(4,5),(4,10),(5,2),(5,9),(6,1),(6,3),(7,10),(9,8),(10,9)],11)
=> ([(0,6),(1,7),(2,8),(3,4),(3,7),(4,5),(4,10),(5,2),(5,9),(6,1),(6,3),(7,10),(9,8),(10,9)],11)
=> ? = 7 - 1
[[1,1,2],[3,4]]
=> ([(0,4),(1,6),(2,5),(3,5),(3,6),(4,1),(4,2),(4,3),(5,7),(6,7)],8)
=> ([(0,4),(1,6),(2,5),(3,5),(3,6),(4,1),(4,2),(4,3),(5,7),(6,7)],8)
=> ? = 5 - 1
[[1,1,2],[4,4]]
=> ([(0,5),(1,6),(2,9),(3,6),(3,9),(4,7),(5,1),(5,2),(5,3),(6,8),(8,7),(9,4),(9,8)],10)
=> ([(0,5),(1,6),(2,9),(3,6),(3,9),(4,7),(5,1),(5,2),(5,3),(6,8),(8,7),(9,4),(9,8)],10)
=> ? = 6 - 1
[[1,2,2],[3,4]]
=> ([(0,5),(1,6),(2,9),(3,6),(3,9),(4,7),(5,1),(5,2),(5,3),(6,8),(8,7),(9,4),(9,8)],10)
=> ([(0,5),(1,6),(2,9),(3,6),(3,9),(4,7),(5,1),(5,2),(5,3),(6,8),(8,7),(9,4),(9,8)],10)
=> ? = 6 - 1
[[1,2,4],[2,3]]
=> ([(0,5),(0,6),(1,8),(2,9),(3,8),(3,9),(4,1),(5,4),(6,7),(7,2),(7,3),(8,10),(9,10)],11)
=> ([(0,5),(0,6),(1,8),(2,9),(3,8),(3,9),(4,1),(5,4),(6,7),(7,2),(7,3),(8,10),(9,10)],11)
=> ? = 6 - 1
[[1,1,4],[3],[4]]
=> ([(0,3),(0,7),(1,8),(2,8),(3,9),(4,5),(5,1),(6,2),(7,4),(7,9),(9,6)],10)
=> ([(0,3),(0,7),(1,8),(2,8),(3,9),(4,5),(5,1),(6,2),(7,4),(7,9),(9,6)],10)
=> ? = 6 - 1
[[1,2,3],[2],[4]]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ?
=> ? = 5 - 1
[[1,2,3],[3],[4]]
=> ([(0,3),(0,7),(1,8),(2,8),(3,9),(4,5),(5,1),(6,2),(7,4),(7,9),(9,6)],10)
=> ([(0,3),(0,7),(1,8),(2,8),(3,9),(4,5),(5,1),(6,2),(7,4),(7,9),(9,6)],10)
=> ? = 6 - 1
[[1,3,3],[2],[4]]
=> ([(0,4),(0,5),(1,6),(3,7),(4,8),(5,1),(5,8),(6,7),(7,2),(8,3),(8,6)],9)
=> ?
=> ? = 6 - 1
[[1,1],[3,4],[4]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 5 - 1
[[1,2],[3,4],[4]]
=> ([(0,5),(0,6),(1,8),(2,9),(3,8),(3,9),(4,1),(5,4),(6,7),(7,2),(7,3),(8,10),(9,10)],11)
=> ([(0,5),(0,6),(1,8),(2,9),(3,8),(3,9),(4,1),(5,4),(6,7),(7,2),(7,3),(8,10),(9,10)],11)
=> ? = 6 - 1
[[1,2,2,2,2,3]]
=> ([(0,6),(1,7),(2,8),(3,4),(3,7),(4,5),(4,10),(5,2),(5,9),(6,1),(6,3),(7,10),(9,8),(10,9)],11)
=> ([(0,6),(1,7),(2,8),(3,4),(3,7),(4,5),(4,10),(5,2),(5,9),(6,1),(6,3),(7,10),(9,8),(10,9)],11)
=> ? = 7 - 1
[[1,1,1,2,3],[3]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 5 - 1
[[1,1,2,2,3],[3]]
=> ([(0,6),(0,7),(1,9),(2,8),(3,5),(4,2),(5,1),(5,8),(6,3),(7,4),(8,9)],10)
=> ([(0,6),(0,7),(1,9),(2,8),(3,5),(4,2),(5,1),(5,8),(6,3),(7,4),(8,9)],10)
=> ? = 6 - 1
[[1,2,2,2,3],[3]]
=> ([(0,7),(0,8),(1,9),(2,10),(3,6),(3,9),(4,3),(5,1),(6,2),(6,11),(7,4),(8,5),(9,11),(11,10)],12)
=> ([(0,7),(0,8),(1,9),(2,10),(3,6),(3,9),(4,3),(5,1),(6,2),(6,11),(7,4),(8,5),(9,11),(11,10)],12)
=> ? = 7 - 1
[[1,1,2,3],[2,3]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 5 - 1
[[1,1,2,3],[3,3]]
=> ([(0,6),(0,7),(1,9),(2,8),(3,5),(4,2),(5,1),(5,8),(6,3),(7,4),(8,9)],10)
=> ([(0,6),(0,7),(1,9),(2,8),(3,5),(4,2),(5,1),(5,8),(6,3),(7,4),(8,9)],10)
=> ? = 6 - 1
[[1,2,2,3],[2,3]]
=> ([(0,6),(0,7),(1,9),(2,8),(3,5),(4,2),(5,1),(5,8),(6,3),(7,4),(8,9)],10)
=> ([(0,6),(0,7),(1,9),(2,8),(3,5),(4,2),(5,1),(5,8),(6,3),(7,4),(8,9)],10)
=> ? = 6 - 1
[[1,2,3],[2,3],[3]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 5 - 1
[[2,2,2,2,2,2,2]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ?
=> ? = 8 - 1
[[1,8]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ?
=> ? = 8 - 1
[[1,2],[7]]
=> ([(0,6),(1,7),(2,8),(3,4),(3,7),(4,5),(4,10),(5,2),(5,9),(6,1),(6,3),(7,10),(9,8),(10,9)],11)
=> ([(0,6),(1,7),(2,8),(3,4),(3,7),(4,5),(4,10),(5,2),(5,9),(6,1),(6,3),(7,10),(9,8),(10,9)],11)
=> ? = 7 - 1
[[1,1,2,6]]
=> ([(0,6),(1,7),(2,8),(3,4),(3,7),(4,5),(4,10),(5,2),(5,9),(6,1),(6,3),(7,10),(9,8),(10,9)],11)
=> ([(0,6),(1,7),(2,8),(3,4),(3,7),(4,5),(4,10),(5,2),(5,9),(6,1),(6,3),(7,10),(9,8),(10,9)],11)
=> ? = 7 - 1
[[1,2,6],[2]]
=> ([(0,6),(1,7),(2,8),(3,4),(3,7),(4,5),(4,10),(5,2),(5,9),(6,1),(6,3),(7,10),(9,8),(10,9)],11)
=> ([(0,6),(1,7),(2,8),(3,4),(3,7),(4,5),(4,10),(5,2),(5,9),(6,1),(6,3),(7,10),(9,8),(10,9)],11)
=> ? = 7 - 1
Description
The number of join-irreducible elements of a lattice.
An element $j$ of a lattice $L$ is '''join irreducible''' if it is not the least element and if $j=x\vee y$, then $j\in\{x,y\}$ for all $x,y\in L$.
Matching statistic: St000474
Mp00214: Semistandard tableaux —subcrystal⟶ Posets
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St000474: Integer partitions ⟶ ℤResult quality: 66% ●values known / values provided: 66%●distinct values known / distinct values provided: 78%
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St000474: Integer partitions ⟶ ℤResult quality: 66% ●values known / values provided: 66%●distinct values known / distinct values provided: 78%
Values
[[1,2]]
=> ([(0,1)],2)
=> [3]
=> 3 = 2 + 1
[[2,2]]
=> ([(0,2),(2,1)],3)
=> [4]
=> 4 = 3 + 1
[[1],[2]]
=> ([],1)
=> [2]
=> 2 = 1 + 1
[[1,3]]
=> ([(0,2),(2,1)],3)
=> [4]
=> 4 = 3 + 1
[[2,3]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [5,2]
=> 5 = 4 + 1
[[3,3]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [6,2]
=> 6 = 5 + 1
[[1],[3]]
=> ([(0,1)],2)
=> [3]
=> 3 = 2 + 1
[[2],[3]]
=> ([(0,2),(2,1)],3)
=> [4]
=> 4 = 3 + 1
[[1,1,2]]
=> ([(0,1)],2)
=> [3]
=> 3 = 2 + 1
[[1,2,2]]
=> ([(0,2),(2,1)],3)
=> [4]
=> 4 = 3 + 1
[[2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> [5]
=> 5 = 4 + 1
[[1,1],[2]]
=> ([],1)
=> [2]
=> 2 = 1 + 1
[[1,2],[2]]
=> ([(0,1)],2)
=> [3]
=> 3 = 2 + 1
[[1,4]]
=> ([(0,3),(2,1),(3,2)],4)
=> [5]
=> 5 = 4 + 1
[[2,4]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> [6,5]
=> 6 = 5 + 1
[[3,4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> [8,7]
=> ? = 6 + 1
[[4,4]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> [8,8]
=> ? = 7 + 1
[[1],[4]]
=> ([(0,2),(2,1)],3)
=> [4]
=> 4 = 3 + 1
[[2],[4]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [5,2]
=> 5 = 4 + 1
[[3],[4]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [6,2]
=> 6 = 5 + 1
[[1,1,3]]
=> ([(0,2),(2,1)],3)
=> [4]
=> 4 = 3 + 1
[[1,2,3]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [5,2]
=> 5 = 4 + 1
[[1,3,3]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [6,2]
=> 6 = 5 + 1
[[2,2,3]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> [6,5]
=> 6 = 5 + 1
[[2,3,3]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> [8,7]
=> ? = 6 + 1
[[3,3,3]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> [8,8]
=> ? = 7 + 1
[[1,1],[3]]
=> ([(0,1)],2)
=> [3]
=> 3 = 2 + 1
[[1,2],[3]]
=> ([(0,2),(2,1)],3)
=> [4]
=> 4 = 3 + 1
[[1,3],[2]]
=> ([(0,2),(2,1)],3)
=> [4]
=> 4 = 3 + 1
[[1,3],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> [5]
=> 5 = 4 + 1
[[2,2],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> [5]
=> 5 = 4 + 1
[[2,3],[3]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> [6,4,4,4]
=> ? = 5 + 1
[[1],[2],[3]]
=> ([],1)
=> [2]
=> 2 = 1 + 1
[[1,1,1,2]]
=> ([(0,1)],2)
=> [3]
=> 3 = 2 + 1
[[1,1,2,2]]
=> ([(0,2),(2,1)],3)
=> [4]
=> 4 = 3 + 1
[[1,2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> [5]
=> 5 = 4 + 1
[[2,2,2,2]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> 6 = 5 + 1
[[1,1,1],[2]]
=> ([],1)
=> [2]
=> 2 = 1 + 1
[[1,1,2],[2]]
=> ([(0,1)],2)
=> [3]
=> 3 = 2 + 1
[[1,2,2],[2]]
=> ([(0,2),(2,1)],3)
=> [4]
=> 4 = 3 + 1
[[1,1],[2,2]]
=> ([],1)
=> [2]
=> 2 = 1 + 1
[[1,5]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> 6 = 5 + 1
[[2,5]]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> [7,6,3]
=> ? = 6 + 1
[[1],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> [5]
=> 5 = 4 + 1
[[2],[5]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> [6,5]
=> 6 = 5 + 1
[[3],[5]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> [8,7]
=> ? = 6 + 1
[[4],[5]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> [8,8]
=> ? = 7 + 1
[[1,1,4]]
=> ([(0,3),(2,1),(3,2)],4)
=> [5]
=> 5 = 4 + 1
[[1,2,4]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> [6,5]
=> 6 = 5 + 1
[[1,3,4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> [8,7]
=> ? = 6 + 1
[[1,4,4]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> [8,8]
=> ? = 7 + 1
[[2,2,4]]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> [7,6,6,2]
=> ? = 6 + 1
[[1,1],[4]]
=> ([(0,2),(2,1)],3)
=> [4]
=> 4 = 3 + 1
[[1,2],[4]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [5,2]
=> 5 = 4 + 1
[[1,4],[2]]
=> ([(0,3),(2,1),(3,2)],4)
=> [5]
=> 5 = 4 + 1
[[1,3],[4]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [6,2]
=> 6 = 5 + 1
[[1,4],[3]]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> [6,2]
=> 6 = 5 + 1
[[1,4],[4]]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> [7,2]
=> 7 = 6 + 1
[[2,2],[4]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> [6,5]
=> 6 = 5 + 1
[[2,3],[4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> [8,7]
=> ? = 6 + 1
[[2,4],[3]]
=> ([(0,5),(0,6),(1,8),(2,9),(3,8),(3,9),(4,1),(5,4),(6,7),(7,2),(7,3),(8,10),(9,10)],11)
=> [22,7,4]
=> ? = 6 + 1
[[3,3],[4]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> [8,8]
=> ? = 7 + 1
[[1],[2],[4]]
=> ([(0,1)],2)
=> [3]
=> 3 = 2 + 1
[[1],[3],[4]]
=> ([(0,2),(2,1)],3)
=> [4]
=> 4 = 3 + 1
[[1,2,3,3]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> [8,7]
=> ? = 6 + 1
[[1,3,3,3]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> [8,8]
=> ? = 7 + 1
[[2,2,2,3]]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> [7,6,3]
=> ? = 6 + 1
[[1,2,3],[3]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> [6,4,4,4]
=> ? = 5 + 1
[[2,2,3],[3]]
=> ([(0,6),(0,7),(1,9),(2,8),(3,5),(4,2),(5,1),(5,8),(6,3),(7,4),(8,9)],10)
=> [17,7]
=> ? = 6 + 1
[[2,6]]
=> ([(0,6),(1,7),(2,8),(3,4),(3,7),(4,5),(4,10),(5,2),(5,9),(6,1),(6,3),(7,10),(9,8),(10,9)],11)
=> [8,7,7]
=> ? = 7 + 1
[[2],[6]]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> [7,6,3]
=> ? = 6 + 1
[[1,2,5]]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> [7,6,3]
=> ? = 6 + 1
[[1,3],[5]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> [8,7]
=> ? = 6 + 1
[[1,4],[5]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> [8,8]
=> ? = 7 + 1
[[1,5],[4]]
=> ([(0,5),(1,8),(2,9),(3,7),(4,3),(4,9),(5,6),(6,2),(6,4),(7,8),(9,1),(9,7)],10)
=> [8,8]
=> ? = 7 + 1
[[2,2],[5]]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> [7,6,6,2]
=> ? = 6 + 1
[[2],[4],[5]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> [8,7]
=> ? = 6 + 1
[[3],[4],[5]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> [8,8]
=> ? = 7 + 1
[[1,1,3,4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> [8,7]
=> ? = 6 + 1
[[1,1,4,4]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> [8,8]
=> ? = 7 + 1
[[1,2,2,4]]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> [7,6,6,2]
=> ? = 6 + 1
[[1,2,3],[4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> [8,7]
=> ? = 6 + 1
[[1,2,4],[3]]
=> ([(0,5),(0,6),(1,8),(2,9),(3,8),(3,9),(4,1),(5,4),(6,7),(7,2),(7,3),(8,10),(9,10)],11)
=> [22,7,4]
=> ? = 6 + 1
[[1,3,4],[2]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> [8,7]
=> ? = 6 + 1
[[1,4,4],[2]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> [8,8]
=> ? = 7 + 1
[[1,3,3],[4]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> [8,8]
=> ? = 7 + 1
[[1,3,4],[3]]
=> ([(0,6),(1,7),(2,8),(3,9),(4,3),(4,7),(5,2),(5,10),(6,1),(6,4),(7,5),(7,9),(9,10),(10,8)],11)
=> [9,8,3]
=> ? = 7 + 1
[[2,2,2],[4]]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> [7,6,3]
=> ? = 6 + 1
[[1,2],[3,4]]
=> ([(0,4),(1,6),(2,5),(3,5),(3,6),(4,1),(4,2),(4,3),(5,7),(6,7)],8)
=> [8,6,2]
=> ? = 5 + 1
[[1,2],[4,4]]
=> ([(0,5),(1,6),(2,9),(3,6),(3,9),(4,7),(5,1),(5,2),(5,3),(6,8),(8,7),(9,4),(9,8)],10)
=> [7,6,6,2]
=> ? = 6 + 1
[[2,2],[3,4]]
=> ([(0,5),(1,6),(2,9),(3,6),(3,9),(4,7),(5,1),(5,2),(5,3),(6,8),(8,7),(9,4),(9,8)],10)
=> [7,6,6,2]
=> ? = 6 + 1
[[1,4],[3],[4]]
=> ([(0,3),(0,7),(1,8),(2,8),(3,9),(4,5),(5,1),(6,2),(7,4),(7,9),(9,6)],10)
=> [17,7]
=> ? = 6 + 1
[[2,3],[3],[4]]
=> ([(0,3),(0,7),(1,8),(2,8),(3,9),(4,5),(5,1),(6,2),(7,4),(7,9),(9,6)],10)
=> [17,7]
=> ? = 6 + 1
[[1,1,2,3,3]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> [8,7]
=> ? = 6 + 1
[[1,1,3,3,3]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> [8,8]
=> ? = 7 + 1
[[1,2,2,2,3]]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> [7,6,3]
=> ? = 6 + 1
[[2,2,2,2,3]]
=> ([(0,6),(1,7),(2,8),(3,4),(3,7),(4,5),(4,10),(5,2),(5,9),(6,1),(6,3),(7,10),(9,8),(10,9)],11)
=> [8,7,7]
=> ? = 7 + 1
[[1,1,2,3],[3]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> [6,4,4,4]
=> ? = 5 + 1
[[1,2,2,3],[3]]
=> ([(0,6),(0,7),(1,9),(2,8),(3,5),(4,2),(5,1),(5,8),(6,3),(7,4),(8,9)],10)
=> [17,7]
=> ? = 6 + 1
[[1,2,3,3],[2]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> [8,7]
=> ? = 6 + 1
Description
Dyson's crank of a partition.
Let $\lambda$ be a partition and let $o(\lambda)$ be the number of parts that are equal to 1 ([[St000475]]), and let $\mu(\lambda)$ be the number of parts that are strictly larger than $o(\lambda)$ ([[St000473]]). Dyson's crank is then defined as
$$crank(\lambda) = \begin{cases} \text{ largest part of }\lambda & o(\lambda) = 0\\ \mu(\lambda) - o(\lambda) & o(\lambda) > 0. \end{cases}$$
Matching statistic: St000784
Mp00214: Semistandard tableaux —subcrystal⟶ Posets
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St000784: Integer partitions ⟶ ℤResult quality: 66% ●values known / values provided: 66%●distinct values known / distinct values provided: 78%
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St000784: Integer partitions ⟶ ℤResult quality: 66% ●values known / values provided: 66%●distinct values known / distinct values provided: 78%
Values
[[1,2]]
=> ([(0,1)],2)
=> [3]
=> 3 = 2 + 1
[[2,2]]
=> ([(0,2),(2,1)],3)
=> [4]
=> 4 = 3 + 1
[[1],[2]]
=> ([],1)
=> [2]
=> 2 = 1 + 1
[[1,3]]
=> ([(0,2),(2,1)],3)
=> [4]
=> 4 = 3 + 1
[[2,3]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [5,2]
=> 5 = 4 + 1
[[3,3]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [6,2]
=> 6 = 5 + 1
[[1],[3]]
=> ([(0,1)],2)
=> [3]
=> 3 = 2 + 1
[[2],[3]]
=> ([(0,2),(2,1)],3)
=> [4]
=> 4 = 3 + 1
[[1,1,2]]
=> ([(0,1)],2)
=> [3]
=> 3 = 2 + 1
[[1,2,2]]
=> ([(0,2),(2,1)],3)
=> [4]
=> 4 = 3 + 1
[[2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> [5]
=> 5 = 4 + 1
[[1,1],[2]]
=> ([],1)
=> [2]
=> 2 = 1 + 1
[[1,2],[2]]
=> ([(0,1)],2)
=> [3]
=> 3 = 2 + 1
[[1,4]]
=> ([(0,3),(2,1),(3,2)],4)
=> [5]
=> 5 = 4 + 1
[[2,4]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> [6,5]
=> 6 = 5 + 1
[[3,4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> [8,7]
=> ? = 6 + 1
[[4,4]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> [8,8]
=> ? = 7 + 1
[[1],[4]]
=> ([(0,2),(2,1)],3)
=> [4]
=> 4 = 3 + 1
[[2],[4]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [5,2]
=> 5 = 4 + 1
[[3],[4]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [6,2]
=> 6 = 5 + 1
[[1,1,3]]
=> ([(0,2),(2,1)],3)
=> [4]
=> 4 = 3 + 1
[[1,2,3]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [5,2]
=> 5 = 4 + 1
[[1,3,3]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [6,2]
=> 6 = 5 + 1
[[2,2,3]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> [6,5]
=> 6 = 5 + 1
[[2,3,3]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> [8,7]
=> ? = 6 + 1
[[3,3,3]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> [8,8]
=> ? = 7 + 1
[[1,1],[3]]
=> ([(0,1)],2)
=> [3]
=> 3 = 2 + 1
[[1,2],[3]]
=> ([(0,2),(2,1)],3)
=> [4]
=> 4 = 3 + 1
[[1,3],[2]]
=> ([(0,2),(2,1)],3)
=> [4]
=> 4 = 3 + 1
[[1,3],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> [5]
=> 5 = 4 + 1
[[2,2],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> [5]
=> 5 = 4 + 1
[[2,3],[3]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> [6,4,4,4]
=> ? = 5 + 1
[[1],[2],[3]]
=> ([],1)
=> [2]
=> 2 = 1 + 1
[[1,1,1,2]]
=> ([(0,1)],2)
=> [3]
=> 3 = 2 + 1
[[1,1,2,2]]
=> ([(0,2),(2,1)],3)
=> [4]
=> 4 = 3 + 1
[[1,2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> [5]
=> 5 = 4 + 1
[[2,2,2,2]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> 6 = 5 + 1
[[1,1,1],[2]]
=> ([],1)
=> [2]
=> 2 = 1 + 1
[[1,1,2],[2]]
=> ([(0,1)],2)
=> [3]
=> 3 = 2 + 1
[[1,2,2],[2]]
=> ([(0,2),(2,1)],3)
=> [4]
=> 4 = 3 + 1
[[1,1],[2,2]]
=> ([],1)
=> [2]
=> 2 = 1 + 1
[[1,5]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> 6 = 5 + 1
[[2,5]]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> [7,6,3]
=> ? = 6 + 1
[[1],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> [5]
=> 5 = 4 + 1
[[2],[5]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> [6,5]
=> 6 = 5 + 1
[[3],[5]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> [8,7]
=> ? = 6 + 1
[[4],[5]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> [8,8]
=> ? = 7 + 1
[[1,1,4]]
=> ([(0,3),(2,1),(3,2)],4)
=> [5]
=> 5 = 4 + 1
[[1,2,4]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> [6,5]
=> 6 = 5 + 1
[[1,3,4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> [8,7]
=> ? = 6 + 1
[[1,4,4]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> [8,8]
=> ? = 7 + 1
[[2,2,4]]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> [7,6,6,2]
=> ? = 6 + 1
[[1,1],[4]]
=> ([(0,2),(2,1)],3)
=> [4]
=> 4 = 3 + 1
[[1,2],[4]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [5,2]
=> 5 = 4 + 1
[[1,4],[2]]
=> ([(0,3),(2,1),(3,2)],4)
=> [5]
=> 5 = 4 + 1
[[1,3],[4]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [6,2]
=> 6 = 5 + 1
[[1,4],[3]]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> [6,2]
=> 6 = 5 + 1
[[1,4],[4]]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> [7,2]
=> 7 = 6 + 1
[[2,2],[4]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> [6,5]
=> 6 = 5 + 1
[[2,3],[4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> [8,7]
=> ? = 6 + 1
[[2,4],[3]]
=> ([(0,5),(0,6),(1,8),(2,9),(3,8),(3,9),(4,1),(5,4),(6,7),(7,2),(7,3),(8,10),(9,10)],11)
=> [22,7,4]
=> ? = 6 + 1
[[3,3],[4]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> [8,8]
=> ? = 7 + 1
[[1],[2],[4]]
=> ([(0,1)],2)
=> [3]
=> 3 = 2 + 1
[[1],[3],[4]]
=> ([(0,2),(2,1)],3)
=> [4]
=> 4 = 3 + 1
[[1,2,3,3]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> [8,7]
=> ? = 6 + 1
[[1,3,3,3]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> [8,8]
=> ? = 7 + 1
[[2,2,2,3]]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> [7,6,3]
=> ? = 6 + 1
[[1,2,3],[3]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> [6,4,4,4]
=> ? = 5 + 1
[[2,2,3],[3]]
=> ([(0,6),(0,7),(1,9),(2,8),(3,5),(4,2),(5,1),(5,8),(6,3),(7,4),(8,9)],10)
=> [17,7]
=> ? = 6 + 1
[[2,6]]
=> ([(0,6),(1,7),(2,8),(3,4),(3,7),(4,5),(4,10),(5,2),(5,9),(6,1),(6,3),(7,10),(9,8),(10,9)],11)
=> [8,7,7]
=> ? = 7 + 1
[[2],[6]]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> [7,6,3]
=> ? = 6 + 1
[[1,2,5]]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> [7,6,3]
=> ? = 6 + 1
[[1,3],[5]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> [8,7]
=> ? = 6 + 1
[[1,4],[5]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> [8,8]
=> ? = 7 + 1
[[1,5],[4]]
=> ([(0,5),(1,8),(2,9),(3,7),(4,3),(4,9),(5,6),(6,2),(6,4),(7,8),(9,1),(9,7)],10)
=> [8,8]
=> ? = 7 + 1
[[2,2],[5]]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> [7,6,6,2]
=> ? = 6 + 1
[[2],[4],[5]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> [8,7]
=> ? = 6 + 1
[[3],[4],[5]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> [8,8]
=> ? = 7 + 1
[[1,1,3,4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> [8,7]
=> ? = 6 + 1
[[1,1,4,4]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> [8,8]
=> ? = 7 + 1
[[1,2,2,4]]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> [7,6,6,2]
=> ? = 6 + 1
[[1,2,3],[4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> [8,7]
=> ? = 6 + 1
[[1,2,4],[3]]
=> ([(0,5),(0,6),(1,8),(2,9),(3,8),(3,9),(4,1),(5,4),(6,7),(7,2),(7,3),(8,10),(9,10)],11)
=> [22,7,4]
=> ? = 6 + 1
[[1,3,4],[2]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> [8,7]
=> ? = 6 + 1
[[1,4,4],[2]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> [8,8]
=> ? = 7 + 1
[[1,3,3],[4]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> [8,8]
=> ? = 7 + 1
[[1,3,4],[3]]
=> ([(0,6),(1,7),(2,8),(3,9),(4,3),(4,7),(5,2),(5,10),(6,1),(6,4),(7,5),(7,9),(9,10),(10,8)],11)
=> [9,8,3]
=> ? = 7 + 1
[[2,2,2],[4]]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> [7,6,3]
=> ? = 6 + 1
[[1,2],[3,4]]
=> ([(0,4),(1,6),(2,5),(3,5),(3,6),(4,1),(4,2),(4,3),(5,7),(6,7)],8)
=> [8,6,2]
=> ? = 5 + 1
[[1,2],[4,4]]
=> ([(0,5),(1,6),(2,9),(3,6),(3,9),(4,7),(5,1),(5,2),(5,3),(6,8),(8,7),(9,4),(9,8)],10)
=> [7,6,6,2]
=> ? = 6 + 1
[[2,2],[3,4]]
=> ([(0,5),(1,6),(2,9),(3,6),(3,9),(4,7),(5,1),(5,2),(5,3),(6,8),(8,7),(9,4),(9,8)],10)
=> [7,6,6,2]
=> ? = 6 + 1
[[1,4],[3],[4]]
=> ([(0,3),(0,7),(1,8),(2,8),(3,9),(4,5),(5,1),(6,2),(7,4),(7,9),(9,6)],10)
=> [17,7]
=> ? = 6 + 1
[[2,3],[3],[4]]
=> ([(0,3),(0,7),(1,8),(2,8),(3,9),(4,5),(5,1),(6,2),(7,4),(7,9),(9,6)],10)
=> [17,7]
=> ? = 6 + 1
[[1,1,2,3,3]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> [8,7]
=> ? = 6 + 1
[[1,1,3,3,3]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> [8,8]
=> ? = 7 + 1
[[1,2,2,2,3]]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> [7,6,3]
=> ? = 6 + 1
[[2,2,2,2,3]]
=> ([(0,6),(1,7),(2,8),(3,4),(3,7),(4,5),(4,10),(5,2),(5,9),(6,1),(6,3),(7,10),(9,8),(10,9)],11)
=> [8,7,7]
=> ? = 7 + 1
[[1,1,2,3],[3]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> [6,4,4,4]
=> ? = 5 + 1
[[1,2,2,3],[3]]
=> ([(0,6),(0,7),(1,9),(2,8),(3,5),(4,2),(5,1),(5,8),(6,3),(7,4),(8,9)],10)
=> [17,7]
=> ? = 6 + 1
[[1,2,3,3],[2]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> [8,7]
=> ? = 6 + 1
Description
The maximum of the length and the largest part of the integer partition.
This is the side length of the smallest square the Ferrers diagram of the partition fits into. It is also the minimal number of colours required to colour the cells of the Ferrers diagram such that no two cells in a column or in a row have the same colour, see [1].
See also [[St001214]].
Matching statistic: St000273
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Values
[[1,2]]
=> ([(0,1)],2)
=> ([],2)
=> 2
[[2,2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[1],[2]]
=> ([],1)
=> ([],1)
=> 1
[[1,3]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[2,3]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 4
[[3,3]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> 5
[[1],[3]]
=> ([(0,1)],2)
=> ([],2)
=> 2
[[2],[3]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[1,1,2]]
=> ([(0,1)],2)
=> ([],2)
=> 2
[[1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[[1,1],[2]]
=> ([],1)
=> ([],1)
=> 1
[[1,2],[2]]
=> ([(0,1)],2)
=> ([],2)
=> 2
[[1,4]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[[2,4]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> 5
[[3,4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[4,4]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[1],[4]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[2],[4]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 4
[[3],[4]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> 5
[[1,1,3]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[1,2,3]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 4
[[1,3,3]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> 5
[[2,2,3]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> 5
[[2,3,3]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[3,3,3]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[1,1],[3]]
=> ([(0,1)],2)
=> ([],2)
=> 2
[[1,2],[3]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[1,3],[2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[1,3],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[[2,2],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[[2,3],[3]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 5
[[1],[2],[3]]
=> ([],1)
=> ([],1)
=> 1
[[1,1,1,2]]
=> ([(0,1)],2)
=> ([],2)
=> 2
[[1,1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[1,2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[[2,2,2,2]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
[[1,1,1],[2]]
=> ([],1)
=> ([],1)
=> 1
[[1,1,2],[2]]
=> ([(0,1)],2)
=> ([],2)
=> 2
[[1,2,2],[2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[1,1],[2,2]]
=> ([],1)
=> ([],1)
=> 1
[[1,5]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
[[2,5]]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(3,8),(4,7),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 6
[[1],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[[2],[5]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> 5
[[3],[5]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[4],[5]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[1,1,4]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[[1,2,4]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> 5
[[1,3,4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[1,4,4]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[2,2,4]]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(3,6),(3,9),(4,5),(4,9),(5,8),(6,8),(7,8),(7,9),(8,9)],10)
=> ? = 6
[[1,1],[4]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[1,2],[4]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 4
[[1,4],[2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[[1,3],[4]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> 5
[[1,4],[3]]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(4,5)],6)
=> 5
[[1,4],[4]]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(5,6)],7)
=> 6
[[2,2],[4]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> 5
[[2,3],[4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[2,4],[3]]
=> ([(0,5),(0,6),(1,8),(2,9),(3,8),(3,9),(4,1),(5,4),(6,7),(7,2),(7,3),(8,10),(9,10)],11)
=> ([(2,6),(2,10),(3,7),(3,8),(3,9),(4,7),(4,8),(4,9),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(7,10),(8,10),(9,10)],11)
=> ? = 6
[[3,3],[4]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[1],[2],[4]]
=> ([(0,1)],2)
=> ([],2)
=> 2
[[1],[3],[4]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[1,2,3,3]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[1,3,3,3]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[2,2,2,3]]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(3,8),(4,7),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 6
[[1,2,3],[3]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 5
[[2,2,3],[3]]
=> ([(0,6),(0,7),(1,9),(2,8),(3,5),(4,2),(5,1),(5,8),(6,3),(7,4),(8,9)],10)
=> ([(2,9),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? = 6
[[2,6]]
=> ([(0,6),(1,7),(2,8),(3,4),(3,7),(4,5),(4,10),(5,2),(5,9),(6,1),(6,3),(7,10),(9,8),(10,9)],11)
=> ([(3,10),(4,9),(5,8),(5,9),(6,7),(6,10),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 7
[[2],[6]]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(3,8),(4,7),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 6
[[1,2,5]]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(3,8),(4,7),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 6
[[1,3],[5]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[1,5],[3]]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(4,7),(5,6),(6,7)],8)
=> ? = 6
[[1,4],[5]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[1,5],[4]]
=> ([(0,5),(1,8),(2,9),(3,7),(4,3),(4,9),(5,6),(6,2),(6,4),(7,8),(9,1),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[2,2],[5]]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(3,6),(3,9),(4,5),(4,9),(5,8),(6,8),(7,8),(7,9),(8,9)],10)
=> ? = 6
[[2],[4],[5]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[3],[4],[5]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[1,1,3,4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[1,1,4,4]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[1,2,2,4]]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(3,6),(3,9),(4,5),(4,9),(5,8),(6,8),(7,8),(7,9),(8,9)],10)
=> ? = 6
[[1,2,3],[4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[1,2,4],[3]]
=> ([(0,5),(0,6),(1,8),(2,9),(3,8),(3,9),(4,1),(5,4),(6,7),(7,2),(7,3),(8,10),(9,10)],11)
=> ([(2,6),(2,10),(3,7),(3,8),(3,9),(4,7),(4,8),(4,9),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(7,10),(8,10),(9,10)],11)
=> ? = 6
[[1,3,4],[2]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[1,4,4],[2]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[1,3,3],[4]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[1,3,4],[3]]
=> ([(0,6),(1,7),(2,8),(3,9),(4,3),(4,7),(5,2),(5,10),(6,1),(6,4),(7,5),(7,9),(9,10),(10,8)],11)
=> ([(3,8),(4,10),(5,9),(6,7),(6,10),(7,9),(8,10),(9,10)],11)
=> ? = 7
[[2,2,2],[4]]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(3,8),(4,7),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 6
[[1,2],[3,4]]
=> ([(0,4),(1,6),(2,5),(3,5),(3,6),(4,1),(4,2),(4,3),(5,7),(6,7)],8)
=> ([(3,6),(3,7),(4,5),(4,7),(5,6),(6,7)],8)
=> ? = 5
[[1,2],[4,4]]
=> ([(0,5),(1,6),(2,9),(3,6),(3,9),(4,7),(5,1),(5,2),(5,3),(6,8),(8,7),(9,4),(9,8)],10)
=> ([(3,8),(4,6),(4,9),(5,7),(5,9),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 6
[[2,2],[3,4]]
=> ([(0,5),(1,6),(2,9),(3,6),(3,9),(4,7),(5,1),(5,2),(5,3),(6,8),(8,7),(9,4),(9,8)],10)
=> ([(3,8),(4,6),(4,9),(5,7),(5,9),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 6
[[1,4],[3],[4]]
=> ([(0,3),(0,7),(1,8),(2,8),(3,9),(4,5),(5,1),(6,2),(7,4),(7,9),(9,6)],10)
=> ([(2,9),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? = 6
[[2,3],[3],[4]]
=> ([(0,3),(0,7),(1,8),(2,8),(3,9),(4,5),(5,1),(6,2),(7,4),(7,9),(9,6)],10)
=> ([(2,9),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? = 6
[[1,1,2,3,3]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[1,1,3,3,3]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[1,2,2,2,3]]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(3,8),(4,7),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 6
[[2,2,2,2,3]]
=> ([(0,6),(1,7),(2,8),(3,4),(3,7),(4,5),(4,10),(5,2),(5,9),(6,1),(6,3),(7,10),(9,8),(10,9)],11)
=> ([(3,10),(4,9),(5,8),(5,9),(6,7),(6,10),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 7
[[1,1,2,3],[3]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 5
[[1,2,2,3],[3]]
=> ([(0,6),(0,7),(1,9),(2,8),(3,5),(4,2),(5,1),(5,8),(6,3),(7,4),(8,9)],10)
=> ([(2,9),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? = 6
Description
The domination number of a graph.
The domination number of a graph is given by the minimum size of a dominating set of vertices. A dominating set of vertices is a subset of the vertex set of such that every vertex is either in this subset or adjacent to an element of this subset.
Matching statistic: St000786
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Values
[[1,2]]
=> ([(0,1)],2)
=> ([],2)
=> 2
[[2,2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[1],[2]]
=> ([],1)
=> ([],1)
=> 1
[[1,3]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[2,3]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 4
[[3,3]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> 5
[[1],[3]]
=> ([(0,1)],2)
=> ([],2)
=> 2
[[2],[3]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[1,1,2]]
=> ([(0,1)],2)
=> ([],2)
=> 2
[[1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[[1,1],[2]]
=> ([],1)
=> ([],1)
=> 1
[[1,2],[2]]
=> ([(0,1)],2)
=> ([],2)
=> 2
[[1,4]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[[2,4]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> 5
[[3,4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[4,4]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[1],[4]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[2],[4]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 4
[[3],[4]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> 5
[[1,1,3]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[1,2,3]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 4
[[1,3,3]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> 5
[[2,2,3]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> 5
[[2,3,3]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[3,3,3]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[1,1],[3]]
=> ([(0,1)],2)
=> ([],2)
=> 2
[[1,2],[3]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[1,3],[2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[1,3],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[[2,2],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[[2,3],[3]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 5
[[1],[2],[3]]
=> ([],1)
=> ([],1)
=> 1
[[1,1,1,2]]
=> ([(0,1)],2)
=> ([],2)
=> 2
[[1,1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[1,2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[[2,2,2,2]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
[[1,1,1],[2]]
=> ([],1)
=> ([],1)
=> 1
[[1,1,2],[2]]
=> ([(0,1)],2)
=> ([],2)
=> 2
[[1,2,2],[2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[1,1],[2,2]]
=> ([],1)
=> ([],1)
=> 1
[[1,5]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
[[2,5]]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(3,8),(4,7),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 6
[[1],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[[2],[5]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> 5
[[3],[5]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[4],[5]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[1,1,4]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[[1,2,4]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> 5
[[1,3,4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[1,4,4]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[2,2,4]]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(3,6),(3,9),(4,5),(4,9),(5,8),(6,8),(7,8),(7,9),(8,9)],10)
=> ? = 6
[[1,1],[4]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[1,2],[4]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 4
[[1,4],[2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[[1,3],[4]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> 5
[[1,4],[3]]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(4,5)],6)
=> 5
[[1,4],[4]]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(5,6)],7)
=> 6
[[2,2],[4]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> 5
[[2,3],[4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[2,4],[3]]
=> ([(0,5),(0,6),(1,8),(2,9),(3,8),(3,9),(4,1),(5,4),(6,7),(7,2),(7,3),(8,10),(9,10)],11)
=> ([(2,6),(2,10),(3,7),(3,8),(3,9),(4,7),(4,8),(4,9),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(7,10),(8,10),(9,10)],11)
=> ? = 6
[[3,3],[4]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[1],[2],[4]]
=> ([(0,1)],2)
=> ([],2)
=> 2
[[1],[3],[4]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[1,2,3,3]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[1,3,3,3]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[2,2,2,3]]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(3,8),(4,7),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 6
[[1,2,3],[3]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 5
[[2,2,3],[3]]
=> ([(0,6),(0,7),(1,9),(2,8),(3,5),(4,2),(5,1),(5,8),(6,3),(7,4),(8,9)],10)
=> ([(2,9),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? = 6
[[2,6]]
=> ([(0,6),(1,7),(2,8),(3,4),(3,7),(4,5),(4,10),(5,2),(5,9),(6,1),(6,3),(7,10),(9,8),(10,9)],11)
=> ([(3,10),(4,9),(5,8),(5,9),(6,7),(6,10),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 7
[[2],[6]]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(3,8),(4,7),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 6
[[1,2,5]]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(3,8),(4,7),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 6
[[1,3],[5]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[1,5],[3]]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(4,7),(5,6),(6,7)],8)
=> ? = 6
[[1,4],[5]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[1,5],[4]]
=> ([(0,5),(1,8),(2,9),(3,7),(4,3),(4,9),(5,6),(6,2),(6,4),(7,8),(9,1),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[2,2],[5]]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(3,6),(3,9),(4,5),(4,9),(5,8),(6,8),(7,8),(7,9),(8,9)],10)
=> ? = 6
[[2],[4],[5]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[3],[4],[5]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[1,1,3,4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[1,1,4,4]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[1,2,2,4]]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(3,6),(3,9),(4,5),(4,9),(5,8),(6,8),(7,8),(7,9),(8,9)],10)
=> ? = 6
[[1,2,3],[4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[1,2,4],[3]]
=> ([(0,5),(0,6),(1,8),(2,9),(3,8),(3,9),(4,1),(5,4),(6,7),(7,2),(7,3),(8,10),(9,10)],11)
=> ([(2,6),(2,10),(3,7),(3,8),(3,9),(4,7),(4,8),(4,9),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(7,10),(8,10),(9,10)],11)
=> ? = 6
[[1,3,4],[2]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[1,4,4],[2]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[1,3,3],[4]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[1,3,4],[3]]
=> ([(0,6),(1,7),(2,8),(3,9),(4,3),(4,7),(5,2),(5,10),(6,1),(6,4),(7,5),(7,9),(9,10),(10,8)],11)
=> ([(3,8),(4,10),(5,9),(6,7),(6,10),(7,9),(8,10),(9,10)],11)
=> ? = 7
[[2,2,2],[4]]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(3,8),(4,7),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 6
[[1,2],[3,4]]
=> ([(0,4),(1,6),(2,5),(3,5),(3,6),(4,1),(4,2),(4,3),(5,7),(6,7)],8)
=> ([(3,6),(3,7),(4,5),(4,7),(5,6),(6,7)],8)
=> ? = 5
[[1,2],[4,4]]
=> ([(0,5),(1,6),(2,9),(3,6),(3,9),(4,7),(5,1),(5,2),(5,3),(6,8),(8,7),(9,4),(9,8)],10)
=> ([(3,8),(4,6),(4,9),(5,7),(5,9),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 6
[[2,2],[3,4]]
=> ([(0,5),(1,6),(2,9),(3,6),(3,9),(4,7),(5,1),(5,2),(5,3),(6,8),(8,7),(9,4),(9,8)],10)
=> ([(3,8),(4,6),(4,9),(5,7),(5,9),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 6
[[1,4],[3],[4]]
=> ([(0,3),(0,7),(1,8),(2,8),(3,9),(4,5),(5,1),(6,2),(7,4),(7,9),(9,6)],10)
=> ([(2,9),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? = 6
[[2,3],[3],[4]]
=> ([(0,3),(0,7),(1,8),(2,8),(3,9),(4,5),(5,1),(6,2),(7,4),(7,9),(9,6)],10)
=> ([(2,9),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? = 6
[[1,1,2,3,3]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[1,1,3,3,3]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[1,2,2,2,3]]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(3,8),(4,7),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 6
[[2,2,2,2,3]]
=> ([(0,6),(1,7),(2,8),(3,4),(3,7),(4,5),(4,10),(5,2),(5,9),(6,1),(6,3),(7,10),(9,8),(10,9)],11)
=> ([(3,10),(4,9),(5,8),(5,9),(6,7),(6,10),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 7
[[1,1,2,3],[3]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 5
[[1,2,2,3],[3]]
=> ([(0,6),(0,7),(1,9),(2,8),(3,5),(4,2),(5,1),(5,8),(6,3),(7,4),(8,9)],10)
=> ([(2,9),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? = 6
Description
The maximal number of occurrences of a colour in a proper colouring of a graph.
To any proper colouring with the minimal number of colours possible we associate the integer partition recording how often each colour is used. This statistic records the largest part occurring in any of these partitions.
For example, the graph on six vertices consisting of a square together with two attached triangles - ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6) in the list of values - is three-colourable and admits two colouring schemes, $[2,2,2]$ and $[3,2,1]$. Therefore, the statistic on this graph is $3$.
Matching statistic: St000916
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Values
[[1,2]]
=> ([(0,1)],2)
=> ([],2)
=> 2
[[2,2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[1],[2]]
=> ([],1)
=> ([],1)
=> 1
[[1,3]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[2,3]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 4
[[3,3]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> 5
[[1],[3]]
=> ([(0,1)],2)
=> ([],2)
=> 2
[[2],[3]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[1,1,2]]
=> ([(0,1)],2)
=> ([],2)
=> 2
[[1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[[1,1],[2]]
=> ([],1)
=> ([],1)
=> 1
[[1,2],[2]]
=> ([(0,1)],2)
=> ([],2)
=> 2
[[1,4]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[[2,4]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> 5
[[3,4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[4,4]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[1],[4]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[2],[4]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 4
[[3],[4]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> 5
[[1,1,3]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[1,2,3]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 4
[[1,3,3]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> 5
[[2,2,3]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> 5
[[2,3,3]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[3,3,3]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[1,1],[3]]
=> ([(0,1)],2)
=> ([],2)
=> 2
[[1,2],[3]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[1,3],[2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[1,3],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[[2,2],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[[2,3],[3]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 5
[[1],[2],[3]]
=> ([],1)
=> ([],1)
=> 1
[[1,1,1,2]]
=> ([(0,1)],2)
=> ([],2)
=> 2
[[1,1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[1,2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[[2,2,2,2]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
[[1,1,1],[2]]
=> ([],1)
=> ([],1)
=> 1
[[1,1,2],[2]]
=> ([(0,1)],2)
=> ([],2)
=> 2
[[1,2,2],[2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[1,1],[2,2]]
=> ([],1)
=> ([],1)
=> 1
[[1,5]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
[[2,5]]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(3,8),(4,7),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 6
[[1],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[[2],[5]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> 5
[[3],[5]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[4],[5]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[1,1,4]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[[1,2,4]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> 5
[[1,3,4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[1,4,4]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[2,2,4]]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(3,6),(3,9),(4,5),(4,9),(5,8),(6,8),(7,8),(7,9),(8,9)],10)
=> ? = 6
[[1,1],[4]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[1,2],[4]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 4
[[1,4],[2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[[1,3],[4]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> 5
[[1,4],[3]]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(4,5)],6)
=> 5
[[1,4],[4]]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(5,6)],7)
=> 6
[[2,2],[4]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> 5
[[2,3],[4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[2,4],[3]]
=> ([(0,5),(0,6),(1,8),(2,9),(3,8),(3,9),(4,1),(5,4),(6,7),(7,2),(7,3),(8,10),(9,10)],11)
=> ([(2,6),(2,10),(3,7),(3,8),(3,9),(4,7),(4,8),(4,9),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(7,10),(8,10),(9,10)],11)
=> ? = 6
[[3,3],[4]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[1],[2],[4]]
=> ([(0,1)],2)
=> ([],2)
=> 2
[[1],[3],[4]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[1,2,3,3]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[1,3,3,3]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[2,2,2,3]]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(3,8),(4,7),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 6
[[1,2,3],[3]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 5
[[2,2,3],[3]]
=> ([(0,6),(0,7),(1,9),(2,8),(3,5),(4,2),(5,1),(5,8),(6,3),(7,4),(8,9)],10)
=> ([(2,9),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? = 6
[[2,6]]
=> ([(0,6),(1,7),(2,8),(3,4),(3,7),(4,5),(4,10),(5,2),(5,9),(6,1),(6,3),(7,10),(9,8),(10,9)],11)
=> ([(3,10),(4,9),(5,8),(5,9),(6,7),(6,10),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 7
[[2],[6]]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(3,8),(4,7),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 6
[[1,2,5]]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(3,8),(4,7),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 6
[[1,3],[5]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[1,5],[3]]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(4,7),(5,6),(6,7)],8)
=> ? = 6
[[1,4],[5]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[1,5],[4]]
=> ([(0,5),(1,8),(2,9),(3,7),(4,3),(4,9),(5,6),(6,2),(6,4),(7,8),(9,1),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[2,2],[5]]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(3,6),(3,9),(4,5),(4,9),(5,8),(6,8),(7,8),(7,9),(8,9)],10)
=> ? = 6
[[2],[4],[5]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[3],[4],[5]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[1,1,3,4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[1,1,4,4]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[1,2,2,4]]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(3,6),(3,9),(4,5),(4,9),(5,8),(6,8),(7,8),(7,9),(8,9)],10)
=> ? = 6
[[1,2,3],[4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[1,2,4],[3]]
=> ([(0,5),(0,6),(1,8),(2,9),(3,8),(3,9),(4,1),(5,4),(6,7),(7,2),(7,3),(8,10),(9,10)],11)
=> ([(2,6),(2,10),(3,7),(3,8),(3,9),(4,7),(4,8),(4,9),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(7,10),(8,10),(9,10)],11)
=> ? = 6
[[1,3,4],[2]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[1,4,4],[2]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[1,3,3],[4]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[1,3,4],[3]]
=> ([(0,6),(1,7),(2,8),(3,9),(4,3),(4,7),(5,2),(5,10),(6,1),(6,4),(7,5),(7,9),(9,10),(10,8)],11)
=> ([(3,8),(4,10),(5,9),(6,7),(6,10),(7,9),(8,10),(9,10)],11)
=> ? = 7
[[2,2,2],[4]]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(3,8),(4,7),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 6
[[1,2],[3,4]]
=> ([(0,4),(1,6),(2,5),(3,5),(3,6),(4,1),(4,2),(4,3),(5,7),(6,7)],8)
=> ([(3,6),(3,7),(4,5),(4,7),(5,6),(6,7)],8)
=> ? = 5
[[1,2],[4,4]]
=> ([(0,5),(1,6),(2,9),(3,6),(3,9),(4,7),(5,1),(5,2),(5,3),(6,8),(8,7),(9,4),(9,8)],10)
=> ([(3,8),(4,6),(4,9),(5,7),(5,9),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 6
[[2,2],[3,4]]
=> ([(0,5),(1,6),(2,9),(3,6),(3,9),(4,7),(5,1),(5,2),(5,3),(6,8),(8,7),(9,4),(9,8)],10)
=> ([(3,8),(4,6),(4,9),(5,7),(5,9),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 6
[[1,4],[3],[4]]
=> ([(0,3),(0,7),(1,8),(2,8),(3,9),(4,5),(5,1),(6,2),(7,4),(7,9),(9,6)],10)
=> ([(2,9),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? = 6
[[2,3],[3],[4]]
=> ([(0,3),(0,7),(1,8),(2,8),(3,9),(4,5),(5,1),(6,2),(7,4),(7,9),(9,6)],10)
=> ([(2,9),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? = 6
[[1,1,2,3,3]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[1,1,3,3,3]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[1,2,2,2,3]]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(3,8),(4,7),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 6
[[2,2,2,2,3]]
=> ([(0,6),(1,7),(2,8),(3,4),(3,7),(4,5),(4,10),(5,2),(5,9),(6,1),(6,3),(7,10),(9,8),(10,9)],11)
=> ([(3,10),(4,9),(5,8),(5,9),(6,7),(6,10),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 7
[[1,1,2,3],[3]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 5
[[1,2,2,3],[3]]
=> ([(0,6),(0,7),(1,9),(2,8),(3,5),(4,2),(5,1),(5,8),(6,3),(7,4),(8,9)],10)
=> ([(2,9),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? = 6
Description
The packing number of a graph.
This is the size of a largest subset of vertices of a graph, such that any two distinct vertices in the subset have disjoint closed neighbourhoods, or, equivalently, have distance greater than two.
Matching statistic: St001286
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Values
[[1,2]]
=> ([(0,1)],2)
=> ([],2)
=> 2
[[2,2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[1],[2]]
=> ([],1)
=> ([],1)
=> 1
[[1,3]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[2,3]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 4
[[3,3]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> 5
[[1],[3]]
=> ([(0,1)],2)
=> ([],2)
=> 2
[[2],[3]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[1,1,2]]
=> ([(0,1)],2)
=> ([],2)
=> 2
[[1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[[1,1],[2]]
=> ([],1)
=> ([],1)
=> 1
[[1,2],[2]]
=> ([(0,1)],2)
=> ([],2)
=> 2
[[1,4]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[[2,4]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> 5
[[3,4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[4,4]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[1],[4]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[2],[4]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 4
[[3],[4]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> 5
[[1,1,3]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[1,2,3]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 4
[[1,3,3]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> 5
[[2,2,3]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> 5
[[2,3,3]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[3,3,3]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[1,1],[3]]
=> ([(0,1)],2)
=> ([],2)
=> 2
[[1,2],[3]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[1,3],[2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[1,3],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[[2,2],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[[2,3],[3]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 5
[[1],[2],[3]]
=> ([],1)
=> ([],1)
=> 1
[[1,1,1,2]]
=> ([(0,1)],2)
=> ([],2)
=> 2
[[1,1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[1,2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[[2,2,2,2]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
[[1,1,1],[2]]
=> ([],1)
=> ([],1)
=> 1
[[1,1,2],[2]]
=> ([(0,1)],2)
=> ([],2)
=> 2
[[1,2,2],[2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[1,1],[2,2]]
=> ([],1)
=> ([],1)
=> 1
[[1,5]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
[[2,5]]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(3,8),(4,7),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 6
[[1],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[[2],[5]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> 5
[[3],[5]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[4],[5]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[1,1,4]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[[1,2,4]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> 5
[[1,3,4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[1,4,4]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[2,2,4]]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(3,6),(3,9),(4,5),(4,9),(5,8),(6,8),(7,8),(7,9),(8,9)],10)
=> ? = 6
[[1,1],[4]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[1,2],[4]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 4
[[1,4],[2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[[1,3],[4]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> 5
[[1,4],[3]]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(4,5)],6)
=> 5
[[1,4],[4]]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(5,6)],7)
=> 6
[[2,2],[4]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> 5
[[2,3],[4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[2,4],[3]]
=> ([(0,5),(0,6),(1,8),(2,9),(3,8),(3,9),(4,1),(5,4),(6,7),(7,2),(7,3),(8,10),(9,10)],11)
=> ([(2,6),(2,10),(3,7),(3,8),(3,9),(4,7),(4,8),(4,9),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(7,10),(8,10),(9,10)],11)
=> ? = 6
[[3,3],[4]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[1],[2],[4]]
=> ([(0,1)],2)
=> ([],2)
=> 2
[[1],[3],[4]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[1,2,3,3]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[1,3,3,3]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[2,2,2,3]]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(3,8),(4,7),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 6
[[1,2,3],[3]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 5
[[2,2,3],[3]]
=> ([(0,6),(0,7),(1,9),(2,8),(3,5),(4,2),(5,1),(5,8),(6,3),(7,4),(8,9)],10)
=> ([(2,9),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? = 6
[[2,6]]
=> ([(0,6),(1,7),(2,8),(3,4),(3,7),(4,5),(4,10),(5,2),(5,9),(6,1),(6,3),(7,10),(9,8),(10,9)],11)
=> ([(3,10),(4,9),(5,8),(5,9),(6,7),(6,10),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 7
[[2],[6]]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(3,8),(4,7),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 6
[[1,2,5]]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(3,8),(4,7),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 6
[[1,3],[5]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[1,5],[3]]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(4,7),(5,6),(6,7)],8)
=> ? = 6
[[1,4],[5]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[1,5],[4]]
=> ([(0,5),(1,8),(2,9),(3,7),(4,3),(4,9),(5,6),(6,2),(6,4),(7,8),(9,1),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[2,2],[5]]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(3,6),(3,9),(4,5),(4,9),(5,8),(6,8),(7,8),(7,9),(8,9)],10)
=> ? = 6
[[2],[4],[5]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[3],[4],[5]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[1,1,3,4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[1,1,4,4]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[1,2,2,4]]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(3,6),(3,9),(4,5),(4,9),(5,8),(6,8),(7,8),(7,9),(8,9)],10)
=> ? = 6
[[1,2,3],[4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[1,2,4],[3]]
=> ([(0,5),(0,6),(1,8),(2,9),(3,8),(3,9),(4,1),(5,4),(6,7),(7,2),(7,3),(8,10),(9,10)],11)
=> ([(2,6),(2,10),(3,7),(3,8),(3,9),(4,7),(4,8),(4,9),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(7,10),(8,10),(9,10)],11)
=> ? = 6
[[1,3,4],[2]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[1,4,4],[2]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[1,3,3],[4]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[1,3,4],[3]]
=> ([(0,6),(1,7),(2,8),(3,9),(4,3),(4,7),(5,2),(5,10),(6,1),(6,4),(7,5),(7,9),(9,10),(10,8)],11)
=> ([(3,8),(4,10),(5,9),(6,7),(6,10),(7,9),(8,10),(9,10)],11)
=> ? = 7
[[2,2,2],[4]]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(3,8),(4,7),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 6
[[1,2],[3,4]]
=> ([(0,4),(1,6),(2,5),(3,5),(3,6),(4,1),(4,2),(4,3),(5,7),(6,7)],8)
=> ([(3,6),(3,7),(4,5),(4,7),(5,6),(6,7)],8)
=> ? = 5
[[1,2],[4,4]]
=> ([(0,5),(1,6),(2,9),(3,6),(3,9),(4,7),(5,1),(5,2),(5,3),(6,8),(8,7),(9,4),(9,8)],10)
=> ([(3,8),(4,6),(4,9),(5,7),(5,9),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 6
[[2,2],[3,4]]
=> ([(0,5),(1,6),(2,9),(3,6),(3,9),(4,7),(5,1),(5,2),(5,3),(6,8),(8,7),(9,4),(9,8)],10)
=> ([(3,8),(4,6),(4,9),(5,7),(5,9),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 6
[[1,4],[3],[4]]
=> ([(0,3),(0,7),(1,8),(2,8),(3,9),(4,5),(5,1),(6,2),(7,4),(7,9),(9,6)],10)
=> ([(2,9),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? = 6
[[2,3],[3],[4]]
=> ([(0,3),(0,7),(1,8),(2,8),(3,9),(4,5),(5,1),(6,2),(7,4),(7,9),(9,6)],10)
=> ([(2,9),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? = 6
[[1,1,2,3,3]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[1,1,3,3,3]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[1,2,2,2,3]]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(3,8),(4,7),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 6
[[2,2,2,2,3]]
=> ([(0,6),(1,7),(2,8),(3,4),(3,7),(4,5),(4,10),(5,2),(5,9),(6,1),(6,3),(7,10),(9,8),(10,9)],11)
=> ([(3,10),(4,9),(5,8),(5,9),(6,7),(6,10),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 7
[[1,1,2,3],[3]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 5
[[1,2,2,3],[3]]
=> ([(0,6),(0,7),(1,9),(2,8),(3,5),(4,2),(5,1),(5,8),(6,3),(7,4),(8,9)],10)
=> ([(2,9),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? = 6
Description
The annihilation number of a graph.
For a graph on $m$ edges with degree sequence $d_1\leq\dots\leq d_n$, this is the largest number $k\leq n$ such that $\sum_{i=1}^k d_i \leq m$.
Matching statistic: St001322
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Values
[[1,2]]
=> ([(0,1)],2)
=> ([],2)
=> 2
[[2,2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[1],[2]]
=> ([],1)
=> ([],1)
=> 1
[[1,3]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[2,3]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 4
[[3,3]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> 5
[[1],[3]]
=> ([(0,1)],2)
=> ([],2)
=> 2
[[2],[3]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[1,1,2]]
=> ([(0,1)],2)
=> ([],2)
=> 2
[[1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[[1,1],[2]]
=> ([],1)
=> ([],1)
=> 1
[[1,2],[2]]
=> ([(0,1)],2)
=> ([],2)
=> 2
[[1,4]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[[2,4]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> 5
[[3,4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[4,4]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[1],[4]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[2],[4]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 4
[[3],[4]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> 5
[[1,1,3]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[1,2,3]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 4
[[1,3,3]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> 5
[[2,2,3]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> 5
[[2,3,3]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[3,3,3]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[1,1],[3]]
=> ([(0,1)],2)
=> ([],2)
=> 2
[[1,2],[3]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[1,3],[2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[1,3],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[[2,2],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[[2,3],[3]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 5
[[1],[2],[3]]
=> ([],1)
=> ([],1)
=> 1
[[1,1,1,2]]
=> ([(0,1)],2)
=> ([],2)
=> 2
[[1,1,2,2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[1,2,2,2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[[2,2,2,2]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
[[1,1,1],[2]]
=> ([],1)
=> ([],1)
=> 1
[[1,1,2],[2]]
=> ([(0,1)],2)
=> ([],2)
=> 2
[[1,2,2],[2]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[1,1],[2,2]]
=> ([],1)
=> ([],1)
=> 1
[[1,5]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 5
[[2,5]]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(3,8),(4,7),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 6
[[1],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[[2],[5]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> 5
[[3],[5]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[4],[5]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[1,1,4]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[[1,2,4]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> 5
[[1,3,4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[1,4,4]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[2,2,4]]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(3,6),(3,9),(4,5),(4,9),(5,8),(6,8),(7,8),(7,9),(8,9)],10)
=> ? = 6
[[1,1],[4]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[1,2],[4]]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 4
[[1,4],[2]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 4
[[1,3],[4]]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> 5
[[1,4],[3]]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(4,5)],6)
=> 5
[[1,4],[4]]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(5,6)],7)
=> 6
[[2,2],[4]]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(3,6),(4,5),(5,6)],7)
=> 5
[[2,3],[4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[2,4],[3]]
=> ([(0,5),(0,6),(1,8),(2,9),(3,8),(3,9),(4,1),(5,4),(6,7),(7,2),(7,3),(8,10),(9,10)],11)
=> ([(2,6),(2,10),(3,7),(3,8),(3,9),(4,7),(4,8),(4,9),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(7,10),(8,10),(9,10)],11)
=> ? = 6
[[3,3],[4]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[1],[2],[4]]
=> ([(0,1)],2)
=> ([],2)
=> 2
[[1],[3],[4]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 3
[[1,2,3,3]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[1,3,3,3]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[2,2,2,3]]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(3,8),(4,7),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 6
[[1,2,3],[3]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 5
[[2,2,3],[3]]
=> ([(0,6),(0,7),(1,9),(2,8),(3,5),(4,2),(5,1),(5,8),(6,3),(7,4),(8,9)],10)
=> ([(2,9),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? = 6
[[2,6]]
=> ([(0,6),(1,7),(2,8),(3,4),(3,7),(4,5),(4,10),(5,2),(5,9),(6,1),(6,3),(7,10),(9,8),(10,9)],11)
=> ([(3,10),(4,9),(5,8),(5,9),(6,7),(6,10),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 7
[[2],[6]]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(3,8),(4,7),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 6
[[1,2,5]]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(3,8),(4,7),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 6
[[1,3],[5]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[1,5],[3]]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(4,7),(5,6),(6,7)],8)
=> ? = 6
[[1,4],[5]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[1,5],[4]]
=> ([(0,5),(1,8),(2,9),(3,7),(4,3),(4,9),(5,6),(6,2),(6,4),(7,8),(9,1),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[2,2],[5]]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(3,6),(3,9),(4,5),(4,9),(5,8),(6,8),(7,8),(7,9),(8,9)],10)
=> ? = 6
[[2],[4],[5]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[3],[4],[5]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[1,1,3,4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[1,1,4,4]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[1,2,2,4]]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(3,6),(3,9),(4,5),(4,9),(5,8),(6,8),(7,8),(7,9),(8,9)],10)
=> ? = 6
[[1,2,3],[4]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[1,2,4],[3]]
=> ([(0,5),(0,6),(1,8),(2,9),(3,8),(3,9),(4,1),(5,4),(6,7),(7,2),(7,3),(8,10),(9,10)],11)
=> ([(2,6),(2,10),(3,7),(3,8),(3,9),(4,7),(4,8),(4,9),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(7,10),(8,10),(9,10)],11)
=> ? = 6
[[1,3,4],[2]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[1,4,4],[2]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[1,3,3],[4]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[1,3,4],[3]]
=> ([(0,6),(1,7),(2,8),(3,9),(4,3),(4,7),(5,2),(5,10),(6,1),(6,4),(7,5),(7,9),(9,10),(10,8)],11)
=> ([(3,8),(4,10),(5,9),(6,7),(6,10),(7,9),(8,10),(9,10)],11)
=> ? = 7
[[2,2,2],[4]]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(3,8),(4,7),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 6
[[1,2],[3,4]]
=> ([(0,4),(1,6),(2,5),(3,5),(3,6),(4,1),(4,2),(4,3),(5,7),(6,7)],8)
=> ([(3,6),(3,7),(4,5),(4,7),(5,6),(6,7)],8)
=> ? = 5
[[1,2],[4,4]]
=> ([(0,5),(1,6),(2,9),(3,6),(3,9),(4,7),(5,1),(5,2),(5,3),(6,8),(8,7),(9,4),(9,8)],10)
=> ([(3,8),(4,6),(4,9),(5,7),(5,9),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 6
[[2,2],[3,4]]
=> ([(0,5),(1,6),(2,9),(3,6),(3,9),(4,7),(5,1),(5,2),(5,3),(6,8),(8,7),(9,4),(9,8)],10)
=> ([(3,8),(4,6),(4,9),(5,7),(5,9),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 6
[[1,4],[3],[4]]
=> ([(0,3),(0,7),(1,8),(2,8),(3,9),(4,5),(5,1),(6,2),(7,4),(7,9),(9,6)],10)
=> ([(2,9),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? = 6
[[2,3],[3],[4]]
=> ([(0,3),(0,7),(1,8),(2,8),(3,9),(4,5),(5,1),(6,2),(7,4),(7,9),(9,6)],10)
=> ([(2,9),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? = 6
[[1,1,2,3,3]]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[1,1,3,3,3]]
=> ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> ([(4,9),(5,8),(6,7),(7,9),(8,9)],10)
=> ? = 7
[[1,2,2,2,3]]
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(3,8),(4,7),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 6
[[2,2,2,2,3]]
=> ([(0,6),(1,7),(2,8),(3,4),(3,7),(4,5),(4,10),(5,2),(5,9),(6,1),(6,3),(7,10),(9,8),(10,9)],11)
=> ([(3,10),(4,9),(5,8),(5,9),(6,7),(6,10),(7,8),(7,9),(8,10),(9,10)],11)
=> ? = 7
[[1,1,2,3],[3]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 5
[[1,2,2,3],[3]]
=> ([(0,6),(0,7),(1,9),(2,8),(3,5),(4,2),(5,1),(5,8),(6,3),(7,4),(8,9)],10)
=> ([(2,9),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? = 6
Description
The size of a minimal independent dominating set in a graph.
The following 57 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001337The upper domination number of a graph. St001338The upper irredundance number of a graph. St001339The irredundance number of a graph. St001829The common independence number of a graph. St000259The diameter of a connected graph. St001340The cardinality of a minimal non-edge isolating set of a graph. St001029The size of the core of a graph. St001108The 2-dynamic chromatic number of a graph. St001494The Alon-Tarsi number of a graph. St001580The acyclic chromatic number of a graph. St001655The general position number of a graph. St001656The monophonic position number of a graph. St000272The treewidth of a graph. St000536The pathwidth of a graph. St000778The metric dimension of a graph. St001644The dimension of a graph. St000528The height of a poset. St001636The number of indecomposable injective modules with projective dimension at most one in the incidence algebra of the poset. St001820The size of the image of the pop stack sorting operator. St001720The minimal length of a chain of small intervals in a lattice. St000080The rank of the poset. St000822The Hadwiger number of the graph. St001316The domatic number of a graph. St000261The edge connectivity of a graph. St000262The vertex connectivity of a graph. St000310The minimal degree of a vertex of a graph. St000741The Colin de Verdière graph invariant. St001270The bandwidth of a graph. St001277The degeneracy of a graph. St001358The largest degree of a regular subgraph of a graph. St001962The proper pathwidth of a graph. St001875The number of simple modules with projective dimension at most 1. St000906The length of the shortest maximal chain in a poset. St000643The size of the largest orbit of antichains under Panyushev complementation. St001623The number of doubly irreducible elements of a lattice. St001626The number of maximal proper sublattices of a lattice. St000907The number of maximal antichains of minimal length in a poset. St001812The biclique partition number of a graph. St001330The hat guessing number of a graph. St000454The largest eigenvalue of a graph if it is integral. St001637The number of (upper) dissectors of a poset. St001668The number of points of the poset minus the width of the poset. St000327The number of cover relations in a poset. St001621The number of atoms of a lattice. St000112The sum of the entries reduced by the index of their row in a semistandard tableau. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001877Number of indecomposable injective modules with projective dimension 2. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St001645The pebbling number of a connected graph. St000260The radius of a connected graph. St000302The determinant of the distance matrix of a connected graph. St000466The Gutman (or modified Schultz) index of a connected graph. St000467The hyper-Wiener index of a connected graph.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!