Your data matches 25 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00132: Dyck paths switch returns and last double riseDyck paths
St000655: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> 1
[1,0,1,0]
=> [1,0,1,0]
=> 1
[1,1,0,0]
=> [1,1,0,0]
=> 2
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 1
[1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 1
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 1
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 3
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 1
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 1
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 4
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2
Description
The length of the minimal rise of a Dyck path. For the length of a maximal rise, see [[St000444]].
Mp00132: Dyck paths switch returns and last double riseDyck paths
Mp00102: Dyck paths rise compositionInteger compositions
St000657: Integer compositions ⟶ ℤResult quality: 82% values known / values provided: 91%distinct values known / distinct values provided: 82%
Values
[1,0]
=> [1,0]
=> [1] => 1
[1,0,1,0]
=> [1,0,1,0]
=> [1,1] => 1
[1,1,0,0]
=> [1,1,0,0]
=> [2] => 2
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1] => 1
[1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [2,1] => 1
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [2,1] => 1
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,2] => 1
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [3] => 3
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1] => 1
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [2,1,1] => 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> [2,1,1] => 1
[1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,2,1] => 1
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [3,1] => 1
[1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,1] => 1
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [3,1] => 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,2,1] => 1
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,2] => 1
[1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0]
=> [2,2] => 2
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [3,1] => 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,2] => 2
[1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,3] => 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4] => 4
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,1,1,1] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,2,1,1] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [3,1,1] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [2,1,1,1] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [3,1,1] => 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,2,1,1] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,2,1] => 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,2,1] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,1,1] => 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,3,1] => 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,3,1] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [4,1] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,1,1] => 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,1,1] => 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,2,1] => 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [4,1] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,2,1] => 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,1,2] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,2,1] => 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [2,1,2] => 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,2,2] => 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,3] => 2
[1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [9,1] => ? = 1
[1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0]
=> [9,1] => ? = 1
[1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [10,1] => ? = 1
[1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,8,1] => ? = 1
[1,0,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [1,8,1] => ? = 1
[1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0]
=> [10,1] => ? = 1
[1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,1,0]
=> [7,2,1] => ? = 1
[1,0,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0]
=> [1,8,1] => ? = 1
[1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,7,1] => ? = 1
[1,1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? => ? = 1
[1,1,1,1,0,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> ? => ? = 1
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0,0]
=> [9,1] => ? = 1
[1,1,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0]
=> [9,1] => ? = 1
[1,0,1,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0,0,0]
=> [7,2,1] => ? = 1
[1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> [8,1,1] => ? = 1
[1,1,0,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,0,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [2,7,1] => ? = 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1,1,1,1,1,1] => ? = 1
[1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,1,2,1] => ? = 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,1,2] => ? = 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1,1,1,1,1,1,1] => ? = 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [3,1,1,1,1,1,1,1] => ? = 1
[1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [2,1,1,1,1,1,1,2] => ? = 1
[1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,1,1,2,1] => ? = 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,1,1,2] => ? = 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [3,1,1,1,1,1,1,1,1] => ? = 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [2,1,1,1,1,1,1,1,1] => ? = 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0,1,0]
=> [3,1,1,1,1,1,1,1] => ? = 1
[1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0]
=> [5,1,1,1,1,1] => ? = 1
[1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0,0]
=> [8,1,1] => ? = 1
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,1,1,1,1,1,1,1] => ? = 1
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [3,1,1,1,1,1,1,1] => ? = 1
[1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [3,1,1,1,1,1,1,1] => ? = 1
[1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [10] => ? = 10
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,1,1,1,1,1,1,1,1] => ? = 1
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [2,1,1,1,1,1,1,2] => ? = 1
[1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0]
=> [1,1,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [2,8] => ? = 2
[1,1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,0]
=> [1,1,0,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [2,9] => ? = 2
[1,1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [2,8] => ? = 2
[1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,0,0]
=> [8,2] => ? = 2
[1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,1,0,0]
=> [9,2] => ? = 2
[1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,9] => ? = 1
[1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,10] => ? = 1
[1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,0,0,0,0,0]
=> [1,2,2,2,2,1] => ? = 1
[1,0,1,1,0,1,1,1,0,1,0,0,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,1,1,0,1,0,0,1,1,0,1,0,0,0,0]
=> [1,2,3,1,2,1] => ? = 1
[1,0,1,1,1,0,1,0,0,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,1,1,0,1,1,0,1,0,0,0,0]
=> [1,3,1,2,2,1] => ? = 1
[1,0,1,1,1,0,1,1,0,1,0,0,0,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,1,1,0,1,0,0,0]
=> [1,3,2,1,2,1] => ? = 1
[1,0,1,1,1,1,0,1,0,0,1,0,0,1,1,0,1,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,1,0,0,1,1,0,1,0,0,0]
=> [1,4,1,1,2,1] => ? = 1
[1,1,0,1,0,0,1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,0,1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [2,1,2,2,2,1] => ? = 1
[1,1,0,1,0,0,1,1,1,0,1,0,0,1,1,0,1,0,0,0]
=> [1,1,0,1,0,0,1,1,1,0,1,0,0,1,1,0,1,0,0,0]
=> [2,1,3,1,2,1] => ? = 1
[1,1,0,1,1,0,1,0,0,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0,1,1,0,1,1,0,1,0,0,0]
=> [2,2,1,2,2,1] => ? = 1
Description
The smallest part of an integer composition.
Matching statistic: St000781
Mp00100: Dyck paths touch compositionInteger compositions
Mp00040: Integer compositions to partitionInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000781: Integer partitions ⟶ ℤResult quality: 9% values known / values provided: 69%distinct values known / distinct values provided: 9%
Values
[1,0]
=> [1] => [1]
=> []
=> ? = 1
[1,0,1,0]
=> [1,1] => [1,1]
=> [1]
=> 1
[1,1,0,0]
=> [2] => [2]
=> []
=> ? = 2
[1,0,1,0,1,0]
=> [1,1,1] => [1,1,1]
=> [1,1]
=> 1
[1,0,1,1,0,0]
=> [1,2] => [2,1]
=> [1]
=> 1
[1,1,0,0,1,0]
=> [2,1] => [2,1]
=> [1]
=> 1
[1,1,0,1,0,0]
=> [3] => [3]
=> []
=> ? = 1
[1,1,1,0,0,0]
=> [3] => [3]
=> []
=> ? = 3
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [1,1,1,1]
=> [1,1,1]
=> 1
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [2,1,1]
=> [1,1]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [2,1,1]
=> [1,1]
=> 1
[1,0,1,1,0,1,0,0]
=> [1,3] => [3,1]
=> [1]
=> 1
[1,0,1,1,1,0,0,0]
=> [1,3] => [3,1]
=> [1]
=> 1
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [2,1,1]
=> [1,1]
=> 1
[1,1,0,0,1,1,0,0]
=> [2,2] => [2,2]
=> [2]
=> 1
[1,1,0,1,0,0,1,0]
=> [3,1] => [3,1]
=> [1]
=> 1
[1,1,0,1,0,1,0,0]
=> [4] => [4]
=> []
=> ? = 1
[1,1,0,1,1,0,0,0]
=> [4] => [4]
=> []
=> ? = 2
[1,1,1,0,0,0,1,0]
=> [3,1] => [3,1]
=> [1]
=> 1
[1,1,1,0,0,1,0,0]
=> [4] => [4]
=> []
=> ? = 2
[1,1,1,0,1,0,0,0]
=> [4] => [4]
=> []
=> ? = 1
[1,1,1,1,0,0,0,0]
=> [4] => [4]
=> []
=> ? = 4
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [2,1,1,1]
=> [1,1,1]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [2,1,1,1]
=> [1,1,1]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => [3,1,1]
=> [1,1]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [3,1,1]
=> [1,1]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [2,1,1,1]
=> [1,1,1]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [2,2,1]
=> [2,1]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => [3,1,1]
=> [1,1]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,4] => [4,1]
=> [1]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,4] => [4,1]
=> [1]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [3,1,1]
=> [1,1]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4] => [4,1]
=> [1]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4] => [4,1]
=> [1]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [4,1]
=> [1]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [2,1,1,1]
=> [1,1,1]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [2,2,1]
=> [2,1]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [2,2,1]
=> [2,1]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,3] => [3,2]
=> [2]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [3,2]
=> [2]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => [3,1,1]
=> [1,1]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,2] => [3,2]
=> [2]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [4,1] => [4,1]
=> [1]
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [5] => [5]
=> []
=> ? = 1
[1,1,0,1,0,1,1,0,0,0]
=> [5] => [5]
=> []
=> ? = 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,1] => [4,1]
=> [1]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [5] => [5]
=> []
=> ? = 1
[1,1,0,1,1,0,1,0,0,0]
=> [5] => [5]
=> []
=> ? = 1
[1,1,0,1,1,1,0,0,0,0]
=> [5] => [5]
=> []
=> ? = 2
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => [3,1,1]
=> [1,1]
=> 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,2] => [3,2]
=> [2]
=> 1
[1,1,1,0,0,1,0,0,1,0]
=> [4,1] => [4,1]
=> [1]
=> 1
[1,1,1,0,0,1,0,1,0,0]
=> [5] => [5]
=> []
=> ? = 1
[1,1,1,0,0,1,1,0,0,0]
=> [5] => [5]
=> []
=> ? = 2
[1,1,1,0,1,0,0,0,1,0]
=> [4,1] => [4,1]
=> [1]
=> 1
[1,1,1,0,1,0,0,1,0,0]
=> [5] => [5]
=> []
=> ? = 1
[1,1,1,0,1,0,1,0,0,0]
=> [5] => [5]
=> []
=> ? = 1
[1,1,1,0,1,1,0,0,0,0]
=> [5] => [5]
=> []
=> ? = 2
[1,1,1,1,0,0,0,0,1,0]
=> [4,1] => [4,1]
=> [1]
=> 1
[1,1,1,1,0,0,0,1,0,0]
=> [5] => [5]
=> []
=> ? = 2
[1,1,1,1,0,0,1,0,0,0]
=> [5] => [5]
=> []
=> ? = 2
[1,1,1,1,0,1,0,0,0,0]
=> [5] => [5]
=> []
=> ? = 1
[1,1,1,1,1,0,0,0,0,0]
=> [5] => [5]
=> []
=> ? = 5
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1] => [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,2] => [2,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,2,1] => [2,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,3] => [3,1,1,1]
=> [1,1,1]
=> 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,3] => [3,1,1,1]
=> [1,1,1]
=> 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,2,1,1] => [2,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,2,2] => [2,2,1,1]
=> [2,1,1]
=> 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,3,1] => [3,1,1,1]
=> [1,1,1]
=> 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,4] => [4,1,1]
=> [1,1]
=> 1
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [6] => [6]
=> []
=> ? = 1
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [6] => [6]
=> []
=> ? = 1
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [6] => [6]
=> []
=> ? = 1
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [6] => [6]
=> []
=> ? = 1
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [6] => [6]
=> []
=> ? = 1
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [6] => [6]
=> []
=> ? = 1
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [6] => [6]
=> []
=> ? = 2
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [6] => [6]
=> []
=> ? = 1
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [6] => [6]
=> []
=> ? = 1
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [6] => [6]
=> []
=> ? = 2
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [6] => [6]
=> []
=> ? = 1
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [6] => [6]
=> []
=> ? = 1
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [6] => [6]
=> []
=> ? = 1
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [6] => [6]
=> []
=> ? = 2
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [6] => [6]
=> []
=> ? = 1
[1,1,1,0,0,1,0,1,1,0,0,0]
=> [6] => [6]
=> []
=> ? = 1
[1,1,1,0,0,1,1,0,0,1,0,0]
=> [6] => [6]
=> []
=> ? = 1
[1,1,1,0,0,1,1,0,1,0,0,0]
=> [6] => [6]
=> []
=> ? = 2
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [6] => [6]
=> []
=> ? = 3
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [6] => [6]
=> []
=> ? = 1
[1,1,1,0,1,0,0,1,1,0,0,0]
=> [6] => [6]
=> []
=> ? = 1
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [6] => [6]
=> []
=> ? = 1
[1,1,1,0,1,0,1,0,1,0,0,0]
=> [6] => [6]
=> []
=> ? = 1
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [6] => [6]
=> []
=> ? = 1
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [6] => [6]
=> []
=> ? = 2
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [6] => [6]
=> []
=> ? = 1
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [6] => [6]
=> []
=> ? = 1
Description
The number of proper colouring schemes of a Ferrers diagram. A colouring of a Ferrers diagram is proper if no two cells in a row or in a column have the same colour. The minimal number of colours needed is the maximum of the length and the first part of the partition, because we can restrict a latin square to the shape. We can associate to each colouring the integer partition recording how often each colour is used, see [1]. This statistic is the number of distinct such integer partitions that occur.
Matching statistic: St000980
Mp00100: Dyck paths touch compositionInteger compositions
Mp00133: Integer compositions delta morphismInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
St000980: Dyck paths ⟶ ℤResult quality: 9% values known / values provided: 68%distinct values known / distinct values provided: 9%
Values
[1,0]
=> [1] => [1] => [1,0]
=> ? = 1 - 1
[1,0,1,0]
=> [1,1] => [2] => [1,1,0,0]
=> 0 = 1 - 1
[1,1,0,0]
=> [2] => [1] => [1,0]
=> ? = 2 - 1
[1,0,1,0,1,0]
=> [1,1,1] => [3] => [1,1,1,0,0,0]
=> 0 = 1 - 1
[1,0,1,1,0,0]
=> [1,2] => [1,1] => [1,0,1,0]
=> 0 = 1 - 1
[1,1,0,0,1,0]
=> [2,1] => [1,1] => [1,0,1,0]
=> 0 = 1 - 1
[1,1,0,1,0,0]
=> [3] => [1] => [1,0]
=> ? = 1 - 1
[1,1,1,0,0,0]
=> [3] => [1] => [1,0]
=> ? = 3 - 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [4] => [1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [2,1] => [1,1,0,0,1,0]
=> 0 = 1 - 1
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> 0 = 1 - 1
[1,0,1,1,0,1,0,0]
=> [1,3] => [1,1] => [1,0,1,0]
=> 0 = 1 - 1
[1,0,1,1,1,0,0,0]
=> [1,3] => [1,1] => [1,0,1,0]
=> 0 = 1 - 1
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [1,2] => [1,0,1,1,0,0]
=> 0 = 1 - 1
[1,1,0,0,1,1,0,0]
=> [2,2] => [2] => [1,1,0,0]
=> 0 = 1 - 1
[1,1,0,1,0,0,1,0]
=> [3,1] => [1,1] => [1,0,1,0]
=> 0 = 1 - 1
[1,1,0,1,0,1,0,0]
=> [4] => [1] => [1,0]
=> ? = 1 - 1
[1,1,0,1,1,0,0,0]
=> [4] => [1] => [1,0]
=> ? = 2 - 1
[1,1,1,0,0,0,1,0]
=> [3,1] => [1,1] => [1,0,1,0]
=> 0 = 1 - 1
[1,1,1,0,0,1,0,0]
=> [4] => [1] => [1,0]
=> ? = 2 - 1
[1,1,1,0,1,0,0,0]
=> [4] => [1] => [1,0]
=> ? = 1 - 1
[1,1,1,1,0,0,0,0]
=> [4] => [1] => [1,0]
=> ? = 4 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> 0 = 1 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 0 = 1 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => [2,1] => [1,1,0,0,1,0]
=> 0 = 1 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [2,1] => [1,1,0,0,1,0]
=> 0 = 1 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 0 = 1 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [1,2] => [1,0,1,1,0,0]
=> 0 = 1 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => [1,1,1] => [1,0,1,0,1,0]
=> 0 = 1 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,4] => [1,1] => [1,0,1,0]
=> 0 = 1 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,4] => [1,1] => [1,0,1,0]
=> 0 = 1 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [1,1,1] => [1,0,1,0,1,0]
=> 0 = 1 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4] => [1,1] => [1,0,1,0]
=> 0 = 1 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4] => [1,1] => [1,0,1,0]
=> 0 = 1 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [1,1] => [1,0,1,0]
=> 0 = 1 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> 0 = 1 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [1,1,1] => [1,0,1,0,1,0]
=> 0 = 1 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [2,1] => [1,1,0,0,1,0]
=> 0 = 1 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,3] => [1,1] => [1,0,1,0]
=> 0 = 1 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [1,1] => [1,0,1,0]
=> 0 = 1 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => [1,2] => [1,0,1,1,0,0]
=> 0 = 1 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,2] => [1,1] => [1,0,1,0]
=> 0 = 1 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [4,1] => [1,1] => [1,0,1,0]
=> 0 = 1 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [5] => [1] => [1,0]
=> ? = 1 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [5] => [1] => [1,0]
=> ? = 1 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,1] => [1,1] => [1,0,1,0]
=> 0 = 1 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [5] => [1] => [1,0]
=> ? = 1 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [5] => [1] => [1,0]
=> ? = 1 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [5] => [1] => [1,0]
=> ? = 2 - 1
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => [1,2] => [1,0,1,1,0,0]
=> 0 = 1 - 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,2] => [1,1] => [1,0,1,0]
=> 0 = 1 - 1
[1,1,1,0,0,1,0,0,1,0]
=> [4,1] => [1,1] => [1,0,1,0]
=> 0 = 1 - 1
[1,1,1,0,0,1,0,1,0,0]
=> [5] => [1] => [1,0]
=> ? = 1 - 1
[1,1,1,0,0,1,1,0,0,0]
=> [5] => [1] => [1,0]
=> ? = 2 - 1
[1,1,1,0,1,0,0,0,1,0]
=> [4,1] => [1,1] => [1,0,1,0]
=> 0 = 1 - 1
[1,1,1,0,1,0,0,1,0,0]
=> [5] => [1] => [1,0]
=> ? = 1 - 1
[1,1,1,0,1,0,1,0,0,0]
=> [5] => [1] => [1,0]
=> ? = 1 - 1
[1,1,1,0,1,1,0,0,0,0]
=> [5] => [1] => [1,0]
=> ? = 2 - 1
[1,1,1,1,0,0,0,0,1,0]
=> [4,1] => [1,1] => [1,0,1,0]
=> 0 = 1 - 1
[1,1,1,1,0,0,0,1,0,0]
=> [5] => [1] => [1,0]
=> ? = 2 - 1
[1,1,1,1,0,0,1,0,0,0]
=> [5] => [1] => [1,0]
=> ? = 2 - 1
[1,1,1,1,0,1,0,0,0,0]
=> [5] => [1] => [1,0]
=> ? = 1 - 1
[1,1,1,1,1,0,0,0,0,0]
=> [5] => [1] => [1,0]
=> ? = 5 - 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1] => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,2,1] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> 0 = 1 - 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,2,1,1] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,2,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 0 = 1 - 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,4] => [2,1] => [1,1,0,0,1,0]
=> 0 = 1 - 1
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? = 1 - 1
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? = 1 - 1
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? = 1 - 1
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? = 1 - 1
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [6] => [1] => [1,0]
=> ? = 1 - 1
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? = 1 - 1
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? = 2 - 1
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? = 1 - 1
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? = 1 - 1
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [6] => [1] => [1,0]
=> ? = 2 - 1
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? = 1 - 1
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? = 1 - 1
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [6] => [1] => [1,0]
=> ? = 1 - 1
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [6] => [1] => [1,0]
=> ? = 2 - 1
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? = 1 - 1
[1,1,1,0,0,1,0,1,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? = 1 - 1
[1,1,1,0,0,1,1,0,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? = 1 - 1
[1,1,1,0,0,1,1,0,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? = 2 - 1
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [6] => [1] => [1,0]
=> ? = 3 - 1
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? = 1 - 1
[1,1,1,0,1,0,0,1,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? = 1 - 1
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? = 1 - 1
[1,1,1,0,1,0,1,0,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? = 1 - 1
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [6] => [1] => [1,0]
=> ? = 1 - 1
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? = 2 - 1
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? = 1 - 1
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [6] => [1] => [1,0]
=> ? = 1 - 1
Description
The number of boxes weakly below the path and above the diagonal that lie below at least two peaks. For example, the path $111011010000$ has three peaks in positions $03, 15, 26$. The boxes below $03$ are $01,02,\textbf{12}$, the boxes below $15$ are $\textbf{12},13,14,\textbf{23},\textbf{24},\textbf{34}$, and the boxes below $26$ are $\textbf{23},\textbf{24},25,\textbf{34},35,45$. We thus obtain the four boxes in positions $12,23,24,34$ that are below at least two peaks.
Mp00100: Dyck paths touch compositionInteger compositions
Mp00133: Integer compositions delta morphismInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
St001198: Dyck paths ⟶ ℤResult quality: 9% values known / values provided: 66%distinct values known / distinct values provided: 9%
Values
[1,0]
=> [1] => [1] => [1,0]
=> ? = 1 + 1
[1,0,1,0]
=> [1,1] => [2] => [1,1,0,0]
=> ? = 1 + 1
[1,1,0,0]
=> [2] => [1] => [1,0]
=> ? = 2 + 1
[1,0,1,0,1,0]
=> [1,1,1] => [3] => [1,1,1,0,0,0]
=> ? = 1 + 1
[1,0,1,1,0,0]
=> [1,2] => [1,1] => [1,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,0]
=> [2,1] => [1,1] => [1,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,0,0]
=> [3] => [1] => [1,0]
=> ? = 1 + 1
[1,1,1,0,0,0]
=> [3] => [1] => [1,0]
=> ? = 3 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [4] => [1,1,1,1,0,0,0,0]
=> ? = 1 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [2,1] => [1,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0]
=> [1,3] => [1,1] => [1,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,0]
=> [1,3] => [1,1] => [1,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [1,2] => [1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [2,2] => [2] => [1,1,0,0]
=> ? = 1 + 1
[1,1,0,1,0,0,1,0]
=> [3,1] => [1,1] => [1,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,0,1,0,0]
=> [4] => [1] => [1,0]
=> ? = 1 + 1
[1,1,0,1,1,0,0,0]
=> [4] => [1] => [1,0]
=> ? = 2 + 1
[1,1,1,0,0,0,1,0]
=> [3,1] => [1,1] => [1,0,1,0]
=> 2 = 1 + 1
[1,1,1,0,0,1,0,0]
=> [4] => [1] => [1,0]
=> ? = 2 + 1
[1,1,1,0,1,0,0,0]
=> [4] => [1] => [1,0]
=> ? = 1 + 1
[1,1,1,1,0,0,0,0]
=> [4] => [1] => [1,0]
=> ? = 4 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => [2,1] => [1,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [2,1] => [1,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [1,2] => [1,0,1,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => [1,1,1] => [1,0,1,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,4] => [1,1] => [1,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,4] => [1,1] => [1,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [1,1,1] => [1,0,1,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4] => [1,1] => [1,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4] => [1,1] => [1,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [1,1] => [1,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [1,1,1] => [1,0,1,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [2,1] => [1,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,3] => [1,1] => [1,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [1,1] => [1,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => [1,2] => [1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,2] => [1,1] => [1,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [4,1] => [1,1] => [1,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [5] => [1] => [1,0]
=> ? = 1 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [5] => [1] => [1,0]
=> ? = 1 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,1] => [1,1] => [1,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [5] => [1] => [1,0]
=> ? = 1 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [5] => [1] => [1,0]
=> ? = 1 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [5] => [1] => [1,0]
=> ? = 2 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => [1,2] => [1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,2] => [1,1] => [1,0,1,0]
=> 2 = 1 + 1
[1,1,1,0,0,1,0,0,1,0]
=> [4,1] => [1,1] => [1,0,1,0]
=> 2 = 1 + 1
[1,1,1,0,0,1,0,1,0,0]
=> [5] => [1] => [1,0]
=> ? = 1 + 1
[1,1,1,0,0,1,1,0,0,0]
=> [5] => [1] => [1,0]
=> ? = 2 + 1
[1,1,1,0,1,0,0,0,1,0]
=> [4,1] => [1,1] => [1,0,1,0]
=> 2 = 1 + 1
[1,1,1,0,1,0,0,1,0,0]
=> [5] => [1] => [1,0]
=> ? = 1 + 1
[1,1,1,0,1,0,1,0,0,0]
=> [5] => [1] => [1,0]
=> ? = 1 + 1
[1,1,1,0,1,1,0,0,0,0]
=> [5] => [1] => [1,0]
=> ? = 2 + 1
[1,1,1,1,0,0,0,0,1,0]
=> [4,1] => [1,1] => [1,0,1,0]
=> 2 = 1 + 1
[1,1,1,1,0,0,0,1,0,0]
=> [5] => [1] => [1,0]
=> ? = 2 + 1
[1,1,1,1,0,0,1,0,0,0]
=> [5] => [1] => [1,0]
=> ? = 2 + 1
[1,1,1,1,0,1,0,0,0,0]
=> [5] => [1] => [1,0]
=> ? = 1 + 1
[1,1,1,1,1,0,0,0,0,0]
=> [5] => [1] => [1,0]
=> ? = 5 + 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1] => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,2,1] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,2,1,1] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,2,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,4] => [2,1] => [1,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,4] => [2,1] => [1,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,4] => [2,1] => [1,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,4] => [2,1] => [1,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,4] => [2,1] => [1,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,1,1,1] => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,2,2] => [3] => [1,1,1,0,0,0]
=> ? = 1 + 1
[1,1,0,1,0,0,1,1,0,1,0,0]
=> [3,3] => [2] => [1,1,0,0]
=> ? = 1 + 1
[1,1,0,1,0,0,1,1,1,0,0,0]
=> [3,3] => [2] => [1,1,0,0]
=> ? = 1 + 1
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? = 1 + 1
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? = 1 + 1
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? = 1 + 1
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? = 1 + 1
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [6] => [1] => [1,0]
=> ? = 1 + 1
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? = 1 + 1
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? = 2 + 1
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? = 1 + 1
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? = 1 + 1
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [6] => [1] => [1,0]
=> ? = 2 + 1
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? = 1 + 1
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? = 1 + 1
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [6] => [1] => [1,0]
=> ? = 1 + 1
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [6] => [1] => [1,0]
=> ? = 2 + 1
[1,1,1,0,0,0,1,1,0,1,0,0]
=> [3,3] => [2] => [1,1,0,0]
=> ? = 1 + 1
[1,1,1,0,0,0,1,1,1,0,0,0]
=> [3,3] => [2] => [1,1,0,0]
=> ? = 1 + 1
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? = 1 + 1
[1,1,1,0,0,1,0,1,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? = 1 + 1
Description
The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$.
Mp00100: Dyck paths touch compositionInteger compositions
Mp00133: Integer compositions delta morphismInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
St001206: Dyck paths ⟶ ℤResult quality: 9% values known / values provided: 66%distinct values known / distinct values provided: 9%
Values
[1,0]
=> [1] => [1] => [1,0]
=> ? = 1 + 1
[1,0,1,0]
=> [1,1] => [2] => [1,1,0,0]
=> ? = 1 + 1
[1,1,0,0]
=> [2] => [1] => [1,0]
=> ? = 2 + 1
[1,0,1,0,1,0]
=> [1,1,1] => [3] => [1,1,1,0,0,0]
=> ? = 1 + 1
[1,0,1,1,0,0]
=> [1,2] => [1,1] => [1,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,0]
=> [2,1] => [1,1] => [1,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,0,0]
=> [3] => [1] => [1,0]
=> ? = 1 + 1
[1,1,1,0,0,0]
=> [3] => [1] => [1,0]
=> ? = 3 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [4] => [1,1,1,1,0,0,0,0]
=> ? = 1 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [2,1] => [1,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0]
=> [1,3] => [1,1] => [1,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,0]
=> [1,3] => [1,1] => [1,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [1,2] => [1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [2,2] => [2] => [1,1,0,0]
=> ? = 1 + 1
[1,1,0,1,0,0,1,0]
=> [3,1] => [1,1] => [1,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,0,1,0,0]
=> [4] => [1] => [1,0]
=> ? = 1 + 1
[1,1,0,1,1,0,0,0]
=> [4] => [1] => [1,0]
=> ? = 2 + 1
[1,1,1,0,0,0,1,0]
=> [3,1] => [1,1] => [1,0,1,0]
=> 2 = 1 + 1
[1,1,1,0,0,1,0,0]
=> [4] => [1] => [1,0]
=> ? = 2 + 1
[1,1,1,0,1,0,0,0]
=> [4] => [1] => [1,0]
=> ? = 1 + 1
[1,1,1,1,0,0,0,0]
=> [4] => [1] => [1,0]
=> ? = 4 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => [2,1] => [1,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [2,1] => [1,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [1,2] => [1,0,1,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => [1,1,1] => [1,0,1,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,4] => [1,1] => [1,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,4] => [1,1] => [1,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [1,1,1] => [1,0,1,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4] => [1,1] => [1,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4] => [1,1] => [1,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [1,1] => [1,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [1,1,1] => [1,0,1,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [2,1] => [1,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,3] => [1,1] => [1,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [1,1] => [1,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => [1,2] => [1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,2] => [1,1] => [1,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [4,1] => [1,1] => [1,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [5] => [1] => [1,0]
=> ? = 1 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [5] => [1] => [1,0]
=> ? = 1 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,1] => [1,1] => [1,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [5] => [1] => [1,0]
=> ? = 1 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [5] => [1] => [1,0]
=> ? = 1 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [5] => [1] => [1,0]
=> ? = 2 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => [1,2] => [1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,2] => [1,1] => [1,0,1,0]
=> 2 = 1 + 1
[1,1,1,0,0,1,0,0,1,0]
=> [4,1] => [1,1] => [1,0,1,0]
=> 2 = 1 + 1
[1,1,1,0,0,1,0,1,0,0]
=> [5] => [1] => [1,0]
=> ? = 1 + 1
[1,1,1,0,0,1,1,0,0,0]
=> [5] => [1] => [1,0]
=> ? = 2 + 1
[1,1,1,0,1,0,0,0,1,0]
=> [4,1] => [1,1] => [1,0,1,0]
=> 2 = 1 + 1
[1,1,1,0,1,0,0,1,0,0]
=> [5] => [1] => [1,0]
=> ? = 1 + 1
[1,1,1,0,1,0,1,0,0,0]
=> [5] => [1] => [1,0]
=> ? = 1 + 1
[1,1,1,0,1,1,0,0,0,0]
=> [5] => [1] => [1,0]
=> ? = 2 + 1
[1,1,1,1,0,0,0,0,1,0]
=> [4,1] => [1,1] => [1,0,1,0]
=> 2 = 1 + 1
[1,1,1,1,0,0,0,1,0,0]
=> [5] => [1] => [1,0]
=> ? = 2 + 1
[1,1,1,1,0,0,1,0,0,0]
=> [5] => [1] => [1,0]
=> ? = 2 + 1
[1,1,1,1,0,1,0,0,0,0]
=> [5] => [1] => [1,0]
=> ? = 1 + 1
[1,1,1,1,1,0,0,0,0,0]
=> [5] => [1] => [1,0]
=> ? = 5 + 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1] => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,2,1] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,2,1,1] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,2,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,4] => [2,1] => [1,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,4] => [2,1] => [1,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,4] => [2,1] => [1,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,4] => [2,1] => [1,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,4] => [2,1] => [1,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,1,1,1] => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,2,2] => [3] => [1,1,1,0,0,0]
=> ? = 1 + 1
[1,1,0,1,0,0,1,1,0,1,0,0]
=> [3,3] => [2] => [1,1,0,0]
=> ? = 1 + 1
[1,1,0,1,0,0,1,1,1,0,0,0]
=> [3,3] => [2] => [1,1,0,0]
=> ? = 1 + 1
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? = 1 + 1
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? = 1 + 1
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? = 1 + 1
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? = 1 + 1
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [6] => [1] => [1,0]
=> ? = 1 + 1
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? = 1 + 1
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? = 2 + 1
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? = 1 + 1
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? = 1 + 1
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [6] => [1] => [1,0]
=> ? = 2 + 1
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? = 1 + 1
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? = 1 + 1
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [6] => [1] => [1,0]
=> ? = 1 + 1
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [6] => [1] => [1,0]
=> ? = 2 + 1
[1,1,1,0,0,0,1,1,0,1,0,0]
=> [3,3] => [2] => [1,1,0,0]
=> ? = 1 + 1
[1,1,1,0,0,0,1,1,1,0,0,0]
=> [3,3] => [2] => [1,1,0,0]
=> ? = 1 + 1
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [6] => [1] => [1,0]
=> ? = 1 + 1
[1,1,1,0,0,1,0,1,1,0,0,0]
=> [6] => [1] => [1,0]
=> ? = 1 + 1
Description
The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$.
Matching statistic: St001075
Mp00132: Dyck paths switch returns and last double riseDyck paths
Mp00028: Dyck paths reverseDyck paths
Mp00138: Dyck paths to noncrossing partitionSet partitions
St001075: Set partitions ⟶ ℤResult quality: 42% values known / values provided: 42%distinct values known / distinct values provided: 73%
Values
[1,0]
=> [1,0]
=> [1,0]
=> {{1}}
=> ? = 1
[1,0,1,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> {{1},{2}}
=> 1
[1,1,0,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> {{1,2}}
=> 2
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> {{1},{2},{3}}
=> 1
[1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> {{1,3},{2}}
=> 1
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> {{1},{2,3}}
=> 1
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> {{1,2},{3}}
=> 1
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> {{1,2,3}}
=> 3
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4}}
=> 1
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> {{1,4},{2},{3}}
=> 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> {{1},{2,4},{3}}
=> 1
[1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> {{1,3},{2},{4}}
=> 1
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> {{1,2,4},{3}}
=> 1
[1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> {{1},{2},{3,4}}
=> 1
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> {{1,3,4},{2}}
=> 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> {{1},{2,3},{4}}
=> 1
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> {{1,2},{3},{4}}
=> 1
[1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> {{1,4},{2,3}}
=> 2
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> {{1,2},{3,4}}
=> 2
[1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> {{1,2,3},{4}}
=> 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 4
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4},{5}}
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> {{1,5},{2},{3},{4}}
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> {{1},{2,5},{3},{4}}
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> {{1,4},{2},{3},{5}}
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> {{1,2,5},{3},{4}}
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> {{1},{2},{3,5},{4}}
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> {{1,3,5},{2},{4}}
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> {{1},{2,4},{3},{5}}
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> {{1,3},{2},{4},{5}}
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> {{1,5},{2,4},{3}}
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> {{1},{2,3,5},{4}}
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> {{1,3,4},{2},{5}}
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> {{1,2,4},{3},{5}}
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> {{1,2,3,5},{4}}
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4,5}}
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> {{1,4,5},{2},{3}}
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> {{1},{2,4,5},{3}}
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> {{1,3},{2},{4,5}}
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> {{1,2,4,5},{3}}
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> {{1},{2},{3,4},{5}}
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> {{1,5},{2},{3,4}}
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> {{1},{2,3},{4},{5}}
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> {{1,2},{3},{4},{5}}
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> {{1,5},{2,3},{4}}
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> {{1},{2,5},{3,4}}
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> {{1,2},{3,5},{4}}
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> {{1,4},{2,3},{5}}
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> {{1,5},{2,3,4}}
=> 2
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5}}
=> 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4},{5},{6},{7},{8}}
=> ? = 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> {{1,8},{2},{3},{4},{5},{6},{7}}
=> ? = 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> {{1},{2,8},{3},{4},{5},{6},{7}}
=> ? = 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> {{1,7},{2},{3},{4},{5},{6},{8}}
=> ? = 1
[1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> {{1,2,8},{3},{4},{5},{6},{7}}
=> ? = 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> {{1},{2},{3,8},{4},{5},{6},{7}}
=> ? = 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> {{1,3,8},{2},{4},{5},{6},{7}}
=> ? = 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> {{1},{2,7},{3},{4},{5},{6},{8}}
=> ? = 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> {{1,6},{2},{3},{4},{5},{7},{8}}
=> ? = 1
[1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> {{1},{2,3,8},{4},{5},{6},{7}}
=> ? = 1
[1,0,1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,1,0,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,0,0,1,0]
=> {{1,3,7},{2},{4},{5},{6},{8}}
=> ? = 1
[1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0,1,0]
=> {{1,2,7},{3},{4},{5},{6},{8}}
=> ? = 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> {{1},{2},{3},{4,8},{5},{6},{7}}
=> ? = 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0,1,0]
=> {{1,4,7},{2},{3},{5},{6},{8}}
=> ? = 1
[1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> {{1},{2},{3,7},{4},{5},{6},{8}}
=> ? = 1
[1,0,1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> {{1},{2,6},{3},{4},{5},{7},{8}}
=> ? = 1
[1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> {{1,5},{2},{3},{4},{6},{7},{8}}
=> ? = 1
[1,0,1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,1,0,0,1,0]
=> {{1,7},{2},{3,6},{4},{5},{8}}
=> ? = 1
[1,0,1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,1,0,0,1,0]
=> {{1,7},{2,6},{3},{4},{5},{8}}
=> ? = 1
[1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,1,0,1,0,1,0,0,0]
=> {{1},{2},{3,4,8},{5},{6},{7}}
=> ? = 1
[1,0,1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,1,0,1,0,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,1,0,1,0,0,0,1,0]
=> {{1},{2,4,7},{3},{5},{6},{8}}
=> ? = 1
[1,0,1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0,1,0,1,0]
=> {{1,4,6},{2},{3},{5},{7},{8}}
=> ? = 1
[1,0,1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,1,0,1,0,0,0,1,0]
=> {{1},{2,3,7},{4},{5},{6},{8}}
=> ? = 1
[1,0,1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0,1,0,1,0]
=> {{1,3,6},{2},{4},{5},{7},{8}}
=> ? = 1
[1,0,1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0,1,0,1,0]
=> {{1,2,6},{3},{4},{5},{7},{8}}
=> ? = 1
[1,0,1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> {{1,3,4,7},{2},{5},{6},{8}}
=> ? = 1
[1,0,1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,1,0,1,0,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,1,0,0,0,0,1,0]
=> {{1,2,4,7},{3},{5},{6},{8}}
=> ? = 1
[1,0,1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0,1,0]
=> {{1,2,3,7},{4},{5},{6},{8}}
=> ? = 1
[1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0]
=> {{1,2,3,4,8},{5},{6},{7}}
=> ? = 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> {{1,5,8},{2},{3},{4},{6},{7}}
=> ? = 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0,1,0]
=> {{1,5,7},{2},{3},{4},{6},{8}}
=> ? = 1
[1,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,1,0,1,0,0,0,1,0]
=> {{1},{2,5,7},{3},{4},{6},{8}}
=> ? = 1
[1,0,1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0,1,0,1,0]
=> {{1,5,6},{2},{3},{4},{7},{8}}
=> ? = 1
[1,0,1,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,1,0,1,0,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,1,0,1,0,0,0,0,1,0]
=> {{1,3,5,7},{2},{4},{6},{8}}
=> ? = 1
[1,0,1,0,1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,0,1,0]
=> {{1,2,5,7},{3},{4},{6},{8}}
=> ? = 1
[1,0,1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> {{1},{2},{3},{4,7},{5},{6},{8}}
=> ? = 1
[1,0,1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,0,1,0]
=> {{1,7},{2},{3},{4,6},{5},{8}}
=> ? = 1
[1,0,1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> {{1},{2},{3,6},{4},{5},{7},{8}}
=> ? = 1
[1,0,1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> {{1},{2,5},{3},{4},{6},{7},{8}}
=> ? = 1
[1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> {{1,4},{2},{3},{5},{6},{7},{8}}
=> ? = 1
[1,0,1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,1,0,1,0,0]
=> {{1,8},{2,5},{3},{4},{6},{7}}
=> ? = 1
[1,0,1,0,1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,1,0,0,1,0]
=> {{1,7},{2},{3,5},{4},{6},{8}}
=> ? = 1
[1,0,1,0,1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,1,0,0,1,0]
=> {{1,7},{2,5},{3},{4},{6},{8}}
=> ? = 1
[1,0,1,0,1,1,0,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,1,0,0,1,0,0,1,0]
=> {{1},{2,7},{3},{4,6},{5},{8}}
=> ? = 1
[1,0,1,0,1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0,1,0,1,0]
=> {{1,6},{2},{3},{4,5},{7},{8}}
=> ? = 1
[1,0,1,0,1,1,0,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,1,0,0,1,0,0,1,0]
=> {{1},{2,7},{3,6},{4},{5},{8}}
=> ? = 1
[1,0,1,0,1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0,1,0,1,0]
=> {{1,6},{2},{3,5},{4},{7},{8}}
=> ? = 1
[1,0,1,0,1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0,1,0,1,0]
=> {{1,6},{2,5},{3},{4},{7},{8}}
=> ? = 1
[1,0,1,0,1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> {{1,3,7},{2},{4,6},{5},{8}}
=> ? = 1
Description
The minimal size of a block of a set partition.
Matching statistic: St001199
Mp00024: Dyck paths to 321-avoiding permutationPermutations
Mp00069: Permutations complementPermutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
St001199: Dyck paths ⟶ ℤResult quality: 9% values known / values provided: 28%distinct values known / distinct values provided: 9%
Values
[1,0]
=> [1] => [1] => [1,0]
=> ? = 1
[1,0,1,0]
=> [2,1] => [1,2] => [1,0,1,0]
=> 1
[1,1,0,0]
=> [1,2] => [2,1] => [1,1,0,0]
=> ? = 2
[1,0,1,0,1,0]
=> [2,1,3] => [2,3,1] => [1,1,0,1,0,0]
=> 1
[1,0,1,1,0,0]
=> [2,3,1] => [2,1,3] => [1,1,0,0,1,0]
=> 1
[1,1,0,0,1,0]
=> [3,1,2] => [1,3,2] => [1,0,1,1,0,0]
=> 1
[1,1,0,1,0,0]
=> [1,3,2] => [3,1,2] => [1,1,1,0,0,0]
=> ? = 1
[1,1,1,0,0,0]
=> [1,2,3] => [3,2,1] => [1,1,1,0,0,0]
=> ? = 3
[1,0,1,0,1,0,1,0]
=> [2,1,4,3] => [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> 1
[1,0,1,0,1,1,0,0]
=> [2,4,1,3] => [3,1,4,2] => [1,1,1,0,0,1,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [2,1,3,4] => [3,4,2,1] => [1,1,1,0,1,0,0,0]
=> 1
[1,0,1,1,0,1,0,0]
=> [2,3,1,4] => [3,2,4,1] => [1,1,1,0,0,1,0,0]
=> 1
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [3,1,4,2] => [2,4,1,3] => [1,1,0,1,1,0,0,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,0,0,1,0]
=> [3,1,2,4] => [2,4,3,1] => [1,1,0,1,1,0,0,0]
=> 1
[1,1,0,1,0,1,0,0]
=> [1,3,2,4] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> ? = 1
[1,1,0,1,1,0,0,0]
=> [1,3,4,2] => [4,2,1,3] => [1,1,1,1,0,0,0,0]
=> ? = 2
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 1
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> ? = 2
[1,1,1,0,1,0,0,0]
=> [1,2,4,3] => [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> ? = 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? = 4
[1,0,1,0,1,0,1,0,1,0]
=> [2,1,4,3,5] => [4,5,2,3,1] => [1,1,1,1,0,1,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [2,4,1,3,5] => [4,2,5,3,1] => [1,1,1,1,0,0,1,0,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [2,1,4,5,3] => [4,5,2,1,3] => [1,1,1,1,0,1,0,0,0,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [2,4,1,5,3] => [4,2,5,1,3] => [1,1,1,1,0,0,1,0,0,0]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [2,4,5,1,3] => [4,2,1,5,3] => [1,1,1,1,0,0,0,1,0,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,5,3,4] => [4,5,1,3,2] => [1,1,1,1,0,1,0,0,0,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [2,5,1,3,4] => [4,1,5,3,2] => [1,1,1,1,0,0,1,0,0,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [2,1,3,5,4] => [4,5,3,1,2] => [1,1,1,1,0,1,0,0,0,0]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [2,3,1,5,4] => [4,3,5,1,2] => [1,1,1,1,0,0,1,0,0,0]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [4,3,1,5,2] => [1,1,1,1,0,0,0,1,0,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,4,5] => [4,5,3,2,1] => [1,1,1,1,0,1,0,0,0,0]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [2,3,1,4,5] => [4,3,5,2,1] => [1,1,1,1,0,0,1,0,0,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [2,3,4,1,5] => [4,3,2,5,1] => [1,1,1,1,0,0,0,1,0,0]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [4,3,2,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [3,1,4,2,5] => [3,5,2,4,1] => [1,1,1,0,1,1,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [3,4,1,2,5] => [3,2,5,4,1] => [1,1,1,0,0,1,1,0,0,0]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [3,1,4,5,2] => [3,5,2,1,4] => [1,1,1,0,1,1,0,0,0,0]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [3,4,1,5,2] => [3,2,5,1,4] => [1,1,1,0,0,1,1,0,0,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [3,2,1,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,5,2,4] => [3,5,1,4,2] => [1,1,1,0,1,1,0,0,0,0]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,5,1,2,4] => [3,1,5,4,2] => [1,1,1,0,0,1,1,0,0,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [3,1,2,5,4] => [3,5,4,1,2] => [1,1,1,0,1,1,0,0,0,0]
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,3,2,5,4] => [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [5,3,1,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,4,5] => [3,5,4,2,1] => [1,1,1,0,1,1,0,0,0,0]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,3,2,4,5] => [5,3,4,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,3,4,2,5] => [5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,3,4,5,2] => [5,3,2,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 2
[1,1,1,0,0,0,1,0,1,0]
=> [4,1,5,2,3] => [2,5,1,4,3] => [1,1,0,1,1,1,0,0,0,0]
=> 1
[1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> 1
[1,1,1,0,0,1,0,0,1,0]
=> [4,1,2,5,3] => [2,5,4,1,3] => [1,1,0,1,1,1,0,0,0,0]
=> 1
[1,1,1,0,0,1,0,1,0,0]
=> [1,4,2,5,3] => [5,2,4,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1
[1,1,1,0,0,1,1,0,0,0]
=> [1,4,5,2,3] => [5,2,1,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 2
[1,1,1,0,1,0,0,0,1,0]
=> [4,1,2,3,5] => [2,5,4,3,1] => [1,1,0,1,1,1,0,0,0,0]
=> 1
[1,1,1,0,1,0,0,1,0,0]
=> [1,4,2,3,5] => [5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1
[1,1,1,0,1,0,1,0,0,0]
=> [1,2,4,3,5] => [5,4,2,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1
[1,1,1,0,1,1,0,0,0,0]
=> [1,2,4,5,3] => [5,4,2,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 2
[1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,1,1,0,0,0,1,0,0]
=> [1,5,2,3,4] => [5,1,4,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 2
[1,1,1,1,0,0,1,0,0,0]
=> [1,2,5,3,4] => [5,4,1,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 2
[1,1,1,1,0,1,0,0,0,0]
=> [1,2,3,5,4] => [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 5
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,4,3,6,5] => [5,6,3,4,1,2] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [2,4,1,3,6,5] => [5,3,6,4,1,2] => [1,1,1,1,1,0,0,1,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [2,1,4,6,3,5] => [5,6,3,1,4,2] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [2,4,1,6,3,5] => [5,3,6,1,4,2] => [1,1,1,1,1,0,0,1,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [2,4,6,1,3,5] => [5,3,1,6,4,2] => [1,1,1,1,1,0,0,0,1,0,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,3,5,6] => [5,6,3,4,2,1] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,4,1,3,5,6] => [5,3,6,4,2,1] => [1,1,1,1,1,0,0,1,0,0,0,0]
=> 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [2,1,4,5,3,6] => [5,6,3,2,4,1] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [2,4,1,5,3,6] => [5,3,6,2,4,1] => [1,1,1,1,1,0,0,1,0,0,0,0]
=> 1
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,3,2,5,4,6] => [6,4,5,2,3,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,3,5,2,4,6] => [6,4,2,5,3,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,3,2,5,6,4] => [6,4,5,2,1,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,3,5,2,6,4] => [6,4,2,5,1,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,3,5,6,2,4] => [6,4,2,1,5,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,3,2,6,4,5] => [6,4,5,1,3,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,3,6,2,4,5] => [6,4,1,5,3,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,3,2,4,6,5] => [6,4,5,3,1,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,3,4,2,6,5] => [6,4,3,5,1,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,3,4,6,2,5] => [6,4,3,1,5,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,3,2,4,5,6] => [6,4,5,3,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,3,4,2,5,6] => [6,4,3,5,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,3,4,5,2,6] => [6,4,3,2,5,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,3,4,5,6,2] => [6,4,3,2,1,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,4,2,5,3,6] => [6,3,5,2,4,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1
[1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,4,5,2,3,6] => [6,3,2,5,4,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1
[1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,4,2,5,6,3] => [6,3,5,2,1,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1
[1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,4,5,2,6,3] => [6,3,2,5,1,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,4,5,6,2,3] => [6,3,2,1,5,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 3
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,4,2,6,3,5] => [6,3,5,1,4,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1
[1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,4,6,2,3,5] => [6,3,1,5,4,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,4,2,3,6,5] => [6,3,5,4,1,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1
[1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,2,4,3,6,5] => [6,5,3,4,1,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,2,4,6,3,5] => [6,5,3,1,4,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,4,2,3,5,6] => [6,3,5,4,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,2,4,3,5,6] => [6,5,3,4,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,2,4,5,3,6] => [6,5,3,2,4,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1
Description
The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$.
Mp00025: Dyck paths to 132-avoiding permutationPermutations
Mp00248: Permutations DEX compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000264: Graphs ⟶ ℤResult quality: 9% values known / values provided: 25%distinct values known / distinct values provided: 9%
Values
[1,0]
=> [1] => [1] => ([],1)
=> ? = 1 + 2
[1,0,1,0]
=> [2,1] => [2] => ([],2)
=> ? = 1 + 2
[1,1,0,0]
=> [1,2] => [2] => ([],2)
=> ? = 2 + 2
[1,0,1,0,1,0]
=> [3,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> ? = 1 + 2
[1,0,1,1,0,0]
=> [2,3,1] => [3] => ([],3)
=> ? = 1 + 2
[1,1,0,0,1,0]
=> [3,1,2] => [3] => ([],3)
=> ? = 1 + 2
[1,1,0,1,0,0]
=> [2,1,3] => [3] => ([],3)
=> ? = 1 + 2
[1,1,1,0,0,0]
=> [1,2,3] => [3] => ([],3)
=> ? = 3 + 2
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 1 + 2
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? = 1 + 2
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? = 1 + 2
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 1 + 2
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [4] => ([],4)
=> ? = 1 + 2
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [1,3] => ([(2,3)],4)
=> ? = 1 + 2
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [4] => ([],4)
=> ? = 1 + 2
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 1 + 2
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 1 + 2
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [4] => ([],4)
=> ? = 2 + 2
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [4] => ([],4)
=> ? = 1 + 2
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [4] => ([],4)
=> ? = 2 + 2
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [4] => ([],4)
=> ? = 1 + 2
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [4] => ([],4)
=> ? = 4 + 2
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 1 + 2
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 1 + 2
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1 + 2
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 1 + 2
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1 + 2
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 1 + 2
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5] => ([],5)
=> ? = 1 + 2
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1 + 2
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [1,4] => ([(3,4)],5)
=> ? = 1 + 2
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [1,4] => ([(3,4)],5)
=> ? = 1 + 2
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [5] => ([],5)
=> ? = 1 + 2
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1 + 2
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1 + 2
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1 + 2
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1 + 2
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 1 + 2
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => [5] => ([],5)
=> ? = 2 + 2
[1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => [1,4] => ([(3,4)],5)
=> ? = 1 + 2
[1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => [5] => ([],5)
=> ? = 1 + 2
[1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,2,4] => [1,4] => ([(3,4)],5)
=> ? = 1 + 2
[1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,2,5] => [1,4] => ([(3,4)],5)
=> ? = 1 + 2
[1,1,1,0,0,1,1,0,0,0]
=> [3,4,1,2,5] => [5] => ([],5)
=> ? = 2 + 2
[1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,3,4] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 1 + 2
[1,1,1,0,1,0,0,1,0,0]
=> [4,2,1,3,5] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 1 + 2
[1,1,1,0,1,0,1,0,0,0]
=> [3,2,1,4,5] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 1 + 2
[1,1,1,0,1,1,0,0,0,0]
=> [2,3,1,4,5] => [5] => ([],5)
=> ? = 2 + 2
[1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => [5] => ([],5)
=> ? = 1 + 2
[1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,3,5] => [5] => ([],5)
=> ? = 2 + 2
[1,1,1,1,0,0,1,0,0,0]
=> [3,1,2,4,5] => [5] => ([],5)
=> ? = 2 + 2
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2,1] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [5,6,4,3,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [6,4,5,3,2,1] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [5,4,6,3,2,1] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [4,5,6,3,2,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [6,5,3,4,2,1] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [5,6,3,4,2,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [6,4,3,5,2,1] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [5,4,3,6,2,1] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [4,5,3,6,2,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [6,3,4,5,2,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [5,3,4,6,2,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [4,3,5,6,2,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,3,1] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [5,6,4,2,3,1] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [6,4,5,2,3,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [5,4,6,2,3,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,4,1] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [5,6,3,2,4,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [6,4,3,2,5,1] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [5,4,3,2,6,1] => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [4,5,3,2,6,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [6,3,4,2,5,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [5,3,4,2,6,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [4,3,5,2,6,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [6,5,2,3,4,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [6,4,2,3,5,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [5,4,2,3,6,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [6,3,2,4,5,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [5,3,2,4,6,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [4,3,2,5,6,1] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,1,2] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [5,6,4,3,1,2] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [6,4,5,3,1,2] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [5,4,6,3,1,2] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [6,5,3,4,1,2] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [6,4,3,5,1,2] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [5,4,3,6,1,2] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
Description
The girth of a graph, which is not a tree. This is the length of the shortest cycle in the graph.
Mp00101: Dyck paths decomposition reverseDyck paths
Mp00103: Dyck paths peeling mapDyck paths
Mp00331: Dyck paths rotate triangulation counterclockwiseDyck paths
St001498: Dyck paths ⟶ ℤResult quality: 9% values known / values provided: 16%distinct values known / distinct values provided: 9%
Values
[1,0]
=> [1,0]
=> [1,0]
=> [1,0]
=> ? = 1 - 1
[1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> ? = 1 - 1
[1,1,0,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> ? = 2 - 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ? = 1 - 1
[1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ? = 1 - 1
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ? = 1 - 1
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ? = 1 - 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ? = 3 - 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? = 1 - 1
[1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? = 1 - 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? = 1 - 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? = 1 - 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? = 1 - 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? = 1 - 1
[1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? = 1 - 1
[1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? = 1 - 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? = 2 - 1
[1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? = 1 - 1
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? = 2 - 1
[1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? = 1 - 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? = 4 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 0 = 1 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 0 = 1 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 0 = 1 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 0 = 1 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 - 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 - 1
[1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 2 - 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 0 = 1 - 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> 0 = 1 - 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> 0 = 1 - 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 0 = 1 - 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 0 = 1 - 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 0 = 1 - 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 0 = 1 - 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> 0 = 1 - 1
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> 0 = 1 - 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 0 = 1 - 1
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 0 = 1 - 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 0 = 1 - 1
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 0 = 1 - 1
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 0 = 1 - 1
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> 0 = 1 - 1
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> 0 = 1 - 1
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 0 = 1 - 1
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 0 = 1 - 1
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 0 = 1 - 1
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 0 = 1 - 1
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 0 = 1 - 1
[1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 0 = 1 - 1
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> 0 = 1 - 1
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> 0 = 1 - 1
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 0 = 1 - 1
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 0 = 1 - 1
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 0 = 1 - 1
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 0 = 1 - 1
[1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 0 = 1 - 1
Description
The normalised height of a Nakayama algebra with magnitude 1. We use the bijection (see code) suggested by Christian Stump, to have a bijection between such Nakayama algebras with magnitude 1 and Dyck paths. The normalised height is the height of the (periodic) Dyck path given by the top of the Auslander-Reiten quiver. Thus when having a CNakayama algebra it is the Loewy length minus the number of simple modules and for the LNakayama algebras it is the usual height.
The following 15 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001236The dominant dimension of the corresponding Comp-Nakayama algebra. St001481The minimal height of a peak of a Dyck path. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001877Number of indecomposable injective modules with projective dimension 2. St001545The second Elser number of a connected graph. St001704The size of the largest multi-subset-intersection of the deck of a graph with the deck of another graph. St000455The second largest eigenvalue of a graph if it is integral. St001570The minimal number of edges to add to make a graph Hamiltonian. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001096The size of the overlap set of a permutation. St001330The hat guessing number of a graph. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001846The number of elements which do not have a complement in the lattice.