searching the database
Your data matches 3 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000658
Mp00100: Dyck paths —touch composition⟶ Integer compositions
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St000658: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St000658: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1,1] => [2] => [1,1,0,0]
=> 1
[1,0,1,0,1,0]
=> [1,1,1] => [3] => [1,1,1,0,0,0]
=> 0
[1,0,1,1,0,0]
=> [1,2] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,0,1,0]
=> [2,1] => [1,1] => [1,0,1,0]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [4] => [1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [2,1] => [1,1,0,0,1,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> 0
[1,0,1,1,0,1,0,0]
=> [1,3] => [1,1] => [1,0,1,0]
=> 0
[1,0,1,1,1,0,0,0]
=> [1,3] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [1,2] => [1,0,1,1,0,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [2,2] => [2] => [1,1,0,0]
=> 1
[1,1,0,1,0,0,1,0]
=> [3,1] => [1,1] => [1,0,1,0]
=> 0
[1,1,1,0,0,0,1,0]
=> [3,1] => [1,1] => [1,0,1,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => [2,1] => [1,1,0,0,1,0]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [2,1] => [1,1,0,0,1,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [1,2] => [1,0,1,1,0,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => [1,1,1] => [1,0,1,0,1,0]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,4] => [1,1] => [1,0,1,0]
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,4] => [1,1] => [1,0,1,0]
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [1,1,1] => [1,0,1,0,1,0]
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [1,4] => [1,1] => [1,0,1,0]
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> [1,4] => [1,1] => [1,0,1,0]
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [1,1,1] => [1,0,1,0,1,0]
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [2,1] => [1,1,0,0,1,0]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,3] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => [1,2] => [1,0,1,1,0,0]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,2] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [4,1] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,1,1,0,0,0,1,0]
=> [4,1] => [1,1] => [1,0,1,0]
=> 0
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => [1,2] => [1,0,1,1,0,0]
=> 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,2] => [1,1] => [1,0,1,0]
=> 0
[1,1,1,0,0,1,0,0,1,0]
=> [4,1] => [1,1] => [1,0,1,0]
=> 0
[1,1,1,0,1,0,0,0,1,0]
=> [4,1] => [1,1] => [1,0,1,0]
=> 0
[1,1,1,1,0,0,0,0,1,0]
=> [4,1] => [1,1] => [1,0,1,0]
=> 0
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1] => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 0
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,2,1] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> 0
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> 0
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,2,1,1] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 2
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,2,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,4] => [2,1] => [1,1,0,0,1,0]
=> 1
Description
The number of rises of length 2 of a Dyck path.
This is also the number of $(1,1)$ steps of the associated Łukasiewicz path, see [1].
A related statistic is the number of double rises in a Dyck path, [[St000024]].
Matching statistic: St001139
Mp00100: Dyck paths —touch composition⟶ Integer compositions
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St001139: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St001139: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1,1] => [2] => [1,1,0,0]
=> 1
[1,0,1,0,1,0]
=> [1,1,1] => [3] => [1,1,1,0,0,0]
=> 0
[1,0,1,1,0,0]
=> [1,2] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,0,1,0]
=> [2,1] => [1,1] => [1,0,1,0]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [4] => [1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [2,1] => [1,1,0,0,1,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> 0
[1,0,1,1,0,1,0,0]
=> [1,3] => [1,1] => [1,0,1,0]
=> 0
[1,0,1,1,1,0,0,0]
=> [1,3] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [1,2] => [1,0,1,1,0,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [2,2] => [2] => [1,1,0,0]
=> 1
[1,1,0,1,0,0,1,0]
=> [3,1] => [1,1] => [1,0,1,0]
=> 0
[1,1,1,0,0,0,1,0]
=> [3,1] => [1,1] => [1,0,1,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => [2,1] => [1,1,0,0,1,0]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [2,1] => [1,1,0,0,1,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [1,2] => [1,0,1,1,0,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => [1,1,1] => [1,0,1,0,1,0]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,4] => [1,1] => [1,0,1,0]
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,4] => [1,1] => [1,0,1,0]
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [1,1,1] => [1,0,1,0,1,0]
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [1,4] => [1,1] => [1,0,1,0]
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> [1,4] => [1,1] => [1,0,1,0]
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [1,1,1] => [1,0,1,0,1,0]
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [2,1] => [1,1,0,0,1,0]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,3] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => [1,2] => [1,0,1,1,0,0]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,2] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [4,1] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,1,1,0,0,0,1,0]
=> [4,1] => [1,1] => [1,0,1,0]
=> 0
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => [1,2] => [1,0,1,1,0,0]
=> 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,2] => [1,1] => [1,0,1,0]
=> 0
[1,1,1,0,0,1,0,0,1,0]
=> [4,1] => [1,1] => [1,0,1,0]
=> 0
[1,1,1,0,1,0,0,0,1,0]
=> [4,1] => [1,1] => [1,0,1,0]
=> 0
[1,1,1,1,0,0,0,0,1,0]
=> [4,1] => [1,1] => [1,0,1,0]
=> 0
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1] => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 0
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,2,1] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> 0
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> 0
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,2,1,1] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 2
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,2,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,4] => [2,1] => [1,1,0,0,1,0]
=> 1
Description
The number of occurrences of hills of size 2 in a Dyck path.
A hill of size two is a subpath beginning at height zero, consisting of two up steps followed by two down steps.
Matching statistic: St001657
Mp00100: Dyck paths —touch composition⟶ Integer compositions
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
Mp00040: Integer compositions —to partition⟶ Integer partitions
St001657: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
Mp00040: Integer compositions —to partition⟶ Integer partitions
St001657: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1,1] => [2] => [2]
=> 1
[1,0,1,0,1,0]
=> [1,1,1] => [3] => [3]
=> 0
[1,0,1,1,0,0]
=> [1,2] => [1,1] => [1,1]
=> 0
[1,1,0,0,1,0]
=> [2,1] => [1,1] => [1,1]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [4] => [4]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [2,1] => [2,1]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [1,1,1] => [1,1,1]
=> 0
[1,0,1,1,0,1,0,0]
=> [1,3] => [1,1] => [1,1]
=> 0
[1,0,1,1,1,0,0,0]
=> [1,3] => [1,1] => [1,1]
=> 0
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [1,2] => [2,1]
=> 1
[1,1,0,0,1,1,0,0]
=> [2,2] => [2] => [2]
=> 1
[1,1,0,1,0,0,1,0]
=> [3,1] => [1,1] => [1,1]
=> 0
[1,1,1,0,0,0,1,0]
=> [3,1] => [1,1] => [1,1]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [5] => [5]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [3,1] => [3,1]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [2,1,1] => [2,1,1]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => [2,1] => [2,1]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [2,1] => [2,1]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [1,1,2] => [2,1,1]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [1,2] => [2,1]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => [1,1,1] => [1,1,1]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,4] => [1,1] => [1,1]
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,4] => [1,1] => [1,1]
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [1,1,1] => [1,1,1]
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [1,4] => [1,1] => [1,1]
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> [1,4] => [1,1] => [1,1]
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [1,1] => [1,1]
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [1,3] => [3,1]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [1,1,1] => [1,1,1]
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [2,1] => [2,1]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,3] => [1,1] => [1,1]
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [1,1] => [1,1]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => [1,2] => [2,1]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,2] => [1,1] => [1,1]
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [4,1] => [1,1] => [1,1]
=> 0
[1,1,0,1,1,0,0,0,1,0]
=> [4,1] => [1,1] => [1,1]
=> 0
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => [1,2] => [2,1]
=> 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,2] => [1,1] => [1,1]
=> 0
[1,1,1,0,0,1,0,0,1,0]
=> [4,1] => [1,1] => [1,1]
=> 0
[1,1,1,0,1,0,0,0,1,0]
=> [4,1] => [1,1] => [1,1]
=> 0
[1,1,1,1,0,0,0,0,1,0]
=> [4,1] => [1,1] => [1,1]
=> 0
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1] => [6] => [6]
=> 0
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,2] => [4,1] => [4,1]
=> 0
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,2,1] => [3,1,1] => [3,1,1]
=> 0
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,3] => [3,1] => [3,1]
=> 0
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,3] => [3,1] => [3,1]
=> 0
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,2,1,1] => [2,1,2] => [2,2,1]
=> 2
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,2,2] => [2,2] => [2,2]
=> 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,3,1] => [2,1,1] => [2,1,1]
=> 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,4] => [2,1] => [2,1]
=> 1
Description
The number of twos in an integer partition.
The total number of twos in all partitions of $n$ is equal to the total number of singletons [[St001484]] in all partitions of $n-1$, see [1].
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!