Your data matches 71 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
St000662: Permutations ⟶ ℤResult quality: 100% ā—values known / values provided: 100%ā—distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [1] => 0
[1,2] => [1,0,1,0]
=> [1,2] => 0
[2,1] => [1,1,0,0]
=> [2,1] => 1
[1,2,3] => [1,0,1,0,1,0]
=> [1,2,3] => 0
[1,3,2] => [1,0,1,1,0,0]
=> [1,3,2] => 1
[2,1,3] => [1,1,0,0,1,0]
=> [2,1,3] => 1
[2,3,1] => [1,1,0,1,0,0]
=> [2,3,1] => 1
[3,1,2] => [1,1,1,0,0,0]
=> [3,2,1] => 2
[3,2,1] => [1,1,1,0,0,0]
=> [3,2,1] => 2
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 0
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 1
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 1
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 2
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 2
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 1
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 1
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 1
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 1
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 2
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 2
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 2
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 2
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 2
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 2
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [3,4,2,1] => 2
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [3,4,2,1] => 2
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 3
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 3
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 3
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 3
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 3
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 3
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 0
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 1
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 1
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => 1
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 2
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 2
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 1
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 1
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 1
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 1
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 2
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 2
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => 2
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => 2
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => 2
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => 2
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => 2
Description
The staircase size of the code of a permutation. The code $c(\pi)$ of a permutation $\pi$ of length $n$ is given by the sequence $(c_1,\ldots,c_{n})$ with $c_i = |\{j > i : \pi(j) < \pi(i)\}|$. This is a bijection between permutations and all sequences $(c_1,\ldots,c_n)$ with $0 \leq c_i \leq n-i$. The staircase size of the code is the maximal $k$ such that there exists a subsequence $(c_{i_k},\ldots,c_{i_1})$ of $c(\pi)$ with $c_{i_j} \geq j$. This statistic is mapped through [[Mp00062]] to the number of descents, showing that together with the number of inversions [[St000018]] it is Euler-Mahonian.
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
St000141: Permutations ⟶ ℤResult quality: 98% ā—values known / values provided: 98%ā—distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [1] => 0
[1,2] => [1,0,1,0]
=> [1,2] => 0
[2,1] => [1,1,0,0]
=> [2,1] => 1
[1,2,3] => [1,0,1,0,1,0]
=> [1,2,3] => 0
[1,3,2] => [1,0,1,1,0,0]
=> [1,3,2] => 1
[2,1,3] => [1,1,0,0,1,0]
=> [2,1,3] => 1
[2,3,1] => [1,1,0,1,0,0]
=> [2,3,1] => 1
[3,1,2] => [1,1,1,0,0,0]
=> [3,2,1] => 2
[3,2,1] => [1,1,1,0,0,0]
=> [3,2,1] => 2
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 0
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 1
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 1
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 2
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 2
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 1
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 1
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 1
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 1
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 2
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 2
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 2
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 2
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 2
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 2
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [3,4,2,1] => 2
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [3,4,2,1] => 2
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 3
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 3
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 3
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 3
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 3
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 3
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 0
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 1
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 1
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => 1
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 2
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 2
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 1
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 1
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 1
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 1
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 2
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 2
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => 2
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => 2
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => 2
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => 2
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => 2
[1,2,3,4,6,7,5] => [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,4,6,7,5] => ? = 1
[1,2,3,4,7,5,6] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,4,7,6,5] => ? = 2
[1,2,3,4,7,6,5] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,4,7,6,5] => ? = 2
[1,2,3,5,4,6,7] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,3,5,4,6,7] => ? = 1
[1,2,3,5,4,7,6] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,3,5,4,7,6] => ? = 1
[1,2,3,5,6,4,7] => [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,3,5,6,4,7] => ? = 1
[1,2,3,5,6,7,4] => [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,3,5,6,7,4] => ? = 1
[1,2,3,5,7,4,6] => [1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,2,3,5,7,6,4] => ? = 2
[1,2,3,5,7,6,4] => [1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,2,3,5,7,6,4] => ? = 2
[1,2,3,6,4,5,7] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,3,6,5,4,7] => ? = 2
[1,2,3,6,4,7,5] => [1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,2,3,6,5,7,4] => ? = 2
[1,2,3,6,5,4,7] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,3,6,5,4,7] => ? = 2
[1,2,3,6,5,7,4] => [1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,2,3,6,5,7,4] => ? = 2
[1,2,3,6,7,4,5] => [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,2,3,6,7,5,4] => ? = 2
[1,2,3,6,7,5,4] => [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,2,3,6,7,5,4] => ? = 2
[1,2,3,7,4,5,6] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,3,7,6,5,4] => ? = 3
[1,2,3,7,4,6,5] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,3,7,6,5,4] => ? = 3
[1,2,3,7,5,4,6] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,3,7,6,5,4] => ? = 3
[1,2,3,7,5,6,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,3,7,6,5,4] => ? = 3
[1,2,3,7,6,4,5] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,3,7,6,5,4] => ? = 3
[1,2,3,7,6,5,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,3,7,6,5,4] => ? = 3
[1,2,4,3,5,6,7] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,4,3,5,6,7] => ? = 1
[1,2,4,3,5,7,6] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,2,4,3,5,7,6] => ? = 1
[1,2,4,3,6,5,7] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,2,4,3,6,5,7] => ? = 1
[1,2,4,3,6,7,5] => [1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,2,4,3,6,7,5] => ? = 1
[1,2,4,3,7,5,6] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,2,4,3,7,6,5] => ? = 2
[1,2,4,3,7,6,5] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,2,4,3,7,6,5] => ? = 2
[1,2,4,5,3,6,7] => [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,2,4,5,3,6,7] => ? = 1
[1,2,4,5,3,7,6] => [1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,2,4,5,3,7,6] => ? = 1
[1,2,4,5,6,3,7] => [1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,2,4,5,6,3,7] => ? = 1
[1,2,4,5,6,7,3] => [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,2,4,5,6,7,3] => ? = 1
[1,2,4,5,7,3,6] => [1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,2,4,5,7,6,3] => ? = 2
[1,2,4,5,7,6,3] => [1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,2,4,5,7,6,3] => ? = 2
[1,2,4,6,3,5,7] => [1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,2,4,6,5,3,7] => ? = 2
[1,2,4,6,3,7,5] => [1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,2,4,6,5,7,3] => ? = 2
[1,2,4,6,5,3,7] => [1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,2,4,6,5,3,7] => ? = 2
[1,2,4,6,5,7,3] => [1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,2,4,6,5,7,3] => ? = 2
[1,2,4,6,7,3,5] => [1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,2,4,6,7,5,3] => ? = 2
[1,2,4,6,7,5,3] => [1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,2,4,6,7,5,3] => ? = 2
[1,2,4,7,3,5,6] => [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,2,4,7,6,5,3] => ? = 3
[1,2,4,7,3,6,5] => [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,2,4,7,6,5,3] => ? = 3
[1,2,4,7,5,3,6] => [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,2,4,7,6,5,3] => ? = 3
[1,2,4,7,5,6,3] => [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,2,4,7,6,5,3] => ? = 3
[1,2,4,7,6,3,5] => [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,2,4,7,6,5,3] => ? = 3
[1,2,4,7,6,5,3] => [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,2,4,7,6,5,3] => ? = 3
[1,2,5,3,4,6,7] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,2,5,4,3,6,7] => ? = 2
[1,2,5,3,4,7,6] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,2,5,4,3,7,6] => ? = 2
[1,2,5,3,6,4,7] => [1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,2,5,4,6,3,7] => ? = 2
[1,2,5,3,6,7,4] => [1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,2,5,4,6,7,3] => ? = 2
[1,2,5,3,7,4,6] => [1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,2,5,4,7,6,3] => ? = 2
Description
The maximum drop size of a permutation. The maximum drop size of a permutation $\pi$ of $[n]=\{1,2,\ldots, n\}$ is defined to be the maximum value of $i-\pi(i)$.
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00229: Dyck paths —Delest-Viennot⟶ Dyck paths
St001039: Dyck paths ⟶ ℤResult quality: 80% ā—values known / values provided: 85%ā—distinct values known / distinct values provided: 80%
Values
[1] => [1,0]
=> [1,0]
=> ? = 0 + 1
[1,2] => [1,0,1,0]
=> [1,1,0,0]
=> 1 = 0 + 1
[2,1] => [1,1,0,0]
=> [1,0,1,0]
=> 2 = 1 + 1
[1,2,3] => [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> 1 = 0 + 1
[1,3,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 2 = 1 + 1
[2,1,3] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 2 = 1 + 1
[2,3,1] => [1,1,0,1,0,0]
=> [1,1,1,0,0,0]
=> 2 = 1 + 1
[3,1,2] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 3 = 2 + 1
[3,2,1] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 3 = 2 + 1
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 1 = 0 + 1
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2 = 1 + 1
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2 = 1 + 1
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 3 = 2 + 1
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 3 = 2 + 1
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 3 = 2 + 1
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 3 = 2 + 1
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3 = 2 + 1
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3 = 2 + 1
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4 = 3 + 1
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4 = 3 + 1
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4 = 3 + 1
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4 = 3 + 1
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4 = 3 + 1
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4 = 3 + 1
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1 = 0 + 1
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 2 = 1 + 1
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 2 = 1 + 1
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 3 = 2 + 1
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 3 = 2 + 1
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 3 = 2 + 1
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 3 = 2 + 1
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 3 = 2 + 1
[1,4,5,3,2] => [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 3 = 2 + 1
[3,4,5,2,6,7,8,1] => [1,1,1,0,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,1,0,1,0,1,0,0,0,0]
=> ? = 2 + 1
[3,4,2,5,6,7,8,1] => [1,1,1,0,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,1,0,1,0,1,0,1,0,0,0,0]
=> ? = 2 + 1
[2,3,4,5,6,7,8,1] => [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> ? = 1 + 1
[6,7,5,4,3,2,1,8] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0]
=> ? = 5 + 1
[5,6,7,4,3,2,1,8] => [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,1,0,0]
=> ? = 4 + 1
[6,7,4,5,3,2,1,8] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0]
=> ? = 5 + 1
[6,7,5,3,4,2,1,8] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0]
=> ? = 5 + 1
[5,6,7,3,4,2,1,8] => [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,1,0,0]
=> ? = 4 + 1
[6,7,4,3,5,2,1,8] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0]
=> ? = 5 + 1
[6,7,5,4,2,3,1,8] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0]
=> ? = 5 + 1
[5,6,7,4,2,3,1,8] => [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,1,0,0]
=> ? = 4 + 1
[6,7,4,5,2,3,1,8] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0]
=> ? = 5 + 1
[5,6,7,3,2,4,1,8] => [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,1,0,0]
=> ? = 4 + 1
[6,7,5,2,3,4,1,8] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0]
=> ? = 5 + 1
[5,6,7,2,3,4,1,8] => [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,1,0,0]
=> ? = 4 + 1
[6,7,4,3,2,5,1,8] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0]
=> ? = 5 + 1
[6,7,3,4,2,5,1,8] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0]
=> ? = 5 + 1
[6,7,4,2,3,5,1,8] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0]
=> ? = 5 + 1
[6,7,3,2,4,5,1,8] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0]
=> ? = 5 + 1
[6,7,2,3,4,5,1,8] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0]
=> ? = 5 + 1
[2,3,4,5,6,7,1,8] => [1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,1,0,0]
=> ? = 1 + 1
[6,7,5,4,3,1,2,8] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0]
=> ? = 5 + 1
[6,7,3,4,5,1,2,8] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0]
=> ? = 5 + 1
[5,6,7,4,1,2,3,8] => [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,1,0,0]
=> ? = 4 + 1
[6,7,5,2,3,1,4,8] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0]
=> ? = 5 + 1
[5,6,7,2,3,1,4,8] => [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,1,0,0]
=> ? = 4 + 1
[5,6,7,3,1,2,4,8] => [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,1,0,0]
=> ? = 4 + 1
[6,7,5,2,1,3,4,8] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0]
=> ? = 5 + 1
[5,6,7,2,1,3,4,8] => [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,1,0,0]
=> ? = 4 + 1
[6,7,5,1,2,3,4,8] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0]
=> ? = 5 + 1
[5,6,7,1,2,3,4,8] => [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,1,0,0]
=> ? = 4 + 1
[6,7,4,3,2,1,5,8] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0]
=> ? = 5 + 1
[6,7,3,4,2,1,5,8] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0]
=> ? = 5 + 1
[6,7,4,2,3,1,5,8] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0]
=> ? = 5 + 1
[6,7,3,2,4,1,5,8] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0]
=> ? = 5 + 1
[6,7,2,3,4,1,5,8] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0]
=> ? = 5 + 1
[6,7,3,4,1,2,5,8] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0]
=> ? = 5 + 1
[6,7,3,2,1,4,5,8] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0]
=> ? = 5 + 1
[6,7,2,3,1,4,5,8] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0]
=> ? = 5 + 1
[6,7,3,1,2,4,5,8] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0]
=> ? = 5 + 1
[6,7,1,2,3,4,5,8] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0]
=> ? = 5 + 1
[2,3,4,5,6,1,7,8] => [1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,0,1,0,1,0,0]
=> ? = 1 + 1
[2,3,4,5,1,6,7,8] => [1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,1,0,1,0,0]
=> ? = 1 + 1
[1,2,3,4,5,6,7,8] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 0 + 1
[3,5,8,7,6,4,2,1] => [1,1,1,0,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0,1,0]
=> ? = 5 + 1
[2,6,8,7,5,4,3,1] => [1,1,0,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,0,1,0]
=> ? = 5 + 1
[2,3,5,6,8,7,4,1] => [1,1,0,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,1,0,0,0,0,0,1,0]
=> ? = 3 + 1
[1,7,8,6,5,4,3,2] => [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> ? = 5 + 1
[1,6,8,7,5,4,3,2] => [1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,0,0,1,0]
=> ? = 5 + 1
Description
The maximal height of a column in the parallelogram polyomino associated with a Dyck path.
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00175: Permutations —inverse Foata bijection⟶ Permutations
St000245: Permutations ⟶ ℤResult quality: 79% ā—values known / values provided: 79%ā—distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [1] => [1] => 0
[1,2] => [1,0,1,0]
=> [2,1] => [2,1] => 0
[2,1] => [1,1,0,0]
=> [1,2] => [1,2] => 1
[1,2,3] => [1,0,1,0,1,0]
=> [3,2,1] => [3,2,1] => 0
[1,3,2] => [1,0,1,1,0,0]
=> [2,3,1] => [2,3,1] => 1
[2,1,3] => [1,1,0,0,1,0]
=> [3,1,2] => [1,3,2] => 1
[2,3,1] => [1,1,0,1,0,0]
=> [2,1,3] => [2,1,3] => 1
[3,1,2] => [1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => 2
[3,2,1] => [1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => 2
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [4,3,2,1] => 0
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [3,4,2,1] => 1
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [2,4,3,1] => 1
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [3,2,4,1] => 1
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [2,3,4,1] => 2
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [2,3,4,1] => 2
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [1,4,3,2] => 1
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [3,1,4,2] => 1
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [2,1,4,3] => 1
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [3,2,1,4] => 1
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [2,3,1,4] => 2
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [2,3,1,4] => 2
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [1,2,4,3] => 2
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [1,3,2,4] => 2
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [1,2,4,3] => 2
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [1,3,2,4] => 2
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [2,1,3,4] => 2
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [2,1,3,4] => 2
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => 3
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => 3
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => 3
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => 3
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => 3
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => 3
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [5,4,3,2,1] => 0
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [4,5,3,2,1] => 1
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [3,5,4,2,1] => 1
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => [4,3,5,2,1] => 1
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [3,4,5,2,1] => 2
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [3,4,5,2,1] => 2
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [2,5,4,3,1] => 1
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [4,2,5,3,1] => 1
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => [3,2,5,4,1] => 1
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => [4,3,2,5,1] => 1
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [3,4,2,5,1] => 2
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [3,4,2,5,1] => 2
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [2,3,5,4,1] => 2
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [2,4,3,5,1] => 2
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [2,3,5,4,1] => 2
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [2,4,3,5,1] => 2
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [3,2,4,5,1] => 2
[1,2,3,4,5,7,6] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,7,5,4,3,2,1] => [6,7,5,4,3,2,1] => ? = 1
[1,2,3,4,6,5,7] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [7,5,6,4,3,2,1] => [5,7,6,4,3,2,1] => ? = 1
[1,2,3,4,6,7,5] => [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [6,5,7,4,3,2,1] => [6,5,7,4,3,2,1] => ? = 1
[1,2,3,4,7,5,6] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,6,7,4,3,2,1] => [5,6,7,4,3,2,1] => ? = 2
[1,2,3,4,7,6,5] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,6,7,4,3,2,1] => [5,6,7,4,3,2,1] => ? = 2
[1,2,3,5,4,6,7] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [7,6,4,5,3,2,1] => [4,7,6,5,3,2,1] => ? = 1
[1,2,3,5,4,7,6] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [6,7,4,5,3,2,1] => [6,4,7,5,3,2,1] => ? = 1
[1,2,3,5,6,4,7] => [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [7,5,4,6,3,2,1] => [5,4,7,6,3,2,1] => ? = 1
[1,2,3,5,6,7,4] => [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [6,5,4,7,3,2,1] => [6,5,4,7,3,2,1] => ? = 1
[1,2,3,5,7,4,6] => [1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [5,6,4,7,3,2,1] => [5,6,4,7,3,2,1] => ? = 2
[1,2,3,5,7,6,4] => [1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [5,6,4,7,3,2,1] => [5,6,4,7,3,2,1] => ? = 2
[1,2,3,6,4,5,7] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [7,4,5,6,3,2,1] => [4,5,7,6,3,2,1] => ? = 2
[1,2,3,6,4,7,5] => [1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [6,4,5,7,3,2,1] => [4,6,5,7,3,2,1] => ? = 2
[1,2,3,6,5,4,7] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [7,4,5,6,3,2,1] => [4,5,7,6,3,2,1] => ? = 2
[1,2,3,6,5,7,4] => [1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [6,4,5,7,3,2,1] => [4,6,5,7,3,2,1] => ? = 2
[1,2,3,6,7,4,5] => [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [5,4,6,7,3,2,1] => [5,4,6,7,3,2,1] => ? = 2
[1,2,3,6,7,5,4] => [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [5,4,6,7,3,2,1] => [5,4,6,7,3,2,1] => ? = 2
[1,2,3,7,4,5,6] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,5,6,7,3,2,1] => [4,5,6,7,3,2,1] => ? = 3
[1,2,3,7,4,6,5] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,5,6,7,3,2,1] => [4,5,6,7,3,2,1] => ? = 3
[1,2,3,7,5,4,6] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,5,6,7,3,2,1] => [4,5,6,7,3,2,1] => ? = 3
[1,2,3,7,5,6,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,5,6,7,3,2,1] => [4,5,6,7,3,2,1] => ? = 3
[1,2,3,7,6,4,5] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,5,6,7,3,2,1] => [4,5,6,7,3,2,1] => ? = 3
[1,2,3,7,6,5,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,5,6,7,3,2,1] => [4,5,6,7,3,2,1] => ? = 3
[1,2,4,3,5,6,7] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [7,6,5,3,4,2,1] => [3,7,6,5,4,2,1] => ? = 1
[1,2,4,3,5,7,6] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [6,7,5,3,4,2,1] => [6,3,7,5,4,2,1] => ? = 1
[1,2,4,3,6,5,7] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [7,5,6,3,4,2,1] => [5,3,7,6,4,2,1] => ? = 1
[1,2,4,3,6,7,5] => [1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [6,5,7,3,4,2,1] => [6,5,3,7,4,2,1] => ? = 1
[1,2,4,3,7,5,6] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [5,6,7,3,4,2,1] => [5,6,3,7,4,2,1] => ? = 2
[1,2,4,3,7,6,5] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [5,6,7,3,4,2,1] => [5,6,3,7,4,2,1] => ? = 2
[1,2,4,5,3,6,7] => [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [7,6,4,3,5,2,1] => [4,3,7,6,5,2,1] => ? = 1
[1,2,4,5,3,7,6] => [1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [6,7,4,3,5,2,1] => [6,4,3,7,5,2,1] => ? = 1
[1,2,4,5,6,3,7] => [1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [7,5,4,3,6,2,1] => [5,4,3,7,6,2,1] => ? = 1
[1,2,4,5,6,7,3] => [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [6,5,4,3,7,2,1] => [6,5,4,3,7,2,1] => ? = 1
[1,2,4,5,7,3,6] => [1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [5,6,4,3,7,2,1] => [5,6,4,3,7,2,1] => ? = 2
[1,2,4,5,7,6,3] => [1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [5,6,4,3,7,2,1] => [5,6,4,3,7,2,1] => ? = 2
[1,2,4,6,3,5,7] => [1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [7,4,5,3,6,2,1] => [4,5,3,7,6,2,1] => ? = 2
[1,2,4,6,3,7,5] => [1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [6,4,5,3,7,2,1] => [4,6,5,3,7,2,1] => ? = 2
[1,2,4,6,5,3,7] => [1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [7,4,5,3,6,2,1] => [4,5,3,7,6,2,1] => ? = 2
[1,2,4,6,5,7,3] => [1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [6,4,5,3,7,2,1] => [4,6,5,3,7,2,1] => ? = 2
[1,2,4,6,7,3,5] => [1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [5,4,6,3,7,2,1] => [5,4,6,3,7,2,1] => ? = 2
[1,2,4,6,7,5,3] => [1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [5,4,6,3,7,2,1] => [5,4,6,3,7,2,1] => ? = 2
[1,2,4,7,3,5,6] => [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [4,5,6,3,7,2,1] => [4,5,6,3,7,2,1] => ? = 3
[1,2,4,7,3,6,5] => [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [4,5,6,3,7,2,1] => [4,5,6,3,7,2,1] => ? = 3
[1,2,4,7,5,3,6] => [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [4,5,6,3,7,2,1] => [4,5,6,3,7,2,1] => ? = 3
[1,2,4,7,5,6,3] => [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [4,5,6,3,7,2,1] => [4,5,6,3,7,2,1] => ? = 3
[1,2,4,7,6,3,5] => [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [4,5,6,3,7,2,1] => [4,5,6,3,7,2,1] => ? = 3
[1,2,4,7,6,5,3] => [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [4,5,6,3,7,2,1] => [4,5,6,3,7,2,1] => ? = 3
[1,2,5,3,4,6,7] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [7,6,3,4,5,2,1] => [3,4,7,6,5,2,1] => ? = 2
[1,2,5,3,4,7,6] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [6,7,3,4,5,2,1] => [3,6,4,7,5,2,1] => ? = 2
[1,2,5,3,6,4,7] => [1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [7,5,3,4,6,2,1] => [3,5,4,7,6,2,1] => ? = 2
Description
The number of ascents of a permutation.
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00121: Dyck paths —Cori-Le Borgne involution⟶ Dyck paths
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
St000451: Permutations ⟶ ℤResult quality: 75% ā—values known / values provided: 75%ā—distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [1,0]
=> [1] => 1 = 0 + 1
[1,2] => [1,0,1,0]
=> [1,0,1,0]
=> [1,2] => 1 = 0 + 1
[2,1] => [1,1,0,0]
=> [1,1,0,0]
=> [2,1] => 2 = 1 + 1
[1,2,3] => [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,2,3] => 1 = 0 + 1
[1,3,2] => [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => 2 = 1 + 1
[2,1,3] => [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [2,1,3] => 2 = 1 + 1
[2,3,1] => [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,3,2] => 2 = 1 + 1
[3,1,2] => [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [3,1,2] => 3 = 2 + 1
[3,2,1] => [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [3,1,2] => 3 = 2 + 1
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 1 = 0 + 1
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 2 = 1 + 1
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 2 = 1 + 1
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 2 = 1 + 1
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [3,4,1,2] => 3 = 2 + 1
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [3,4,1,2] => 3 = 2 + 1
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 2 = 1 + 1
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 2 = 1 + 1
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 2 = 1 + 1
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 2 = 1 + 1
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,1,3] => 3 = 2 + 1
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,1,3] => 3 = 2 + 1
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,1,4,2] => 3 = 2 + 1
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3,1,2,4] => 3 = 2 + 1
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,1,4,2] => 3 = 2 + 1
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3,1,2,4] => 3 = 2 + 1
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,2,3] => 3 = 2 + 1
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,2,3] => 3 = 2 + 1
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4,1,2,3] => 4 = 3 + 1
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4,1,2,3] => 4 = 3 + 1
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4,1,2,3] => 4 = 3 + 1
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4,1,2,3] => 4 = 3 + 1
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4,1,2,3] => 4 = 3 + 1
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4,1,2,3] => 4 = 3 + 1
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 1 = 0 + 1
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 2 = 1 + 1
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 2 = 1 + 1
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 2 = 1 + 1
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [3,4,5,1,2] => 3 = 2 + 1
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [3,4,5,1,2] => 3 = 2 + 1
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 2 = 1 + 1
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 2 = 1 + 1
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 2 = 1 + 1
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => 2 = 1 + 1
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => 3 = 2 + 1
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => 3 = 2 + 1
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [3,4,1,5,2] => 3 = 2 + 1
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => 3 = 2 + 1
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [3,4,1,5,2] => 3 = 2 + 1
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => 3 = 2 + 1
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => 3 = 2 + 1
[1,2,3,5,4,7,6] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> [2,1,4,5,6,7,3] => ? = 1 + 1
[1,2,3,5,7,4,6] => [1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> [2,4,5,6,7,1,3] => ? = 2 + 1
[1,2,3,5,7,6,4] => [1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> [2,4,5,6,7,1,3] => ? = 2 + 1
[1,2,3,6,4,5,7] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,1,0,0]
=> [3,4,5,6,1,7,2] => ? = 2 + 1
[1,2,3,6,4,7,5] => [1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0,1,0]
=> [3,4,5,6,1,2,7] => ? = 2 + 1
[1,2,3,6,5,4,7] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,1,0,0]
=> [3,4,5,6,1,7,2] => ? = 2 + 1
[1,2,3,6,5,7,4] => [1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0,1,0]
=> [3,4,5,6,1,2,7] => ? = 2 + 1
[1,2,3,7,4,5,6] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [4,5,6,7,1,2,3] => ? = 3 + 1
[1,2,3,7,4,6,5] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [4,5,6,7,1,2,3] => ? = 3 + 1
[1,2,3,7,5,4,6] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [4,5,6,7,1,2,3] => ? = 3 + 1
[1,2,3,7,5,6,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [4,5,6,7,1,2,3] => ? = 3 + 1
[1,2,3,7,6,4,5] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [4,5,6,7,1,2,3] => ? = 3 + 1
[1,2,3,7,6,5,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [4,5,6,7,1,2,3] => ? = 3 + 1
[1,2,4,3,5,7,6] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> [2,3,1,5,6,7,4] => ? = 1 + 1
[1,2,4,3,6,5,7] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> [2,1,4,5,6,3,7] => ? = 1 + 1
[1,2,4,3,7,5,6] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,1,0,1,0,0,0]
=> [3,1,5,6,7,2,4] => ? = 2 + 1
[1,2,4,3,7,6,5] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,1,0,1,0,0,0]
=> [3,1,5,6,7,2,4] => ? = 2 + 1
[1,2,4,5,3,7,6] => [1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,1,0,0]
=> [2,1,3,5,6,7,4] => ? = 1 + 1
[1,2,4,6,3,5,7] => [1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> [2,4,5,6,1,7,3] => ? = 2 + 1
[1,2,4,6,3,7,5] => [1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0,1,0]
=> [2,4,5,6,1,3,7] => ? = 2 + 1
[1,2,4,6,5,3,7] => [1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> [2,4,5,6,1,7,3] => ? = 2 + 1
[1,2,4,6,5,7,3] => [1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0,1,0]
=> [2,4,5,6,1,3,7] => ? = 2 + 1
[1,2,4,7,3,5,6] => [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> [3,5,6,7,1,2,4] => ? = 3 + 1
[1,2,4,7,3,6,5] => [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> [3,5,6,7,1,2,4] => ? = 3 + 1
[1,2,4,7,5,3,6] => [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> [3,5,6,7,1,2,4] => ? = 3 + 1
[1,2,4,7,5,6,3] => [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> [3,5,6,7,1,2,4] => ? = 3 + 1
[1,2,4,7,6,3,5] => [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> [3,5,6,7,1,2,4] => ? = 3 + 1
[1,2,4,7,6,5,3] => [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> [3,5,6,7,1,2,4] => ? = 3 + 1
[1,2,5,3,4,6,7] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,1,0,0]
=> [3,4,5,1,6,7,2] => ? = 2 + 1
[1,2,5,3,4,7,6] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,1,0,0]
=> [3,4,5,1,2,7,6] => ? = 2 + 1
[1,2,5,3,6,4,7] => [1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0,1,0]
=> [3,4,5,1,6,2,7] => ? = 2 + 1
[1,2,5,3,6,7,4] => [1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0,1,0]
=> [3,4,5,1,2,6,7] => ? = 2 + 1
[1,2,5,3,7,4,6] => [1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,1,0,1,0,0,0]
=> [2,1,5,6,7,3,4] => ? = 2 + 1
[1,2,5,3,7,6,4] => [1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,1,0,1,0,0,0]
=> [2,1,5,6,7,3,4] => ? = 2 + 1
[1,2,5,4,3,6,7] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,1,0,0]
=> [3,4,5,1,6,7,2] => ? = 2 + 1
[1,2,5,4,3,7,6] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,1,0,0]
=> [3,4,5,1,2,7,6] => ? = 2 + 1
[1,2,5,4,6,3,7] => [1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0,1,0]
=> [3,4,5,1,6,2,7] => ? = 2 + 1
[1,2,5,4,6,7,3] => [1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0,1,0]
=> [3,4,5,1,2,6,7] => ? = 2 + 1
[1,2,5,4,7,3,6] => [1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,1,0,1,0,0,0]
=> [2,1,5,6,7,3,4] => ? = 2 + 1
[1,2,5,4,7,6,3] => [1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,1,0,1,0,0,0]
=> [2,1,5,6,7,3,4] => ? = 2 + 1
[1,2,5,7,3,4,6] => [1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,1,0,0,0,0]
=> [2,5,6,7,1,3,4] => ? = 3 + 1
[1,2,5,7,3,6,4] => [1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,1,0,0,0,0]
=> [2,5,6,7,1,3,4] => ? = 3 + 1
[1,2,5,7,4,3,6] => [1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,1,0,0,0,0]
=> [2,5,6,7,1,3,4] => ? = 3 + 1
[1,2,5,7,4,6,3] => [1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,1,0,0,0,0]
=> [2,5,6,7,1,3,4] => ? = 3 + 1
[1,2,5,7,6,3,4] => [1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,1,0,0,0,0]
=> [2,5,6,7,1,3,4] => ? = 3 + 1
[1,2,5,7,6,4,3] => [1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,1,0,0,0,0]
=> [2,5,6,7,1,3,4] => ? = 3 + 1
[1,2,6,3,4,5,7] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,1,0,0,0]
=> [4,5,6,1,7,2,3] => ? = 3 + 1
[1,2,6,3,4,7,5] => [1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,1,0,0]
=> [4,5,6,1,2,7,3] => ? = 3 + 1
[1,2,6,3,5,4,7] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,1,0,0,0]
=> [4,5,6,1,7,2,3] => ? = 3 + 1
[1,2,6,3,5,7,4] => [1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,1,0,0]
=> [4,5,6,1,2,7,3] => ? = 3 + 1
Description
The length of the longest pattern of the form k 1 2...(k-1).
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00143: Dyck paths —inverse promotion⟶ Dyck paths
St000013: Dyck paths ⟶ ℤResult quality: 75% ā—values known / values provided: 75%ā—distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1 = 0 + 1
[1,2] => [1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 1 = 0 + 1
[2,1] => [1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,1,0,0,1,0]
=> 2 = 1 + 1
[1,2,3] => [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[1,3,2] => [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[2,1,3] => [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[2,3,1] => [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2 = 1 + 1
[3,1,2] => [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[3,2,1] => [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 2 = 1 + 1
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 2 = 1 + 1
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 3 = 2 + 1
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 3 = 2 + 1
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 3 = 2 + 1
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 3 = 2 + 1
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 3 = 2 + 1
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 3 = 2 + 1
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 4 = 3 + 1
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 4 = 3 + 1
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 4 = 3 + 1
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 4 = 3 + 1
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 4 = 3 + 1
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 4 = 3 + 1
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> 2 = 1 + 1
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> 2 = 1 + 1
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> 3 = 2 + 1
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> 3 = 2 + 1
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> 3 = 2 + 1
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> 3 = 2 + 1
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> 3 = 2 + 1
[1,2,3,5,4,7,6] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 1 + 1
[1,2,3,5,6,4,7] => [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> ? = 1 + 1
[1,2,3,5,6,7,4] => [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> ? = 1 + 1
[1,2,3,5,7,4,6] => [1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> ? = 2 + 1
[1,2,3,5,7,6,4] => [1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> ? = 2 + 1
[1,2,3,6,4,5,7] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 2 + 1
[1,2,3,6,4,7,5] => [1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> ? = 2 + 1
[1,2,3,6,5,4,7] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 2 + 1
[1,2,3,6,5,7,4] => [1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> ? = 2 + 1
[1,2,3,6,7,4,5] => [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> ? = 2 + 1
[1,2,3,6,7,5,4] => [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> ? = 2 + 1
[1,2,3,7,4,5,6] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 3 + 1
[1,2,3,7,4,6,5] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 3 + 1
[1,2,3,7,5,4,6] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 3 + 1
[1,2,3,7,5,6,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 3 + 1
[1,2,3,7,6,4,5] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 3 + 1
[1,2,3,7,6,5,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 3 + 1
[1,2,4,3,5,7,6] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> ? = 1 + 1
[1,2,4,3,6,5,7] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> ? = 1 + 1
[1,2,4,3,6,7,5] => [1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> ? = 1 + 1
[1,2,4,3,7,5,6] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> ? = 2 + 1
[1,2,4,3,7,6,5] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> ? = 2 + 1
[1,2,4,5,3,6,7] => [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 1 + 1
[1,2,4,5,3,7,6] => [1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0]
=> ? = 1 + 1
[1,2,4,5,6,3,7] => [1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 1 + 1
[1,2,4,5,6,7,3] => [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 1 + 1
[1,2,4,5,7,3,6] => [1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,1,0,0,0,1,0]
=> ? = 2 + 1
[1,2,4,5,7,6,3] => [1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,1,0,0,0,1,0]
=> ? = 2 + 1
[1,2,4,6,3,5,7] => [1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0,1,0,1,0]
=> ? = 2 + 1
[1,2,4,6,3,7,5] => [1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,1,0,0,1,0]
=> ? = 2 + 1
[1,2,4,6,5,3,7] => [1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0,1,0,1,0]
=> ? = 2 + 1
[1,2,4,6,5,7,3] => [1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,1,0,0,1,0]
=> ? = 2 + 1
[1,2,4,6,7,3,5] => [1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,1,0,0,0,1,0]
=> ? = 2 + 1
[1,2,4,6,7,5,3] => [1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,1,0,0,0,1,0]
=> ? = 2 + 1
[1,2,5,3,4,7,6] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> ? = 2 + 1
[1,2,5,3,6,4,7] => [1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,1,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0,1,0,1,0]
=> ? = 2 + 1
[1,2,5,3,6,7,4] => [1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,0,1,0]
=> ? = 2 + 1
[1,2,5,3,7,4,6] => [1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,1,0,0,0,1,0]
=> ? = 2 + 1
[1,2,5,3,7,6,4] => [1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,1,0,0,0,1,0]
=> ? = 2 + 1
[1,2,5,4,3,7,6] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> ? = 2 + 1
[1,2,5,4,6,3,7] => [1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,1,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0,1,0,1,0]
=> ? = 2 + 1
[1,2,5,4,6,7,3] => [1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,0,1,0]
=> ? = 2 + 1
[1,2,5,4,7,3,6] => [1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,1,0,0,0,1,0]
=> ? = 2 + 1
[1,2,5,4,7,6,3] => [1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,1,0,0,0,1,0]
=> ? = 2 + 1
[1,2,5,6,3,4,7] => [1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0,1,0,1,0]
=> ? = 2 + 1
[1,2,5,6,3,7,4] => [1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,1,0,0,1,0]
=> ? = 2 + 1
[1,2,5,6,4,3,7] => [1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0,1,0,1,0]
=> ? = 2 + 1
[1,2,5,6,4,7,3] => [1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,1,0,0,1,0]
=> ? = 2 + 1
[1,2,6,3,4,5,7] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 3 + 1
[1,2,6,3,5,4,7] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 3 + 1
Description
The height of a Dyck path. The height of a Dyck path $D$ of semilength $n$ is defined as the maximal height of a peak of $D$. The height of $D$ at position $i$ is the number of up-steps minus the number of down-steps before position $i$.
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
St000527: Posets ⟶ ℤResult quality: 55% ā—values known / values provided: 55%ā—distinct values known / distinct values provided: 80%
Values
[1] => [1,0]
=> [1] => ([],1)
=> 1 = 0 + 1
[1,2] => [1,0,1,0]
=> [1,2] => ([(0,1)],2)
=> 1 = 0 + 1
[2,1] => [1,1,0,0]
=> [2,1] => ([],2)
=> 2 = 1 + 1
[1,2,3] => [1,0,1,0,1,0]
=> [1,2,3] => ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,3,2] => [1,0,1,1,0,0]
=> [1,3,2] => ([(0,1),(0,2)],3)
=> 2 = 1 + 1
[2,1,3] => [1,1,0,0,1,0]
=> [2,1,3] => ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[2,3,1] => [1,1,0,1,0,0]
=> [2,3,1] => ([(1,2)],3)
=> 2 = 1 + 1
[3,1,2] => [1,1,1,0,0,0]
=> [3,2,1] => ([],3)
=> 3 = 2 + 1
[3,2,1] => [1,1,1,0,0,0]
=> [3,2,1] => ([],3)
=> 3 = 2 + 1
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> 2 = 1 + 1
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> 2 = 1 + 1
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> 3 = 2 + 1
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> 3 = 2 + 1
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> 2 = 1 + 1
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2 = 1 + 1
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => ([(1,2),(2,3)],4)
=> 2 = 1 + 1
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => ([(1,2),(1,3)],4)
=> 3 = 2 + 1
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => ([(1,2),(1,3)],4)
=> 3 = 2 + 1
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> 3 = 2 + 1
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => ([(1,3),(2,3)],4)
=> 3 = 2 + 1
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> 3 = 2 + 1
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => ([(1,3),(2,3)],4)
=> 3 = 2 + 1
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => ([(2,3)],4)
=> 3 = 2 + 1
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => ([(2,3)],4)
=> 3 = 2 + 1
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => ([],4)
=> 4 = 3 + 1
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => ([],4)
=> 4 = 3 + 1
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => ([],4)
=> 4 = 3 + 1
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => ([],4)
=> 4 = 3 + 1
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => ([],4)
=> 4 = 3 + 1
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => ([],4)
=> 4 = 3 + 1
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5)
=> 2 = 1 + 1
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 1 + 1
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> 2 = 1 + 1
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => ([(0,4),(4,1),(4,2),(4,3)],5)
=> 3 = 2 + 1
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => ([(0,4),(4,1),(4,2),(4,3)],5)
=> 3 = 2 + 1
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2 = 1 + 1
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 2 = 1 + 1
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 2 = 1 + 1
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> 2 = 1 + 1
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> 3 = 2 + 1
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> 3 = 2 + 1
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> 3 = 2 + 1
[1,2,3,5,4,7,6] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,3,5,4,7,6] => ([(0,3),(1,5),(1,6),(2,5),(2,6),(3,4),(4,1),(4,2)],7)
=> ? = 1 + 1
[1,2,4,3,5,7,6] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,2,4,3,5,7,6] => ([(0,5),(1,6),(2,6),(5,1),(5,2),(6,3),(6,4)],7)
=> ? = 1 + 1
[1,2,4,3,6,5,7] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,2,4,3,6,5,7] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(3,2),(4,6),(5,6)],7)
=> ? = 1 + 1
[1,2,4,3,6,7,5] => [1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,2,4,3,6,7,5] => ([(0,4),(2,5),(2,6),(3,5),(3,6),(4,2),(4,3),(6,1)],7)
=> ? = 1 + 1
[1,2,4,3,7,5,6] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,2,4,3,7,6,5] => ([(0,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,1),(3,2)],7)
=> ? = 2 + 1
[1,2,4,3,7,6,5] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,2,4,3,7,6,5] => ([(0,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,1),(3,2)],7)
=> ? = 2 + 1
[1,2,4,5,3,7,6] => [1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,2,4,5,3,7,6] => ([(0,4),(1,5),(1,6),(2,5),(2,6),(3,2),(4,1),(4,3)],7)
=> ? = 1 + 1
[1,2,4,6,3,7,5] => [1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,2,4,6,5,7,3] => ([(0,5),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ? = 2 + 1
[1,2,4,6,5,7,3] => [1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,2,4,6,5,7,3] => ([(0,5),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)
=> ? = 2 + 1
[1,2,5,3,6,7,4] => [1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,2,5,4,6,7,3] => ([(0,5),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ? = 2 + 1
[1,2,5,4,6,7,3] => [1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,2,5,4,6,7,3] => ([(0,5),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)
=> ? = 2 + 1
[1,2,5,6,3,7,4] => [1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,2,6,4,5,7,3] => ([(0,5),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ? = 2 + 1
[1,2,5,6,4,7,3] => [1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,2,6,4,5,7,3] => ([(0,5),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)
=> ? = 2 + 1
[1,3,2,4,5,7,6] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,3,2,4,5,7,6] => ([(0,3),(0,4),(3,6),(4,6),(5,1),(5,2),(6,5)],7)
=> ? = 1 + 1
[1,3,2,4,6,7,5] => [1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,3,2,4,6,7,5] => ([(0,3),(0,4),(3,6),(4,6),(5,1),(6,2),(6,5)],7)
=> ? = 1 + 1
[1,3,2,5,6,4,7] => [1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,3,2,5,6,4,7] => ([(0,2),(0,3),(1,5),(2,4),(2,6),(3,4),(3,6),(4,5),(6,1)],7)
=> ? = 1 + 1
[1,3,2,5,6,7,4] => [1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,3,2,5,6,7,4] => ([(0,2),(0,3),(2,5),(2,6),(3,5),(3,6),(4,1),(6,4)],7)
=> ? = 1 + 1
[1,3,4,2,6,5,7] => [1,0,1,1,0,1,0,0,1,1,0,0,1,0]
=> [1,3,4,2,6,5,7] => ([(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(4,6),(5,6)],7)
=> ? = 1 + 1
[1,3,4,2,6,7,5] => [1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,3,4,2,6,7,5] => ([(0,3),(0,4),(2,5),(2,6),(3,5),(3,6),(4,2),(6,1)],7)
=> ? = 1 + 1
[1,3,4,2,7,5,6] => [1,0,1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,3,4,2,7,6,5] => ([(0,2),(0,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,1)],7)
=> ? = 2 + 1
[1,3,4,2,7,6,5] => [1,0,1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,3,4,2,7,6,5] => ([(0,2),(0,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,1)],7)
=> ? = 2 + 1
[1,3,4,5,2,7,6] => [1,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,3,4,5,2,7,6] => ([(0,2),(0,4),(1,5),(1,6),(2,5),(2,6),(3,1),(4,3)],7)
=> ? = 1 + 1
[1,3,4,6,2,7,5] => [1,0,1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,3,4,6,5,7,2] => ([(0,3),(0,4),(1,6),(2,6),(4,5),(5,1),(5,2)],7)
=> ? = 2 + 1
[1,3,4,6,5,7,2] => [1,0,1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,3,4,6,5,7,2] => ([(0,3),(0,4),(1,6),(2,6),(4,5),(5,1),(5,2)],7)
=> ? = 2 + 1
[1,3,5,2,6,7,4] => [1,0,1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,3,5,4,6,7,2] => ([(0,4),(0,5),(1,6),(2,6),(5,1),(5,2),(6,3)],7)
=> ? = 2 + 1
[1,3,5,4,6,7,2] => [1,0,1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,3,5,4,6,7,2] => ([(0,4),(0,5),(1,6),(2,6),(5,1),(5,2),(6,3)],7)
=> ? = 2 + 1
[1,3,5,6,2,7,4] => [1,0,1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,3,6,4,5,7,2] => ([(0,3),(0,5),(1,6),(2,6),(4,2),(5,1),(5,4)],7)
=> ? = 2 + 1
[1,3,5,6,4,7,2] => [1,0,1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,3,6,4,5,7,2] => ([(0,3),(0,5),(1,6),(2,6),(4,2),(5,1),(5,4)],7)
=> ? = 2 + 1
[1,4,2,5,6,7,3] => [1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,4,3,5,6,7,2] => ([(0,2),(0,3),(0,4),(3,6),(4,6),(5,1),(6,5)],7)
=> ? = 2 + 1
[1,4,3,5,6,7,2] => [1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,4,3,5,6,7,2] => ([(0,2),(0,3),(0,4),(3,6),(4,6),(5,1),(6,5)],7)
=> ? = 2 + 1
[1,4,5,2,3,7,6] => [1,0,1,1,1,0,1,0,0,0,1,1,0,0]
=> [1,5,3,4,2,7,6] => ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,1)],7)
=> ? = 2 + 1
[1,4,5,2,7,3,6] => [1,0,1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,5,3,4,7,6,2] => ([(0,2),(0,3),(0,4),(1,5),(1,6),(3,5),(3,6),(4,1)],7)
=> ? = 2 + 1
[1,4,5,2,7,6,3] => [1,0,1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,5,3,4,7,6,2] => ([(0,2),(0,3),(0,4),(1,5),(1,6),(3,5),(3,6),(4,1)],7)
=> ? = 2 + 1
[1,4,5,3,2,7,6] => [1,0,1,1,1,0,1,0,0,0,1,1,0,0]
=> [1,5,3,4,2,7,6] => ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,1)],7)
=> ? = 2 + 1
[1,4,5,3,7,2,6] => [1,0,1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,5,3,4,7,6,2] => ([(0,2),(0,3),(0,4),(1,5),(1,6),(3,5),(3,6),(4,1)],7)
=> ? = 2 + 1
[1,4,5,3,7,6,2] => [1,0,1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,5,3,4,7,6,2] => ([(0,2),(0,3),(0,4),(1,5),(1,6),(3,5),(3,6),(4,1)],7)
=> ? = 2 + 1
[1,4,5,6,2,7,3] => [1,0,1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,6,3,4,5,7,2] => ([(0,2),(0,3),(0,5),(1,6),(3,6),(4,1),(5,4)],7)
=> ? = 2 + 1
[1,4,5,6,3,7,2] => [1,0,1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,6,3,4,5,7,2] => ([(0,2),(0,3),(0,5),(1,6),(3,6),(4,1),(5,4)],7)
=> ? = 2 + 1
[2,1,7,3,4,5,6] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [2,1,7,6,5,4,3] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6)],7)
=> ? = 4 + 1
[2,1,7,3,4,6,5] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [2,1,7,6,5,4,3] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6)],7)
=> ? = 4 + 1
[2,1,7,3,5,4,6] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [2,1,7,6,5,4,3] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6)],7)
=> ? = 4 + 1
[2,1,7,3,5,6,4] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [2,1,7,6,5,4,3] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6)],7)
=> ? = 4 + 1
[2,1,7,3,6,4,5] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [2,1,7,6,5,4,3] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6)],7)
=> ? = 4 + 1
[2,1,7,3,6,5,4] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [2,1,7,6,5,4,3] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6)],7)
=> ? = 4 + 1
[2,1,7,4,3,5,6] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [2,1,7,6,5,4,3] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6)],7)
=> ? = 4 + 1
[2,1,7,4,3,6,5] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [2,1,7,6,5,4,3] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6)],7)
=> ? = 4 + 1
[2,1,7,4,5,3,6] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [2,1,7,6,5,4,3] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6)],7)
=> ? = 4 + 1
[2,1,7,4,5,6,3] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [2,1,7,6,5,4,3] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6)],7)
=> ? = 4 + 1
[2,1,7,4,6,3,5] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [2,1,7,6,5,4,3] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6)],7)
=> ? = 4 + 1
[2,1,7,4,6,5,3] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [2,1,7,6,5,4,3] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6)],7)
=> ? = 4 + 1
Description
The width of the poset. This is the size of the poset's longest antichain, also called Dilworth number.
Matching statistic: St000028
Mp00069: Permutations —complement⟶ Permutations
Mp00068: Permutations —Simion-Schmidt map⟶ Permutations
Mp00064: Permutations —reverse⟶ Permutations
St000028: Permutations ⟶ ℤResult quality: 48% ā—values known / values provided: 48%ā—distinct values known / distinct values provided: 100%
Values
[1] => [1] => [1] => [1] => 0
[1,2] => [2,1] => [2,1] => [1,2] => 0
[2,1] => [1,2] => [1,2] => [2,1] => 1
[1,2,3] => [3,2,1] => [3,2,1] => [1,2,3] => 0
[1,3,2] => [3,1,2] => [3,1,2] => [2,1,3] => 1
[2,1,3] => [2,3,1] => [2,3,1] => [1,3,2] => 1
[2,3,1] => [2,1,3] => [2,1,3] => [3,1,2] => 1
[3,1,2] => [1,3,2] => [1,3,2] => [2,3,1] => 2
[3,2,1] => [1,2,3] => [1,3,2] => [2,3,1] => 2
[1,2,3,4] => [4,3,2,1] => [4,3,2,1] => [1,2,3,4] => 0
[1,2,4,3] => [4,3,1,2] => [4,3,1,2] => [2,1,3,4] => 1
[1,3,2,4] => [4,2,3,1] => [4,2,3,1] => [1,3,2,4] => 1
[1,3,4,2] => [4,2,1,3] => [4,2,1,3] => [3,1,2,4] => 1
[1,4,2,3] => [4,1,3,2] => [4,1,3,2] => [2,3,1,4] => 2
[1,4,3,2] => [4,1,2,3] => [4,1,3,2] => [2,3,1,4] => 2
[2,1,3,4] => [3,4,2,1] => [3,4,2,1] => [1,2,4,3] => 1
[2,1,4,3] => [3,4,1,2] => [3,4,1,2] => [2,1,4,3] => 1
[2,3,1,4] => [3,2,4,1] => [3,2,4,1] => [1,4,2,3] => 1
[2,3,4,1] => [3,2,1,4] => [3,2,1,4] => [4,1,2,3] => 1
[2,4,1,3] => [3,1,4,2] => [3,1,4,2] => [2,4,1,3] => 2
[2,4,3,1] => [3,1,2,4] => [3,1,4,2] => [2,4,1,3] => 2
[3,1,2,4] => [2,4,3,1] => [2,4,3,1] => [1,3,4,2] => 2
[3,1,4,2] => [2,4,1,3] => [2,4,1,3] => [3,1,4,2] => 2
[3,2,1,4] => [2,3,4,1] => [2,4,3,1] => [1,3,4,2] => 2
[3,2,4,1] => [2,3,1,4] => [2,4,1,3] => [3,1,4,2] => 2
[3,4,1,2] => [2,1,4,3] => [2,1,4,3] => [3,4,1,2] => 2
[3,4,2,1] => [2,1,3,4] => [2,1,4,3] => [3,4,1,2] => 2
[4,1,2,3] => [1,4,3,2] => [1,4,3,2] => [2,3,4,1] => 3
[4,1,3,2] => [1,4,2,3] => [1,4,3,2] => [2,3,4,1] => 3
[4,2,1,3] => [1,3,4,2] => [1,4,3,2] => [2,3,4,1] => 3
[4,2,3,1] => [1,3,2,4] => [1,4,3,2] => [2,3,4,1] => 3
[4,3,1,2] => [1,2,4,3] => [1,4,3,2] => [2,3,4,1] => 3
[4,3,2,1] => [1,2,3,4] => [1,4,3,2] => [2,3,4,1] => 3
[1,2,3,4,5] => [5,4,3,2,1] => [5,4,3,2,1] => [1,2,3,4,5] => 0
[1,2,3,5,4] => [5,4,3,1,2] => [5,4,3,1,2] => [2,1,3,4,5] => 1
[1,2,4,3,5] => [5,4,2,3,1] => [5,4,2,3,1] => [1,3,2,4,5] => 1
[1,2,4,5,3] => [5,4,2,1,3] => [5,4,2,1,3] => [3,1,2,4,5] => 1
[1,2,5,3,4] => [5,4,1,3,2] => [5,4,1,3,2] => [2,3,1,4,5] => 2
[1,2,5,4,3] => [5,4,1,2,3] => [5,4,1,3,2] => [2,3,1,4,5] => 2
[1,3,2,4,5] => [5,3,4,2,1] => [5,3,4,2,1] => [1,2,4,3,5] => 1
[1,3,2,5,4] => [5,3,4,1,2] => [5,3,4,1,2] => [2,1,4,3,5] => 1
[1,3,4,2,5] => [5,3,2,4,1] => [5,3,2,4,1] => [1,4,2,3,5] => 1
[1,3,4,5,2] => [5,3,2,1,4] => [5,3,2,1,4] => [4,1,2,3,5] => 1
[1,3,5,2,4] => [5,3,1,4,2] => [5,3,1,4,2] => [2,4,1,3,5] => 2
[1,3,5,4,2] => [5,3,1,2,4] => [5,3,1,4,2] => [2,4,1,3,5] => 2
[1,4,2,3,5] => [5,2,4,3,1] => [5,2,4,3,1] => [1,3,4,2,5] => 2
[1,4,2,5,3] => [5,2,4,1,3] => [5,2,4,1,3] => [3,1,4,2,5] => 2
[1,4,3,2,5] => [5,2,3,4,1] => [5,2,4,3,1] => [1,3,4,2,5] => 2
[1,4,3,5,2] => [5,2,3,1,4] => [5,2,4,1,3] => [3,1,4,2,5] => 2
[1,4,5,2,3] => [5,2,1,4,3] => [5,2,1,4,3] => [3,4,1,2,5] => 2
[1,2,3,5,4,6,7] => [7,6,5,3,4,2,1] => [7,6,5,3,4,2,1] => [1,2,4,3,5,6,7] => ? = 1
[1,2,3,5,4,7,6] => [7,6,5,3,4,1,2] => [7,6,5,3,4,1,2] => [2,1,4,3,5,6,7] => ? = 1
[1,2,3,5,6,4,7] => [7,6,5,3,2,4,1] => [7,6,5,3,2,4,1] => [1,4,2,3,5,6,7] => ? = 1
[1,2,3,6,4,5,7] => [7,6,5,2,4,3,1] => [7,6,5,2,4,3,1] => [1,3,4,2,5,6,7] => ? = 2
[1,2,3,6,4,7,5] => [7,6,5,2,4,1,3] => [7,6,5,2,4,1,3] => [3,1,4,2,5,6,7] => ? = 2
[1,2,3,6,5,4,7] => [7,6,5,2,3,4,1] => [7,6,5,2,4,3,1] => [1,3,4,2,5,6,7] => ? = 2
[1,2,3,6,5,7,4] => [7,6,5,2,3,1,4] => [7,6,5,2,4,1,3] => [3,1,4,2,5,6,7] => ? = 2
[1,2,4,3,5,6,7] => [7,6,4,5,3,2,1] => [7,6,4,5,3,2,1] => [1,2,3,5,4,6,7] => ? = 1
[1,2,4,3,5,7,6] => [7,6,4,5,3,1,2] => [7,6,4,5,3,1,2] => [2,1,3,5,4,6,7] => ? = 1
[1,2,4,3,6,5,7] => [7,6,4,5,2,3,1] => [7,6,4,5,2,3,1] => [1,3,2,5,4,6,7] => ? = 1
[1,2,4,3,6,7,5] => [7,6,4,5,2,1,3] => [7,6,4,5,2,1,3] => [3,1,2,5,4,6,7] => ? = 1
[1,2,4,3,7,5,6] => [7,6,4,5,1,3,2] => [7,6,4,5,1,3,2] => [2,3,1,5,4,6,7] => ? = 2
[1,2,4,3,7,6,5] => [7,6,4,5,1,2,3] => [7,6,4,5,1,3,2] => [2,3,1,5,4,6,7] => ? = 2
[1,2,4,5,3,6,7] => [7,6,4,3,5,2,1] => [7,6,4,3,5,2,1] => [1,2,5,3,4,6,7] => ? = 1
[1,2,4,5,3,7,6] => [7,6,4,3,5,1,2] => [7,6,4,3,5,1,2] => [2,1,5,3,4,6,7] => ? = 1
[1,2,4,5,6,3,7] => [7,6,4,3,2,5,1] => [7,6,4,3,2,5,1] => [1,5,2,3,4,6,7] => ? = 1
[1,2,4,6,3,5,7] => [7,6,4,2,5,3,1] => [7,6,4,2,5,3,1] => [1,3,5,2,4,6,7] => ? = 2
[1,2,4,6,3,7,5] => [7,6,4,2,5,1,3] => [7,6,4,2,5,1,3] => [3,1,5,2,4,6,7] => ? = 2
[1,2,4,6,5,3,7] => [7,6,4,2,3,5,1] => [7,6,4,2,5,3,1] => [1,3,5,2,4,6,7] => ? = 2
[1,2,4,6,5,7,3] => [7,6,4,2,3,1,5] => [7,6,4,2,5,1,3] => [3,1,5,2,4,6,7] => ? = 2
[1,2,4,6,7,3,5] => [7,6,4,2,1,5,3] => [7,6,4,2,1,5,3] => [3,5,1,2,4,6,7] => ? = 2
[1,2,4,6,7,5,3] => [7,6,4,2,1,3,5] => [7,6,4,2,1,5,3] => [3,5,1,2,4,6,7] => ? = 2
[1,2,4,7,3,5,6] => [7,6,4,1,5,3,2] => [7,6,4,1,5,3,2] => [2,3,5,1,4,6,7] => ? = 3
[1,2,4,7,3,6,5] => [7,6,4,1,5,2,3] => [7,6,4,1,5,3,2] => [2,3,5,1,4,6,7] => ? = 3
[1,2,4,7,5,3,6] => [7,6,4,1,3,5,2] => [7,6,4,1,5,3,2] => [2,3,5,1,4,6,7] => ? = 3
[1,2,4,7,5,6,3] => [7,6,4,1,3,2,5] => [7,6,4,1,5,3,2] => [2,3,5,1,4,6,7] => ? = 3
[1,2,4,7,6,3,5] => [7,6,4,1,2,5,3] => [7,6,4,1,5,3,2] => [2,3,5,1,4,6,7] => ? = 3
[1,2,4,7,6,5,3] => [7,6,4,1,2,3,5] => [7,6,4,1,5,3,2] => [2,3,5,1,4,6,7] => ? = 3
[1,2,5,3,4,6,7] => [7,6,3,5,4,2,1] => [7,6,3,5,4,2,1] => [1,2,4,5,3,6,7] => ? = 2
[1,2,5,3,4,7,6] => [7,6,3,5,4,1,2] => [7,6,3,5,4,1,2] => [2,1,4,5,3,6,7] => ? = 2
[1,2,5,3,6,4,7] => [7,6,3,5,2,4,1] => [7,6,3,5,2,4,1] => [1,4,2,5,3,6,7] => ? = 2
[1,2,5,3,6,7,4] => [7,6,3,5,2,1,4] => [7,6,3,5,2,1,4] => [4,1,2,5,3,6,7] => ? = 2
[1,2,5,3,7,4,6] => [7,6,3,5,1,4,2] => [7,6,3,5,1,4,2] => [2,4,1,5,3,6,7] => ? = 2
[1,2,5,3,7,6,4] => [7,6,3,5,1,2,4] => [7,6,3,5,1,4,2] => [2,4,1,5,3,6,7] => ? = 2
[1,2,5,4,3,6,7] => [7,6,3,4,5,2,1] => [7,6,3,5,4,2,1] => [1,2,4,5,3,6,7] => ? = 2
[1,2,5,4,3,7,6] => [7,6,3,4,5,1,2] => [7,6,3,5,4,1,2] => [2,1,4,5,3,6,7] => ? = 2
[1,2,5,4,6,3,7] => [7,6,3,4,2,5,1] => [7,6,3,5,2,4,1] => [1,4,2,5,3,6,7] => ? = 2
[1,2,5,4,6,7,3] => [7,6,3,4,2,1,5] => [7,6,3,5,2,1,4] => [4,1,2,5,3,6,7] => ? = 2
[1,2,5,4,7,3,6] => [7,6,3,4,1,5,2] => [7,6,3,5,1,4,2] => [2,4,1,5,3,6,7] => ? = 2
[1,2,5,4,7,6,3] => [7,6,3,4,1,2,5] => [7,6,3,5,1,4,2] => [2,4,1,5,3,6,7] => ? = 2
[1,2,5,6,3,4,7] => [7,6,3,2,5,4,1] => [7,6,3,2,5,4,1] => [1,4,5,2,3,6,7] => ? = 2
[1,2,5,6,3,7,4] => [7,6,3,2,5,1,4] => [7,6,3,2,5,1,4] => [4,1,5,2,3,6,7] => ? = 2
[1,2,5,6,4,3,7] => [7,6,3,2,4,5,1] => [7,6,3,2,5,4,1] => [1,4,5,2,3,6,7] => ? = 2
[1,2,5,6,4,7,3] => [7,6,3,2,4,1,5] => [7,6,3,2,5,1,4] => [4,1,5,2,3,6,7] => ? = 2
[1,2,5,6,7,3,4] => [7,6,3,2,1,5,4] => [7,6,3,2,1,5,4] => [4,5,1,2,3,6,7] => ? = 2
[1,2,5,6,7,4,3] => [7,6,3,2,1,4,5] => [7,6,3,2,1,5,4] => [4,5,1,2,3,6,7] => ? = 2
[1,2,5,7,3,4,6] => [7,6,3,1,5,4,2] => [7,6,3,1,5,4,2] => [2,4,5,1,3,6,7] => ? = 3
[1,2,5,7,3,6,4] => [7,6,3,1,5,2,4] => [7,6,3,1,5,4,2] => [2,4,5,1,3,6,7] => ? = 3
[1,2,5,7,4,3,6] => [7,6,3,1,4,5,2] => [7,6,3,1,5,4,2] => [2,4,5,1,3,6,7] => ? = 3
[1,2,5,7,4,6,3] => [7,6,3,1,4,2,5] => [7,6,3,1,5,4,2] => [2,4,5,1,3,6,7] => ? = 3
Description
The number of stack-sorts needed to sort a permutation. A permutation is (West) $t$-stack sortable if it is sortable using $t$ stacks in series. Let $W_t(n,k)$ be the number of permutations of size $n$ with $k$ descents which are $t$-stack sortable. Then the polynomials $W_{n,t}(x) = \sum_{k=0}^n W_t(n,k)x^k$ are symmetric and unimodal. We have $W_{n,1}(x) = A_n(x)$, the Eulerian polynomials. One can show that $W_{n,1}(x)$ and $W_{n,2}(x)$ are real-rooted. Precisely the permutations that avoid the pattern $231$ have statistic at most $1$, see [3]. These are counted by $\frac{1}{n+1}\binom{2n}{n}$ ([[OEIS:A000108]]). Precisely the permutations that avoid the pattern $2341$ and the barred pattern $3\bar 5241$ have statistic at most $2$, see [4]. These are counted by $\frac{2(3n)!}{(n+1)!(2n+1)!}$ ([[OEIS:A000139]]).
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St001330: Graphs ⟶ ℤResult quality: 39% ā—values known / values provided: 39%ā—distinct values known / distinct values provided: 80%
Values
[1] => [1,0]
=> [1] => ([],1)
=> 1 = 0 + 1
[1,2] => [1,0,1,0]
=> [1,2] => ([],2)
=> 1 = 0 + 1
[2,1] => [1,1,0,0]
=> [2,1] => ([(0,1)],2)
=> 2 = 1 + 1
[1,2,3] => [1,0,1,0,1,0]
=> [1,2,3] => ([],3)
=> 1 = 0 + 1
[1,3,2] => [1,0,1,1,0,0]
=> [1,3,2] => ([(1,2)],3)
=> 2 = 1 + 1
[2,1,3] => [1,1,0,0,1,0]
=> [2,1,3] => ([(1,2)],3)
=> 2 = 1 + 1
[2,3,1] => [1,1,0,1,0,0]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[3,1,2] => [1,1,1,0,0,0]
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[3,2,1] => [1,1,1,0,0,0]
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => ([],4)
=> 1 = 0 + 1
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => ([(2,3)],4)
=> 2 = 1 + 1
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => ([(2,3)],4)
=> 2 = 1 + 1
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => ([(1,3),(2,3)],4)
=> 2 = 1 + 1
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => ([(2,3)],4)
=> 2 = 1 + 1
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> 2 = 1 + 1
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => ([(1,3),(2,3)],4)
=> 2 = 1 + 1
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 + 1
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 + 1
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 + 1
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 + 1
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 + 1
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 + 1
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => ([],5)
=> 1 = 0 + 1
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => ([(3,4)],5)
=> 2 = 1 + 1
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => ([(3,4)],5)
=> 2 = 1 + 1
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => ([(3,4)],5)
=> 2 = 1 + 1
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> 2 = 1 + 1
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => ([(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
[1,4,5,3,2] => [1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
[1,5,2,3,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[1,5,2,4,3] => [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[1,5,3,2,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[1,5,4,2,3] => [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => ([(3,4)],5)
=> 2 = 1 + 1
[2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> 2 = 1 + 1
[2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> 2 = 1 + 1
[2,1,4,5,3] => [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> 2 = 1 + 1
[2,1,5,3,4] => [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[2,3,5,1,4] => [1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
[2,3,5,4,1] => [1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
[2,4,1,3,5] => [1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
[2,4,1,5,3] => [1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
[2,4,3,1,5] => [1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
[2,4,3,5,1] => [1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
[2,4,5,1,3] => [1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
[2,4,5,3,1] => [1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
[2,5,1,3,4] => [1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[2,5,1,4,3] => [1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[2,5,3,1,4] => [1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[2,5,3,4,1] => [1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[2,5,4,1,3] => [1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[2,5,4,3,1] => [1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[3,1,4,2,5] => [1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
[3,1,4,5,2] => [1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
[3,1,5,2,4] => [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ? = 2 + 1
[3,1,5,4,2] => [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ? = 2 + 1
[3,2,4,1,5] => [1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
[3,2,4,5,1] => [1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
[3,2,5,1,4] => [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ? = 2 + 1
[3,2,5,4,1] => [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ? = 2 + 1
[3,4,1,2,5] => [1,1,1,0,1,0,0,0,1,0]
=> [4,2,3,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
[3,4,1,5,2] => [1,1,1,0,1,0,0,1,0,0]
=> [4,2,3,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
[3,4,2,1,5] => [1,1,1,0,1,0,0,0,1,0]
=> [4,2,3,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
[3,4,2,5,1] => [1,1,1,0,1,0,0,1,0,0]
=> [4,2,3,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
[3,4,5,1,2] => [1,1,1,0,1,0,1,0,0,0]
=> [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
[3,4,5,2,1] => [1,1,1,0,1,0,1,0,0,0]
=> [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
[3,5,1,2,4] => [1,1,1,0,1,1,0,0,0,0]
=> [5,2,4,3,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[3,5,1,4,2] => [1,1,1,0,1,1,0,0,0,0]
=> [5,2,4,3,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[3,5,2,1,4] => [1,1,1,0,1,1,0,0,0,0]
=> [5,2,4,3,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[3,5,2,4,1] => [1,1,1,0,1,1,0,0,0,0]
=> [5,2,4,3,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[3,5,4,1,2] => [1,1,1,0,1,1,0,0,0,0]
=> [5,2,4,3,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[3,5,4,2,1] => [1,1,1,0,1,1,0,0,0,0]
=> [5,2,4,3,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[4,1,2,5,3] => [1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[4,1,3,5,2] => [1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[4,1,5,2,3] => [1,1,1,1,0,0,1,0,0,0]
=> [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[4,1,5,3,2] => [1,1,1,1,0,0,1,0,0,0]
=> [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
Description
The hat guessing number of a graph. Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of $q$ possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number $HG(G)$ of a graph $G$ is the largest integer $q$ such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of $q$ possible colors. Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Matching statistic: St000786
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000786: Graphs ⟶ ℤResult quality: 37% ā—values known / values provided: 37%ā—distinct values known / distinct values provided: 70%
Values
[1] => [1,0]
=> [1] => ([],1)
=> 1 = 0 + 1
[1,2] => [1,0,1,0]
=> [2,1] => ([(0,1)],2)
=> 1 = 0 + 1
[2,1] => [1,1,0,0]
=> [1,2] => ([],2)
=> 2 = 1 + 1
[1,2,3] => [1,0,1,0,1,0]
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 1 = 0 + 1
[1,3,2] => [1,0,1,1,0,0]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[2,1,3] => [1,1,0,0,1,0]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[2,3,1] => [1,1,0,1,0,0]
=> [2,1,3] => ([(1,2)],3)
=> 2 = 1 + 1
[3,1,2] => [1,1,1,0,0,0]
=> [1,2,3] => ([],3)
=> 3 = 2 + 1
[3,2,1] => [1,1,1,0,0,0]
=> [1,2,3] => ([],3)
=> 3 = 2 + 1
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 3 = 2 + 1
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 3 = 2 + 1
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2 = 1 + 1
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => ([(1,3),(2,3)],4)
=> 3 = 2 + 1
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => ([(1,3),(2,3)],4)
=> 3 = 2 + 1
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 3 = 2 + 1
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => ([(1,3),(2,3)],4)
=> 3 = 2 + 1
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 3 = 2 + 1
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => ([(1,3),(2,3)],4)
=> 3 = 2 + 1
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => ([(2,3)],4)
=> 3 = 2 + 1
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => ([(2,3)],4)
=> 3 = 2 + 1
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> 4 = 3 + 1
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> 4 = 3 + 1
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> 4 = 3 + 1
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> 4 = 3 + 1
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> 4 = 3 + 1
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> 4 = 3 + 1
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[8,7,6,5,4,3,2,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 7 + 1
[8,6,7,5,4,3,2,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 7 + 1
[7,6,8,5,4,3,2,1] => [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [3,1,2,4,5,6,7,8] => ([(5,7),(6,7)],8)
=> ? = 6 + 1
[8,7,5,6,4,3,2,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 7 + 1
[8,6,5,7,4,3,2,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 7 + 1
[8,5,6,7,4,3,2,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 7 + 1
[8,7,6,4,5,3,2,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 7 + 1
[8,6,7,4,5,3,2,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 7 + 1
[7,6,8,4,5,3,2,1] => [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [3,1,2,4,5,6,7,8] => ([(5,7),(6,7)],8)
=> ? = 6 + 1
[8,7,5,4,6,3,2,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 7 + 1
[8,7,4,5,6,3,2,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 7 + 1
[8,6,5,4,7,3,2,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 7 + 1
[8,5,6,4,7,3,2,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 7 + 1
[8,6,4,5,7,3,2,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 7 + 1
[8,5,4,6,7,3,2,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 7 + 1
[8,4,5,6,7,3,2,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 7 + 1
[7,6,5,4,8,3,2,1] => [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> [5,1,2,3,4,6,7,8] => ([(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 6 + 1
[7,5,6,4,8,3,2,1] => [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> [5,1,2,3,4,6,7,8] => ([(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 6 + 1
[6,5,7,4,8,3,2,1] => [1,1,1,1,1,1,0,0,1,0,0,1,0,0,0,0]
=> [5,3,1,2,4,6,7,8] => ([(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5 + 1
[7,6,4,5,8,3,2,1] => [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> [5,1,2,3,4,6,7,8] => ([(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 6 + 1
[7,5,4,6,8,3,2,1] => [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> [5,1,2,3,4,6,7,8] => ([(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 6 + 1
[7,4,5,6,8,3,2,1] => [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> [5,1,2,3,4,6,7,8] => ([(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 6 + 1
[8,7,6,5,3,4,2,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 7 + 1
[8,6,7,5,3,4,2,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 7 + 1
[7,6,8,5,3,4,2,1] => [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [3,1,2,4,5,6,7,8] => ([(5,7),(6,7)],8)
=> ? = 6 + 1
[8,7,5,6,3,4,2,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 7 + 1
[8,5,6,7,3,4,2,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 7 + 1
[8,7,6,4,3,5,2,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 7 + 1
[8,6,7,4,3,5,2,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 7 + 1
[7,6,8,4,3,5,2,1] => [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [3,1,2,4,5,6,7,8] => ([(5,7),(6,7)],8)
=> ? = 6 + 1
[8,7,6,3,4,5,2,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 7 + 1
[8,6,7,3,4,5,2,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 7 + 1
[7,6,8,3,4,5,2,1] => [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [3,1,2,4,5,6,7,8] => ([(5,7),(6,7)],8)
=> ? = 6 + 1
[8,7,5,4,3,6,2,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 7 + 1
[8,7,4,5,3,6,2,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 7 + 1
[8,7,5,3,4,6,2,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 7 + 1
[8,7,4,3,5,6,2,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 7 + 1
[8,7,3,4,5,6,2,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 7 + 1
[8,6,5,4,3,7,2,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 7 + 1
[8,5,4,6,3,7,2,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 7 + 1
[8,6,4,3,5,7,2,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 7 + 1
[8,5,4,3,6,7,2,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 7 + 1
[8,5,3,4,6,7,2,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 7 + 1
[8,4,3,5,6,7,2,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 7 + 1
[8,3,4,5,6,7,2,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 7 + 1
[8,7,6,5,4,2,3,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 7 + 1
[8,6,7,5,4,2,3,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 7 + 1
[7,6,8,5,4,2,3,1] => [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [3,1,2,4,5,6,7,8] => ([(5,7),(6,7)],8)
=> ? = 6 + 1
[8,7,5,6,4,2,3,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 7 + 1
[8,6,5,7,4,2,3,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,7,8] => ([],8)
=> ? = 7 + 1
Description
The maximal number of occurrences of a colour in a proper colouring of a graph. To any proper colouring with the minimal number of colours possible we associate the integer partition recording how often each colour is used. This statistic records the largest part occurring in any of these partitions. For example, the graph on six vertices consisting of a square together with two attached triangles - ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6) in the list of values - is three-colourable and admits two colouring schemes, $[2,2,2]$ and $[3,2,1]$. Therefore, the statistic on this graph is $3$.
The following 61 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000306The bounce count of a Dyck path. St000442The maximal area to the right of an up step of a Dyck path. St001046The maximal number of arcs nesting a given arc of a perfect matching. St000720The size of the largest partition in the oscillating tableau corresponding to the perfect matching. St000730The maximal arc length of a set partition. St000845The maximal number of elements covered by an element in a poset. St001203We associate to a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n-1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a Dyck path as follows: St000053The number of valleys of the Dyck path. St000272The treewidth of a graph. St000536The pathwidth of a graph. St001197The global dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001506Half the projective dimension of the unique simple module with even projective dimension in a magnitude 1 Nakayama algebra. St000172The Grundy number of a graph. St001029The size of the core of a graph. St001068Number of torsionless simple modules in the corresponding Nakayama algebra. St001494The Alon-Tarsi number of a graph. St001580The acyclic chromatic number of a graph. St001028Number of simple modules with injective dimension equal to the dominant dimension in the Nakayama algebra corresponding to the Dyck path. St001418Half of the global dimension of the stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001337The upper domination number of a graph. St001338The upper irredundance number of a graph. St000528The height of a poset. St001343The dimension of the reduced incidence algebra of a poset. St000308The height of the tree associated to a permutation. St001277The degeneracy of a graph. St001358The largest degree of a regular subgraph of a graph. St001963The tree-depth of a graph. St000651The maximal size of a rise in a permutation. St001717The largest size of an interval in a poset. St000470The number of runs in a permutation. St000021The number of descents of a permutation. St000542The number of left-to-right-minima of a permutation. St000062The length of the longest increasing subsequence of the permutation. St000166The depth minus 1 of an ordered tree. St000094The depth of an ordered tree. St000080The rank of the poset. St000541The number of indices greater than or equal to 2 of a permutation such that all smaller indices appear to its right. St001047The maximal number of arcs crossing a given arc of a perfect matching. St001169Number of simple modules with projective dimension at least two in the corresponding Nakayama algebra. St001205The number of non-simple indecomposable projective-injective modules of the algebra $eAe$ in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001225The vector space dimension of the first extension group between J and itself when J is the Jacobson radical of the corresponding Nakayama algebra. St001278The number of indecomposable modules that are fixed by $\tau \Omega^1$ composed with its inverse in the corresponding Nakayama algebra. St000015The number of peaks of a Dyck path. St000314The number of left-to-right-maxima of a permutation. St000325The width of the tree associated to a permutation. St000822The Hadwiger number of the graph. St000877The depth of the binary word interpreted as a path. St001202Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{nāˆ’1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001390The number of bumps occurring when Schensted-inserting the letter 1 of a permutation. St001498The normalised height of a Nakayama algebra with magnitude 1. St001290The first natural number n such that the tensor product of n copies of D(A) is zero for the corresponding Nakayama algebra A. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St000888The maximal sum of entries on a diagonal of an alternating sign matrix. St000892The maximal number of nonzero entries on a diagonal of an alternating sign matrix. St000317The cycle descent number of a permutation. St001589The nesting number of a perfect matching. St001590The crossing number of a perfect matching. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St000983The length of the longest alternating subword.