searching the database
Your data matches 7 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000691
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00094: Integer compositions —to binary word⟶ Binary words
St000691: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00094: Integer compositions —to binary word⟶ Binary words
St000691: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
0 => [2] => 10 => 1
1 => [1,1] => 11 => 0
00 => [3] => 100 => 1
01 => [2,1] => 101 => 2
10 => [1,2] => 110 => 1
11 => [1,1,1] => 111 => 0
000 => [4] => 1000 => 1
001 => [3,1] => 1001 => 2
010 => [2,2] => 1010 => 3
011 => [2,1,1] => 1011 => 2
100 => [1,3] => 1100 => 1
101 => [1,2,1] => 1101 => 2
110 => [1,1,2] => 1110 => 1
111 => [1,1,1,1] => 1111 => 0
0000 => [5] => 10000 => 1
0001 => [4,1] => 10001 => 2
0010 => [3,2] => 10010 => 3
0011 => [3,1,1] => 10011 => 2
0100 => [2,3] => 10100 => 3
0101 => [2,2,1] => 10101 => 4
0110 => [2,1,2] => 10110 => 3
0111 => [2,1,1,1] => 10111 => 2
1000 => [1,4] => 11000 => 1
1001 => [1,3,1] => 11001 => 2
1010 => [1,2,2] => 11010 => 3
1011 => [1,2,1,1] => 11011 => 2
1100 => [1,1,3] => 11100 => 1
1101 => [1,1,2,1] => 11101 => 2
1110 => [1,1,1,2] => 11110 => 1
1111 => [1,1,1,1,1] => 11111 => 0
00000 => [6] => 100000 => 1
00001 => [5,1] => 100001 => 2
00010 => [4,2] => 100010 => 3
00011 => [4,1,1] => 100011 => 2
00100 => [3,3] => 100100 => 3
00101 => [3,2,1] => 100101 => 4
00110 => [3,1,2] => 100110 => 3
00111 => [3,1,1,1] => 100111 => 2
01000 => [2,4] => 101000 => 3
01001 => [2,3,1] => 101001 => 4
01010 => [2,2,2] => 101010 => 5
01011 => [2,2,1,1] => 101011 => 4
01100 => [2,1,3] => 101100 => 3
01101 => [2,1,2,1] => 101101 => 4
01110 => [2,1,1,2] => 101110 => 3
01111 => [2,1,1,1,1] => 101111 => 2
10000 => [1,5] => 110000 => 1
10001 => [1,4,1] => 110001 => 2
10010 => [1,3,2] => 110010 => 3
10011 => [1,3,1,1] => 110011 => 2
Description
The number of changes of a binary word.
This is the number of indices $i$ such that $w_i \neq w_{i+1}$.
Matching statistic: St001486
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00094: Integer compositions —to binary word⟶ Binary words
Mp00178: Binary words —to composition⟶ Integer compositions
St001486: Integer compositions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00094: Integer compositions —to binary word⟶ Binary words
Mp00178: Binary words —to composition⟶ Integer compositions
St001486: Integer compositions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
0 => [2] => 10 => [1,2] => 3 = 1 + 2
1 => [1,1] => 11 => [1,1,1] => 2 = 0 + 2
00 => [3] => 100 => [1,3] => 3 = 1 + 2
01 => [2,1] => 101 => [1,2,1] => 4 = 2 + 2
10 => [1,2] => 110 => [1,1,2] => 3 = 1 + 2
11 => [1,1,1] => 111 => [1,1,1,1] => 2 = 0 + 2
000 => [4] => 1000 => [1,4] => 3 = 1 + 2
001 => [3,1] => 1001 => [1,3,1] => 4 = 2 + 2
010 => [2,2] => 1010 => [1,2,2] => 5 = 3 + 2
011 => [2,1,1] => 1011 => [1,2,1,1] => 4 = 2 + 2
100 => [1,3] => 1100 => [1,1,3] => 3 = 1 + 2
101 => [1,2,1] => 1101 => [1,1,2,1] => 4 = 2 + 2
110 => [1,1,2] => 1110 => [1,1,1,2] => 3 = 1 + 2
111 => [1,1,1,1] => 1111 => [1,1,1,1,1] => 2 = 0 + 2
0000 => [5] => 10000 => [1,5] => 3 = 1 + 2
0001 => [4,1] => 10001 => [1,4,1] => 4 = 2 + 2
0010 => [3,2] => 10010 => [1,3,2] => 5 = 3 + 2
0011 => [3,1,1] => 10011 => [1,3,1,1] => 4 = 2 + 2
0100 => [2,3] => 10100 => [1,2,3] => 5 = 3 + 2
0101 => [2,2,1] => 10101 => [1,2,2,1] => 6 = 4 + 2
0110 => [2,1,2] => 10110 => [1,2,1,2] => 5 = 3 + 2
0111 => [2,1,1,1] => 10111 => [1,2,1,1,1] => 4 = 2 + 2
1000 => [1,4] => 11000 => [1,1,4] => 3 = 1 + 2
1001 => [1,3,1] => 11001 => [1,1,3,1] => 4 = 2 + 2
1010 => [1,2,2] => 11010 => [1,1,2,2] => 5 = 3 + 2
1011 => [1,2,1,1] => 11011 => [1,1,2,1,1] => 4 = 2 + 2
1100 => [1,1,3] => 11100 => [1,1,1,3] => 3 = 1 + 2
1101 => [1,1,2,1] => 11101 => [1,1,1,2,1] => 4 = 2 + 2
1110 => [1,1,1,2] => 11110 => [1,1,1,1,2] => 3 = 1 + 2
1111 => [1,1,1,1,1] => 11111 => [1,1,1,1,1,1] => 2 = 0 + 2
00000 => [6] => 100000 => [1,6] => 3 = 1 + 2
00001 => [5,1] => 100001 => [1,5,1] => 4 = 2 + 2
00010 => [4,2] => 100010 => [1,4,2] => 5 = 3 + 2
00011 => [4,1,1] => 100011 => [1,4,1,1] => 4 = 2 + 2
00100 => [3,3] => 100100 => [1,3,3] => 5 = 3 + 2
00101 => [3,2,1] => 100101 => [1,3,2,1] => 6 = 4 + 2
00110 => [3,1,2] => 100110 => [1,3,1,2] => 5 = 3 + 2
00111 => [3,1,1,1] => 100111 => [1,3,1,1,1] => 4 = 2 + 2
01000 => [2,4] => 101000 => [1,2,4] => 5 = 3 + 2
01001 => [2,3,1] => 101001 => [1,2,3,1] => 6 = 4 + 2
01010 => [2,2,2] => 101010 => [1,2,2,2] => 7 = 5 + 2
01011 => [2,2,1,1] => 101011 => [1,2,2,1,1] => 6 = 4 + 2
01100 => [2,1,3] => 101100 => [1,2,1,3] => 5 = 3 + 2
01101 => [2,1,2,1] => 101101 => [1,2,1,2,1] => 6 = 4 + 2
01110 => [2,1,1,2] => 101110 => [1,2,1,1,2] => 5 = 3 + 2
01111 => [2,1,1,1,1] => 101111 => [1,2,1,1,1,1] => 4 = 2 + 2
10000 => [1,5] => 110000 => [1,1,5] => 3 = 1 + 2
10001 => [1,4,1] => 110001 => [1,1,4,1] => 4 = 2 + 2
10010 => [1,3,2] => 110010 => [1,1,3,2] => 5 = 3 + 2
10011 => [1,3,1,1] => 110011 => [1,1,3,1,1] => 4 = 2 + 2
Description
The number of corners of the ribbon associated with an integer composition.
We associate a ribbon shape to a composition $c=(c_1,\dots,c_n)$ with $c_i$ cells in the $i$-th row from bottom to top, such that the cells in two rows overlap in precisely one cell.
This statistic records the total number of corners of the ribbon shape.
Matching statistic: St000288
Mp00104: Binary words —reverse⟶ Binary words
Mp00269: Binary words —flag zeros to zeros⟶ Binary words
Mp00105: Binary words —complement⟶ Binary words
St000288: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00269: Binary words —flag zeros to zeros⟶ Binary words
Mp00105: Binary words —complement⟶ Binary words
St000288: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
0 => 0 => 0 => 1 => 1
1 => 1 => 1 => 0 => 0
00 => 00 => 01 => 10 => 1
01 => 10 => 00 => 11 => 2
10 => 01 => 10 => 01 => 1
11 => 11 => 11 => 00 => 0
000 => 000 => 011 => 100 => 1
001 => 100 => 010 => 101 => 2
010 => 010 => 000 => 111 => 3
011 => 110 => 001 => 110 => 2
100 => 001 => 101 => 010 => 1
101 => 101 => 100 => 011 => 2
110 => 011 => 110 => 001 => 1
111 => 111 => 111 => 000 => 0
0000 => 0000 => 0111 => 1000 => 1
0001 => 1000 => 0110 => 1001 => 2
0010 => 0100 => 0100 => 1011 => 3
0011 => 1100 => 0101 => 1010 => 2
0100 => 0010 => 0001 => 1110 => 3
0101 => 1010 => 0000 => 1111 => 4
0110 => 0110 => 0010 => 1101 => 3
0111 => 1110 => 0011 => 1100 => 2
1000 => 0001 => 1011 => 0100 => 1
1001 => 1001 => 1010 => 0101 => 2
1010 => 0101 => 1000 => 0111 => 3
1011 => 1101 => 1001 => 0110 => 2
1100 => 0011 => 1101 => 0010 => 1
1101 => 1011 => 1100 => 0011 => 2
1110 => 0111 => 1110 => 0001 => 1
1111 => 1111 => 1111 => 0000 => 0
00000 => 00000 => 01111 => 10000 => 1
00001 => 10000 => 01110 => 10001 => 2
00010 => 01000 => 01100 => 10011 => 3
00011 => 11000 => 01101 => 10010 => 2
00100 => 00100 => 01001 => 10110 => 3
00101 => 10100 => 01000 => 10111 => 4
00110 => 01100 => 01010 => 10101 => 3
00111 => 11100 => 01011 => 10100 => 2
01000 => 00010 => 00011 => 11100 => 3
01001 => 10010 => 00010 => 11101 => 4
01010 => 01010 => 00000 => 11111 => 5
01011 => 11010 => 00001 => 11110 => 4
01100 => 00110 => 00101 => 11010 => 3
01101 => 10110 => 00100 => 11011 => 4
01110 => 01110 => 00110 => 11001 => 3
01111 => 11110 => 00111 => 11000 => 2
10000 => 00001 => 10111 => 01000 => 1
10001 => 10001 => 10110 => 01001 => 2
10010 => 01001 => 10100 => 01011 => 3
10011 => 11001 => 10101 => 01010 => 2
=> => => => ? = 0
Description
The number of ones in a binary word.
This is also known as the Hamming weight of the word.
Matching statistic: St000340
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St000340: Dyck paths ⟶ ℤResult quality: 44% ●values known / values provided: 44%●distinct values known / distinct values provided: 89%
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St000340: Dyck paths ⟶ ℤResult quality: 44% ●values known / values provided: 44%●distinct values known / distinct values provided: 89%
Values
0 => [2] => [1,1,0,0]
=> 1
1 => [1,1] => [1,0,1,0]
=> 0
00 => [3] => [1,1,1,0,0,0]
=> 1
01 => [2,1] => [1,1,0,0,1,0]
=> 2
10 => [1,2] => [1,0,1,1,0,0]
=> 1
11 => [1,1,1] => [1,0,1,0,1,0]
=> 0
000 => [4] => [1,1,1,1,0,0,0,0]
=> 1
001 => [3,1] => [1,1,1,0,0,0,1,0]
=> 2
010 => [2,2] => [1,1,0,0,1,1,0,0]
=> 3
011 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 2
100 => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
101 => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2
110 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 1
111 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 0
0000 => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 1
0001 => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 2
0010 => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3
0011 => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 2
0100 => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 3
0101 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 4
0110 => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 3
0111 => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 2
1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1
1001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 2
1010 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 3
1011 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 2
1100 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 1
1101 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 2
1110 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 1
1111 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0
00000 => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 1
00001 => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
00010 => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> 3
00011 => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> 2
00100 => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> 3
00101 => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> 4
00110 => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> 3
00111 => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> 2
01000 => [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> 3
01001 => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> 4
01010 => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> 5
01011 => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> 4
01100 => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> 3
01101 => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> 4
01110 => [2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> 3
01111 => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> 2
10000 => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> 1
10001 => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> 2
10010 => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> 3
10011 => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> 2
0000000 => [8] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 1
0000001 => [7,1] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2
0000010 => [6,2] => [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 3
0000011 => [6,1,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 2
0000100 => [5,3] => [1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0]
=> ? = 3
0000101 => [5,2,1] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0,1,0]
=> ? = 4
0000110 => [5,1,2] => [1,1,1,1,1,0,0,0,0,0,1,0,1,1,0,0]
=> ? = 3
0000111 => [5,1,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 2
0001000 => [4,4] => [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 3
0001001 => [4,3,1] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0,1,0]
=> ? = 4
0001010 => [4,2,2] => [1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> ? = 5
0001011 => [4,2,1,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0,1,0]
=> ? = 4
0001100 => [4,1,3] => [1,1,1,1,0,0,0,0,1,0,1,1,1,0,0,0]
=> ? = 3
0001101 => [4,1,2,1] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0,1,0]
=> ? = 4
0001110 => [4,1,1,2] => [1,1,1,1,0,0,0,0,1,0,1,0,1,1,0,0]
=> ? = 3
0001111 => [4,1,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 2
0010000 => [3,5] => [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 3
0010001 => [3,4,1] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 4
0010010 => [3,3,2] => [1,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 5
0010011 => [3,3,1,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 4
0010100 => [3,2,3] => [1,1,1,0,0,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 5
0010101 => [3,2,2,1] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 6
0010110 => [3,2,1,2] => [1,1,1,0,0,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 5
0010111 => [3,2,1,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 4
0011000 => [3,1,4] => [1,1,1,0,0,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 3
0011001 => [3,1,3,1] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 4
0011010 => [3,1,2,2] => [1,1,1,0,0,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 5
0011011 => [3,1,2,1,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 4
0011100 => [3,1,1,3] => [1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 3
0011101 => [3,1,1,2,1] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 4
0011110 => [3,1,1,1,2] => [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 3
0011111 => [3,1,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 2
00000000 => [9] => [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> ? = 1
00000001 => [8,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
00000010 => [7,2] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,0,0]
=> ? = 3
00000011 => [7,1,1] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,1,0]
=> ? = 2
00000100 => [6,3] => [1,1,1,1,1,1,0,0,0,0,0,0,1,1,1,0,0,0]
=> ? = 3
00000101 => [6,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0,1,0]
=> ? = 4
00000110 => [6,1,2] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,1,0,0]
=> ? = 3
00000111 => [6,1,1,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 2
00001000 => [5,4] => [1,1,1,1,1,0,0,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 3
00001001 => [5,3,1] => [1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0,1,0]
=> ? = 4
00001010 => [5,2,2] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0,1,1,0,0]
=> ? = 5
00001011 => [5,2,1,1] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0,1,0,1,0]
=> ? = 4
00001100 => [5,1,3] => [1,1,1,1,1,0,0,0,0,0,1,0,1,1,1,0,0,0]
=> ? = 3
00001101 => [5,1,2,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,1,0,0,1,0]
=> ? = 4
00001110 => [5,1,1,2] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,1,0,0]
=> ? = 3
00001111 => [5,1,1,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 2
00010000 => [4,5] => [1,1,1,1,0,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 3
00010001 => [4,4,1] => [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 4
Description
The number of non-final maximal constant sub-paths of length greater than one.
This is the total number of occurrences of the patterns $110$ and $001$.
Matching statistic: St000453
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00041: Integer compositions —conjugate⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000453: Graphs ⟶ ℤResult quality: 25% ●values known / values provided: 25%●distinct values known / distinct values provided: 78%
Mp00041: Integer compositions —conjugate⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000453: Graphs ⟶ ℤResult quality: 25% ●values known / values provided: 25%●distinct values known / distinct values provided: 78%
Values
0 => [2] => [1,1] => ([(0,1)],2)
=> 2 = 1 + 1
1 => [1,1] => [2] => ([],2)
=> 1 = 0 + 1
00 => [3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
01 => [2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 3 = 2 + 1
10 => [1,2] => [1,2] => ([(1,2)],3)
=> 2 = 1 + 1
11 => [1,1,1] => [3] => ([],3)
=> 1 = 0 + 1
000 => [4] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
001 => [3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
010 => [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
011 => [2,1,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3 = 2 + 1
100 => [1,3] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
101 => [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> 3 = 2 + 1
110 => [1,1,2] => [1,3] => ([(2,3)],4)
=> 2 = 1 + 1
111 => [1,1,1,1] => [4] => ([],4)
=> 1 = 0 + 1
0000 => [5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
0001 => [4,1] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
0010 => [3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
0011 => [3,1,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
0100 => [2,3] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
0101 => [2,2,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
0110 => [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
0111 => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
1000 => [1,4] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
1001 => [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
1010 => [1,2,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
1011 => [1,2,1,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
1100 => [1,1,3] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
1101 => [1,1,2,1] => [2,3] => ([(2,4),(3,4)],5)
=> 3 = 2 + 1
1110 => [1,1,1,2] => [1,4] => ([(3,4)],5)
=> 2 = 1 + 1
1111 => [1,1,1,1,1] => [5] => ([],5)
=> 1 = 0 + 1
00000 => [6] => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
00001 => [5,1] => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
00010 => [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
00011 => [4,1,1] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
00100 => [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
00101 => [3,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
00110 => [3,1,2] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
00111 => [3,1,1,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
01000 => [2,4] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
01001 => [2,3,1] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
01010 => [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
01011 => [2,2,1,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
01100 => [2,1,3] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
01101 => [2,1,2,1] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
01110 => [2,1,1,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
01111 => [2,1,1,1,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 3 = 2 + 1
10000 => [1,5] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
10001 => [1,4,1] => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
10010 => [1,3,2] => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
10011 => [1,3,1,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
001100 => [3,1,3] => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 + 1
0000000 => [8] => [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1 + 1
0000001 => [7,1] => [2,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
0000010 => [6,2] => [1,2,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
0000011 => [6,1,1] => [3,1,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
0000100 => [5,3] => [1,1,2,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
0000101 => [5,2,1] => [2,2,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4 + 1
0000110 => [5,1,2] => [1,3,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
0000111 => [5,1,1,1] => [4,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
0001000 => [4,4] => [1,1,1,2,1,1,1] => ([(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
0001001 => [4,3,1] => [2,1,2,1,1,1] => ([(0,5),(0,6),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4 + 1
0001010 => [4,2,2] => [1,2,2,1,1,1] => ([(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5 + 1
0001011 => [4,2,1,1] => [3,2,1,1,1] => ([(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4 + 1
0001100 => [4,1,3] => [1,1,3,1,1,1] => ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
0001101 => [4,1,2,1] => [2,3,1,1,1] => ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4 + 1
0001110 => [4,1,1,2] => [1,4,1,1,1] => ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
0001111 => [4,1,1,1,1] => [5,1,1,1] => ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
0010000 => [3,5] => [1,1,1,1,2,1,1] => ([(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
0010001 => [3,4,1] => [2,1,1,2,1,1] => ([(0,6),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4 + 1
0010010 => [3,3,2] => [1,2,1,2,1,1] => ([(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5 + 1
0010011 => [3,3,1,1] => [3,1,2,1,1] => ([(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4 + 1
0010100 => [3,2,3] => [1,1,2,2,1,1] => ([(0,6),(0,7),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5 + 1
0010101 => [3,2,2,1] => [2,2,2,1,1] => ([(0,6),(0,7),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6 + 1
0010110 => [3,2,1,2] => [1,3,2,1,1] => ([(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5 + 1
0010111 => [3,2,1,1,1] => [4,2,1,1] => ([(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4 + 1
0011000 => [3,1,4] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
0011001 => [3,1,3,1] => [2,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4 + 1
0011010 => [3,1,2,2] => [1,2,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5 + 1
0011011 => [3,1,2,1,1] => [3,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4 + 1
0011100 => [3,1,1,3] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
0011101 => [3,1,1,2,1] => [2,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4 + 1
0011110 => [3,1,1,1,2] => [1,5,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
0011111 => [3,1,1,1,1,1] => [6,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2 + 1
0100000 => [2,6] => [1,1,1,1,1,2,1] => ([(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
0100001 => [2,5,1] => [2,1,1,1,2,1] => ([(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4 + 1
0100010 => [2,4,2] => [1,2,1,1,2,1] => ([(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5 + 1
0100011 => [2,4,1,1] => [3,1,1,2,1] => ([(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4 + 1
0100100 => [2,3,3] => [1,1,2,1,2,1] => ([(0,7),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5 + 1
0100101 => [2,3,2,1] => [2,2,1,2,1] => ([(0,7),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6 + 1
0100110 => [2,3,1,2] => [1,3,1,2,1] => ([(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5 + 1
0100111 => [2,3,1,1,1] => [4,1,2,1] => ([(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4 + 1
0101000 => [2,2,4] => [1,1,1,2,2,1] => ([(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5 + 1
0101001 => [2,2,3,1] => [2,1,2,2,1] => ([(0,7),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6 + 1
0101010 => [2,2,2,2] => [1,2,2,2,1] => ([(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 7 + 1
0101011 => [2,2,2,1,1] => [3,2,2,1] => ([(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6 + 1
0101100 => [2,2,1,3] => [1,1,3,2,1] => ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5 + 1
0101101 => [2,2,1,2,1] => [2,3,2,1] => ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6 + 1
0101110 => [2,2,1,1,2] => [1,4,2,1] => ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5 + 1
0101111 => [2,2,1,1,1,1] => [5,2,1] => ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4 + 1
0110000 => [2,1,5] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3 + 1
Description
The number of distinct Laplacian eigenvalues of a graph.
Matching statistic: St000777
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00041: Integer compositions —conjugate⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000777: Graphs ⟶ ℤResult quality: 13% ●values known / values provided: 13%●distinct values known / distinct values provided: 78%
Mp00041: Integer compositions —conjugate⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000777: Graphs ⟶ ℤResult quality: 13% ●values known / values provided: 13%●distinct values known / distinct values provided: 78%
Values
0 => [2] => [1,1] => ([(0,1)],2)
=> 2 = 1 + 1
1 => [1,1] => [2] => ([],2)
=> ? = 0 + 1
00 => [3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
01 => [2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 3 = 2 + 1
10 => [1,2] => [1,2] => ([(1,2)],3)
=> ? = 1 + 1
11 => [1,1,1] => [3] => ([],3)
=> ? = 0 + 1
000 => [4] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
001 => [3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
010 => [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
011 => [2,1,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3 = 2 + 1
100 => [1,3] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 1 + 1
101 => [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 2 + 1
110 => [1,1,2] => [1,3] => ([(2,3)],4)
=> ? = 1 + 1
111 => [1,1,1,1] => [4] => ([],4)
=> ? = 0 + 1
0000 => [5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
0001 => [4,1] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
0010 => [3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
0011 => [3,1,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
0100 => [2,3] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
0101 => [2,2,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5 = 4 + 1
0110 => [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
0111 => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
1000 => [1,4] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
1001 => [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
1010 => [1,2,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
1011 => [1,2,1,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 2 + 1
1100 => [1,1,3] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? = 1 + 1
1101 => [1,1,2,1] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 2 + 1
1110 => [1,1,1,2] => [1,4] => ([(3,4)],5)
=> ? = 1 + 1
1111 => [1,1,1,1,1] => [5] => ([],5)
=> ? = 0 + 1
00000 => [6] => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
00001 => [5,1] => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
00010 => [4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
00011 => [4,1,1] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
00100 => [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
00101 => [3,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
00110 => [3,1,2] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
00111 => [3,1,1,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
01000 => [2,4] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
01001 => [2,3,1] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
01010 => [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 5 + 1
01011 => [2,2,1,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
01100 => [2,1,3] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
01101 => [2,1,2,1] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
01110 => [2,1,1,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
01111 => [2,1,1,1,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 3 = 2 + 1
10000 => [1,5] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
10001 => [1,4,1] => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
10010 => [1,3,2] => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
10011 => [1,3,1,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
10100 => [1,2,3] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
10101 => [1,2,2,1] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
10110 => [1,2,1,2] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
10111 => [1,2,1,1,1] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2 + 1
11000 => [1,1,4] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
11001 => [1,1,3,1] => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
11010 => [1,1,2,2] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
11011 => [1,1,2,1,1] => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? = 2 + 1
11100 => [1,1,1,3] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ? = 1 + 1
11101 => [1,1,1,2,1] => [2,4] => ([(3,5),(4,5)],6)
=> ? = 2 + 1
11110 => [1,1,1,1,2] => [1,5] => ([(4,5)],6)
=> ? = 1 + 1
11111 => [1,1,1,1,1,1] => [6] => ([],6)
=> ? = 0 + 1
000000 => [7] => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2 = 1 + 1
000001 => [6,1] => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 2 + 1
000010 => [5,2] => [1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4 = 3 + 1
000011 => [5,1,1] => [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 2 + 1
000100 => [4,3] => [1,1,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4 = 3 + 1
000101 => [4,2,1] => [2,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 5 = 4 + 1
000110 => [4,1,2] => [1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4 = 3 + 1
000111 => [4,1,1,1] => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 2 + 1
001000 => [3,4] => [1,1,1,2,1,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4 = 3 + 1
001001 => [3,3,1] => [2,1,2,1,1] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 5 = 4 + 1
001010 => [3,2,2] => [1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6 = 5 + 1
001011 => [3,2,1,1] => [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 5 = 4 + 1
001100 => [3,1,3] => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4 = 3 + 1
001101 => [3,1,2,1] => [2,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 5 = 4 + 1
001110 => [3,1,1,2] => [1,4,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4 = 3 + 1
001111 => [3,1,1,1,1] => [5,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 2 + 1
010000 => [2,5] => [1,1,1,1,2,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4 = 3 + 1
010001 => [2,4,1] => [2,1,1,2,1] => ([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 5 = 4 + 1
010010 => [2,3,2] => [1,2,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6 = 5 + 1
100000 => [1,6] => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
100001 => [1,5,1] => [2,1,1,1,2] => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
100010 => [1,4,2] => [1,2,1,1,2] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 + 1
100011 => [1,4,1,1] => [3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
100100 => [1,3,3] => [1,1,2,1,2] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 + 1
100101 => [1,3,2,1] => [2,2,1,2] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 + 1
100110 => [1,3,1,2] => [1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 + 1
100111 => [1,3,1,1,1] => [4,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
101000 => [1,2,4] => [1,1,1,2,2] => ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 + 1
101001 => [1,2,3,1] => [2,1,2,2] => ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 + 1
101010 => [1,2,2,2] => [1,2,2,2] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 + 1
101011 => [1,2,2,1,1] => [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 + 1
101100 => [1,2,1,3] => [1,1,3,2] => ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 + 1
101101 => [1,2,1,2,1] => [2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 + 1
101110 => [1,2,1,1,2] => [1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 + 1
101111 => [1,2,1,1,1,1] => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 2 + 1
110000 => [1,1,5] => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
110001 => [1,1,4,1] => [2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
110010 => [1,1,3,2] => [1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 + 1
Description
The number of distinct eigenvalues of the distance Laplacian of a connected graph.
Matching statistic: St000638
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
St000638: Permutations ⟶ ℤResult quality: 12% ●values known / values provided: 12%●distinct values known / distinct values provided: 67%
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
St000638: Permutations ⟶ ℤResult quality: 12% ●values known / values provided: 12%●distinct values known / distinct values provided: 67%
Values
0 => [2] => [1,1,0,0]
=> [2,1] => 2 = 1 + 1
1 => [1,1] => [1,0,1,0]
=> [1,2] => 1 = 0 + 1
00 => [3] => [1,1,1,0,0,0]
=> [3,2,1] => 2 = 1 + 1
01 => [2,1] => [1,1,0,0,1,0]
=> [2,1,3] => 3 = 2 + 1
10 => [1,2] => [1,0,1,1,0,0]
=> [1,3,2] => 2 = 1 + 1
11 => [1,1,1] => [1,0,1,0,1,0]
=> [1,2,3] => 1 = 0 + 1
000 => [4] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 2 = 1 + 1
001 => [3,1] => [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 3 = 2 + 1
010 => [2,2] => [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 4 = 3 + 1
011 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 3 = 2 + 1
100 => [1,3] => [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 2 = 1 + 1
101 => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 3 = 2 + 1
110 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 2 = 1 + 1
111 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 1 = 0 + 1
0000 => [5] => [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 2 = 1 + 1
0001 => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => 3 = 2 + 1
0010 => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => 4 = 3 + 1
0011 => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => 3 = 2 + 1
0100 => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 4 = 3 + 1
0101 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 5 = 4 + 1
0110 => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 4 = 3 + 1
0111 => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 3 = 2 + 1
1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 2 = 1 + 1
1001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => 3 = 2 + 1
1010 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 4 = 3 + 1
1011 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 3 = 2 + 1
1100 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 2 = 1 + 1
1101 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 3 = 2 + 1
1110 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 2 = 1 + 1
1111 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 1 = 0 + 1
00000 => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [6,5,4,3,2,1] => 2 = 1 + 1
00001 => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [5,4,3,2,1,6] => 3 = 2 + 1
00010 => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [4,3,2,1,6,5] => 4 = 3 + 1
00011 => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [4,3,2,1,5,6] => 3 = 2 + 1
00100 => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [3,2,1,6,5,4] => 4 = 3 + 1
00101 => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [3,2,1,5,4,6] => 5 = 4 + 1
00110 => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [3,2,1,4,6,5] => 4 = 3 + 1
00111 => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [3,2,1,4,5,6] => 3 = 2 + 1
01000 => [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,1,6,5,4,3] => 4 = 3 + 1
01001 => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,1,5,4,3,6] => 5 = 4 + 1
01010 => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,6,5] => 6 = 5 + 1
01011 => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,1,4,3,5,6] => 5 = 4 + 1
01100 => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,1,3,6,5,4] => 4 = 3 + 1
01101 => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,3,5,4,6] => 5 = 4 + 1
01110 => [2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,3,4,6,5] => 4 = 3 + 1
01111 => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6] => 3 = 2 + 1
10000 => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,6,5,4,3,2] => 2 = 1 + 1
10001 => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,5,4,3,2,6] => 3 = 2 + 1
10010 => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,4,3,2,6,5] => 4 = 3 + 1
10011 => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,4,3,2,5,6] => 3 = 2 + 1
000000 => [7] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [7,6,5,4,3,2,1] => ? = 1 + 1
000001 => [6,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [6,5,4,3,2,1,7] => ? = 2 + 1
000010 => [5,2] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [5,4,3,2,1,7,6] => ? = 3 + 1
000011 => [5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [5,4,3,2,1,6,7] => ? = 2 + 1
000100 => [4,3] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [4,3,2,1,7,6,5] => ? = 3 + 1
000101 => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [4,3,2,1,6,5,7] => ? = 4 + 1
000110 => [4,1,2] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [4,3,2,1,5,7,6] => ? = 3 + 1
000111 => [4,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [4,3,2,1,5,6,7] => ? = 2 + 1
001000 => [3,4] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [3,2,1,7,6,5,4] => ? = 3 + 1
001001 => [3,3,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [3,2,1,6,5,4,7] => ? = 4 + 1
001010 => [3,2,2] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [3,2,1,5,4,7,6] => ? = 5 + 1
001011 => [3,2,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [3,2,1,5,4,6,7] => ? = 4 + 1
001100 => [3,1,3] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [3,2,1,4,7,6,5] => ? = 3 + 1
001101 => [3,1,2,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [3,2,1,4,6,5,7] => ? = 4 + 1
001110 => [3,1,1,2] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [3,2,1,4,5,7,6] => ? = 3 + 1
001111 => [3,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [3,2,1,4,5,6,7] => ? = 2 + 1
010000 => [2,5] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [2,1,7,6,5,4,3] => ? = 3 + 1
010001 => [2,4,1] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [2,1,6,5,4,3,7] => ? = 4 + 1
010010 => [2,3,2] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [2,1,5,4,3,7,6] => ? = 5 + 1
010011 => [2,3,1,1] => [1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [2,1,5,4,3,6,7] => ? = 4 + 1
010100 => [2,2,3] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [2,1,4,3,7,6,5] => ? = 5 + 1
010101 => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,6,5,7] => ? = 6 + 1
010110 => [2,2,1,2] => [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [2,1,4,3,5,7,6] => ? = 5 + 1
010111 => [2,2,1,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [2,1,4,3,5,6,7] => ? = 4 + 1
011000 => [2,1,4] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,7,6,5,4] => ? = 3 + 1
011001 => [2,1,3,1] => [1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,6,5,4,7] => ? = 4 + 1
011010 => [2,1,2,2] => [1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [2,1,3,5,4,7,6] => ? = 5 + 1
011011 => [2,1,2,1,1] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [2,1,3,5,4,6,7] => ? = 4 + 1
011100 => [2,1,1,3] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [2,1,3,4,7,6,5] => ? = 3 + 1
011101 => [2,1,1,2,1] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [2,1,3,4,6,5,7] => ? = 4 + 1
011110 => [2,1,1,1,2] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [2,1,3,4,5,7,6] => ? = 3 + 1
011111 => [2,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6,7] => ? = 2 + 1
100000 => [1,6] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,7,6,5,4,3,2] => ? = 1 + 1
100001 => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,5,4,3,2,7] => ? = 2 + 1
100010 => [1,4,2] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,5,4,3,2,7,6] => ? = 3 + 1
100011 => [1,4,1,1] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,5,4,3,2,6,7] => ? = 2 + 1
100100 => [1,3,3] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,4,3,2,7,6,5] => ? = 3 + 1
100101 => [1,3,2,1] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,4,3,2,6,5,7] => ? = 4 + 1
100110 => [1,3,1,2] => [1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,4,3,2,5,7,6] => ? = 3 + 1
100111 => [1,3,1,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,4,3,2,5,6,7] => ? = 2 + 1
101000 => [1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,3,2,7,6,5,4] => ? = 3 + 1
101001 => [1,2,3,1] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,3,2,6,5,4,7] => ? = 4 + 1
101010 => [1,2,2,2] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4,7,6] => ? = 5 + 1
101011 => [1,2,2,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,3,2,5,4,6,7] => ? = 4 + 1
101100 => [1,2,1,3] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,3,2,4,7,6,5] => ? = 3 + 1
101101 => [1,2,1,2,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,3,2,4,6,5,7] => ? = 4 + 1
101110 => [1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,3,2,4,5,7,6] => ? = 3 + 1
101111 => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6,7] => ? = 2 + 1
110000 => [1,1,5] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,2,7,6,5,4,3] => ? = 1 + 1
110001 => [1,1,4,1] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,2,6,5,4,3,7] => ? = 2 + 1
Description
The number of up-down runs of a permutation.
An '''up-down run''' of a permutation $\pi=\pi_{1}\pi_{2}\cdots\pi_{n}$ is either a maximal monotone consecutive subsequence or $\pi_{1}$ if 1 is a descent of $\pi$.
For example, the up-down runs of $\pi=85712643$ are $8$, $85$, $57$, $71$, $126$, and
$643$.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!