Processing math: 90%

Your data matches 63 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00229: Dyck paths Delest-ViennotDyck paths
Mp00023: Dyck paths to non-crossing permutationPermutations
St000703: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1] => 0
[1,0,1,0]
=> [1,1,0,0]
=> [2,1] => 1
[1,1,0,0]
=> [1,0,1,0]
=> [1,2] => 0
[1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => 1
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [2,1,3] => 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,3,2] => 1
[1,1,0,1,0,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 1
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 2
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 2
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 1
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [5,3,4,2,1] => 2
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [5,3,2,4,1] => 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => 1
Description
The number of deficiencies of a permutation. This is defined as dec(σ)=#{i:σ(i)<i}. The number of exceedances is [[St000155]].
Mp00229: Dyck paths Delest-ViennotDyck paths
Mp00023: Dyck paths to non-crossing permutationPermutations
St000994: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1] => 0
[1,0,1,0]
=> [1,1,0,0]
=> [2,1] => 1
[1,1,0,0]
=> [1,0,1,0]
=> [1,2] => 0
[1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => 1
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [2,1,3] => 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,3,2] => 1
[1,1,0,1,0,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 1
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 2
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 2
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 1
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [5,3,4,2,1] => 2
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [5,3,2,4,1] => 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => 1
Description
The number of cycle peaks and the number of cycle valleys of a permutation. A '''cycle peak''' of a permutation π is an index i such that π1(i)<i>π(i). Analogously, a '''cycle valley''' is an index i such that π1(i)>i<π(i). Clearly, every cycle of π contains as many peaks as valleys.
Mp00032: Dyck paths inverse zeta mapDyck paths
Mp00102: Dyck paths rise compositionInteger compositions
Mp00040: Integer compositions to partitionInteger partitions
St001280: Integer partitions ⟶ ℤResult quality: 99% values known / values provided: 99%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1] => [1]
=> 0
[1,0,1,0]
=> [1,1,0,0]
=> [2] => [2]
=> 1
[1,1,0,0]
=> [1,0,1,0]
=> [1,1] => [1,1]
=> 0
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [3] => [3]
=> 1
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,2] => [2,1]
=> 1
[1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [2,1] => [2,1]
=> 1
[1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> [2,1] => [2,1]
=> 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1] => [1,1,1]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [4] => [4]
=> 1
[1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,3] => [3,1]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [2,2] => [2,2]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3,1] => [3,1]
=> 1
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,2] => [2,1,1]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [3,1] => [3,1]
=> 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,2,1] => [2,1,1]
=> 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,1] => [3,1]
=> 1
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,2] => [2,2]
=> 2
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,2,1] => [2,1,1]
=> 1
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [2,1,1] => [2,1,1]
=> 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [2,1,1] => [2,1,1]
=> 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,1] => [2,1,1]
=> 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [1,1,1,1]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5] => [5]
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [4,1]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,3] => [3,2]
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1] => [4,1]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [3,1,1]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [3,2] => [3,2]
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,2,2] => [2,2,1]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,1] => [4,1]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [3,2]
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [3,1,1]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,1,2] => [2,2,1]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,2,1] => [2,2,1]
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => [3,1,1]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [2,1,1,1]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [4,1] => [4,1]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,3,1] => [3,1,1]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,2,1] => [2,2,1]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,1,1] => [3,1,1]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,2,1] => [2,1,1,1]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [4,1] => [4,1]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,3,1] => [3,1,1]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2] => [3,2]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2] => [3,2]
=> 2
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [2,2,1]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,2,1] => [2,2,1]
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,1,1] => [3,1,1]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [2,2,1]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [2,1,1,1]
=> 1
[]
=> []
=> [] => ?
=> ? = 0
[1,1,1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? => ?
=> ? = 3
[1,1,1,1,0,1,0,1,1,0,1,0,1,0,0,0,1,0,0,0]
=> ?
=> ? => ?
=> ? = 5
[1,1,1,1,0,1,0,1,0,1,1,0,1,0,0,0,0,1,0,0]
=> ?
=> ? => ?
=> ? = 5
Description
The number of parts of an integer partition that are at least two.
Matching statistic: St000291
Mp00032: Dyck paths inverse zeta mapDyck paths
Mp00102: Dyck paths rise compositionInteger compositions
Mp00094: Integer compositions to binary wordBinary words
St000291: Binary words ⟶ ℤResult quality: 97% values known / values provided: 97%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1] => 1 => 0
[1,0,1,0]
=> [1,1,0,0]
=> [2] => 10 => 1
[1,1,0,0]
=> [1,0,1,0]
=> [1,1] => 11 => 0
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [3] => 100 => 1
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,2] => 110 => 1
[1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [2,1] => 101 => 1
[1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> [2,1] => 101 => 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1] => 111 => 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [4] => 1000 => 1
[1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,3] => 1100 => 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [2,2] => 1010 => 2
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3,1] => 1001 => 1
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,2] => 1110 => 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [3,1] => 1001 => 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,2,1] => 1101 => 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,1] => 1001 => 1
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,2] => 1010 => 2
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,2,1] => 1101 => 1
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [2,1,1] => 1011 => 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [2,1,1] => 1011 => 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,1] => 1011 => 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1] => 1111 => 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5] => 10000 => 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,4] => 11000 => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,3] => 10100 => 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1] => 10001 => 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => 11100 => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [3,2] => 10010 => 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,2,2] => 11010 => 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,1] => 10001 => 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,3] => 10100 => 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => 11001 => 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,1,2] => 10110 => 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,2,1] => 10101 => 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => 10011 => 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => 11110 => 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [4,1] => 10001 => 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,3,1] => 11001 => 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,2,1] => 10101 => 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,1,1] => 10011 => 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,2,1] => 11101 => 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [4,1] => 10001 => 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,3,1] => 11001 => 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2] => 10010 => 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2] => 10010 => 2
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => 11010 => 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,2,1] => 10101 => 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,1,1] => 10011 => 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => 10110 => 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => 11101 => 1
[1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1,1,1,1,1,1] => 1011111111 => ? = 1
[1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1,1,1,1,1,1,1] => 10111111111 => ? = 1
[]
=> []
=> [] => ? => ? = 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,9] => 1100000000 => ? = 1
[1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,1,1] => 1111111111 => ? = 0
[1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0]
=> [9,1] => 1000000001 => ? = 1
[1,1,1,1,1,0,1,0,1,0,1,0,1,1,0,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,2,2,2,2,1] => 1101010101 => ? = 4
[1,1,1,1,1,1,0,0,1,0,1,0,1,0,1,0,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [2,2,2,2,1,1] => 1010101011 => ? = 4
[1,1,1,1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,2,2,2,2,2] => 11010101010 => ? = 5
[1,1,0,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,1,1,2,2] => 1111111010 => ? = 2
[1,1,1,1,0,1,0,1,0,1,0,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,2,2,2,2] => 1110101010 => ? = 4
[1,1,1,1,0,1,0,1,0,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,2,2,2,1] => 1111010101 => ? = 3
[1,1,1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? => ? => ? = 3
[1,1,1,1,0,1,0,1,1,0,1,0,1,0,0,0,1,0,0,0]
=> ?
=> ? => ? => ? = 5
[1,1,1,1,0,1,0,1,0,1,1,0,1,0,0,0,0,1,0,0]
=> ?
=> ? => ? => ? = 5
Description
The number of descents of a binary word.
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
Mp00087: Permutations inverse first fundamental transformationPermutations
Mp00109: Permutations descent wordBinary words
St000390: Binary words ⟶ ℤResult quality: 95% values known / values provided: 95%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => => ? = 0
[1,0,1,0]
=> [2,1] => [2,1] => 1 => 1
[1,1,0,0]
=> [1,2] => [1,2] => 0 => 0
[1,0,1,0,1,0]
=> [2,3,1] => [3,1,2] => 10 => 1
[1,0,1,1,0,0]
=> [2,1,3] => [2,1,3] => 10 => 1
[1,1,0,0,1,0]
=> [1,3,2] => [1,3,2] => 01 => 1
[1,1,0,1,0,0]
=> [3,1,2] => [3,2,1] => 11 => 1
[1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => 00 => 0
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => [4,1,2,3] => 100 => 1
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => [3,1,2,4] => 100 => 1
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => [2,1,4,3] => 101 => 2
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => [4,3,1,2] => 110 => 1
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => [2,1,3,4] => 100 => 1
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => [1,4,2,3] => 010 => 1
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [1,3,2,4] => 010 => 1
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => [4,2,1,3] => 110 => 1
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => [3,1,4,2] => 101 => 2
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => [3,2,1,4] => 110 => 1
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => [1,2,4,3] => 001 => 1
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [1,4,3,2] => 011 => 1
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => [4,3,2,1] => 111 => 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => 000 => 0
[1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => [5,1,2,3,4] => 1000 => 1
[1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => [4,1,2,3,5] => 1000 => 1
[1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => [3,1,2,5,4] => 1001 => 2
[1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => [5,4,1,2,3] => 1100 => 1
[1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => [3,1,2,4,5] => 1000 => 1
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => [2,1,5,3,4] => 1010 => 2
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => 1010 => 2
[1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => [5,3,1,2,4] => 1100 => 1
[1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => [4,1,2,5,3] => 1001 => 2
[1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => [4,3,1,2,5] => 1100 => 1
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => 1001 => 2
[1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => [2,1,5,4,3] => 1011 => 2
[1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => [5,4,3,1,2] => 1110 => 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => 1000 => 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => [1,5,2,3,4] => 0100 => 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => [1,4,2,3,5] => 0100 => 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => 0101 => 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => [1,5,4,2,3] => 0110 => 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => 0100 => 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => [5,2,1,3,4] => 1100 => 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => [4,2,1,3,5] => 1100 => 1
[1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => [3,1,5,2,4] => 1010 => 2
[1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => [5,2,4,1,3] => 1010 => 2
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => [3,1,4,2,5] => 1010 => 2
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => [3,2,1,5,4] => 1101 => 2
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => [5,4,2,1,3] => 1110 => 1
[1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => [3,1,5,4,2] => 1011 => 2
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => [3,2,1,4,5] => 1100 => 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,5,3] => [1,2,5,3,4] => 0010 => 1
[1,0,1,1,0,1,1,1,0,1,0,0,0,1,0,0]
=> [2,4,7,1,3,8,5,6] => [4,1,2,7,5,3,8,6] => ? => ? = 3
[1,1,0,1,0,1,1,1,0,0,1,0,0,0,1,0]
=> [3,4,1,7,2,5,8,6] => [3,1,8,6,5,2,4,7] => ? => ? = 2
[1,1,0,1,1,1,0,1,0,1,0,0,1,0,0,0]
=> [3,6,7,1,8,2,4,5] => [6,2,7,4,1,3,8,5] => ? => ? = 3
[1,1,1,0,0,1,1,0,1,0,1,0,1,0,0,0]
=> [1,4,6,7,8,2,3,5] => [1,7,3,6,2,4,8,5] => ? => ? = 3
[1,1,1,1,0,1,0,1,0,0,1,1,0,0,0,0]
=> [5,6,1,7,2,3,4,8] => [6,3,1,5,2,7,4,8] => ? => ? = 3
[1,1,1,1,1,0,1,0,0,1,0,0,1,0,0,0]
=> [6,1,7,2,8,3,4,5] => [7,4,2,1,6,3,8,5] => ? => ? = 3
[]
=> [] => [] => ? => ? = 0
[1,1,1,0,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> [4,5,1,2,3,6,7,8,9] => [5,3,1,4,2,6,7,8,9] => ? => ? = 2
[1,1,1,0,1,1,0,1,0,1,0,1,1,0,0,0,0,0]
=> [4,6,7,8,1,2,3,5,9] => [6,2,7,3,8,5,1,4,9] => ? => ? = 3
[1,1,1,1,0,0,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,5,7,8,9,2,3,4,6] => [1,7,3,8,4,9,6,2,5] => ? => ? = 3
[1,1,1,1,0,1,0,1,0,1,0,0,1,1,0,0,0,0]
=> [5,6,7,1,8,2,3,4,9] => [6,2,7,3,8,4,1,5,9] => ? => ? = 3
[1,1,1,1,0,1,0,1,0,1,1,1,0,0,0,0,0,0]
=> [5,6,7,1,2,3,4,8,9] => [7,4,1,5,2,6,3,8,9] => ? => ? = 3
[1,1,1,1,1,0,0,1,0,1,0,1,0,0,1,0,0,0]
=> [1,6,7,8,2,9,3,4,5] => [1,7,3,8,4,9,5,2,6] => ? => ? = 3
[1,1,1,1,1,0,1,0,1,0,1,1,0,0,0,0,0,0]
=> [6,7,8,1,2,3,4,5,9] => [8,5,2,7,4,1,6,3,9] => ? => ? = 3
[1,1,1,1,1,1,0,0,1,0,1,0,1,0,0,0,0,0]
=> [1,7,8,9,2,3,4,5,6] => [1,9,6,3,8,5,2,7,4] => ? => ? = 3
[1,1,1,1,1,0,1,0,1,0,1,0,1,1,0,0,0,0,0,0]
=> [6,7,8,9,1,2,3,4,5,10] => [9,5,1,6,2,7,3,8,4,10] => ? => ? = 4
[1,1,1,1,1,1,0,0,1,0,1,0,1,0,1,0,0,0,0,0]
=> [1,7,8,9,10,2,3,4,5,6] => [1,10,6,2,7,3,8,4,9,5] => ? => ? = 4
[1,1,1,1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0,0,0,0]
=> [6,7,8,9,10,1,2,3,4,5,11] => [6,1,7,2,8,3,9,4,10,5,11] => ? => ? = 5
[1,1,1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0,0,0]
=> [5,6,7,8,9,1,2,3,4,10] => [9,4,8,3,7,2,6,1,5,10] => ? => ? = 4
[1,1,1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> [1,6,7,8,9,10,2,3,4,5] => [1,10,5,9,4,8,3,7,2,6] => ? => ? = 4
[1,1,1,1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0]
=> [1,7,8,9,10,11,2,3,4,5,6] => [1,7,2,8,3,9,4,10,5,11,6] => ? => ? = 5
[1,1,1,0,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [4,1,2,5,6,7,8,9,3] => [9,3,2,1,4,5,6,7,8] => ? => ? = 1
[1,1,1,1,0,1,0,1,0,1,1,1,1,0,0,0,0,0,0,0]
=> [5,6,7,1,2,3,4,8,9,10] => [7,4,1,5,2,6,3,8,9,10] => ? => ? = 3
Description
The number of runs of ones in a binary word.
Matching statistic: St000157
Mp00032: Dyck paths inverse zeta mapDyck paths
Mp00119: Dyck paths to 321-avoiding permutation (Krattenthaler)Permutations
Mp00059: Permutations Robinson-Schensted insertion tableauStandard tableaux
St000157: Standard tableaux ⟶ ℤResult quality: 92% values known / values provided: 92%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1] => [[1]]
=> 0
[1,0,1,0]
=> [1,1,0,0]
=> [2,1] => [[1],[2]]
=> 1
[1,1,0,0]
=> [1,0,1,0]
=> [1,2] => [[1,2]]
=> 0
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [3,1,2] => [[1,2],[3]]
=> 1
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,3,2] => [[1,2],[3]]
=> 1
[1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => [[1,3],[2]]
=> 1
[1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> [2,1,3] => [[1,3],[2]]
=> 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,2,3] => [[1,2,3]]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [[1,2,3],[4]]
=> 1
[1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [[1,2,3],[4]]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [[1,3],[2,4]]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [[1,2,4],[3]]
=> 1
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [[1,2,3],[4]]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [[1,2],[3,4]]
=> 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [[1,2,4],[3]]
=> 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [[1,2],[3,4]]
=> 1
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [[1,3],[2,4]]
=> 2
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [[1,2,4],[3]]
=> 1
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [[1,3,4],[2]]
=> 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [[1,3,4],[2]]
=> 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [[1,3,4],[2]]
=> 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [[1,2,3,4]]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,1,2,3,4] => [[1,2,3,4],[5]]
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [[1,2,3,4],[5]]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [[1,3,4],[2,5]]
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => [[1,2,3,5],[4]]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [[1,2,3,4],[5]]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [3,5,1,2,4] => [[1,2,4],[3,5]]
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [[1,2,4],[3,5]]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,5,3] => [[1,2,3],[4,5]]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [[1,3,4],[2,5]]
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [[1,2,3,5],[4]]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [[1,3,4],[2,5]]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [[1,3,5],[2,4]]
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => [[1,2,4,5],[3]]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [[1,2,3,4],[5]]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [4,5,1,2,3] => [[1,2,3],[4,5]]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [[1,2,3],[4,5]]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [[1,3,5],[2,4]]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => [[1,2,5],[3,4]]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [[1,2,3,5],[4]]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [4,1,5,2,3] => [[1,2,3],[4,5]]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [[1,2,3],[4,5]]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => [[1,2,4],[3,5]]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,1,2,5,4] => [[1,2,4],[3,5]]
=> 2
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [[1,2,4],[3,5]]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [[1,3,5],[2,4]]
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,5] => [[1,2,5],[3,4]]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [[1,3,4],[2,5]]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [[1,2,3,5],[4]]
=> 1
[1,0,1,1,0,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> [2,4,7,1,3,8,5,6] => ?
=> ? = 3
[1,0,1,1,0,1,1,0,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,1,0,0,0,1,0]
=> [3,6,1,2,7,4,5,8] => ?
=> ? = 2
[1,0,1,1,1,0,0,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,1,1,0,0,0,1,0,0,0]
=> [2,5,7,1,3,8,4,6] => ?
=> ? = 3
[1,0,1,1,1,0,0,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,1,0,0,1,0,0]
=> [4,6,1,2,7,3,8,5] => ?
=> ? = 2
[1,1,0,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,0,1,0]
=> [3,6,1,7,2,4,5,8] => ?
=> ? = 2
[1,1,0,1,1,0,0,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,1,0,0,1,0,0,0,1,0]
=> [3,1,6,2,7,4,5,8] => ?
=> ? = 2
[1,1,0,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [1,3,2,6,4,5,8,7] => ?
=> ? = 3
[1,1,0,1,1,1,0,1,0,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [2,3,1,6,4,5,8,7] => ?
=> ? = 3
[1,1,0,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,0,1,0]
=> [2,3,4,6,1,7,5,8] => ?
=> ? = 2
[1,1,1,0,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,2,4,6,7,8,3,5] => ?
=> ? = 2
[1,1,1,0,1,1,0,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [1,3,2,5,4,6,8,7] => ?
=> ? = 3
[1,1,1,1,0,0,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,1,0,0,1,0]
=> [3,1,5,6,2,7,4,8] => ?
=> ? = 2
[1,1,1,1,1,0,0,1,0,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [2,3,1,5,4,7,8,6] => ?
=> ? = 3
[1,1,1,1,1,0,0,1,0,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [2,1,4,3,6,7,5,8] => ?
=> ? = 3
[1,1,1,1,1,0,1,0,0,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,6,4,8,7] => ?
=> ? = 3
[1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,8,9,10,11,1] => [[1,3,4,5,6,7,8,9,10,11],[2]]
=> ? = 1
[1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,5,6,7,8,9,11,10] => [[1,2,3,4,5,6,7,8,9,10],[11]]
=> ? = 1
[1,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,4,5,6,8,7,9] => [[1,2,3,4,5,6,7,9],[8]]
=> ? = 1
[1,1,1,0,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,2,3,4,6,5,8,7,9] => [[1,2,3,4,5,7,9],[6,8]]
=> ? = 2
[1,1,1,0,1,1,0,1,0,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,4,2,3,6,5,8,7,9] => [[1,2,3,5,7,9],[4,6,8]]
=> ? = 3
[1,1,1,1,0,0,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,1,0,0,1,1,0,0,1,0]
=> [3,4,1,2,6,5,8,7,9] => [[1,2,5,7,9],[3,4,6,8]]
=> ? = 3
[1,1,1,1,0,1,0,1,0,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,1,0,0,1,1,0,0]
=> [1,4,2,5,3,7,6,9,8] => [[1,2,3,6,8],[4,5,7,9]]
=> ? = 3
[1,1,1,1,0,1,0,1,0,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,2,4,3,6,5,8,7,9] => [[1,2,3,5,7,9],[4,6,8]]
=> ? = 3
[1,1,1,1,1,0,0,1,0,1,0,1,0,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,1,0,0,1,1,0,0]
=> [3,4,1,5,2,7,6,9,8] => [[1,2,5,6,8],[3,4,7,9]]
=> ? = 3
[1,1,1,1,1,0,0,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,3,6,5,8,9,7] => ?
=> ? = 4
[1,1,1,1,1,0,1,0,1,0,1,1,0,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,3,2,5,4,7,6,8,9] => ?
=> ? = 3
[1,1,1,1,1,1,0,0,1,0,1,0,1,0,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> [2,1,4,3,6,7,5,8,9] => ?
=> ? = 3
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0]
=> [11,1,2,3,4,5,6,7,8,9,10] => [[1,2,3,4,5,6,7,8,9,10],[11]]
=> ? = 1
[1,1,1,1,1,1,0,0,1,0,1,0,1,0,1,0,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [2,1,4,3,6,5,8,9,7,10] => ?
=> ? = 4
[1,1,1,1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4,7,6,9,8,11,10] => [[1,2,4,6,8,10],[3,5,7,9,11]]
=> ? = 5
[1,1,1,1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,3,6,5,8,7,10,11,9] => ?
=> ? = 5
[1,1,0,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,3,4,5,6,8,7,10,9] => ?
=> ? = 2
[1,1,1,1,0,1,0,1,0,1,0,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5,8,7,10,9] => ?
=> ? = 4
[1,1,1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,2,3,4,6,5,8,7,10,9] => ?
=> ? = 3
[1,0,1,1,1,1,1,0,0,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [2,1,4,3,6,5,8,10,7,9] => ?
=> ? = 5
[1,1,1,1,0,1,0,1,1,0,1,0,1,0,0,0,1,0,0,0]
=> ?
=> ? => ?
=> ? = 5
[1,1,1,1,0,1,0,1,0,1,1,0,1,0,0,0,0,1,0,0]
=> ?
=> ? => ?
=> ? = 5
Description
The number of descents of a standard tableau. Entry i of a standard Young tableau is a descent if i+1 appears in a row below the row of i.
Mp00032: Dyck paths inverse zeta mapDyck paths
Mp00102: Dyck paths rise compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
St000659: Dyck paths ⟶ ℤResult quality: 71% values known / values provided: 83%distinct values known / distinct values provided: 71%
Values
[1,0]
=> [1,0]
=> [1] => [1,0]
=> ? = 0
[1,0,1,0]
=> [1,1,0,0]
=> [2] => [1,1,0,0]
=> 1
[1,1,0,0]
=> [1,0,1,0]
=> [1,1] => [1,0,1,0]
=> 0
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [3] => [1,1,1,0,0,0]
=> 1
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,2] => [1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [2,1] => [1,1,0,0,1,0]
=> 1
[1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> [2,1] => [1,1,0,0,1,0]
=> 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1] => [1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [4] => [1,1,1,1,0,0,0,0]
=> 1
[1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 1
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,2] => [1,0,1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 1
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 1
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5] => [1,1,1,1,1,0,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [8] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0]
=> [4,4] => [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 2
[1,0,1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> [5,1,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 1
[1,0,1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,1,1,1,0,0,0,0,0]
=> [3,1,1,3] => [1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 2
[1,0,1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,1,0,0]
=> [5,1,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 1
[1,0,1,1,0,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0,1,0]
=> [4,2,1,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0,1,0]
=> ? = 2
[1,0,1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,1,1,0,0,0,0,0,1,0]
=> [3,2,2,1] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 3
[1,0,1,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,1,1,0,0,0,0,1,0,0]
=> [3,2,2,1] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 3
[1,0,1,1,0,1,1,0,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,1,0,0,0,1,0]
=> [3,3,1,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 2
[1,0,1,1,0,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,1,0,0,1,0,0]
=> [3,3,1,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 2
[1,0,1,1,1,0,0,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,1,0,0,1,0,0]
=> [4,2,1,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0,1,0]
=> ? = 2
[1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [7,1] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 1
[1,1,0,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,0,1,0]
=> [3,3,1,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 2
[1,1,0,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,1,0,0]
=> [3,3,1,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 2
[1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> [6,2] => [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 2
[1,1,0,1,0,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,1,0,1,0,0]
=> [4,2,1,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0,1,0]
=> ? = 2
[1,1,0,1,1,0,0,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,1,0,0,1,0,0,0,1,0]
=> [3,3,1,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 2
[1,1,0,1,1,0,0,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,1,0,0]
=> [5,1,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 1
[1,1,0,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,1,0,0,1,0]
=> [3,2,1,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 2
[1,1,1,0,0,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,1,0,0,1,0]
=> [4,1,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 1
[1,1,1,0,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,1,0,0,0,0,0]
=> [6,1,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 1
[1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0]
=> [5,1,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 1
[1,1,1,1,0,0,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0,1,1,0,0]
=> [3,2,1,2] => [1,1,1,0,0,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 3
[1,1,1,1,0,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,1,0,0,1,1,0,0]
=> [3,1,2,2] => [1,1,1,0,0,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 3
[1,1,1,1,0,0,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,1,0,0,1,0]
=> [3,2,1,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 2
[1,1,1,1,0,0,1,1,0,1,0,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,1,0,0,1,0]
=> [3,1,1,2,1] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 2
[1,1,1,1,0,1,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,1,0,1,0,1,0,0,0,0]
=> [5,1,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 1
[1,1,1,1,0,1,0,1,0,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,1,0,0]
=> [3,2,2,1] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 3
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1
[1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1
[1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1,1,1,1,1,1,1] => ?
=> ? = 1
[1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[]
=> []
=> [] => ?
=> ? = 0
[1,1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,1,2,2] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 2
[1,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 1
[1,1,1,0,1,0,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,2,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 3
[1,1,1,0,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,2,2,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 2
[1,1,1,0,1,1,0,1,0,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,2,1] => [1,0,1,1,1,0,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 3
[1,1,1,1,0,0,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,2,2,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 3
[1,1,1,1,0,1,0,1,0,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,1,0,0,1,1,0,0]
=> [1,3,1,2,2] => [1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 3
[1,1,1,1,0,1,0,1,0,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,2,2,2,2] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 4
[1,1,1,1,0,1,0,1,0,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,2,2,2,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 3
[1,1,1,1,1,0,0,1,0,1,0,1,0,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,1,0,0,1,1,0,0]
=> [3,1,1,2,2] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 3
[1,1,1,1,1,0,0,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [2,2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 4
[1,1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [2,2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 4
[1,1,1,1,1,0,1,0,1,0,1,1,0,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,2,2,2,1,1] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> ? = 3
[1,1,1,1,1,1,0,0,1,0,1,0,1,0,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> [2,2,2,1,1,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 3
Description
The number of rises of length at least 2 of a Dyck path.
Mp00032: Dyck paths inverse zeta mapDyck paths
Mp00119: Dyck paths to 321-avoiding permutation (Krattenthaler)Permutations
Mp00072: Permutations binary search tree: left to rightBinary trees
St000919: Binary trees ⟶ ℤResult quality: 71% values known / values provided: 83%distinct values known / distinct values provided: 71%
Values
[1,0]
=> [1,0]
=> [1] => [.,.]
=> ? = 0
[1,0,1,0]
=> [1,1,0,0]
=> [2,1] => [[.,.],.]
=> 1
[1,1,0,0]
=> [1,0,1,0]
=> [1,2] => [.,[.,.]]
=> 0
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [3,1,2] => [[.,[.,.]],.]
=> 1
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,3,2] => [.,[[.,.],.]]
=> 1
[1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => [[.,.],[.,.]]
=> 1
[1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> [2,1,3] => [[.,.],[.,.]]
=> 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,2,3] => [.,[.,[.,.]]]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [[.,[.,[.,.]]],.]
=> 1
[1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [.,[[.,[.,.]],.]]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [[.,.],[[.,.],.]]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [[.,[.,.]],[.,.]]
=> 1
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [.,[.,[[.,.],.]]]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [[.,[.,.]],[.,.]]
=> 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [.,[[.,.],[.,.]]]
=> 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [[.,[.,.]],[.,.]]
=> 1
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [[.,.],[[.,.],.]]
=> 2
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [.,[[.,.],[.,.]]]
=> 1
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [[.,.],[.,[.,.]]]
=> 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [[.,.],[.,[.,.]]]
=> 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [[.,.],[.,[.,.]]]
=> 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,1,2,3,4] => [[.,[.,[.,[.,.]]]],.]
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [.,[[.,[.,[.,.]]],.]]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [[.,.],[[.,[.,.]],.]]
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => [[.,[.,[.,.]]],[.,.]]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [.,[.,[[.,[.,.]],.]]]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [3,5,1,2,4] => [[.,[.,.]],[[.,.],.]]
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [.,[[.,.],[[.,.],.]]]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,5,3] => [[.,[.,[.,.]]],[.,.]]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [[.,.],[[.,[.,.]],.]]
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [.,[[.,[.,.]],[.,.]]]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [[.,.],[.,[[.,.],.]]]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [[.,.],[[.,.],[.,.]]]
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => [[.,[.,.]],[.,[.,.]]]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [4,5,1,2,3] => [[.,[.,[.,.]]],[.,.]]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [.,[[.,[.,.]],[.,.]]]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [[.,.],[[.,.],[.,.]]]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => [[.,[.,.]],[.,[.,.]]]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [.,[.,[[.,.],[.,.]]]]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [4,1,5,2,3] => [[.,[.,[.,.]]],[.,.]]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [.,[[.,[.,.]],[.,.]]]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => [[.,[.,.]],[[.,.],.]]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,1,2,5,4] => [[.,[.,.]],[[.,.],.]]
=> 2
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [.,[[.,.],[[.,.],.]]]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [[.,.],[[.,.],[.,.]]]
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,5] => [[.,[.,.]],[.,[.,.]]]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [[.,.],[.,[[.,.],.]]]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [3,4,5,1,2] => [[.,[.,.]],[.,[.,.]]]
=> 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [8,1,2,3,4,5,6,7] => [[.,[.,[.,[.,[.,[.,[.,.]]]]]]],.]
=> ? = 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0]
=> [4,8,1,2,3,5,6,7] => [[.,[.,[.,.]]],[[.,[.,[.,.]]],.]]
=> ? = 2
[1,0,1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> [5,1,2,3,4,6,7,8] => [[.,[.,[.,[.,.]]]],[.,[.,[.,.]]]]
=> ? = 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,1,0,0]
=> [5,1,2,3,6,7,8,4] => [[.,[.,[.,[.,.]]]],[.,[.,[.,.]]]]
=> ? = 1
[1,0,1,1,0,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0,1,0]
=> [4,6,1,2,3,5,7,8] => [[.,[.,[.,.]]],[[.,.],[.,[.,.]]]]
=> ? = 2
[1,0,1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,1,1,0,0,0,0,0,1,0]
=> [3,5,7,1,2,4,6,8] => [[.,[.,.]],[[.,.],[[.,.],[.,.]]]]
=> ? = 3
[1,0,1,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,1,1,0,0,0,0,1,0,0]
=> [3,5,7,1,2,4,8,6] => [[.,[.,.]],[[.,.],[[.,.],[.,.]]]]
=> ? = 3
[1,0,1,1,0,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> [2,4,7,1,3,8,5,6] => ?
=> ? = 3
[1,0,1,1,0,1,1,0,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,1,0,0,0,1,0]
=> [3,6,1,2,7,4,5,8] => ?
=> ? = 2
[1,0,1,1,0,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,1,0,0,1,0,0]
=> [3,6,1,2,7,4,8,5] => [[.,[.,.]],[[.,[.,.]],[.,[.,.]]]]
=> ? = 2
[1,0,1,1,1,0,0,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,1,1,0,0,0,1,0,0,0]
=> [2,5,7,1,3,8,4,6] => ?
=> ? = 3
[1,0,1,1,1,0,0,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,1,0,0,1,0,0]
=> [4,6,1,2,7,3,8,5] => ?
=> ? = 2
[1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [7,1,8,2,3,4,5,6] => [[.,[.,[.,[.,[.,[.,.]]]]]],[.,.]]
=> ? = 1
[1,1,0,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,0,1,0]
=> [3,6,1,7,2,4,5,8] => ?
=> ? = 2
[1,1,0,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,1,0,0]
=> [3,6,1,7,2,4,8,5] => [[.,[.,.]],[[.,[.,.]],[.,[.,.]]]]
=> ? = 2
[1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> [6,1,8,2,3,4,5,7] => [[.,[.,[.,[.,[.,.]]]]],[[.,.],.]]
=> ? = 2
[1,1,0,1,0,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,1,0,1,0,0]
=> [4,1,6,2,3,7,8,5] => [[.,[.,[.,.]]],[[.,.],[.,[.,.]]]]
=> ? = 2
[1,1,0,1,1,0,0,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,1,0,0,1,0,0,0,1,0]
=> [3,1,6,2,7,4,5,8] => ?
=> ? = 2
[1,1,0,1,1,0,0,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,1,0,0]
=> [5,1,6,2,7,3,8,4] => [[.,[.,[.,[.,.]]]],[.,[.,[.,.]]]]
=> ? = 1
[1,1,0,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [1,3,2,6,4,5,8,7] => ?
=> ? = 3
[1,1,0,1,1,1,0,1,0,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [2,3,1,6,4,5,8,7] => ?
=> ? = 3
[1,1,1,0,0,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,1,0,0,1,0]
=> [4,5,1,6,2,7,3,8] => [[.,[.,[.,.]]],[.,[.,[.,[.,.]]]]]
=> ? = 1
[1,1,1,0,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,1,0,0,0,0,0]
=> [6,1,7,8,2,3,4,5] => [[.,[.,[.,[.,[.,.]]]]],[.,[.,.]]]
=> ? = 1
[1,1,1,0,1,1,0,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [1,3,2,5,4,6,8,7] => ?
=> ? = 3
[1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0]
=> [5,6,7,8,1,2,3,4] => [[.,[.,[.,[.,.]]]],[.,[.,[.,.]]]]
=> ? = 1
[1,1,1,1,0,0,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0,1,1,0,0]
=> [3,1,5,6,2,4,8,7] => [[.,[.,.]],[[.,.],[.,[[.,.],.]]]]
=> ? = 3
[1,1,1,1,0,0,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,1,0,0,1,0]
=> [3,1,5,6,2,7,4,8] => ?
=> ? = 2
[1,1,1,1,0,1,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,1,0,1,0,1,0,0,0,0]
=> [5,1,6,7,8,2,3,4] => [[.,[.,[.,[.,.]]]],[.,[.,[.,.]]]]
=> ? = 1
[1,1,1,1,0,1,0,1,0,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,1,0,0]
=> [3,1,5,2,7,4,8,6] => [[.,[.,.]],[[.,.],[[.,.],[.,.]]]]
=> ? = 3
[1,1,1,1,1,0,0,1,0,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [2,3,1,5,4,7,8,6] => ?
=> ? = 3
[1,1,1,1,1,0,1,0,0,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,6,4,8,7] => ?
=> ? = 3
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,8,9,1] => [[.,.],[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]
=> ? = 1
[1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,5,6,7,9,8] => [.,[.,[.,[.,[.,[.,[.,[[.,.],.]]]]]]]]
=> ? = 1
[1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,8,9,10,1] => [[.,.],[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]]
=> ? = 1
[1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,5,6,7,8,10,9] => [.,[.,[.,[.,[.,[.,[.,[.,[[.,.],.]]]]]]]]]
=> ? = 1
[1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,8,9,10,11,1] => [[.,.],[.,[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]]]
=> ? = 1
[1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,5,6,7,8,9,11,10] => [.,[.,[.,[.,[.,[.,[.,[.,[.,[[.,.],.]]]]]]]]]]
=> ? = 1
[]
=> []
=> [] => .
=> ? = 0
[1,1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,3,4,5,7,6,9,8] => [.,[.,[.,[.,[.,[[.,.],[[.,.],.]]]]]]]
=> ? = 2
[1,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,4,5,6,8,7,9] => [.,[.,[.,[.,[.,[.,[[.,.],[.,.]]]]]]]]
=> ? = 1
[1,1,1,0,1,0,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,2,3,5,4,7,6,9,8] => [.,[.,[.,[[.,.],[[.,.],[[.,.],.]]]]]]
=> ? = 3
[1,1,1,0,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,2,3,4,6,5,8,7,9] => [.,[.,[.,[.,[[.,.],[[.,.],[.,.]]]]]]]
=> ? = 2
[1,1,1,0,1,1,0,1,0,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,4,2,3,6,5,8,7,9] => [.,[[.,[.,.]],[[.,.],[[.,.],[.,.]]]]]
=> ? = 3
[1,1,1,1,0,0,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,1,0,0,1,1,0,0,1,0]
=> [3,4,1,2,6,5,8,7,9] => [[.,[.,.]],[.,[[.,.],[[.,.],[.,.]]]]]
=> ? = 3
[1,1,1,1,0,1,0,1,0,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,1,0,0,1,1,0,0]
=> [1,4,2,5,3,7,6,9,8] => [.,[[.,[.,.]],[.,[[.,.],[[.,.],.]]]]]
=> ? = 3
[1,1,1,1,0,1,0,1,0,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4,7,6,9,8] => [.,[[.,.],[[.,.],[[.,.],[[.,.],.]]]]]
=> ? = 4
[1,1,1,1,0,1,0,1,0,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,2,4,3,6,5,8,7,9] => [.,[.,[[.,.],[[.,.],[[.,.],[.,.]]]]]]
=> ? = 3
[1,1,1,1,1,0,0,1,0,1,0,1,0,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,1,0,0,1,1,0,0]
=> [3,4,1,5,2,7,6,9,8] => [[.,[.,.]],[.,[.,[[.,.],[[.,.],.]]]]]
=> ? = 3
[1,1,1,1,1,0,0,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,3,6,5,8,9,7] => ?
=> ? = 4
Description
The number of maximal left branches of a binary tree. A maximal left branch of a binary tree is an inclusion wise maximal path which consists of left edges only. This statistic records the number of distinct maximal left branches in the tree.
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
Mp00239: Permutations CorteelPermutations
Mp00236: Permutations Clarke-Steingrimsson-Zeng inversePermutations
St000884: Permutations ⟶ ℤResult quality: 77% values known / values provided: 77%distinct values known / distinct values provided: 86%
Values
[1,0]
=> [1] => [1] => [1] => 0
[1,0,1,0]
=> [2,1] => [2,1] => [2,1] => 1
[1,1,0,0]
=> [1,2] => [1,2] => [1,2] => 0
[1,0,1,0,1,0]
=> [2,3,1] => [3,2,1] => [2,3,1] => 1
[1,0,1,1,0,0]
=> [2,1,3] => [2,1,3] => [2,1,3] => 1
[1,1,0,0,1,0]
=> [1,3,2] => [1,3,2] => [1,3,2] => 1
[1,1,0,1,0,0]
=> [3,1,2] => [3,1,2] => [3,1,2] => 1
[1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => [1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => [4,2,3,1] => [2,3,4,1] => 1
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => [3,2,1,4] => [2,3,1,4] => 1
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => [2,1,4,3] => [2,1,4,3] => 2
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => [4,2,1,3] => [2,4,1,3] => 1
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => [2,1,3,4] => [2,1,3,4] => 1
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => [1,4,3,2] => [1,3,4,2] => 1
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [1,3,2,4] => [1,3,2,4] => 1
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => [4,1,3,2] => [3,4,1,2] => 1
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => [4,3,2,1] => [3,2,4,1] => 2
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => [3,1,2,4] => [3,1,2,4] => 1
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => [1,2,4,3] => [1,2,4,3] => 1
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [1,4,2,3] => [1,4,2,3] => 1
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => [4,1,2,3] => [4,1,2,3] => 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => [5,2,3,4,1] => [2,3,4,5,1] => 1
[1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => [4,2,3,1,5] => [2,3,4,1,5] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => [3,2,1,5,4] => [2,3,1,5,4] => 2
[1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => [5,2,3,1,4] => [2,3,5,1,4] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => [3,2,1,4,5] => [2,3,1,4,5] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => [2,1,5,4,3] => [2,1,4,5,3] => 2
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => [2,1,4,3,5] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => [5,2,1,4,3] => [2,4,5,1,3] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => [5,2,4,3,1] => [2,4,3,5,1] => 2
[1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => [4,2,1,3,5] => [2,4,1,3,5] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => [2,1,3,5,4] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => [2,1,5,3,4] => [2,1,5,3,4] => 2
[1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => [5,2,1,3,4] => [2,5,1,3,4] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => [2,1,3,4,5] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => [1,5,3,4,2] => [1,3,4,5,2] => 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => [1,4,3,2,5] => [1,3,4,2,5] => 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => [1,3,2,5,4] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => [1,5,3,2,4] => [1,3,5,2,4] => 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => [5,1,3,4,2] => [3,4,5,1,2] => 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => [4,1,3,2,5] => [3,4,1,2,5] => 1
[1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => [5,3,2,4,1] => [3,2,4,5,1] => 2
[1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => [5,4,3,2,1] => [3,4,2,5,1] => 2
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => [4,3,2,1,5] => [3,2,4,1,5] => 2
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => [3,1,2,5,4] => [3,1,2,5,4] => 2
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => [5,1,3,2,4] => [3,5,1,2,4] => 1
[1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => [5,3,2,1,4] => [3,2,5,1,4] => 2
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => [3,1,2,4,5] => [3,1,2,4,5] => 1
[1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [2,5,6,1,3,4,7] => [6,2,5,3,4,1,7] => [2,5,3,4,6,1,7] => ? = 2
[1,0,1,1,1,1,0,0,1,0,1,0,0,0]
=> [2,1,6,7,3,4,5] => [2,1,7,6,4,5,3] => [2,1,6,4,5,7,3] => ? = 3
[1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [3,4,5,6,1,2,7] => [6,5,3,4,2,1,7] => [3,4,5,2,6,1,7] => ? = 2
[1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [3,4,6,1,2,5,7] => [6,4,3,2,1,5,7] => [3,4,2,6,1,5,7] => ? = 2
[1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [3,4,1,2,5,6,7] => [4,3,2,1,5,6,7] => [3,2,4,1,5,6,7] => ? = 2
[1,1,0,1,1,0,1,0,0,0,1,0,1,0]
=> [3,5,1,2,6,7,4] => [7,3,2,1,5,6,4] => [3,2,5,6,7,1,4] => ? = 2
[1,1,0,1,1,0,1,0,0,1,1,0,0,0]
=> [3,5,1,6,2,4,7] => [6,3,2,5,4,1,7] => [3,2,5,4,6,1,7] => ? = 3
[1,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> [3,5,6,1,2,4,7] => [6,5,3,2,4,1,7] => [3,5,2,4,6,1,7] => ? = 2
[1,1,1,0,0,1,1,0,0,1,0,1,0,0]
=> [1,4,2,6,7,3,5] => [1,7,2,4,6,5,3] => [1,4,6,5,7,2,3] => ? = 2
[1,1,1,0,1,0,0,0,1,0,1,0,1,0]
=> [4,1,2,5,6,7,3] => [7,1,2,4,5,6,3] => [4,5,6,7,1,2,3] => ? = 1
[1,1,1,0,1,0,0,1,0,1,1,0,0,0]
=> [4,1,5,6,2,3,7] => [6,1,5,4,3,2,7] => [4,5,3,6,1,2,7] => ? = 2
[1,1,1,0,1,0,1,0,0,0,1,1,0,0]
=> [4,5,1,2,6,3,7] => [6,4,2,3,5,1,7] => [4,2,3,5,6,1,7] => ? = 2
[1,1,1,0,1,0,1,0,0,1,1,0,0,0]
=> [4,5,1,6,2,3,7] => [6,5,2,4,3,1,7] => [4,5,2,3,6,1,7] => ? = 2
[1,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> [4,5,6,1,2,3,7] => [6,5,4,3,2,1,7] => [4,3,5,2,6,1,7] => ? = 3
[1,1,1,0,1,0,1,1,0,0,0,0,1,0]
=> [4,5,1,2,3,7,6] => [5,4,2,3,1,7,6] => [4,2,3,5,1,7,6] => ? = 3
[1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [4,5,1,2,3,6,7] => [5,4,2,3,1,6,7] => [4,2,3,5,1,6,7] => ? = 2
[1,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> [4,6,1,2,3,5,7] => [6,4,2,3,1,5,7] => [4,2,3,6,1,5,7] => ? = 2
[1,1,1,1,0,0,1,0,0,1,0,1,0,0]
=> [1,5,2,6,7,3,4] => [1,7,2,6,5,4,3] => [1,5,6,4,7,2,3] => ? = 2
[1,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> [1,5,6,2,3,7,4] => [1,7,5,3,4,6,2] => [1,5,3,4,6,7,2] => ? = 2
[1,1,1,1,0,0,1,0,1,0,0,1,0,0]
=> [1,5,6,2,7,3,4] => [1,7,6,3,5,4,2] => [1,5,6,3,4,7,2] => ? = 2
[1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> [1,5,6,7,2,3,4] => [1,7,6,5,4,3,2] => [1,5,4,6,3,7,2] => ? = 3
[1,1,1,1,0,0,1,1,0,1,0,0,0,0]
=> [1,5,7,2,3,4,6] => [1,7,5,3,4,2,6] => [1,5,3,4,7,2,6] => ? = 2
[1,1,1,1,0,1,0,0,1,1,0,0,0,0]
=> [5,1,6,2,3,4,7] => [6,1,5,3,4,2,7] => [5,3,4,6,1,2,7] => ? = 2
[1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [5,6,7,1,2,3,4] => [7,6,5,3,4,2,1] => [5,3,4,6,2,7,1] => ? = 3
[1,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> [5,6,1,2,3,4,7] => [6,5,2,3,4,1,7] => [5,2,3,4,6,1,7] => ? = 2
[1,1,1,1,1,0,0,1,0,0,1,0,0,0]
=> [1,6,2,7,3,4,5] => [1,7,2,6,4,5,3] => [1,6,4,5,7,2,3] => ? = 2
[1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [1,6,7,2,3,4,5] => [1,7,6,3,4,5,2] => [1,6,3,4,5,7,2] => ? = 2
[1,0,1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [2,3,4,8,1,5,6,7] => [8,2,3,4,1,5,6,7] => [2,3,4,8,1,5,6,7] => ? = 1
[1,0,1,0,1,1,1,0,1,1,0,0,0,0,1,0]
=> [2,3,6,1,4,5,8,7] => [6,2,3,1,4,5,8,7] => [2,3,6,1,4,5,8,7] => ? = 2
[1,0,1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [2,3,7,1,4,5,8,6] => [8,2,3,1,4,5,7,6] => [2,3,7,8,1,4,5,6] => ? = 1
[1,0,1,1,0,0,1,0,1,1,1,0,1,0,0,0]
=> [2,1,4,5,8,3,6,7] => [2,1,8,4,5,3,6,7] => [2,1,4,5,8,3,6,7] => ? = 2
[1,0,1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,3,6,8,5,7] => [2,1,4,3,8,6,5,7] => [2,1,4,3,6,8,5,7] => ? = 3
[1,0,1,1,0,0,1,1,0,1,1,0,0,0,1,0]
=> [2,1,4,6,3,5,8,7] => [2,1,6,4,3,5,8,7] => [2,1,4,6,3,5,8,7] => ? = 3
[1,0,1,1,0,1,1,0,0,0,1,1,0,0,1,0]
=> [2,4,1,3,6,5,8,7] => [4,2,1,3,6,5,8,7] => [2,4,1,3,6,5,8,7] => ? = 3
[1,0,1,1,0,1,1,0,0,0,1,1,0,1,0,0]
=> [2,4,1,3,6,8,5,7] => [4,2,1,3,8,6,5,7] => [2,4,1,3,6,8,5,7] => ? = 2
[1,0,1,1,0,1,1,1,0,0,0,1,0,0,1,0]
=> [2,4,1,3,7,5,8,6] => [4,2,1,3,8,5,7,6] => [2,4,1,3,7,8,5,6] => ? = 2
[1,0,1,1,0,1,1,1,0,1,0,0,0,1,0,0]
=> [2,4,7,1,3,8,5,6] => [8,2,4,3,1,7,6,5] => ? => ? = 3
[1,0,1,1,1,0,0,1,1,0,0,1,0,0,1,0]
=> [2,1,5,3,7,4,8,6] => [2,1,8,3,5,4,7,6] => [2,1,5,7,8,3,4,6] => ? = 2
[1,1,0,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [3,1,4,2,6,8,5,7] => [4,1,3,2,8,6,5,7] => [3,4,1,2,6,8,5,7] => ? = 2
[1,1,0,1,0,1,1,1,0,0,1,0,0,0,1,0]
=> [3,4,1,7,2,5,8,6] => [8,3,2,4,1,5,7,6] => ? => ? = 2
[1,1,0,1,0,1,1,1,0,0,1,0,0,1,0,0]
=> [3,4,1,7,2,8,5,6] => ? => ? => ? = 3
[1,1,0,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [3,4,1,2,5,6,7,8] => [4,3,2,1,5,6,7,8] => [3,2,4,1,5,6,7,8] => ? = 2
[1,1,0,1,1,0,0,1,0,0,1,1,0,0,1,0]
=> [3,1,5,2,6,4,8,7] => [6,1,3,2,5,4,8,7] => [3,5,6,1,2,4,8,7] => ? = 2
[1,1,0,1,1,0,0,1,0,1,1,0,0,1,0,0]
=> [3,1,5,6,2,8,4,7] => [8,1,3,5,4,6,2,7] => [3,5,4,6,8,1,2,7] => ? = 2
[1,1,0,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,7,4,6,8] => [7,1,3,2,5,4,6,8] => [3,5,7,1,2,4,6,8] => ? = 1
[1,1,0,1,1,0,0,1,1,1,0,0,0,1,0,0]
=> [3,1,5,2,4,8,6,7] => [5,1,3,2,4,8,6,7] => [3,5,1,2,4,8,6,7] => ? = 2
[1,1,0,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> [3,5,6,7,1,2,4,8] => [7,6,3,5,4,2,1,8] => [3,5,4,6,2,7,1,8] => ? = 3
[1,1,0,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> [3,1,2,6,4,8,5,7] => ? => ? => ? = 2
[1,1,0,1,1,1,0,0,1,0,1,1,0,0,0,0]
=> [3,1,6,7,2,4,5,8] => [7,1,3,6,4,5,2,8] => [3,6,4,5,7,1,2,8] => ? = 2
[1,1,0,1,1,1,0,1,0,1,0,0,1,0,0,0]
=> [3,6,7,1,8,2,4,5] => ? => ? => ? = 3
Description
The number of isolated descents of a permutation. A descent i is isolated if neither i+1 nor i1 are descents. If a permutation has only isolated descents, then it is called primitive in [1].
Mp00229: Dyck paths Delest-ViennotDyck paths
Mp00023: Dyck paths to non-crossing permutationPermutations
Mp00239: Permutations CorteelPermutations
St000374: Permutations ⟶ ℤResult quality: 74% values known / values provided: 74%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1] => [1] => 0
[1,0,1,0]
=> [1,1,0,0]
=> [2,1] => [2,1] => 1
[1,1,0,0]
=> [1,0,1,0]
=> [1,2] => [1,2] => 0
[1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => [3,2,1] => 1
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => 1
[1,1,0,1,0,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => [2,3,1] => 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4,2,3,1] => 1
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,2,1,4] => 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => 2
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [3,2,4,1] => 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,3,2] => 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2,4] => 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [2,4,3,1] => 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [3,4,1,2] => 2
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [2,3,1,4] => 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,4,3] => 1
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,3,4,2] => 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => [2,3,4,1] => 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5,2,3,4,1] => 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,2,3,1,5] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,2,1,5,4] => 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [4,2,3,5,1] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [3,2,1,4,5] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,4,3] => 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [3,2,5,4,1] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [4,2,5,1,3] => 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [3,2,4,1,5] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [2,1,4,5,3] => 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => [3,2,4,5,1] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,3,4,2] => 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,4,3,2,5] => 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,4,3,5,2] => 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => [2,5,3,4,1] => 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => [2,4,3,1,5] => 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => [3,5,1,4,2] => 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [5,3,4,2,1] => [3,5,4,1,2] => 2
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => [3,4,1,2,5] => 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => [2,3,1,5,4] => 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => [2,4,3,5,1] => 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [5,3,2,4,1] => [3,4,1,5,2] => 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [2,3,1,4,5] => 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,1] => [7,2,3,4,5,6,1] => ? = 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [2,3,4,5,6,1,7] => [6,2,3,4,5,1,7] => ? = 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> [2,3,4,5,1,7,6] => [5,2,3,4,1,7,6] => ? = 2
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [2,3,4,5,1,6,7] => [5,2,3,4,1,6,7] => ? = 1
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0,1,1,0,0]
=> [2,3,4,1,5,7,6] => [4,2,3,1,5,7,6] => ? = 2
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [2,3,4,1,5,6,7] => [4,2,3,1,5,6,7] => ? = 1
[1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [2,6,5,4,3,1,7] => [4,2,5,6,1,3,7] => ? = 2
[1,0,1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [2,1,7,6,5,4,3] => [2,1,5,6,7,3,4] => ? = 3
[1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,7,2] => [1,7,3,4,5,6,2] => ? = 1
[1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,3,4,5,6,2,7] => [1,6,3,4,5,2,7] => ? = 1
[1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,3,4,5,2,7,6] => [1,5,3,4,2,7,6] => ? = 2
[1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,3,4,5,7,6,2] => [1,6,3,4,5,7,2] => ? = 1
[1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,3,4,5,2,6,7] => [1,5,3,4,2,6,7] => ? = 1
[1,1,0,0,1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,3,4,6,5,7,2] => [1,5,3,4,7,6,2] => ? = 1
[1,1,0,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,3,4,7,6,5,2] => [1,6,3,4,7,2,5] => ? = 2
[1,1,0,0,1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0,1,0]
=> [1,3,4,6,5,2,7] => [1,5,3,4,6,2,7] => ? = 1
[1,1,0,0,1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,3,4,7,5,6,2] => [1,5,3,4,6,7,2] => ? = 1
[1,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,3,6,5,4,7,2] => [1,5,3,7,2,6,4] => ? = 2
[1,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,3,7,5,6,4,2] => [1,5,3,7,6,2,4] => ? = 2
[1,1,0,0,1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,3,6,5,4,2,7] => [1,5,3,6,2,4,7] => ? = 2
[1,1,0,0,1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,3,7,5,4,6,2] => [1,5,3,6,2,7,4] => ? = 2
[1,1,0,0,1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,3,7,6,5,4,2] => [1,5,3,6,7,2,4] => ? = 2
[1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [3,2,4,5,6,7,1] => [2,7,3,4,5,6,1] => ? = 1
[1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> [4,3,2,5,6,7,1] => [3,7,1,4,5,6,2] => ? = 2
[1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [6,3,4,5,2,1,7] => [3,6,4,5,1,2,7] => ? = 2
[1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> [6,3,4,2,5,1,7] => [3,5,4,1,6,2,7] => ? = 2
[1,1,0,1,1,0,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,1,0,0]
=> [5,3,2,4,6,7,1] => [3,4,1,7,5,6,2] => ? = 2
[1,1,0,1,1,0,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> [6,3,2,5,4,1,7] => [3,5,1,6,2,4,7] => ? = 3
[1,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [6,3,5,4,2,1,7] => [3,5,4,6,1,2,7] => ? = 2
[1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,7,4,5,6,3,2] => [1,4,7,5,6,2,3] => ? = 2
[1,1,1,0,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,7,4,6,5,3,2] => [1,4,6,5,7,2,3] => ? = 2
[1,1,1,0,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [4,2,3,5,6,7,1] => [2,3,7,4,5,6,1] => ? = 1
[1,1,1,0,1,0,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0,1,0]
=> [6,2,4,5,3,1,7] => [2,4,6,5,1,3,7] => ? = 2
[1,1,1,0,1,0,1,0,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [5,4,3,2,6,1,7] => [3,4,6,1,5,2,7] => ? = 2
[1,1,1,0,1,0,1,0,0,1,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [6,4,3,5,2,1,7] => [3,4,6,5,1,2,7] => ? = 2
[1,1,1,0,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [5,4,3,2,1,7,6] => [3,4,5,1,2,7,6] => ? = 3
[1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [5,4,3,2,1,6,7] => [3,4,5,1,2,6,7] => ? = 2
[1,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [6,4,3,2,5,1,7] => [3,4,5,1,6,2,7] => ? = 2
[1,1,1,1,0,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,1,0,0]
=> [5,2,3,4,6,7,1] => [2,3,4,7,5,6,1] => ? = 1
[1,1,1,1,0,1,0,0,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [6,2,5,4,3,1,7] => [2,4,5,6,1,3,7] => ? = 2
[1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [7,6,5,4,3,2,1] => [4,5,6,7,1,2,3] => ? = 3
[1,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [6,5,3,4,2,1,7] => [3,4,5,6,1,2,7] => ? = 2
[1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,1,0,0]
=> [6,2,3,4,5,7,1] => [2,3,4,5,7,6,1] => ? = 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,8,1] => [8,2,3,4,5,6,7,1] => ? = 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [2,3,4,5,6,7,1,8] => [7,2,3,4,5,6,1,8] => ? = 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> [2,3,4,5,6,1,8,7] => [6,2,3,4,5,1,8,7] => ? = 2
[1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [2,3,4,5,6,1,7,8] => [6,2,3,4,5,1,7,8] => ? = 1
[1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [2,3,4,5,1,6,7,8] => [5,2,3,4,1,6,7,8] => ? = 1
[1,0,1,0,1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0,1,1,0,0]
=> [2,3,6,4,5,1,8,7] => [4,2,3,5,6,1,8,7] => ? = 2
[1,0,1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> [2,3,7,4,5,6,8,1] => [4,2,3,5,6,8,7,1] => ? = 1
Description
The number of exclusive right-to-left minima of a permutation. This is the number of right-to-left minima that are not left-to-right maxima. This is also the number of non weak exceedences of a permutation that are also not mid-points of a decreasing subsequence of length 3. Given a permutation π=[π1,,πn], this statistic counts the number of position j such that πj<j and there do not exist indices i,k with i<j<k and πi>πj>πk. See also [[St000213]] and [[St000119]].
The following 53 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000251The number of nonsingleton blocks of a set partition. St000211The rank of the set partition. St000558The number of occurrences of the pattern {{1,2}} in a set partition. St000386The number of factors DDU in a Dyck path. St001269The sum of the minimum of the number of exceedances and deficiencies in each cycle of a permutation. St001737The number of descents of type 2 in a permutation. St001928The number of non-overlapping descents in a permutation. St000470The number of runs in a permutation. St001665The number of pure excedances of a permutation. St001729The number of visible descents of a permutation. St000035The number of left outer peaks of a permutation. St000996The number of exclusive left-to-right maxima of a permutation. St000354The number of recoils of a permutation. St000834The number of right outer peaks of a permutation. St001037The number of inner corners of the upper path of the parallelogram polyomino associated with the Dyck path. St000201The number of leaf nodes in a binary tree. St000021The number of descents of a permutation. St000196The number of occurrences of the contiguous pattern [[.,.],[.,. St000702The number of weak deficiencies of a permutation. St001188The number of simple modules S with grade inf at least two in the Nakayama algebra A corresponding to the Dyck path. St001244The number of simple modules of projective dimension one that are not 1-regular for the Nakayama algebra associated to a Dyck path. St000155The number of exceedances (also excedences) of a permutation. St000162The number of nontrivial cycles in the cycle decomposition of a permutation. St001212The number of simple modules in the corresponding Nakayama algebra that have non-zero second Ext-group with the regular module. St001298The number of repeated entries in the Lehmer code of a permutation. St000325The width of the tree associated to a permutation. St001907The number of Bastidas - Hohlweg - Saliola excedances of a signed permutation. St001489The maximum of the number of descents and the number of inverse descents. St000647The number of big descents of a permutation. St000353The number of inner valleys of a permutation. St000455The second largest eigenvalue of a graph if it is integral. St000710The number of big deficiencies of a permutation. St001744The number of occurrences of the arrow pattern 1-2 with an arrow from 1 to 2 in a permutation. St001728The number of invisible descents of a permutation. St000711The number of big exceedences of a permutation. St000092The number of outer peaks of a permutation. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St000871The number of very big ascents of a permutation. St001086The number of occurrences of the consecutive pattern 132 in a permutation. St001864The number of excedances of a signed permutation. St001896The number of right descents of a signed permutations. St001330The hat guessing number of a graph. St000256The number of parts from which one can substract 2 and still get an integer partition. St000243The number of cyclic valleys and cyclic peaks of a permutation. St001597The Frobenius rank of a skew partition. St000023The number of inner peaks of a permutation. St000099The number of valleys of a permutation, including the boundary. St001905The number of preferred parking spots in a parking function less than the index of the car. St001960The number of descents of a permutation minus one if its first entry is not one. St001487The number of inner corners of a skew partition. St000028The number of stack-sorts needed to sort a permutation. St000862The number of parts of the shifted shape of a permutation. St001624The breadth of a lattice.