searching the database
Your data matches 6 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000707
St000707: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[2]
=> 2
[1,1]
=> 1
[3]
=> 6
[2,1]
=> 2
[1,1,1]
=> 1
[4]
=> 24
[3,1]
=> 6
[2,2]
=> 4
[2,1,1]
=> 2
[1,1,1,1]
=> 1
[5]
=> 120
[4,1]
=> 24
[3,2]
=> 12
[3,1,1]
=> 6
[2,2,1]
=> 4
[2,1,1,1]
=> 2
[1,1,1,1,1]
=> 1
[6]
=> 720
[5,1]
=> 120
[4,2]
=> 48
[4,1,1]
=> 24
[3,3]
=> 36
[3,2,1]
=> 12
[3,1,1,1]
=> 6
[2,2,2]
=> 8
[2,2,1,1]
=> 4
[2,1,1,1,1]
=> 2
[1,1,1,1,1,1]
=> 1
[7]
=> 5040
[6,1]
=> 720
[5,2]
=> 240
[5,1,1]
=> 120
[4,3]
=> 144
[4,2,1]
=> 48
[4,1,1,1]
=> 24
[3,3,1]
=> 36
[3,2,2]
=> 24
[3,2,1,1]
=> 12
[3,1,1,1,1]
=> 6
[2,2,2,1]
=> 8
[2,2,1,1,1]
=> 4
[2,1,1,1,1,1]
=> 2
[1,1,1,1,1,1,1]
=> 1
[8]
=> 40320
[7,1]
=> 5040
[6,2]
=> 1440
[6,1,1]
=> 720
[5,3]
=> 720
[5,2,1]
=> 240
[5,1,1,1]
=> 120
Description
The product of the factorials of the parts.
Matching statistic: St000110
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
Mp00064: Permutations —reverse⟶ Permutations
St000110: Permutations ⟶ ℤResult quality: 17% ●values known / values provided: 17%●distinct values known / distinct values provided: 25%
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
Mp00064: Permutations —reverse⟶ Permutations
St000110: Permutations ⟶ ℤResult quality: 17% ●values known / values provided: 17%●distinct values known / distinct values provided: 25%
Values
[2]
=> [[1,2]]
=> [1,2] => [2,1] => 2
[1,1]
=> [[1],[2]]
=> [2,1] => [1,2] => 1
[3]
=> [[1,2,3]]
=> [1,2,3] => [3,2,1] => 6
[2,1]
=> [[1,2],[3]]
=> [3,1,2] => [2,1,3] => 2
[1,1,1]
=> [[1],[2],[3]]
=> [3,2,1] => [1,2,3] => 1
[4]
=> [[1,2,3,4]]
=> [1,2,3,4] => [4,3,2,1] => 24
[3,1]
=> [[1,2,3],[4]]
=> [4,1,2,3] => [3,2,1,4] => 6
[2,2]
=> [[1,2],[3,4]]
=> [3,4,1,2] => [2,1,4,3] => 4
[2,1,1]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => [2,1,3,4] => 2
[1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => [1,2,3,4] => 1
[5]
=> [[1,2,3,4,5]]
=> [1,2,3,4,5] => [5,4,3,2,1] => 120
[4,1]
=> [[1,2,3,4],[5]]
=> [5,1,2,3,4] => [4,3,2,1,5] => 24
[3,2]
=> [[1,2,3],[4,5]]
=> [4,5,1,2,3] => [3,2,1,5,4] => 12
[3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => [3,2,1,4,5] => 6
[2,2,1]
=> [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => [2,1,4,3,5] => 4
[2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => [2,1,3,4,5] => 2
[1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => [1,2,3,4,5] => 1
[6]
=> [[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => [6,5,4,3,2,1] => 720
[5,1]
=> [[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => [5,4,3,2,1,6] => 120
[4,2]
=> [[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => [4,3,2,1,6,5] => 48
[4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => [4,3,2,1,5,6] => 24
[3,3]
=> [[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => [3,2,1,6,5,4] => 36
[3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => [3,2,1,5,4,6] => 12
[3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => [3,2,1,4,5,6] => 6
[2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => [2,1,4,3,6,5] => 8
[2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => [2,1,4,3,5,6] => 4
[2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => [2,1,3,4,5,6] => 2
[1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => [1,2,3,4,5,6] => 1
[7]
=> [[1,2,3,4,5,6,7]]
=> [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => 5040
[6,1]
=> [[1,2,3,4,5,6],[7]]
=> [7,1,2,3,4,5,6] => [6,5,4,3,2,1,7] => 720
[5,2]
=> [[1,2,3,4,5],[6,7]]
=> [6,7,1,2,3,4,5] => [5,4,3,2,1,7,6] => 240
[5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [7,6,1,2,3,4,5] => [5,4,3,2,1,6,7] => 120
[4,3]
=> [[1,2,3,4],[5,6,7]]
=> [5,6,7,1,2,3,4] => [4,3,2,1,7,6,5] => ? = 144
[4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => [4,3,2,1,6,5,7] => ? = 48
[4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => [4,3,2,1,5,6,7] => 24
[3,3,1]
=> [[1,2,3],[4,5,6],[7]]
=> [7,4,5,6,1,2,3] => [3,2,1,6,5,4,7] => ? = 36
[3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [6,7,4,5,1,2,3] => [3,2,1,5,4,7,6] => ? = 24
[3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => [3,2,1,5,4,6,7] => ? = 12
[3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [7,6,5,4,1,2,3] => [3,2,1,4,5,6,7] => 6
[2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> [7,5,6,3,4,1,2] => [2,1,4,3,6,5,7] => ? = 8
[2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [7,6,5,3,4,1,2] => [2,1,4,3,5,6,7] => ? = 4
[2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,1,2] => [2,1,3,4,5,6,7] => 2
[1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => [1,2,3,4,5,6,7] => 1
[8]
=> [[1,2,3,4,5,6,7,8]]
=> [1,2,3,4,5,6,7,8] => [8,7,6,5,4,3,2,1] => 40320
[7,1]
=> [[1,2,3,4,5,6,7],[8]]
=> [8,1,2,3,4,5,6,7] => [7,6,5,4,3,2,1,8] => 5040
[6,2]
=> [[1,2,3,4,5,6],[7,8]]
=> [7,8,1,2,3,4,5,6] => [6,5,4,3,2,1,8,7] => 1440
[6,1,1]
=> [[1,2,3,4,5,6],[7],[8]]
=> [8,7,1,2,3,4,5,6] => [6,5,4,3,2,1,7,8] => 720
[5,3]
=> [[1,2,3,4,5],[6,7,8]]
=> [6,7,8,1,2,3,4,5] => [5,4,3,2,1,8,7,6] => 720
[5,2,1]
=> [[1,2,3,4,5],[6,7],[8]]
=> [8,6,7,1,2,3,4,5] => [5,4,3,2,1,7,6,8] => ? = 240
[5,1,1,1]
=> [[1,2,3,4,5],[6],[7],[8]]
=> [8,7,6,1,2,3,4,5] => [5,4,3,2,1,6,7,8] => 120
[4,4]
=> [[1,2,3,4],[5,6,7,8]]
=> [5,6,7,8,1,2,3,4] => [4,3,2,1,8,7,6,5] => 576
[4,3,1]
=> [[1,2,3,4],[5,6,7],[8]]
=> [8,5,6,7,1,2,3,4] => [4,3,2,1,7,6,5,8] => ? = 144
[4,2,2]
=> [[1,2,3,4],[5,6],[7,8]]
=> [7,8,5,6,1,2,3,4] => [4,3,2,1,6,5,8,7] => ? = 96
[4,2,1,1]
=> [[1,2,3,4],[5,6],[7],[8]]
=> [8,7,5,6,1,2,3,4] => [4,3,2,1,6,5,7,8] => ? = 48
[4,1,1,1,1]
=> [[1,2,3,4],[5],[6],[7],[8]]
=> [8,7,6,5,1,2,3,4] => [4,3,2,1,5,6,7,8] => 24
[3,3,2]
=> [[1,2,3],[4,5,6],[7,8]]
=> [7,8,4,5,6,1,2,3] => [3,2,1,6,5,4,8,7] => ? = 72
[3,3,1,1]
=> [[1,2,3],[4,5,6],[7],[8]]
=> [8,7,4,5,6,1,2,3] => [3,2,1,6,5,4,7,8] => ? = 36
[3,2,2,1]
=> [[1,2,3],[4,5],[6,7],[8]]
=> [8,6,7,4,5,1,2,3] => [3,2,1,5,4,7,6,8] => ? = 24
[3,2,1,1,1]
=> [[1,2,3],[4,5],[6],[7],[8]]
=> [8,7,6,4,5,1,2,3] => [3,2,1,5,4,6,7,8] => ? = 12
[3,1,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,1,2,3] => [3,2,1,4,5,6,7,8] => 6
[2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> [7,8,5,6,3,4,1,2] => [2,1,4,3,6,5,8,7] => ? = 16
[2,2,2,1,1]
=> [[1,2],[3,4],[5,6],[7],[8]]
=> [8,7,5,6,3,4,1,2] => [2,1,4,3,6,5,7,8] => ? = 8
[2,2,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8]]
=> [8,7,6,5,3,4,1,2] => [2,1,4,3,5,6,7,8] => ? = 4
[2,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,1,2] => [2,1,3,4,5,6,7,8] => 2
[1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,2,1] => [1,2,3,4,5,6,7,8] => 1
[9]
=> [[1,2,3,4,5,6,7,8,9]]
=> [1,2,3,4,5,6,7,8,9] => [9,8,7,6,5,4,3,2,1] => ? = 362880
[8,1]
=> [[1,2,3,4,5,6,7,8],[9]]
=> [9,1,2,3,4,5,6,7,8] => [8,7,6,5,4,3,2,1,9] => ? = 40320
[7,2]
=> [[1,2,3,4,5,6,7],[8,9]]
=> [8,9,1,2,3,4,5,6,7] => [7,6,5,4,3,2,1,9,8] => ? = 10080
[7,1,1]
=> [[1,2,3,4,5,6,7],[8],[9]]
=> [9,8,1,2,3,4,5,6,7] => [7,6,5,4,3,2,1,8,9] => ? = 5040
[6,3]
=> [[1,2,3,4,5,6],[7,8,9]]
=> [7,8,9,1,2,3,4,5,6] => [6,5,4,3,2,1,9,8,7] => ? = 4320
[6,2,1]
=> [[1,2,3,4,5,6],[7,8],[9]]
=> [9,7,8,1,2,3,4,5,6] => [6,5,4,3,2,1,8,7,9] => ? = 1440
[6,1,1,1]
=> [[1,2,3,4,5,6],[7],[8],[9]]
=> [9,8,7,1,2,3,4,5,6] => [6,5,4,3,2,1,7,8,9] => ? = 720
[5,4]
=> [[1,2,3,4,5],[6,7,8,9]]
=> [6,7,8,9,1,2,3,4,5] => [5,4,3,2,1,9,8,7,6] => ? = 2880
[5,3,1]
=> [[1,2,3,4,5],[6,7,8],[9]]
=> [9,6,7,8,1,2,3,4,5] => [5,4,3,2,1,8,7,6,9] => ? = 720
[5,2,2]
=> [[1,2,3,4,5],[6,7],[8,9]]
=> [8,9,6,7,1,2,3,4,5] => [5,4,3,2,1,7,6,9,8] => ? = 480
[5,2,1,1]
=> [[1,2,3,4,5],[6,7],[8],[9]]
=> [9,8,6,7,1,2,3,4,5] => [5,4,3,2,1,7,6,8,9] => ? = 240
[5,1,1,1,1]
=> [[1,2,3,4,5],[6],[7],[8],[9]]
=> [9,8,7,6,1,2,3,4,5] => [5,4,3,2,1,6,7,8,9] => ? = 120
[4,4,1]
=> [[1,2,3,4],[5,6,7,8],[9]]
=> [9,5,6,7,8,1,2,3,4] => [4,3,2,1,8,7,6,5,9] => ? = 576
[4,3,2]
=> [[1,2,3,4],[5,6,7],[8,9]]
=> [8,9,5,6,7,1,2,3,4] => [4,3,2,1,7,6,5,9,8] => ? = 288
[4,3,1,1]
=> [[1,2,3,4],[5,6,7],[8],[9]]
=> [9,8,5,6,7,1,2,3,4] => [4,3,2,1,7,6,5,8,9] => ? = 144
[4,2,2,1]
=> [[1,2,3,4],[5,6],[7,8],[9]]
=> [9,7,8,5,6,1,2,3,4] => [4,3,2,1,6,5,8,7,9] => ? = 96
[4,2,1,1,1]
=> [[1,2,3,4],[5,6],[7],[8],[9]]
=> [9,8,7,5,6,1,2,3,4] => [4,3,2,1,6,5,7,8,9] => ? = 48
[4,1,1,1,1,1]
=> [[1,2,3,4],[5],[6],[7],[8],[9]]
=> [9,8,7,6,5,1,2,3,4] => [4,3,2,1,5,6,7,8,9] => ? = 24
[3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9]]
=> [7,8,9,4,5,6,1,2,3] => [3,2,1,6,5,4,9,8,7] => ? = 216
[3,3,2,1]
=> [[1,2,3],[4,5,6],[7,8],[9]]
=> [9,7,8,4,5,6,1,2,3] => [3,2,1,6,5,4,8,7,9] => ? = 72
[3,3,1,1,1]
=> [[1,2,3],[4,5,6],[7],[8],[9]]
=> [9,8,7,4,5,6,1,2,3] => [3,2,1,6,5,4,7,8,9] => ? = 36
[3,2,2,2]
=> [[1,2,3],[4,5],[6,7],[8,9]]
=> [8,9,6,7,4,5,1,2,3] => [3,2,1,5,4,7,6,9,8] => ? = 48
[3,2,2,1,1]
=> [[1,2,3],[4,5],[6,7],[8],[9]]
=> [9,8,6,7,4,5,1,2,3] => [3,2,1,5,4,7,6,8,9] => ? = 24
[3,2,1,1,1,1]
=> [[1,2,3],[4,5],[6],[7],[8],[9]]
=> [9,8,7,6,4,5,1,2,3] => [3,2,1,5,4,6,7,8,9] => ? = 12
[3,1,1,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7],[8],[9]]
=> [9,8,7,6,5,4,1,2,3] => [3,2,1,4,5,6,7,8,9] => ? = 6
[2,2,2,2,1]
=> [[1,2],[3,4],[5,6],[7,8],[9]]
=> [9,7,8,5,6,3,4,1,2] => [2,1,4,3,6,5,8,7,9] => ? = 16
[2,2,2,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9]]
=> [9,8,7,5,6,3,4,1,2] => [2,1,4,3,6,5,7,8,9] => ? = 8
[2,2,1,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8],[9]]
=> [9,8,7,6,5,3,4,1,2] => [2,1,4,3,5,6,7,8,9] => ? = 4
[2,1,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8],[9]]
=> [9,8,7,6,5,4,3,1,2] => [2,1,3,4,5,6,7,8,9] => ? = 2
[1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9]]
=> [9,8,7,6,5,4,3,2,1] => [1,2,3,4,5,6,7,8,9] => ? = 1
[10]
=> [[1,2,3,4,5,6,7,8,9,10]]
=> [1,2,3,4,5,6,7,8,9,10] => [10,9,8,7,6,5,4,3,2,1] => ? = 3628800
[9,1]
=> [[1,2,3,4,5,6,7,8,9],[10]]
=> [10,1,2,3,4,5,6,7,8,9] => [9,8,7,6,5,4,3,2,1,10] => ? = 362880
Description
The number of permutations less than or equal to a permutation in left weak order.
This is the same as the number of permutations less than or equal to the given permutation in right weak order.
Matching statistic: St000040
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
Mp00069: Permutations —complement⟶ Permutations
St000040: Permutations ⟶ ℤResult quality: 15% ●values known / values provided: 15%●distinct values known / distinct values provided: 20%
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
Mp00069: Permutations —complement⟶ Permutations
St000040: Permutations ⟶ ℤResult quality: 15% ●values known / values provided: 15%●distinct values known / distinct values provided: 20%
Values
[2]
=> [[1,2]]
=> [1,2] => [2,1] => 2
[1,1]
=> [[1],[2]]
=> [2,1] => [1,2] => 1
[3]
=> [[1,2,3]]
=> [1,2,3] => [3,2,1] => 6
[2,1]
=> [[1,2],[3]]
=> [3,1,2] => [1,3,2] => 2
[1,1,1]
=> [[1],[2],[3]]
=> [3,2,1] => [1,2,3] => 1
[4]
=> [[1,2,3,4]]
=> [1,2,3,4] => [4,3,2,1] => 24
[3,1]
=> [[1,2,3],[4]]
=> [4,1,2,3] => [1,4,3,2] => 6
[2,2]
=> [[1,2],[3,4]]
=> [3,4,1,2] => [2,1,4,3] => 4
[2,1,1]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => [1,2,4,3] => 2
[1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => [1,2,3,4] => 1
[5]
=> [[1,2,3,4,5]]
=> [1,2,3,4,5] => [5,4,3,2,1] => 120
[4,1]
=> [[1,2,3,4],[5]]
=> [5,1,2,3,4] => [1,5,4,3,2] => 24
[3,2]
=> [[1,2,3],[4,5]]
=> [4,5,1,2,3] => [2,1,5,4,3] => 12
[3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => [1,2,5,4,3] => 6
[2,2,1]
=> [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => [1,3,2,5,4] => 4
[2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => [1,2,3,5,4] => 2
[1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => [1,2,3,4,5] => 1
[6]
=> [[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => [6,5,4,3,2,1] => 720
[5,1]
=> [[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => [1,6,5,4,3,2] => 120
[4,2]
=> [[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => [2,1,6,5,4,3] => 48
[4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => [1,2,6,5,4,3] => 24
[3,3]
=> [[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => [3,2,1,6,5,4] => 36
[3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => [1,3,2,6,5,4] => 12
[3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => [1,2,3,6,5,4] => 6
[2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => [2,1,4,3,6,5] => 8
[2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => [1,2,4,3,6,5] => 4
[2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => [1,2,3,4,6,5] => 2
[1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => [1,2,3,4,5,6] => 1
[7]
=> [[1,2,3,4,5,6,7]]
=> [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => 5040
[6,1]
=> [[1,2,3,4,5,6],[7]]
=> [7,1,2,3,4,5,6] => [1,7,6,5,4,3,2] => 720
[5,2]
=> [[1,2,3,4,5],[6,7]]
=> [6,7,1,2,3,4,5] => [2,1,7,6,5,4,3] => 240
[5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [7,6,1,2,3,4,5] => [1,2,7,6,5,4,3] => 120
[4,3]
=> [[1,2,3,4],[5,6,7]]
=> [5,6,7,1,2,3,4] => [3,2,1,7,6,5,4] => ? = 144
[4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => [1,3,2,7,6,5,4] => ? = 48
[4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => [1,2,3,7,6,5,4] => 24
[3,3,1]
=> [[1,2,3],[4,5,6],[7]]
=> [7,4,5,6,1,2,3] => [1,4,3,2,7,6,5] => 36
[3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [6,7,4,5,1,2,3] => [2,1,4,3,7,6,5] => ? = 24
[3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => [1,2,4,3,7,6,5] => 12
[3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [7,6,5,4,1,2,3] => [1,2,3,4,7,6,5] => 6
[2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> [7,5,6,3,4,1,2] => [1,3,2,5,4,7,6] => 8
[2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [7,6,5,3,4,1,2] => [1,2,3,5,4,7,6] => 4
[2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,1,2] => [1,2,3,4,5,7,6] => 2
[1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => [1,2,3,4,5,6,7] => 1
[8]
=> [[1,2,3,4,5,6,7,8]]
=> [1,2,3,4,5,6,7,8] => [8,7,6,5,4,3,2,1] => ? = 40320
[7,1]
=> [[1,2,3,4,5,6,7],[8]]
=> [8,1,2,3,4,5,6,7] => [1,8,7,6,5,4,3,2] => ? = 5040
[6,2]
=> [[1,2,3,4,5,6],[7,8]]
=> [7,8,1,2,3,4,5,6] => [2,1,8,7,6,5,4,3] => ? = 1440
[6,1,1]
=> [[1,2,3,4,5,6],[7],[8]]
=> [8,7,1,2,3,4,5,6] => [1,2,8,7,6,5,4,3] => ? = 720
[5,3]
=> [[1,2,3,4,5],[6,7,8]]
=> [6,7,8,1,2,3,4,5] => [3,2,1,8,7,6,5,4] => ? = 720
[5,2,1]
=> [[1,2,3,4,5],[6,7],[8]]
=> [8,6,7,1,2,3,4,5] => [1,3,2,8,7,6,5,4] => ? = 240
[5,1,1,1]
=> [[1,2,3,4,5],[6],[7],[8]]
=> [8,7,6,1,2,3,4,5] => [1,2,3,8,7,6,5,4] => ? = 120
[4,4]
=> [[1,2,3,4],[5,6,7,8]]
=> [5,6,7,8,1,2,3,4] => [4,3,2,1,8,7,6,5] => ? = 576
[4,3,1]
=> [[1,2,3,4],[5,6,7],[8]]
=> [8,5,6,7,1,2,3,4] => [1,4,3,2,8,7,6,5] => ? = 144
[4,2,2]
=> [[1,2,3,4],[5,6],[7,8]]
=> [7,8,5,6,1,2,3,4] => [2,1,4,3,8,7,6,5] => ? = 96
[4,2,1,1]
=> [[1,2,3,4],[5,6],[7],[8]]
=> [8,7,5,6,1,2,3,4] => [1,2,4,3,8,7,6,5] => ? = 48
[4,1,1,1,1]
=> [[1,2,3,4],[5],[6],[7],[8]]
=> [8,7,6,5,1,2,3,4] => [1,2,3,4,8,7,6,5] => ? = 24
[3,3,2]
=> [[1,2,3],[4,5,6],[7,8]]
=> [7,8,4,5,6,1,2,3] => [2,1,5,4,3,8,7,6] => ? = 72
[3,3,1,1]
=> [[1,2,3],[4,5,6],[7],[8]]
=> [8,7,4,5,6,1,2,3] => [1,2,5,4,3,8,7,6] => ? = 36
[3,2,2,1]
=> [[1,2,3],[4,5],[6,7],[8]]
=> [8,6,7,4,5,1,2,3] => [1,3,2,5,4,8,7,6] => ? = 24
[3,2,1,1,1]
=> [[1,2,3],[4,5],[6],[7],[8]]
=> [8,7,6,4,5,1,2,3] => [1,2,3,5,4,8,7,6] => ? = 12
[3,1,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,1,2,3] => [1,2,3,4,5,8,7,6] => ? = 6
[2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> [7,8,5,6,3,4,1,2] => [2,1,4,3,6,5,8,7] => ? = 16
[2,2,2,1,1]
=> [[1,2],[3,4],[5,6],[7],[8]]
=> [8,7,5,6,3,4,1,2] => [1,2,4,3,6,5,8,7] => ? = 8
[2,2,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8]]
=> [8,7,6,5,3,4,1,2] => [1,2,3,4,6,5,8,7] => ? = 4
[2,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,1,2] => [1,2,3,4,5,6,8,7] => ? = 2
[1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,2,1] => [1,2,3,4,5,6,7,8] => ? = 1
[9]
=> [[1,2,3,4,5,6,7,8,9]]
=> [1,2,3,4,5,6,7,8,9] => [9,8,7,6,5,4,3,2,1] => ? = 362880
[8,1]
=> [[1,2,3,4,5,6,7,8],[9]]
=> [9,1,2,3,4,5,6,7,8] => [1,9,8,7,6,5,4,3,2] => ? = 40320
[7,2]
=> [[1,2,3,4,5,6,7],[8,9]]
=> [8,9,1,2,3,4,5,6,7] => [2,1,9,8,7,6,5,4,3] => ? = 10080
[7,1,1]
=> [[1,2,3,4,5,6,7],[8],[9]]
=> [9,8,1,2,3,4,5,6,7] => [1,2,9,8,7,6,5,4,3] => ? = 5040
[6,3]
=> [[1,2,3,4,5,6],[7,8,9]]
=> [7,8,9,1,2,3,4,5,6] => [3,2,1,9,8,7,6,5,4] => ? = 4320
[6,2,1]
=> [[1,2,3,4,5,6],[7,8],[9]]
=> [9,7,8,1,2,3,4,5,6] => [1,3,2,9,8,7,6,5,4] => ? = 1440
[6,1,1,1]
=> [[1,2,3,4,5,6],[7],[8],[9]]
=> [9,8,7,1,2,3,4,5,6] => [1,2,3,9,8,7,6,5,4] => ? = 720
[5,4]
=> [[1,2,3,4,5],[6,7,8,9]]
=> [6,7,8,9,1,2,3,4,5] => [4,3,2,1,9,8,7,6,5] => ? = 2880
[5,3,1]
=> [[1,2,3,4,5],[6,7,8],[9]]
=> [9,6,7,8,1,2,3,4,5] => [1,4,3,2,9,8,7,6,5] => ? = 720
[5,2,2]
=> [[1,2,3,4,5],[6,7],[8,9]]
=> [8,9,6,7,1,2,3,4,5] => [2,1,4,3,9,8,7,6,5] => ? = 480
[5,2,1,1]
=> [[1,2,3,4,5],[6,7],[8],[9]]
=> [9,8,6,7,1,2,3,4,5] => [1,2,4,3,9,8,7,6,5] => ? = 240
[5,1,1,1,1]
=> [[1,2,3,4,5],[6],[7],[8],[9]]
=> [9,8,7,6,1,2,3,4,5] => [1,2,3,4,9,8,7,6,5] => ? = 120
[4,4,1]
=> [[1,2,3,4],[5,6,7,8],[9]]
=> [9,5,6,7,8,1,2,3,4] => [1,5,4,3,2,9,8,7,6] => ? = 576
[4,3,2]
=> [[1,2,3,4],[5,6,7],[8,9]]
=> [8,9,5,6,7,1,2,3,4] => [2,1,5,4,3,9,8,7,6] => ? = 288
[4,3,1,1]
=> [[1,2,3,4],[5,6,7],[8],[9]]
=> [9,8,5,6,7,1,2,3,4] => [1,2,5,4,3,9,8,7,6] => ? = 144
[4,2,2,1]
=> [[1,2,3,4],[5,6],[7,8],[9]]
=> [9,7,8,5,6,1,2,3,4] => [1,3,2,5,4,9,8,7,6] => ? = 96
[4,2,1,1,1]
=> [[1,2,3,4],[5,6],[7],[8],[9]]
=> [9,8,7,5,6,1,2,3,4] => [1,2,3,5,4,9,8,7,6] => ? = 48
[4,1,1,1,1,1]
=> [[1,2,3,4],[5],[6],[7],[8],[9]]
=> [9,8,7,6,5,1,2,3,4] => [1,2,3,4,5,9,8,7,6] => ? = 24
[3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9]]
=> [7,8,9,4,5,6,1,2,3] => [3,2,1,6,5,4,9,8,7] => ? = 216
[3,3,2,1]
=> [[1,2,3],[4,5,6],[7,8],[9]]
=> [9,7,8,4,5,6,1,2,3] => [1,3,2,6,5,4,9,8,7] => ? = 72
[3,3,1,1,1]
=> [[1,2,3],[4,5,6],[7],[8],[9]]
=> [9,8,7,4,5,6,1,2,3] => [1,2,3,6,5,4,9,8,7] => ? = 36
[3,2,2,2]
=> [[1,2,3],[4,5],[6,7],[8,9]]
=> [8,9,6,7,4,5,1,2,3] => [2,1,4,3,6,5,9,8,7] => ? = 48
[3,2,2,1,1]
=> [[1,2,3],[4,5],[6,7],[8],[9]]
=> [9,8,6,7,4,5,1,2,3] => [1,2,4,3,6,5,9,8,7] => ? = 24
[3,2,1,1,1,1]
=> [[1,2,3],[4,5],[6],[7],[8],[9]]
=> [9,8,7,6,4,5,1,2,3] => [1,2,3,4,6,5,9,8,7] => ? = 12
[3,1,1,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7],[8],[9]]
=> [9,8,7,6,5,4,1,2,3] => [1,2,3,4,5,6,9,8,7] => ? = 6
Description
The number of regions of the inversion arrangement of a permutation.
The inversion arrangement $\mathcal{A}_w$ consists of the hyperplanes $x_i-x_j=0$ such that $(i,j)$ is an inversion of $w$.
Postnikov [4] conjectured that the number of regions in $\mathcal{A}_w$ equals the number of permutations in the interval $[id,w]$ in the strong Bruhat order if and only if $w$ avoids $4231$, $35142$, $42513$, $351624$. This conjecture was proved by Hultman-Linusson-Shareshian-Sjöstrand [1].
Oh-Postnikov-Yoo [3] showed that the number of regions of $\mathcal{A}_w$ is $|\chi_{G_w}(-1)|$ where $\chi_{G_w}$ is the chromatic polynomial of the inversion graph $G_w$. This is the graph with vertices ${1,2,\ldots,n}$ and edges $(i,j)$ for $i\lneq j$ $w_i\gneq w_j$.
For a permutation $w=w_1\cdots w_n$, Lewis-Morales [2] and Hultman (see appendix in [2]) showed that this number equals the number of placements of $n$ non-attacking rooks on the south-west Rothe diagram of $w$.
Matching statistic: St001813
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
St001813: Posets ⟶ ℤResult quality: 12% ●values known / values provided: 12%●distinct values known / distinct values provided: 17%
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
St001813: Posets ⟶ ℤResult quality: 12% ●values known / values provided: 12%●distinct values known / distinct values provided: 17%
Values
[2]
=> [[1,2]]
=> [1,2] => ([(0,1)],2)
=> 2
[1,1]
=> [[1],[2]]
=> [2,1] => ([],2)
=> 1
[3]
=> [[1,2,3]]
=> [1,2,3] => ([(0,2),(2,1)],3)
=> 6
[2,1]
=> [[1,2],[3]]
=> [3,1,2] => ([(1,2)],3)
=> 2
[1,1,1]
=> [[1],[2],[3]]
=> [3,2,1] => ([],3)
=> 1
[4]
=> [[1,2,3,4]]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 24
[3,1]
=> [[1,2,3],[4]]
=> [4,1,2,3] => ([(1,2),(2,3)],4)
=> 6
[2,2]
=> [[1,2],[3,4]]
=> [3,4,1,2] => ([(0,3),(1,2)],4)
=> 4
[2,1,1]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => ([(2,3)],4)
=> 2
[1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => ([],4)
=> 1
[5]
=> [[1,2,3,4,5]]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 120
[4,1]
=> [[1,2,3,4],[5]]
=> [5,1,2,3,4] => ([(1,4),(3,2),(4,3)],5)
=> 24
[3,2]
=> [[1,2,3],[4,5]]
=> [4,5,1,2,3] => ([(0,3),(1,4),(4,2)],5)
=> 12
[3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => ([(2,3),(3,4)],5)
=> 6
[2,2,1]
=> [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => ([(1,4),(2,3)],5)
=> 4
[2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => ([(3,4)],5)
=> 2
[1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => ([],5)
=> 1
[6]
=> [[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 720
[5,1]
=> [[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => ([(1,5),(3,4),(4,2),(5,3)],6)
=> 120
[4,2]
=> [[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => ([(0,5),(1,3),(4,2),(5,4)],6)
=> 48
[4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => ([(2,3),(3,5),(5,4)],6)
=> 24
[3,3]
=> [[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => ([(0,5),(1,4),(4,2),(5,3)],6)
=> 36
[3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => ([(1,3),(2,4),(4,5)],6)
=> 12
[3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => ([(3,4),(4,5)],6)
=> 6
[2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => ([(0,5),(1,4),(2,3)],6)
=> 8
[2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => ([(2,5),(3,4)],6)
=> 4
[2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => ([(4,5)],6)
=> 2
[1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => ([],6)
=> 1
[7]
=> [[1,2,3,4,5,6,7]]
=> [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 5040
[6,1]
=> [[1,2,3,4,5,6],[7]]
=> [7,1,2,3,4,5,6] => ([(1,6),(3,5),(4,3),(5,2),(6,4)],7)
=> ? = 720
[5,2]
=> [[1,2,3,4,5],[6,7]]
=> [6,7,1,2,3,4,5] => ([(0,6),(1,3),(4,5),(5,2),(6,4)],7)
=> ? = 240
[5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [7,6,1,2,3,4,5] => ([(2,6),(4,5),(5,3),(6,4)],7)
=> ? = 120
[4,3]
=> [[1,2,3,4],[5,6,7]]
=> [5,6,7,1,2,3,4] => ([(0,5),(1,6),(4,3),(5,4),(6,2)],7)
=> ? = 144
[4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => ([(1,6),(2,4),(5,3),(6,5)],7)
=> ? = 48
[4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => ([(3,4),(4,6),(6,5)],7)
=> 24
[3,3,1]
=> [[1,2,3],[4,5,6],[7]]
=> [7,4,5,6,1,2,3] => ([(1,6),(2,5),(5,3),(6,4)],7)
=> ? = 36
[3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [6,7,4,5,1,2,3] => ([(0,5),(1,4),(2,6),(6,3)],7)
=> ? = 24
[3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => ([(2,4),(3,5),(5,6)],7)
=> ? = 12
[3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [7,6,5,4,1,2,3] => ([(4,5),(5,6)],7)
=> 6
[2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> [7,5,6,3,4,1,2] => ([(1,6),(2,5),(3,4)],7)
=> ? = 8
[2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [7,6,5,3,4,1,2] => ([(3,6),(4,5)],7)
=> 4
[2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,1,2] => ([(5,6)],7)
=> 2
[1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => ([],7)
=> 1
[8]
=> [[1,2,3,4,5,6,7,8]]
=> [1,2,3,4,5,6,7,8] => ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 40320
[7,1]
=> [[1,2,3,4,5,6,7],[8]]
=> [8,1,2,3,4,5,6,7] => ([(1,7),(3,4),(4,6),(5,3),(6,2),(7,5)],8)
=> ? = 5040
[6,2]
=> [[1,2,3,4,5,6],[7,8]]
=> [7,8,1,2,3,4,5,6] => ([(0,7),(1,3),(4,6),(5,4),(6,2),(7,5)],8)
=> ? = 1440
[6,1,1]
=> [[1,2,3,4,5,6],[7],[8]]
=> [8,7,1,2,3,4,5,6] => ([(2,7),(4,6),(5,4),(6,3),(7,5)],8)
=> ? = 720
[5,3]
=> [[1,2,3,4,5],[6,7,8]]
=> [6,7,8,1,2,3,4,5] => ([(0,7),(1,6),(4,5),(5,3),(6,4),(7,2)],8)
=> ? = 720
[5,2,1]
=> [[1,2,3,4,5],[6,7],[8]]
=> [8,6,7,1,2,3,4,5] => ([(1,7),(2,4),(5,6),(6,3),(7,5)],8)
=> ? = 240
[5,1,1,1]
=> [[1,2,3,4,5],[6],[7],[8]]
=> [8,7,6,1,2,3,4,5] => ([(3,4),(4,7),(6,5),(7,6)],8)
=> ? = 120
[4,4]
=> [[1,2,3,4],[5,6,7,8]]
=> [5,6,7,8,1,2,3,4] => ([(0,7),(1,6),(4,2),(5,3),(6,4),(7,5)],8)
=> ? = 576
[4,3,1]
=> [[1,2,3,4],[5,6,7],[8]]
=> [8,5,6,7,1,2,3,4] => ([(1,6),(2,7),(5,4),(6,5),(7,3)],8)
=> ? = 144
[4,2,2]
=> [[1,2,3,4],[5,6],[7,8]]
=> [7,8,5,6,1,2,3,4] => ([(0,5),(1,4),(2,7),(6,3),(7,6)],8)
=> ? = 96
[4,2,1,1]
=> [[1,2,3,4],[5,6],[7],[8]]
=> [8,7,5,6,1,2,3,4] => ([(2,4),(3,5),(5,6),(6,7)],8)
=> ? = 48
[4,1,1,1,1]
=> [[1,2,3,4],[5],[6],[7],[8]]
=> [8,7,6,5,1,2,3,4] => ([(4,5),(5,7),(7,6)],8)
=> ? = 24
[3,3,2]
=> [[1,2,3],[4,5,6],[7,8]]
=> [7,8,4,5,6,1,2,3] => ([(0,5),(1,7),(2,6),(6,3),(7,4)],8)
=> ? = 72
[3,3,1,1]
=> [[1,2,3],[4,5,6],[7],[8]]
=> [8,7,4,5,6,1,2,3] => ([(2,5),(3,4),(4,6),(5,7)],8)
=> ? = 36
[3,2,2,1]
=> [[1,2,3],[4,5],[6,7],[8]]
=> [8,6,7,4,5,1,2,3] => ([(1,5),(2,4),(3,6),(6,7)],8)
=> ? = 24
[3,2,1,1,1]
=> [[1,2,3],[4,5],[6],[7],[8]]
=> [8,7,6,4,5,1,2,3] => ([(3,5),(4,6),(6,7)],8)
=> ? = 12
[3,1,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,1,2,3] => ([(5,6),(6,7)],8)
=> ? = 6
[2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> [7,8,5,6,3,4,1,2] => ([(0,7),(1,6),(2,5),(3,4)],8)
=> ? = 16
[2,2,2,1,1]
=> [[1,2],[3,4],[5,6],[7],[8]]
=> [8,7,5,6,3,4,1,2] => ([(2,7),(3,6),(4,5)],8)
=> ? = 8
[2,2,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8]]
=> [8,7,6,5,3,4,1,2] => ([(4,7),(5,6)],8)
=> ? = 4
[2,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,1,2] => ([(6,7)],8)
=> ? = 2
[1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,2,1] => ([],8)
=> ? = 1
[9]
=> [[1,2,3,4,5,6,7,8,9]]
=> [1,2,3,4,5,6,7,8,9] => ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9)
=> ? = 362880
[8,1]
=> [[1,2,3,4,5,6,7,8],[9]]
=> [9,1,2,3,4,5,6,7,8] => ([(1,8),(3,5),(4,3),(5,7),(6,4),(7,2),(8,6)],9)
=> ? = 40320
[7,2]
=> [[1,2,3,4,5,6,7],[8,9]]
=> [8,9,1,2,3,4,5,6,7] => ([(0,8),(1,3),(4,5),(5,7),(6,4),(7,2),(8,6)],9)
=> ? = 10080
[7,1,1]
=> [[1,2,3,4,5,6,7],[8],[9]]
=> [9,8,1,2,3,4,5,6,7] => ([(2,8),(4,5),(5,7),(6,4),(7,3),(8,6)],9)
=> ? = 5040
[6,3]
=> [[1,2,3,4,5,6],[7,8,9]]
=> [7,8,9,1,2,3,4,5,6] => ([(0,8),(1,7),(4,6),(5,4),(6,3),(7,5),(8,2)],9)
=> ? = 4320
[6,2,1]
=> [[1,2,3,4,5,6],[7,8],[9]]
=> [9,7,8,1,2,3,4,5,6] => ([(1,8),(2,4),(5,7),(6,5),(7,3),(8,6)],9)
=> ? = 1440
[6,1,1,1]
=> [[1,2,3,4,5,6],[7],[8],[9]]
=> [9,8,7,1,2,3,4,5,6] => ([(3,8),(5,7),(6,5),(7,4),(8,6)],9)
=> ? = 720
[5,4]
=> [[1,2,3,4,5],[6,7,8,9]]
=> [6,7,8,9,1,2,3,4,5] => ([(0,7),(1,8),(4,5),(5,2),(6,3),(7,6),(8,4)],9)
=> ? = 2880
[5,3,1]
=> [[1,2,3,4,5],[6,7,8],[9]]
=> [9,6,7,8,1,2,3,4,5] => ([(1,8),(2,7),(5,6),(6,4),(7,5),(8,3)],9)
=> ? = 720
[5,2,2]
=> [[1,2,3,4,5],[6,7],[8,9]]
=> [8,9,6,7,1,2,3,4,5] => ([(0,5),(1,4),(2,8),(6,7),(7,3),(8,6)],9)
=> ? = 480
[5,2,1,1]
=> [[1,2,3,4,5],[6,7],[8],[9]]
=> [9,8,6,7,1,2,3,4,5] => ([(2,8),(3,5),(6,7),(7,4),(8,6)],9)
=> ? = 240
[5,1,1,1,1]
=> [[1,2,3,4,5],[6],[7],[8],[9]]
=> [9,8,7,6,1,2,3,4,5] => ([(4,5),(5,8),(7,6),(8,7)],9)
=> ? = 120
[4,4,1]
=> [[1,2,3,4],[5,6,7,8],[9]]
=> [9,5,6,7,8,1,2,3,4] => ([(1,8),(2,7),(5,3),(6,4),(7,5),(8,6)],9)
=> ? = 576
[4,3,2]
=> [[1,2,3,4],[5,6,7],[8,9]]
=> [8,9,5,6,7,1,2,3,4] => ([(0,5),(1,7),(2,8),(6,3),(7,4),(8,6)],9)
=> ? = 288
[4,3,1,1]
=> [[1,2,3,4],[5,6,7],[8],[9]]
=> [9,8,5,6,7,1,2,3,4] => ([(2,7),(3,8),(6,5),(7,6),(8,4)],9)
=> ? = 144
[4,2,2,1]
=> [[1,2,3,4],[5,6],[7,8],[9]]
=> [9,7,8,5,6,1,2,3,4] => ([(1,6),(2,5),(3,8),(7,4),(8,7)],9)
=> ? = 96
[4,2,1,1,1]
=> [[1,2,3,4],[5,6],[7],[8],[9]]
=> [9,8,7,5,6,1,2,3,4] => ([(3,5),(4,6),(6,7),(7,8)],9)
=> ? = 48
[4,1,1,1,1,1]
=> [[1,2,3,4],[5],[6],[7],[8],[9]]
=> [9,8,7,6,5,1,2,3,4] => ([(5,6),(6,8),(8,7)],9)
=> ? = 24
Description
The product of the sizes of the principal order filters in a poset.
Matching statistic: St001346
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
St001346: Permutations ⟶ ℤResult quality: 10% ●values known / values provided: 10%●distinct values known / distinct values provided: 17%
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
St001346: Permutations ⟶ ℤResult quality: 10% ●values known / values provided: 10%●distinct values known / distinct values provided: 17%
Values
[2]
=> [[1,2]]
=> [1,2] => 2
[1,1]
=> [[1],[2]]
=> [2,1] => 1
[3]
=> [[1,2,3]]
=> [1,2,3] => 6
[2,1]
=> [[1,2],[3]]
=> [3,1,2] => 2
[1,1,1]
=> [[1],[2],[3]]
=> [3,2,1] => 1
[4]
=> [[1,2,3,4]]
=> [1,2,3,4] => 24
[3,1]
=> [[1,2,3],[4]]
=> [4,1,2,3] => 6
[2,2]
=> [[1,2],[3,4]]
=> [3,4,1,2] => 4
[2,1,1]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => 2
[1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 1
[5]
=> [[1,2,3,4,5]]
=> [1,2,3,4,5] => 120
[4,1]
=> [[1,2,3,4],[5]]
=> [5,1,2,3,4] => 24
[3,2]
=> [[1,2,3],[4,5]]
=> [4,5,1,2,3] => 12
[3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => 6
[2,2,1]
=> [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => 4
[2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 2
[1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 1
[6]
=> [[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => 720
[5,1]
=> [[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => 120
[4,2]
=> [[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => 48
[4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => 24
[3,3]
=> [[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => 36
[3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => 12
[3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => 6
[2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 8
[2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => 4
[2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => 2
[1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 1
[7]
=> [[1,2,3,4,5,6,7]]
=> [1,2,3,4,5,6,7] => ? = 5040
[6,1]
=> [[1,2,3,4,5,6],[7]]
=> [7,1,2,3,4,5,6] => ? = 720
[5,2]
=> [[1,2,3,4,5],[6,7]]
=> [6,7,1,2,3,4,5] => ? = 240
[5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [7,6,1,2,3,4,5] => ? = 120
[4,3]
=> [[1,2,3,4],[5,6,7]]
=> [5,6,7,1,2,3,4] => ? = 144
[4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => ? = 48
[4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => ? = 24
[3,3,1]
=> [[1,2,3],[4,5,6],[7]]
=> [7,4,5,6,1,2,3] => ? = 36
[3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [6,7,4,5,1,2,3] => ? = 24
[3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => ? = 12
[3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [7,6,5,4,1,2,3] => ? = 6
[2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> [7,5,6,3,4,1,2] => ? = 8
[2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [7,6,5,3,4,1,2] => ? = 4
[2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,1,2] => ? = 2
[1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => ? = 1
[8]
=> [[1,2,3,4,5,6,7,8]]
=> [1,2,3,4,5,6,7,8] => ? = 40320
[7,1]
=> [[1,2,3,4,5,6,7],[8]]
=> [8,1,2,3,4,5,6,7] => ? = 5040
[6,2]
=> [[1,2,3,4,5,6],[7,8]]
=> [7,8,1,2,3,4,5,6] => ? = 1440
[6,1,1]
=> [[1,2,3,4,5,6],[7],[8]]
=> [8,7,1,2,3,4,5,6] => ? = 720
[5,3]
=> [[1,2,3,4,5],[6,7,8]]
=> [6,7,8,1,2,3,4,5] => ? = 720
[5,2,1]
=> [[1,2,3,4,5],[6,7],[8]]
=> [8,6,7,1,2,3,4,5] => ? = 240
[5,1,1,1]
=> [[1,2,3,4,5],[6],[7],[8]]
=> [8,7,6,1,2,3,4,5] => ? = 120
[4,4]
=> [[1,2,3,4],[5,6,7,8]]
=> [5,6,7,8,1,2,3,4] => ? = 576
[4,3,1]
=> [[1,2,3,4],[5,6,7],[8]]
=> [8,5,6,7,1,2,3,4] => ? = 144
[4,2,2]
=> [[1,2,3,4],[5,6],[7,8]]
=> [7,8,5,6,1,2,3,4] => ? = 96
[4,2,1,1]
=> [[1,2,3,4],[5,6],[7],[8]]
=> [8,7,5,6,1,2,3,4] => ? = 48
[4,1,1,1,1]
=> [[1,2,3,4],[5],[6],[7],[8]]
=> [8,7,6,5,1,2,3,4] => ? = 24
[3,3,2]
=> [[1,2,3],[4,5,6],[7,8]]
=> [7,8,4,5,6,1,2,3] => ? = 72
[3,3,1,1]
=> [[1,2,3],[4,5,6],[7],[8]]
=> [8,7,4,5,6,1,2,3] => ? = 36
[3,2,2,1]
=> [[1,2,3],[4,5],[6,7],[8]]
=> [8,6,7,4,5,1,2,3] => ? = 24
[3,2,1,1,1]
=> [[1,2,3],[4,5],[6],[7],[8]]
=> [8,7,6,4,5,1,2,3] => ? = 12
[3,1,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,1,2,3] => ? = 6
[2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> [7,8,5,6,3,4,1,2] => ? = 16
[2,2,2,1,1]
=> [[1,2],[3,4],[5,6],[7],[8]]
=> [8,7,5,6,3,4,1,2] => ? = 8
[2,2,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8]]
=> [8,7,6,5,3,4,1,2] => ? = 4
[2,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,1,2] => ? = 2
[1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,2,1] => ? = 1
[9]
=> [[1,2,3,4,5,6,7,8,9]]
=> [1,2,3,4,5,6,7,8,9] => ? = 362880
[8,1]
=> [[1,2,3,4,5,6,7,8],[9]]
=> [9,1,2,3,4,5,6,7,8] => ? = 40320
[7,2]
=> [[1,2,3,4,5,6,7],[8,9]]
=> [8,9,1,2,3,4,5,6,7] => ? = 10080
[7,1,1]
=> [[1,2,3,4,5,6,7],[8],[9]]
=> [9,8,1,2,3,4,5,6,7] => ? = 5040
[6,3]
=> [[1,2,3,4,5,6],[7,8,9]]
=> [7,8,9,1,2,3,4,5,6] => ? = 4320
[6,2,1]
=> [[1,2,3,4,5,6],[7,8],[9]]
=> [9,7,8,1,2,3,4,5,6] => ? = 1440
[6,1,1,1]
=> [[1,2,3,4,5,6],[7],[8],[9]]
=> [9,8,7,1,2,3,4,5,6] => ? = 720
[5,4]
=> [[1,2,3,4,5],[6,7,8,9]]
=> [6,7,8,9,1,2,3,4,5] => ? = 2880
[5,3,1]
=> [[1,2,3,4,5],[6,7,8],[9]]
=> [9,6,7,8,1,2,3,4,5] => ? = 720
[5,2,2]
=> [[1,2,3,4,5],[6,7],[8,9]]
=> [8,9,6,7,1,2,3,4,5] => ? = 480
[5,2,1,1]
=> [[1,2,3,4,5],[6,7],[8],[9]]
=> [9,8,6,7,1,2,3,4,5] => ? = 240
[5,1,1,1,1]
=> [[1,2,3,4,5],[6],[7],[8],[9]]
=> [9,8,7,6,1,2,3,4,5] => ? = 120
[4,4,1]
=> [[1,2,3,4],[5,6,7,8],[9]]
=> [9,5,6,7,8,1,2,3,4] => ? = 576
Description
The number of parking functions that give the same permutation.
A '''parking function''' $(a_1,\dots,a_n)$ is a list of preferred parking spots of $n$ cars entering a one-way street. Once the cars have parked, the order of the cars gives a permutation of $\{1,\dots,n\}$. This statistic records the number of parking functions that yield the same permutation of cars.
Matching statistic: St000109
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
Mp00069: Permutations —complement⟶ Permutations
St000109: Permutations ⟶ ℤResult quality: 10% ●values known / values provided: 10%●distinct values known / distinct values provided: 17%
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
Mp00069: Permutations —complement⟶ Permutations
St000109: Permutations ⟶ ℤResult quality: 10% ●values known / values provided: 10%●distinct values known / distinct values provided: 17%
Values
[2]
=> [[1,2]]
=> [1,2] => [2,1] => 2
[1,1]
=> [[1],[2]]
=> [2,1] => [1,2] => 1
[3]
=> [[1,2,3]]
=> [1,2,3] => [3,2,1] => 6
[2,1]
=> [[1,2],[3]]
=> [3,1,2] => [1,3,2] => 2
[1,1,1]
=> [[1],[2],[3]]
=> [3,2,1] => [1,2,3] => 1
[4]
=> [[1,2,3,4]]
=> [1,2,3,4] => [4,3,2,1] => 24
[3,1]
=> [[1,2,3],[4]]
=> [4,1,2,3] => [1,4,3,2] => 6
[2,2]
=> [[1,2],[3,4]]
=> [3,4,1,2] => [2,1,4,3] => 4
[2,1,1]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => [1,2,4,3] => 2
[1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => [1,2,3,4] => 1
[5]
=> [[1,2,3,4,5]]
=> [1,2,3,4,5] => [5,4,3,2,1] => 120
[4,1]
=> [[1,2,3,4],[5]]
=> [5,1,2,3,4] => [1,5,4,3,2] => 24
[3,2]
=> [[1,2,3],[4,5]]
=> [4,5,1,2,3] => [2,1,5,4,3] => 12
[3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => [1,2,5,4,3] => 6
[2,2,1]
=> [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => [1,3,2,5,4] => 4
[2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => [1,2,3,5,4] => 2
[1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => [1,2,3,4,5] => 1
[6]
=> [[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => [6,5,4,3,2,1] => 720
[5,1]
=> [[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => [1,6,5,4,3,2] => 120
[4,2]
=> [[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => [2,1,6,5,4,3] => 48
[4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => [1,2,6,5,4,3] => 24
[3,3]
=> [[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => [3,2,1,6,5,4] => 36
[3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => [1,3,2,6,5,4] => 12
[3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => [1,2,3,6,5,4] => 6
[2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => [2,1,4,3,6,5] => 8
[2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => [1,2,4,3,6,5] => 4
[2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => [1,2,3,4,6,5] => 2
[1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => [1,2,3,4,5,6] => 1
[7]
=> [[1,2,3,4,5,6,7]]
=> [1,2,3,4,5,6,7] => [7,6,5,4,3,2,1] => ? = 5040
[6,1]
=> [[1,2,3,4,5,6],[7]]
=> [7,1,2,3,4,5,6] => [1,7,6,5,4,3,2] => ? = 720
[5,2]
=> [[1,2,3,4,5],[6,7]]
=> [6,7,1,2,3,4,5] => [2,1,7,6,5,4,3] => ? = 240
[5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [7,6,1,2,3,4,5] => [1,2,7,6,5,4,3] => ? = 120
[4,3]
=> [[1,2,3,4],[5,6,7]]
=> [5,6,7,1,2,3,4] => [3,2,1,7,6,5,4] => ? = 144
[4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => [1,3,2,7,6,5,4] => ? = 48
[4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => [1,2,3,7,6,5,4] => ? = 24
[3,3,1]
=> [[1,2,3],[4,5,6],[7]]
=> [7,4,5,6,1,2,3] => [1,4,3,2,7,6,5] => ? = 36
[3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [6,7,4,5,1,2,3] => [2,1,4,3,7,6,5] => ? = 24
[3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => [1,2,4,3,7,6,5] => ? = 12
[3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [7,6,5,4,1,2,3] => [1,2,3,4,7,6,5] => ? = 6
[2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> [7,5,6,3,4,1,2] => [1,3,2,5,4,7,6] => ? = 8
[2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [7,6,5,3,4,1,2] => [1,2,3,5,4,7,6] => ? = 4
[2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,1,2] => [1,2,3,4,5,7,6] => ? = 2
[1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => [1,2,3,4,5,6,7] => ? = 1
[8]
=> [[1,2,3,4,5,6,7,8]]
=> [1,2,3,4,5,6,7,8] => [8,7,6,5,4,3,2,1] => ? = 40320
[7,1]
=> [[1,2,3,4,5,6,7],[8]]
=> [8,1,2,3,4,5,6,7] => [1,8,7,6,5,4,3,2] => ? = 5040
[6,2]
=> [[1,2,3,4,5,6],[7,8]]
=> [7,8,1,2,3,4,5,6] => [2,1,8,7,6,5,4,3] => ? = 1440
[6,1,1]
=> [[1,2,3,4,5,6],[7],[8]]
=> [8,7,1,2,3,4,5,6] => [1,2,8,7,6,5,4,3] => ? = 720
[5,3]
=> [[1,2,3,4,5],[6,7,8]]
=> [6,7,8,1,2,3,4,5] => [3,2,1,8,7,6,5,4] => ? = 720
[5,2,1]
=> [[1,2,3,4,5],[6,7],[8]]
=> [8,6,7,1,2,3,4,5] => [1,3,2,8,7,6,5,4] => ? = 240
[5,1,1,1]
=> [[1,2,3,4,5],[6],[7],[8]]
=> [8,7,6,1,2,3,4,5] => [1,2,3,8,7,6,5,4] => ? = 120
[4,4]
=> [[1,2,3,4],[5,6,7,8]]
=> [5,6,7,8,1,2,3,4] => [4,3,2,1,8,7,6,5] => ? = 576
[4,3,1]
=> [[1,2,3,4],[5,6,7],[8]]
=> [8,5,6,7,1,2,3,4] => [1,4,3,2,8,7,6,5] => ? = 144
[4,2,2]
=> [[1,2,3,4],[5,6],[7,8]]
=> [7,8,5,6,1,2,3,4] => [2,1,4,3,8,7,6,5] => ? = 96
[4,2,1,1]
=> [[1,2,3,4],[5,6],[7],[8]]
=> [8,7,5,6,1,2,3,4] => [1,2,4,3,8,7,6,5] => ? = 48
[4,1,1,1,1]
=> [[1,2,3,4],[5],[6],[7],[8]]
=> [8,7,6,5,1,2,3,4] => [1,2,3,4,8,7,6,5] => ? = 24
[3,3,2]
=> [[1,2,3],[4,5,6],[7,8]]
=> [7,8,4,5,6,1,2,3] => [2,1,5,4,3,8,7,6] => ? = 72
[3,3,1,1]
=> [[1,2,3],[4,5,6],[7],[8]]
=> [8,7,4,5,6,1,2,3] => [1,2,5,4,3,8,7,6] => ? = 36
[3,2,2,1]
=> [[1,2,3],[4,5],[6,7],[8]]
=> [8,6,7,4,5,1,2,3] => [1,3,2,5,4,8,7,6] => ? = 24
[3,2,1,1,1]
=> [[1,2,3],[4,5],[6],[7],[8]]
=> [8,7,6,4,5,1,2,3] => [1,2,3,5,4,8,7,6] => ? = 12
[3,1,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,1,2,3] => [1,2,3,4,5,8,7,6] => ? = 6
[2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> [7,8,5,6,3,4,1,2] => [2,1,4,3,6,5,8,7] => ? = 16
[2,2,2,1,1]
=> [[1,2],[3,4],[5,6],[7],[8]]
=> [8,7,5,6,3,4,1,2] => [1,2,4,3,6,5,8,7] => ? = 8
[2,2,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8]]
=> [8,7,6,5,3,4,1,2] => [1,2,3,4,6,5,8,7] => ? = 4
[2,1,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,1,2] => [1,2,3,4,5,6,8,7] => ? = 2
[1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,3,2,1] => [1,2,3,4,5,6,7,8] => ? = 1
[9]
=> [[1,2,3,4,5,6,7,8,9]]
=> [1,2,3,4,5,6,7,8,9] => [9,8,7,6,5,4,3,2,1] => ? = 362880
[8,1]
=> [[1,2,3,4,5,6,7,8],[9]]
=> [9,1,2,3,4,5,6,7,8] => [1,9,8,7,6,5,4,3,2] => ? = 40320
[7,2]
=> [[1,2,3,4,5,6,7],[8,9]]
=> [8,9,1,2,3,4,5,6,7] => [2,1,9,8,7,6,5,4,3] => ? = 10080
[7,1,1]
=> [[1,2,3,4,5,6,7],[8],[9]]
=> [9,8,1,2,3,4,5,6,7] => [1,2,9,8,7,6,5,4,3] => ? = 5040
[6,3]
=> [[1,2,3,4,5,6],[7,8,9]]
=> [7,8,9,1,2,3,4,5,6] => [3,2,1,9,8,7,6,5,4] => ? = 4320
[6,2,1]
=> [[1,2,3,4,5,6],[7,8],[9]]
=> [9,7,8,1,2,3,4,5,6] => [1,3,2,9,8,7,6,5,4] => ? = 1440
[6,1,1,1]
=> [[1,2,3,4,5,6],[7],[8],[9]]
=> [9,8,7,1,2,3,4,5,6] => [1,2,3,9,8,7,6,5,4] => ? = 720
[5,4]
=> [[1,2,3,4,5],[6,7,8,9]]
=> [6,7,8,9,1,2,3,4,5] => [4,3,2,1,9,8,7,6,5] => ? = 2880
[5,3,1]
=> [[1,2,3,4,5],[6,7,8],[9]]
=> [9,6,7,8,1,2,3,4,5] => [1,4,3,2,9,8,7,6,5] => ? = 720
[5,2,2]
=> [[1,2,3,4,5],[6,7],[8,9]]
=> [8,9,6,7,1,2,3,4,5] => [2,1,4,3,9,8,7,6,5] => ? = 480
[5,2,1,1]
=> [[1,2,3,4,5],[6,7],[8],[9]]
=> [9,8,6,7,1,2,3,4,5] => [1,2,4,3,9,8,7,6,5] => ? = 240
[5,1,1,1,1]
=> [[1,2,3,4,5],[6],[7],[8],[9]]
=> [9,8,7,6,1,2,3,4,5] => [1,2,3,4,9,8,7,6,5] => ? = 120
[4,4,1]
=> [[1,2,3,4],[5,6,7,8],[9]]
=> [9,5,6,7,8,1,2,3,4] => [1,5,4,3,2,9,8,7,6] => ? = 576
Description
The number of elements less than or equal to the given element in Bruhat order.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!