searching the database
Your data matches 2 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000714
Mp00152: Graphs —Laplacian multiplicities⟶ Integer compositions
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
St000714: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
St000714: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [[3,3],[2]]
=> [2]
=> 3
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [[3,3,1],[2]]
=> [2]
=> 3
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => [[2,2,2,1],[1,1]]
=> [1,1]
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => [[4,3],[2]]
=> [2]
=> 3
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => [[2,2,2,1],[1,1]]
=> [1,1]
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1] => [[4,4],[3]]
=> [3]
=> 4
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,3,2] => [[4,3,1],[2]]
=> [2]
=> 3
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,4,1] => [[4,4,1],[3]]
=> [3]
=> 4
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,3,1] => [[3,3,1,1],[2]]
=> [2]
=> 3
([(0,5),(1,5),(2,4),(3,4)],6)
=> [2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> 2
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,3,1] => [[3,3,1,1],[2]]
=> [2]
=> 3
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,3,1] => [[4,4,2],[3,1]]
=> [3,1]
=> 3
([(0,5),(1,4),(2,3)],6)
=> [3,3] => [[5,3],[2]]
=> [2]
=> 3
([(0,1),(2,5),(3,4),(4,5)],6)
=> [1,2,1,2] => [[3,2,2,1],[1,1]]
=> [1,1]
=> 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> 1
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,1,2] => [[3,2,2,1],[1,1]]
=> [1,1]
=> 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,2,1] => [[3,3,2,1],[2,1]]
=> [2,1]
=> 2
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> 2
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> [2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> [2,1,1]
=> 0
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,3,2] => [[4,3,1],[2]]
=> [2]
=> 3
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,1,2] => [[4,3,3],[2,2]]
=> [2,2]
=> 1
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 1
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)
=> [1,2,1,1,1] => [[2,2,2,2,1],[1,1,1]]
=> [1,1,1]
=> 0
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> 2
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,1,1,1] => [[2,2,2,2,1],[1,1,1]]
=> [1,1,1]
=> 0
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,2,1,1,1] => [[2,2,2,2,1],[1,1,1]]
=> [1,1,1]
=> 0
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3] => [[5,3],[2]]
=> [2]
=> 3
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,2,1,2] => [[3,2,2,1],[1,1]]
=> [1,1]
=> 1
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,2,2,1] => [[3,3,2,1],[2,1]]
=> [2,1]
=> 2
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 1
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,1,2] => [[3,2,2,2],[1,1,1]]
=> [1,1,1]
=> 0
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,2,2,1] => [[3,3,2,1],[2,1]]
=> [2,1]
=> 2
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> [2,1,1]
=> 0
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,2,1,1,1] => [[2,2,2,2,1],[1,1,1]]
=> [1,1,1]
=> 0
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> 2
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [1,1,2,1,1] => [[2,2,2,1,1],[1,1]]
=> [1,1]
=> 1
Description
The number of semistandard Young tableau of given shape, with entries at most 2.
This is also the dimension of the corresponding irreducible representation of $GL_2$.
Matching statistic: St000454
Mp00152: Graphs —Laplacian multiplicities⟶ Integer compositions
Mp00041: Integer compositions —conjugate⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 8% ●values known / values provided: 8%●distinct values known / distinct values provided: 25%
Mp00041: Integer compositions —conjugate⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 8% ●values known / values provided: 8%●distinct values known / distinct values provided: 25%
Values
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? = 1 + 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 3 + 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1 + 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1 + 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4 + 2
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,3,2] => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 2
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,4,1] => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 2
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,2,1,1] => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? = 1 + 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,3,1] => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 2
([(0,5),(1,5),(2,4),(3,4)],6)
=> [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 2
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,2,1,1] => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? = 1 + 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,1,1] => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? = 1 + 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,2,1,1] => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? = 1 + 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,3,1] => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,3,1] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 2
([(0,5),(1,4),(2,3)],6)
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 2
([(0,1),(2,5),(3,4),(4,5)],6)
=> [1,2,1,2] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
([(1,2),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,1,2] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,2,1] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 2
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 2
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> [2,1,2,1] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,3,2] => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 2
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,1,2] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> [1,1,2,1,1] => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? = 1 + 2
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)
=> [1,2,1,1,1] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 2
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,1,1,1] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,2,1,1,1] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 2
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,2,1,2] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,2,2,1] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 2
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,1,1] => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? = 1 + 2
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,1,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,2,2,1] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 2
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,2,1] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,2,1,1,1] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 2
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [1,1,2,1,1] => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? = 1 + 2
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> [1,2,2,1] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 2
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,2,1,1,1] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,3,1,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,2,1,1] => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? = 1 + 2
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,1,1] => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? = 1 + 2
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,2,1,1] => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? = 1 + 2
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,2] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 2
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,2,1,1,1] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [2,1,2,1] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0 + 2
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> [1,3,1,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,2,1,1,1] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,2,1,1,1] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,1,1,1] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,3,1,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,2,1,1,1] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,2,1,1,1] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,2,1,1,1] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,3,1,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,2,1,1,1] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 0 + 2
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> [1,1,3,1,1] => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 1 + 2
([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> [1,1,3,1,1] => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 1 + 2
([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [1,1,2,1,1,1] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [1,1,2,1,1,1] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [1,1,3,1,1] => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 1 + 2
([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,2,1,1,1] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,3,1,1] => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 1 + 2
([(0,6),(1,4),(1,5),(2,3),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> [1,1,2,1,1,1] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
([(0,6),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7)
=> [1,1,3,1,1] => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 1 + 2
([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,2,1,1,1] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7)
=> [1,1,2,1,1,1] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
([(0,1),(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6)],7)
=> [1,1,2,1,1,1] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
([(0,1),(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6),(5,6)],7)
=> [1,1,2,1,1,1] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [1,1,2,1,1,1] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,2,1,1,1] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
([(0,1),(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> [1,1,2,1,1,1] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
([(0,1),(0,6),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,2,1,1,1] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
([(0,1),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [1,1,2,1,1,1] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
([(0,1),(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [1,1,3,1,1] => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 1 + 2
([(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> [1,1,2,1,1,1] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
([(0,4),(0,6),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [1,1,2,1,1,1] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
([(0,4),(0,6),(1,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,2,1,1,1] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
([(0,3),(0,4),(0,6),(1,2),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,2,1,1,1] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
([(0,6),(1,2),(1,4),(2,4),(3,5),(3,6),(4,5),(5,6)],7)
=> [1,1,2,1,1,1] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
([(0,6),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,2,1,1,1] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,2,1,1,1] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,2,1,1,1] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(4,5)],7)
=> [1,1,2,1,1,1] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
([(0,6),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [1,1,2,1,1,1] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [1,1,2,1,1,1] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
([(0,3),(0,5),(0,6),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,2,1,1,1] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 0 + 2
Description
The largest eigenvalue of a graph if it is integral.
If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree.
This statistic is undefined if the largest eigenvalue of the graph is not integral.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!