Your data matches 2 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000735: Standard tableaux ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1,2]]
=> 1
[[1],[2]]
=> 1
[[1,2,3]]
=> 1
[[1,3],[2]]
=> 1
[[1,2],[3]]
=> 1
[[1],[2],[3]]
=> 1
[[1,2,3,4]]
=> 1
[[1,3,4],[2]]
=> 1
[[1,2,4],[3]]
=> 1
[[1,2,3],[4]]
=> 1
[[1,3],[2,4]]
=> 4
[[1,2],[3,4]]
=> 4
[[1,4],[2],[3]]
=> 1
[[1,3],[2],[4]]
=> 1
[[1,2],[3],[4]]
=> 1
[[1],[2],[3],[4]]
=> 1
[[1,2,3,4,5]]
=> 1
[[1,3,4,5],[2]]
=> 1
[[1,2,4,5],[3]]
=> 1
[[1,2,3,5],[4]]
=> 1
[[1,2,3,4],[5]]
=> 1
[[1,3,5],[2,4]]
=> 4
[[1,2,5],[3,4]]
=> 4
[[1,3,4],[2,5]]
=> 5
[[1,2,4],[3,5]]
=> 5
[[1,2,3],[4,5]]
=> 5
[[1,4,5],[2],[3]]
=> 1
[[1,3,5],[2],[4]]
=> 1
[[1,2,5],[3],[4]]
=> 1
[[1,3,4],[2],[5]]
=> 1
[[1,2,4],[3],[5]]
=> 1
[[1,2,3],[4],[5]]
=> 1
[[1,4],[2,5],[3]]
=> 5
[[1,3],[2,5],[4]]
=> 5
[[1,2],[3,5],[4]]
=> 5
[[1,3],[2,4],[5]]
=> 4
[[1,2],[3,4],[5]]
=> 4
[[1,5],[2],[3],[4]]
=> 1
[[1,4],[2],[3],[5]]
=> 1
[[1,3],[2],[4],[5]]
=> 1
[[1,2],[3],[4],[5]]
=> 1
[[1],[2],[3],[4],[5]]
=> 1
[[1,2,3,4,5,6]]
=> 1
[[1,3,4,5,6],[2]]
=> 1
[[1,2,4,5,6],[3]]
=> 1
[[1,2,3,5,6],[4]]
=> 1
[[1,2,3,4,6],[5]]
=> 1
[[1,2,3,4,5],[6]]
=> 1
[[1,3,5,6],[2,4]]
=> 4
[[1,2,5,6],[3,4]]
=> 4
Description
The last entry on the main diagonal of a standard tableau.
Mp00082: Standard tableaux to Gelfand-Tsetlin patternGelfand-Tsetlin patterns
Mp00036: Gelfand-Tsetlin patterns to semistandard tableauSemistandard tableaux
St000737: Semistandard tableaux ⟶ ℤResult quality: 10% values known / values provided: 10%distinct values known / distinct values provided: 57%
Values
[[1,2]]
=> [[2,0],[1]]
=> [[1,2]]
=> 1
[[1],[2]]
=> [[1,1],[1]]
=> [[1],[2]]
=> 1
[[1,2,3]]
=> [[3,0,0],[2,0],[1]]
=> [[1,2,3]]
=> 1
[[1,3],[2]]
=> [[2,1,0],[1,1],[1]]
=> [[1,3],[2]]
=> 1
[[1,2],[3]]
=> [[2,1,0],[2,0],[1]]
=> [[1,2],[3]]
=> 1
[[1],[2],[3]]
=> [[1,1,1],[1,1],[1]]
=> [[1],[2],[3]]
=> 1
[[1,2,3,4]]
=> [[4,0,0,0],[3,0,0],[2,0],[1]]
=> [[1,2,3,4]]
=> 1
[[1,3,4],[2]]
=> [[3,1,0,0],[2,1,0],[1,1],[1]]
=> [[1,3,4],[2]]
=> 1
[[1,2,4],[3]]
=> [[3,1,0,0],[2,1,0],[2,0],[1]]
=> [[1,2,4],[3]]
=> 1
[[1,2,3],[4]]
=> [[3,1,0,0],[3,0,0],[2,0],[1]]
=> [[1,2,3],[4]]
=> 1
[[1,3],[2,4]]
=> [[2,2,0,0],[2,1,0],[1,1],[1]]
=> [[1,3],[2,4]]
=> 4
[[1,2],[3,4]]
=> [[2,2,0,0],[2,1,0],[2,0],[1]]
=> [[1,2],[3,4]]
=> 4
[[1,4],[2],[3]]
=> [[2,1,1,0],[1,1,1],[1,1],[1]]
=> [[1,4],[2],[3]]
=> 1
[[1,3],[2],[4]]
=> [[2,1,1,0],[2,1,0],[1,1],[1]]
=> [[1,3],[2],[4]]
=> 1
[[1,2],[3],[4]]
=> [[2,1,1,0],[2,1,0],[2,0],[1]]
=> [[1,2],[3],[4]]
=> 1
[[1],[2],[3],[4]]
=> [[1,1,1,1],[1,1,1],[1,1],[1]]
=> [[1],[2],[3],[4]]
=> 1
[[1,2,3,4,5]]
=> [[5,0,0,0,0],[4,0,0,0],[3,0,0],[2,0],[1]]
=> [[1,2,3,4,5]]
=> 1
[[1,3,4,5],[2]]
=> [[4,1,0,0,0],[3,1,0,0],[2,1,0],[1,1],[1]]
=> [[1,3,4,5],[2]]
=> 1
[[1,2,4,5],[3]]
=> [[4,1,0,0,0],[3,1,0,0],[2,1,0],[2,0],[1]]
=> [[1,2,4,5],[3]]
=> 1
[[1,2,3,5],[4]]
=> [[4,1,0,0,0],[3,1,0,0],[3,0,0],[2,0],[1]]
=> [[1,2,3,5],[4]]
=> 1
[[1,2,3,4],[5]]
=> [[4,1,0,0,0],[4,0,0,0],[3,0,0],[2,0],[1]]
=> [[1,2,3,4],[5]]
=> 1
[[1,3,5],[2,4]]
=> [[3,2,0,0,0],[2,2,0,0],[2,1,0],[1,1],[1]]
=> [[1,3,5],[2,4]]
=> 4
[[1,2,5],[3,4]]
=> [[3,2,0,0,0],[2,2,0,0],[2,1,0],[2,0],[1]]
=> [[1,2,5],[3,4]]
=> 4
[[1,3,4],[2,5]]
=> [[3,2,0,0,0],[3,1,0,0],[2,1,0],[1,1],[1]]
=> [[1,3,4],[2,5]]
=> 5
[[1,2,4],[3,5]]
=> [[3,2,0,0,0],[3,1,0,0],[2,1,0],[2,0],[1]]
=> [[1,2,4],[3,5]]
=> 5
[[1,2,3],[4,5]]
=> [[3,2,0,0,0],[3,1,0,0],[3,0,0],[2,0],[1]]
=> [[1,2,3],[4,5]]
=> 5
[[1,4,5],[2],[3]]
=> [[3,1,1,0,0],[2,1,1,0],[1,1,1],[1,1],[1]]
=> [[1,4,5],[2],[3]]
=> 1
[[1,3,5],[2],[4]]
=> [[3,1,1,0,0],[2,1,1,0],[2,1,0],[1,1],[1]]
=> [[1,3,5],[2],[4]]
=> 1
[[1,2,5],[3],[4]]
=> [[3,1,1,0,0],[2,1,1,0],[2,1,0],[2,0],[1]]
=> [[1,2,5],[3],[4]]
=> 1
[[1,3,4],[2],[5]]
=> [[3,1,1,0,0],[3,1,0,0],[2,1,0],[1,1],[1]]
=> [[1,3,4],[2],[5]]
=> 1
[[1,2,4],[3],[5]]
=> [[3,1,1,0,0],[3,1,0,0],[2,1,0],[2,0],[1]]
=> [[1,2,4],[3],[5]]
=> 1
[[1,2,3],[4],[5]]
=> [[3,1,1,0,0],[3,1,0,0],[3,0,0],[2,0],[1]]
=> [[1,2,3],[4],[5]]
=> 1
[[1,4],[2,5],[3]]
=> [[2,2,1,0,0],[2,1,1,0],[1,1,1],[1,1],[1]]
=> [[1,4],[2,5],[3]]
=> 5
[[1,3],[2,5],[4]]
=> [[2,2,1,0,0],[2,1,1,0],[2,1,0],[1,1],[1]]
=> [[1,3],[2,5],[4]]
=> 5
[[1,2],[3,5],[4]]
=> [[2,2,1,0,0],[2,1,1,0],[2,1,0],[2,0],[1]]
=> [[1,2],[3,5],[4]]
=> 5
[[1,3],[2,4],[5]]
=> [[2,2,1,0,0],[2,2,0,0],[2,1,0],[1,1],[1]]
=> [[1,3],[2,4],[5]]
=> 4
[[1,2],[3,4],[5]]
=> [[2,2,1,0,0],[2,2,0,0],[2,1,0],[2,0],[1]]
=> [[1,2],[3,4],[5]]
=> 4
[[1,5],[2],[3],[4]]
=> [[2,1,1,1,0],[1,1,1,1],[1,1,1],[1,1],[1]]
=> [[1,5],[2],[3],[4]]
=> 1
[[1,4],[2],[3],[5]]
=> [[2,1,1,1,0],[2,1,1,0],[1,1,1],[1,1],[1]]
=> [[1,4],[2],[3],[5]]
=> 1
[[1,3],[2],[4],[5]]
=> [[2,1,1,1,0],[2,1,1,0],[2,1,0],[1,1],[1]]
=> [[1,3],[2],[4],[5]]
=> 1
[[1,2],[3],[4],[5]]
=> [[2,1,1,1,0],[2,1,1,0],[2,1,0],[2,0],[1]]
=> [[1,2],[3],[4],[5]]
=> 1
[[1],[2],[3],[4],[5]]
=> [[1,1,1,1,1],[1,1,1,1],[1,1,1],[1,1],[1]]
=> [[1],[2],[3],[4],[5]]
=> 1
[[1,2,3,4,5,6]]
=> [[6,0,0,0,0,0],[5,0,0,0,0],[4,0,0,0],[3,0,0],[2,0],[1]]
=> [[1,2,3,4,5,6]]
=> 1
[[1,3,4,5,6],[2]]
=> [[5,1,0,0,0,0],[4,1,0,0,0],[3,1,0,0],[2,1,0],[1,1],[1]]
=> [[1,3,4,5,6],[2]]
=> 1
[[1,2,4,5,6],[3]]
=> [[5,1,0,0,0,0],[4,1,0,0,0],[3,1,0,0],[2,1,0],[2,0],[1]]
=> [[1,2,4,5,6],[3]]
=> 1
[[1,2,3,5,6],[4]]
=> [[5,1,0,0,0,0],[4,1,0,0,0],[3,1,0,0],[3,0,0],[2,0],[1]]
=> [[1,2,3,5,6],[4]]
=> 1
[[1,2,3,4,6],[5]]
=> [[5,1,0,0,0,0],[4,1,0,0,0],[4,0,0,0],[3,0,0],[2,0],[1]]
=> [[1,2,3,4,6],[5]]
=> 1
[[1,2,3,4,5],[6]]
=> [[5,1,0,0,0,0],[5,0,0,0,0],[4,0,0,0],[3,0,0],[2,0],[1]]
=> [[1,2,3,4,5],[6]]
=> 1
[[1,3,5,6],[2,4]]
=> [[4,2,0,0,0,0],[3,2,0,0,0],[2,2,0,0],[2,1,0],[1,1],[1]]
=> [[1,3,5,6],[2,4]]
=> 4
[[1,2,5,6],[3,4]]
=> [[4,2,0,0,0,0],[3,2,0,0,0],[2,2,0,0],[2,1,0],[2,0],[1]]
=> [[1,2,5,6],[3,4]]
=> 4
[[1,2,3,4,5,6,7]]
=> [[7,0,0,0,0,0,0],[6,0,0,0,0,0],[5,0,0,0,0],[4,0,0,0],[3,0,0],[2,0],[1]]
=> [[1,2,3,4,5,6,7]]
=> ? = 1
[[1,3,4,5,6,7],[2]]
=> [[6,1,0,0,0,0,0],[5,1,0,0,0,0],[4,1,0,0,0],[3,1,0,0],[2,1,0],[1,1],[1]]
=> [[1,3,4,5,6,7],[2]]
=> ? = 1
[[1,2,4,5,6,7],[3]]
=> [[6,1,0,0,0,0,0],[5,1,0,0,0,0],[4,1,0,0,0],[3,1,0,0],[2,1,0],[2,0],[1]]
=> [[1,2,4,5,6,7],[3]]
=> ? = 1
[[1,2,3,5,6,7],[4]]
=> [[6,1,0,0,0,0,0],[5,1,0,0,0,0],[4,1,0,0,0],[3,1,0,0],[3,0,0],[2,0],[1]]
=> ?
=> ? = 1
[[1,2,3,4,6,7],[5]]
=> [[6,1,0,0,0,0,0],[5,1,0,0,0,0],[4,1,0,0,0],[4,0,0,0],[3,0,0],[2,0],[1]]
=> ?
=> ? = 1
[[1,2,3,4,5,7],[6]]
=> [[6,1,0,0,0,0,0],[5,1,0,0,0,0],[5,0,0,0,0],[4,0,0,0],[3,0,0],[2,0],[1]]
=> [[1,2,3,4,5,7],[6]]
=> ? = 1
[[1,2,3,4,5,6],[7]]
=> [[6,1,0,0,0,0,0],[6,0,0,0,0,0],[5,0,0,0,0],[4,0,0,0],[3,0,0],[2,0],[1]]
=> [[1,2,3,4,5,6],[7]]
=> ? = 1
[[1,3,5,6,7],[2,4]]
=> [[5,2,0,0,0,0,0],[4,2,0,0,0,0],[3,2,0,0,0],[2,2,0,0],[2,1,0],[1,1],[1]]
=> [[1,3,5,6,7],[2,4]]
=> ? = 4
[[1,2,5,6,7],[3,4]]
=> [[5,2,0,0,0,0,0],[4,2,0,0,0,0],[3,2,0,0,0],[2,2,0,0],[2,1,0],[2,0],[1]]
=> [[1,2,5,6,7],[3,4]]
=> ? = 4
[[1,3,4,6,7],[2,5]]
=> [[5,2,0,0,0,0,0],[4,2,0,0,0,0],[3,2,0,0,0],[3,1,0,0],[2,1,0],[1,1],[1]]
=> ?
=> ? = 5
[[1,2,4,6,7],[3,5]]
=> [[5,2,0,0,0,0,0],[4,2,0,0,0,0],[3,2,0,0,0],[3,1,0,0],[2,1,0],[2,0],[1]]
=> ?
=> ? = 5
[[1,2,3,6,7],[4,5]]
=> [[5,2,0,0,0,0,0],[4,2,0,0,0,0],[3,2,0,0,0],[3,1,0,0],[3,0,0],[2,0],[1]]
=> [[1,2,3,6,7],[4,5]]
=> ? = 5
[[1,3,4,5,7],[2,6]]
=> [[5,2,0,0,0,0,0],[4,2,0,0,0,0],[4,1,0,0,0],[3,1,0,0],[2,1,0],[1,1],[1]]
=> ?
=> ? = 6
[[1,2,4,5,7],[3,6]]
=> [[5,2,0,0,0,0,0],[4,2,0,0,0,0],[4,1,0,0,0],[3,1,0,0],[2,1,0],[2,0],[1]]
=> ?
=> ? = 6
[[1,2,3,5,7],[4,6]]
=> [[5,2,0,0,0,0,0],[4,2,0,0,0,0],[4,1,0,0,0],[3,1,0,0],[3,0,0],[2,0],[1]]
=> ?
=> ? = 6
[[1,2,3,4,7],[5,6]]
=> [[5,2,0,0,0,0,0],[4,2,0,0,0,0],[4,1,0,0,0],[4,0,0,0],[3,0,0],[2,0],[1]]
=> [[1,2,3,4,7],[5,6]]
=> ? = 6
[[1,3,4,5,6],[2,7]]
=> [[5,2,0,0,0,0,0],[5,1,0,0,0,0],[4,1,0,0,0],[3,1,0,0],[2,1,0],[1,1],[1]]
=> [[1,3,4,5,6],[2,7]]
=> ? = 7
[[1,2,4,5,6],[3,7]]
=> [[5,2,0,0,0,0,0],[5,1,0,0,0,0],[4,1,0,0,0],[3,1,0,0],[2,1,0],[2,0],[1]]
=> ?
=> ? = 7
[[1,2,3,5,6],[4,7]]
=> [[5,2,0,0,0,0,0],[5,1,0,0,0,0],[4,1,0,0,0],[3,1,0,0],[3,0,0],[2,0],[1]]
=> ?
=> ? = 7
[[1,2,3,4,6],[5,7]]
=> [[5,2,0,0,0,0,0],[5,1,0,0,0,0],[4,1,0,0,0],[4,0,0,0],[3,0,0],[2,0],[1]]
=> [[1,2,3,4,6],[5,7]]
=> ? = 7
[[1,2,3,4,5],[6,7]]
=> [[5,2,0,0,0,0,0],[5,1,0,0,0,0],[5,0,0,0,0],[4,0,0,0],[3,0,0],[2,0],[1]]
=> [[1,2,3,4,5],[6,7]]
=> ? = 7
[[1,4,5,6,7],[2],[3]]
=> [[5,1,1,0,0,0,0],[4,1,1,0,0,0],[3,1,1,0,0],[2,1,1,0],[1,1,1],[1,1],[1]]
=> [[1,4,5,6,7],[2],[3]]
=> ? = 1
[[1,3,5,6,7],[2],[4]]
=> [[5,1,1,0,0,0,0],[4,1,1,0,0,0],[3,1,1,0,0],[2,1,1,0],[2,1,0],[1,1],[1]]
=> ?
=> ? = 1
[[1,2,5,6,7],[3],[4]]
=> [[5,1,1,0,0,0,0],[4,1,1,0,0,0],[3,1,1,0,0],[2,1,1,0],[2,1,0],[2,0],[1]]
=> [[1,2,5,6,7],[3],[4]]
=> ? = 1
[[1,3,4,6,7],[2],[5]]
=> [[5,1,1,0,0,0,0],[4,1,1,0,0,0],[3,1,1,0,0],[3,1,0,0],[2,1,0],[1,1],[1]]
=> ?
=> ? = 1
[[1,2,4,6,7],[3],[5]]
=> [[5,1,1,0,0,0,0],[4,1,1,0,0,0],[3,1,1,0,0],[3,1,0,0],[2,1,0],[2,0],[1]]
=> ?
=> ? = 1
[[1,2,3,6,7],[4],[5]]
=> [[5,1,1,0,0,0,0],[4,1,1,0,0,0],[3,1,1,0,0],[3,1,0,0],[3,0,0],[2,0],[1]]
=> ?
=> ? = 1
[[1,3,4,5,7],[2],[6]]
=> [[5,1,1,0,0,0,0],[4,1,1,0,0,0],[4,1,0,0,0],[3,1,0,0],[2,1,0],[1,1],[1]]
=> ?
=> ? = 1
[[1,2,4,5,7],[3],[6]]
=> [[5,1,1,0,0,0,0],[4,1,1,0,0,0],[4,1,0,0,0],[3,1,0,0],[2,1,0],[2,0],[1]]
=> ?
=> ? = 1
[[1,2,3,5,7],[4],[6]]
=> [[5,1,1,0,0,0,0],[4,1,1,0,0,0],[4,1,0,0,0],[3,1,0,0],[3,0,0],[2,0],[1]]
=> ?
=> ? = 1
[[1,2,3,4,7],[5],[6]]
=> [[5,1,1,0,0,0,0],[4,1,1,0,0,0],[4,1,0,0,0],[4,0,0,0],[3,0,0],[2,0],[1]]
=> [[1,2,3,4,7],[5],[6]]
=> ? = 1
[[1,3,4,5,6],[2],[7]]
=> [[5,1,1,0,0,0,0],[5,1,0,0,0,0],[4,1,0,0,0],[3,1,0,0],[2,1,0],[1,1],[1]]
=> [[1,3,4,5,6],[2],[7]]
=> ? = 1
[[1,2,4,5,6],[3],[7]]
=> [[5,1,1,0,0,0,0],[5,1,0,0,0,0],[4,1,0,0,0],[3,1,0,0],[2,1,0],[2,0],[1]]
=> ?
=> ? = 1
[[1,2,3,5,6],[4],[7]]
=> [[5,1,1,0,0,0,0],[5,1,0,0,0,0],[4,1,0,0,0],[3,1,0,0],[3,0,0],[2,0],[1]]
=> ?
=> ? = 1
[[1,2,3,4,6],[5],[7]]
=> [[5,1,1,0,0,0,0],[5,1,0,0,0,0],[4,1,0,0,0],[4,0,0,0],[3,0,0],[2,0],[1]]
=> ?
=> ? = 1
[[1,2,3,4,5],[6],[7]]
=> [[5,1,1,0,0,0,0],[5,1,0,0,0,0],[5,0,0,0,0],[4,0,0,0],[3,0,0],[2,0],[1]]
=> [[1,2,3,4,5],[6],[7]]
=> ? = 1
[[1,3,5,7],[2,4,6]]
=> [[4,3,0,0,0,0,0],[3,3,0,0,0,0],[3,2,0,0,0],[2,2,0,0],[2,1,0],[1,1],[1]]
=> [[1,3,5,7],[2,4,6]]
=> ? = 4
[[1,2,5,7],[3,4,6]]
=> [[4,3,0,0,0,0,0],[3,3,0,0,0,0],[3,2,0,0,0],[2,2,0,0],[2,1,0],[2,0],[1]]
=> ?
=> ? = 4
[[1,3,4,7],[2,5,6]]
=> [[4,3,0,0,0,0,0],[3,3,0,0,0,0],[3,2,0,0,0],[3,1,0,0],[2,1,0],[1,1],[1]]
=> ?
=> ? = 5
[[1,2,4,7],[3,5,6]]
=> [[4,3,0,0,0,0,0],[3,3,0,0,0,0],[3,2,0,0,0],[3,1,0,0],[2,1,0],[2,0],[1]]
=> ?
=> ? = 5
[[1,2,3,7],[4,5,6]]
=> [[4,3,0,0,0,0,0],[3,3,0,0,0,0],[3,2,0,0,0],[3,1,0,0],[3,0,0],[2,0],[1]]
=> [[1,2,3,7],[4,5,6]]
=> ? = 5
[[1,3,5,6],[2,4,7]]
=> [[4,3,0,0,0,0,0],[4,2,0,0,0,0],[3,2,0,0,0],[2,2,0,0],[2,1,0],[1,1],[1]]
=> ?
=> ? = 4
[[1,2,5,6],[3,4,7]]
=> [[4,3,0,0,0,0,0],[4,2,0,0,0,0],[3,2,0,0,0],[2,2,0,0],[2,1,0],[2,0],[1]]
=> [[1,2,5,6],[3,4,7]]
=> ? = 4
[[1,3,4,6],[2,5,7]]
=> [[4,3,0,0,0,0,0],[4,2,0,0,0,0],[3,2,0,0,0],[3,1,0,0],[2,1,0],[1,1],[1]]
=> ?
=> ? = 5
[[1,2,4,6],[3,5,7]]
=> [[4,3,0,0,0,0,0],[4,2,0,0,0,0],[3,2,0,0,0],[3,1,0,0],[2,1,0],[2,0],[1]]
=> [[1,2,4,6],[3,5,7]]
=> ? = 5
[[1,2,3,6],[4,5,7]]
=> [[4,3,0,0,0,0,0],[4,2,0,0,0,0],[3,2,0,0,0],[3,1,0,0],[3,0,0],[2,0],[1]]
=> ?
=> ? = 5
[[1,3,4,5],[2,6,7]]
=> [[4,3,0,0,0,0,0],[4,2,0,0,0,0],[4,1,0,0,0],[3,1,0,0],[2,1,0],[1,1],[1]]
=> [[1,3,4,5],[2,6,7]]
=> ? = 6
[[1,2,4,5],[3,6,7]]
=> [[4,3,0,0,0,0,0],[4,2,0,0,0,0],[4,1,0,0,0],[3,1,0,0],[2,1,0],[2,0],[1]]
=> ?
=> ? = 6
[[1,2,3,5],[4,6,7]]
=> [[4,3,0,0,0,0,0],[4,2,0,0,0,0],[4,1,0,0,0],[3,1,0,0],[3,0,0],[2,0],[1]]
=> ?
=> ? = 6
[[1,2,3,4],[5,6,7]]
=> [[4,3,0,0,0,0,0],[4,2,0,0,0,0],[4,1,0,0,0],[4,0,0,0],[3,0,0],[2,0],[1]]
=> [[1,2,3,4],[5,6,7]]
=> ? = 6
Description
The last entry on the main diagonal of a semistandard tableau.