searching the database
Your data matches 30 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000740
(load all 29 compositions to match this statistic)
(load all 29 compositions to match this statistic)
Mp00002: Alternating sign matrices —to left key permutation⟶ Permutations
St000740: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000740: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[1]]
=> [1] => 1
[[1,0],[0,1]]
=> [1,2] => 2
[[0,1],[1,0]]
=> [2,1] => 1
[[1,0,0],[0,1,0],[0,0,1]]
=> [1,2,3] => 3
[[0,1,0],[1,0,0],[0,0,1]]
=> [2,1,3] => 3
[[1,0,0],[0,0,1],[0,1,0]]
=> [1,3,2] => 2
[[0,1,0],[1,-1,1],[0,1,0]]
=> [1,3,2] => 2
[[0,0,1],[1,0,0],[0,1,0]]
=> [3,1,2] => 2
[[0,1,0],[0,0,1],[1,0,0]]
=> [2,3,1] => 1
[[0,0,1],[0,1,0],[1,0,0]]
=> [3,2,1] => 1
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,2,3,4] => 4
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [2,1,3,4] => 4
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => 4
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => 4
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [3,1,2,4] => 4
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [2,3,1,4] => 4
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [3,2,1,4] => 4
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,2,4,3] => 3
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [2,1,4,3] => 3
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => 3
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => 3
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [2,1,4,3] => 3
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [2,1,4,3] => 3
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [2,1,4,3] => 3
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => 3
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => 3
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => 3
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [4,1,2,3] => 3
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [2,4,1,3] => 3
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [2,4,1,3] => 3
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [4,2,1,3] => 3
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,3,4,2] => 2
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,3,4,2] => 2
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [3,1,4,2] => 2
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [1,3,4,2] => 2
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [3,1,4,2] => 2
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,4,3,2] => 2
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,4,3,2] => 2
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [1,4,3,2] => 2
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [4,1,3,2] => 2
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [1,4,3,2] => 2
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,4,3,2] => 2
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [4,1,3,2] => 2
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [3,4,1,2] => 2
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [4,3,1,2] => 2
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [2,3,4,1] => 1
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [3,2,4,1] => 1
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [2,4,3,1] => 1
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [2,4,3,1] => 1
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [4,2,3,1] => 1
Description
The last entry of a permutation.
This statistic is undefined for the empty permutation.
Matching statistic: St000011
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00003: Alternating sign matrices —rotate counterclockwise⟶ Alternating sign matrices
Mp00007: Alternating sign matrices —to Dyck path⟶ Dyck paths
Mp00032: Dyck paths —inverse zeta map⟶ Dyck paths
St000011: Dyck paths ⟶ ℤResult quality: 97% ●values known / values provided: 97%●distinct values known / distinct values provided: 100%
Mp00007: Alternating sign matrices —to Dyck path⟶ Dyck paths
Mp00032: Dyck paths —inverse zeta map⟶ Dyck paths
St000011: Dyck paths ⟶ ℤResult quality: 97% ●values known / values provided: 97%●distinct values known / distinct values provided: 100%
Values
[[1]]
=> [[1]]
=> [1,0]
=> [1,0]
=> 1
[[1,0],[0,1]]
=> [[0,1],[1,0]]
=> [1,1,0,0]
=> [1,0,1,0]
=> 2
[[0,1],[1,0]]
=> [[1,0],[0,1]]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1
[[1,0,0],[0,1,0],[0,0,1]]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 3
[[0,1,0],[1,0,0],[0,0,1]]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 3
[[1,0,0],[0,0,1],[0,1,0]]
=> [[0,1,0],[0,0,1],[1,0,0]]
=> [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> 2
[[0,1,0],[1,-1,1],[0,1,0]]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> 2
[[0,0,1],[1,0,0],[0,1,0]]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 2
[[0,1,0],[0,0,1],[1,0,0]]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> 1
[[0,0,1],[0,1,0],[1,0,0]]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 1
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 3
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 3
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 3
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 3
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 3
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 3
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 3
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 3
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 3
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 2
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 2
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 2
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 1
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 1
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,1,-1,1,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,0,1,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,0,1,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,1,0,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,-1,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,1,0,-1,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,0,1],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,1,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,1,-1,1,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,1,-1,1,0],[0,0,1,-1,1,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
Description
The number of touch points (or returns) of a Dyck path.
This is the number of points, excluding the origin, where the Dyck path has height 0.
Matching statistic: St000025
Mp00003: Alternating sign matrices —rotate counterclockwise⟶ Alternating sign matrices
Mp00007: Alternating sign matrices —to Dyck path⟶ Dyck paths
Mp00028: Dyck paths —reverse⟶ Dyck paths
St000025: Dyck paths ⟶ ℤResult quality: 97% ●values known / values provided: 97%●distinct values known / distinct values provided: 100%
Mp00007: Alternating sign matrices —to Dyck path⟶ Dyck paths
Mp00028: Dyck paths —reverse⟶ Dyck paths
St000025: Dyck paths ⟶ ℤResult quality: 97% ●values known / values provided: 97%●distinct values known / distinct values provided: 100%
Values
[[1]]
=> [[1]]
=> [1,0]
=> [1,0]
=> 1
[[1,0],[0,1]]
=> [[0,1],[1,0]]
=> [1,1,0,0]
=> [1,1,0,0]
=> 2
[[0,1],[1,0]]
=> [[1,0],[0,1]]
=> [1,0,1,0]
=> [1,0,1,0]
=> 1
[[1,0,0],[0,1,0],[0,0,1]]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 3
[[0,1,0],[1,0,0],[0,0,1]]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 3
[[1,0,0],[0,0,1],[0,1,0]]
=> [[0,1,0],[0,0,1],[1,0,0]]
=> [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> 2
[[0,1,0],[1,-1,1],[0,1,0]]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> 2
[[0,0,1],[1,0,0],[0,1,0]]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 2
[[0,1,0],[0,0,1],[1,0,0]]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 1
[[0,0,1],[0,1,0],[1,0,0]]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 1
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 4
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 4
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 4
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 4
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 4
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 4
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 4
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 3
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 3
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 3
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> 3
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 3
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 3
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> 3
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 2
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 2
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 2
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 2
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 2
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 2
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 1
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 1
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,1,-1,1,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,0,1,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,0,1,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,1,0,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,-1,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,1,0,-1,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,0,1],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,1,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,1,-1,1,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,1,-1,1,0],[0,0,1,-1,1,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
Description
The number of initial rises of a Dyck path.
In other words, this is the height of the first peak of $D$.
Matching statistic: St000068
Mp00003: Alternating sign matrices —rotate counterclockwise⟶ Alternating sign matrices
Mp00007: Alternating sign matrices —to Dyck path⟶ Dyck paths
Mp00242: Dyck paths —Hessenberg poset⟶ Posets
St000068: Posets ⟶ ℤResult quality: 97% ●values known / values provided: 97%●distinct values known / distinct values provided: 100%
Mp00007: Alternating sign matrices —to Dyck path⟶ Dyck paths
Mp00242: Dyck paths —Hessenberg poset⟶ Posets
St000068: Posets ⟶ ℤResult quality: 97% ●values known / values provided: 97%●distinct values known / distinct values provided: 100%
Values
[[1]]
=> [[1]]
=> [1,0]
=> ([],1)
=> 1
[[1,0],[0,1]]
=> [[0,1],[1,0]]
=> [1,1,0,0]
=> ([],2)
=> 2
[[0,1],[1,0]]
=> [[1,0],[0,1]]
=> [1,0,1,0]
=> ([(0,1)],2)
=> 1
[[1,0,0],[0,1,0],[0,0,1]]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> [1,1,1,0,0,0]
=> ([],3)
=> 3
[[0,1,0],[1,0,0],[0,0,1]]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [1,1,1,0,0,0]
=> ([],3)
=> 3
[[1,0,0],[0,0,1],[0,1,0]]
=> [[0,1,0],[0,0,1],[1,0,0]]
=> [1,1,0,1,0,0]
=> ([(1,2)],3)
=> 2
[[0,1,0],[1,-1,1],[0,1,0]]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,1,0,1,0,0]
=> ([(1,2)],3)
=> 2
[[0,0,1],[1,0,0],[0,1,0]]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,0,1,1,0,0]
=> ([(0,2),(1,2)],3)
=> 2
[[0,1,0],[0,0,1],[1,0,0]]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [1,1,0,0,1,0]
=> ([(0,1),(0,2)],3)
=> 1
[[0,0,1],[0,1,0],[1,0,0]]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> 1
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> ([],4)
=> 4
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> ([],4)
=> 4
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> ([],4)
=> 4
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> ([],4)
=> 4
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> ([],4)
=> 4
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> ([],4)
=> 4
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> ([],4)
=> 4
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> ([(2,3)],4)
=> 3
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> ([(2,3)],4)
=> 3
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> ([(2,3)],4)
=> 3
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> ([(2,3)],4)
=> 3
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> ([(2,3)],4)
=> 3
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> ([(2,3)],4)
=> 3
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> ([(2,3)],4)
=> 3
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,0,1,1,0,0,0]
=> ([(1,3),(2,3)],4)
=> 3
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> ([(1,3),(2,3)],4)
=> 3
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> ([(1,3),(2,3)],4)
=> 3
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,0,1,1,1,0,0,0]
=> ([(0,3),(1,3),(2,3)],4)
=> 3
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> ([(1,3),(2,3)],4)
=> 3
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> ([(1,3),(2,3)],4)
=> 3
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,0,1,1,1,0,0,0]
=> ([(0,3),(1,3),(2,3)],4)
=> 3
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,1,0,0,1,0,0]
=> ([(1,2),(1,3)],4)
=> 2
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> ([(1,2),(1,3)],4)
=> 2
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> ([(1,2),(1,3)],4)
=> 2
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> ([(1,2),(1,3)],4)
=> 2
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> ([(1,2),(1,3)],4)
=> 2
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3)],4)
=> 2
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3)],4)
=> 2
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3)],4)
=> 2
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,0,1,1,0,1,0,0]
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3)],4)
=> 2
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3)],4)
=> 2
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,0,1,1,0,1,0,0]
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,1,0,0,1,1,0,0]
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,0,1,0,1,1,0,0]
=> ([(0,3),(1,3),(3,2)],4)
=> 2
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3)],4)
=> 1
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3)],4)
=> 1
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(3,1)],4)
=> 1
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(3,1)],4)
=> 1
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,0,1,1,0,0,1,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,1,-1,1,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,0,1,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,0,1,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,1,0,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,-1,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,1,0,-1,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,0,1],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,1,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,1,-1,1,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,1,-1,1,0],[0,0,1,-1,1,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
Description
The number of minimal elements in a poset.
Matching statistic: St000439
Mp00003: Alternating sign matrices —rotate counterclockwise⟶ Alternating sign matrices
Mp00007: Alternating sign matrices —to Dyck path⟶ Dyck paths
Mp00028: Dyck paths —reverse⟶ Dyck paths
St000439: Dyck paths ⟶ ℤResult quality: 97% ●values known / values provided: 97%●distinct values known / distinct values provided: 100%
Mp00007: Alternating sign matrices —to Dyck path⟶ Dyck paths
Mp00028: Dyck paths —reverse⟶ Dyck paths
St000439: Dyck paths ⟶ ℤResult quality: 97% ●values known / values provided: 97%●distinct values known / distinct values provided: 100%
Values
[[1]]
=> [[1]]
=> [1,0]
=> [1,0]
=> 2 = 1 + 1
[[1,0],[0,1]]
=> [[0,1],[1,0]]
=> [1,1,0,0]
=> [1,1,0,0]
=> 3 = 2 + 1
[[0,1],[1,0]]
=> [[1,0],[0,1]]
=> [1,0,1,0]
=> [1,0,1,0]
=> 2 = 1 + 1
[[1,0,0],[0,1,0],[0,0,1]]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 4 = 3 + 1
[[0,1,0],[1,0,0],[0,0,1]]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 4 = 3 + 1
[[1,0,0],[0,0,1],[0,1,0]]
=> [[0,1,0],[0,0,1],[1,0,0]]
=> [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> 3 = 2 + 1
[[0,1,0],[1,-1,1],[0,1,0]]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> 3 = 2 + 1
[[0,0,1],[1,0,0],[0,1,0]]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 3 = 2 + 1
[[0,1,0],[0,0,1],[1,0,0]]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 2 = 1 + 1
[[0,0,1],[0,1,0],[1,0,0]]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 2 = 1 + 1
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 5 = 4 + 1
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 5 = 4 + 1
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 5 = 4 + 1
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 5 = 4 + 1
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 5 = 4 + 1
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 5 = 4 + 1
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 5 = 4 + 1
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 4 = 3 + 1
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 4 = 3 + 1
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 4 = 3 + 1
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 4 = 3 + 1
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 4 = 3 + 1
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 4 = 3 + 1
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 4 = 3 + 1
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 4 = 3 + 1
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 4 = 3 + 1
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 4 = 3 + 1
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> 4 = 3 + 1
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 4 = 3 + 1
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 4 = 3 + 1
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> 4 = 3 + 1
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 3 = 2 + 1
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 3 = 2 + 1
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 3 = 2 + 1
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 3 = 2 + 1
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7 + 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7 + 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6 + 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7 + 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6 + 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7 + 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7 + 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6 + 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7 + 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6 + 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6 + 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7 + 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6 + 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7 + 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,1,-1,1,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6 + 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7 + 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,0,1,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6 + 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,0,1,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6 + 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6 + 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7 + 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6 + 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7 + 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,1,0,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6 + 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7 + 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7 + 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,-1,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,1,0,-1,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6 + 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,0,1],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,1,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6 + 1
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7 + 1
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6 + 1
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7 + 1
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6 + 1
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6 + 1
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7 + 1
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6 + 1
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7 + 1
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6 + 1
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6 + 1
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7 + 1
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6 + 1
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6 + 1
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6 + 1
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7 + 1
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6 + 1
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7 + 1
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6 + 1
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6 + 1
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7 + 1
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6 + 1
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,1,-1,1,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7 + 1
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,1,-1,1,0],[0,0,1,-1,1,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6 + 1
Description
The position of the first down step of a Dyck path.
Matching statistic: St000654
Mp00003: Alternating sign matrices —rotate counterclockwise⟶ Alternating sign matrices
Mp00007: Alternating sign matrices —to Dyck path⟶ Dyck paths
Mp00024: Dyck paths —to 321-avoiding permutation⟶ Permutations
St000654: Permutations ⟶ ℤResult quality: 97% ●values known / values provided: 97%●distinct values known / distinct values provided: 100%
Mp00007: Alternating sign matrices —to Dyck path⟶ Dyck paths
Mp00024: Dyck paths —to 321-avoiding permutation⟶ Permutations
St000654: Permutations ⟶ ℤResult quality: 97% ●values known / values provided: 97%●distinct values known / distinct values provided: 100%
Values
[[1]]
=> [[1]]
=> [1,0]
=> [1] => ? = 1
[[1,0],[0,1]]
=> [[0,1],[1,0]]
=> [1,1,0,0]
=> [1,2] => 2
[[0,1],[1,0]]
=> [[1,0],[0,1]]
=> [1,0,1,0]
=> [2,1] => 1
[[1,0,0],[0,1,0],[0,0,1]]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> [1,1,1,0,0,0]
=> [1,2,3] => 3
[[0,1,0],[1,0,0],[0,0,1]]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [1,1,1,0,0,0]
=> [1,2,3] => 3
[[1,0,0],[0,0,1],[0,1,0]]
=> [[0,1,0],[0,0,1],[1,0,0]]
=> [1,1,0,1,0,0]
=> [1,3,2] => 2
[[0,1,0],[1,-1,1],[0,1,0]]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,1,0,1,0,0]
=> [1,3,2] => 2
[[0,0,1],[1,0,0],[0,1,0]]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,0,1,1,0,0]
=> [2,3,1] => 2
[[0,1,0],[0,0,1],[1,0,0]]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [1,1,0,0,1,0]
=> [3,1,2] => 1
[[0,0,1],[0,1,0],[1,0,0]]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,0,1,0,1,0]
=> [2,1,3] => 1
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 4
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 4
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 4
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 4
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 4
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 4
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 4
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,2,4,3] => 3
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,2,4,3] => 3
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,2,4,3] => 3
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,2,4,3] => 3
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,2,4,3] => 3
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,2,4,3] => 3
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,2,4,3] => 3
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,3,4,2] => 3
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,3,4,2] => 3
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,3,4,2] => 3
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 3
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,3,4,2] => 3
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,3,4,2] => 3
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 3
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,4,2,3] => 2
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,4,2,3] => 2
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,4,2,3] => 2
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,4,2,3] => 2
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,4,2,3] => 2
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,3,2,4] => 2
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,3,2,4] => 2
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,3,2,4] => 2
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,0,1,1,0,1,0,0]
=> [2,3,1,4] => 2
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,3,2,4] => 2
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,3,2,4] => 2
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,0,1,1,0,1,0,0]
=> [2,3,1,4] => 2
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => 2
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,0,1,0,1,1,0,0]
=> [2,4,1,3] => 2
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 1
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 1
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [3,1,2,4] => 1
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [3,1,2,4] => 1
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,0,1,1,0,0,1,0]
=> [2,1,3,4] => 1
[[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,1,0,0,1,0,1,0]
=> [3,1,4,2] => 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,1,-1,1,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,0,1,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,0,1,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,1,0,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,-1,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,1,0,-1,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,0,1],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,1,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 7
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 7
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 7
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 7
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 7
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 7
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 7
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 7
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,1,-1,1,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ? => ? = 7
Description
The first descent of a permutation.
For a permutation $\pi$ of $\{1,\ldots,n\}$, this is the smallest index $0 < i \leq n$ such that $\pi(i) > \pi(i+1)$ where one considers $\pi(n+1)=0$.
Matching statistic: St000678
Mp00003: Alternating sign matrices —rotate counterclockwise⟶ Alternating sign matrices
Mp00007: Alternating sign matrices —to Dyck path⟶ Dyck paths
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
St000678: Dyck paths ⟶ ℤResult quality: 97% ●values known / values provided: 97%●distinct values known / distinct values provided: 100%
Mp00007: Alternating sign matrices —to Dyck path⟶ Dyck paths
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
St000678: Dyck paths ⟶ ℤResult quality: 97% ●values known / values provided: 97%●distinct values known / distinct values provided: 100%
Values
[[1]]
=> [[1]]
=> [1,0]
=> [1,0]
=> ? = 1
[[1,0],[0,1]]
=> [[0,1],[1,0]]
=> [1,1,0,0]
=> [1,0,1,0]
=> 2
[[0,1],[1,0]]
=> [[1,0],[0,1]]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1
[[1,0,0],[0,1,0],[0,0,1]]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 3
[[0,1,0],[1,0,0],[0,0,1]]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 3
[[1,0,0],[0,0,1],[0,1,0]]
=> [[0,1,0],[0,0,1],[1,0,0]]
=> [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> 2
[[0,1,0],[1,-1,1],[0,1,0]]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> 2
[[0,0,1],[1,0,0],[0,1,0]]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 2
[[0,1,0],[0,0,1],[1,0,0]]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 1
[[0,0,1],[0,1,0],[1,0,0]]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 1
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> 3
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> 3
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> 3
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 3
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> 3
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> 3
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 3
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 2
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 2
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 2
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 2
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 2
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 2
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 1
[[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,1,-1,1,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,0,1,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,0,1,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,1,0,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,-1,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,1,0,-1,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,0,1],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,1,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,1,-1,1,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[1,0,0,0,0,0,0]]
=> ?
=> ?
=> ? = 7
Description
The number of up steps after the last double rise of a Dyck path.
Matching statistic: St000476
Mp00005: Alternating sign matrices —transpose⟶ Alternating sign matrices
Mp00007: Alternating sign matrices —to Dyck path⟶ Dyck paths
Mp00099: Dyck paths —bounce path⟶ Dyck paths
St000476: Dyck paths ⟶ ℤResult quality: 96% ●values known / values provided: 96%●distinct values known / distinct values provided: 100%
Mp00007: Alternating sign matrices —to Dyck path⟶ Dyck paths
Mp00099: Dyck paths —bounce path⟶ Dyck paths
St000476: Dyck paths ⟶ ℤResult quality: 96% ●values known / values provided: 96%●distinct values known / distinct values provided: 100%
Values
[[1]]
=> [[1]]
=> [1,0]
=> [1,0]
=> ? = 1 - 1
[[1,0],[0,1]]
=> [[1,0],[0,1]]
=> [1,0,1,0]
=> [1,0,1,0]
=> 1 = 2 - 1
[[0,1],[1,0]]
=> [[0,1],[1,0]]
=> [1,1,0,0]
=> [1,1,0,0]
=> 0 = 1 - 1
[[1,0,0],[0,1,0],[0,0,1]]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 2 = 3 - 1
[[0,1,0],[1,0,0],[0,0,1]]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 2 = 3 - 1
[[1,0,0],[0,0,1],[0,1,0]]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1 = 2 - 1
[[0,1,0],[1,-1,1],[0,1,0]]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 1 = 2 - 1
[[0,0,1],[1,0,0],[0,1,0]]
=> [[0,1,0],[0,0,1],[1,0,0]]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 1 = 2 - 1
[[0,1,0],[0,0,1],[1,0,0]]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 0 = 1 - 1
[[0,0,1],[0,1,0],[1,0,0]]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 0 = 1 - 1
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 3 = 4 - 1
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 3 = 4 - 1
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3 = 4 - 1
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3 = 4 - 1
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3 = 4 - 1
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 3 = 4 - 1
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 3 = 4 - 1
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2 = 3 - 1
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2 = 3 - 1
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2 = 3 - 1
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2 = 3 - 1
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2 = 3 - 1
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2 = 3 - 1
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2 = 3 - 1
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2 = 3 - 1
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2 = 3 - 1
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2 = 3 - 1
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2 = 3 - 1
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2 = 3 - 1
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2 = 3 - 1
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2 = 3 - 1
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? = 7 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? = 7 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 6 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? = 7 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0]]
=> ?
=> ?
=> ? = 6 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? = 7 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? = 7 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 6 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? = 7 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 6 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0]]
=> ?
=> ?
=> ? = 6 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? = 7 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 6 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? = 7 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0]]
=> ?
=> ?
=> ? = 6 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? = 7 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 6 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,0,0,1,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0]]
=> ?
=> ?
=> ? = 6 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,1,0,0,0]]
=> ?
=> ?
=> ? = 6 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? = 7 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 6 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? = 7 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0]]
=> ?
=> ?
=> ? = 6 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? = 7 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? = 7 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,-1,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,1,0,-1,0,1],[0,0,0,0,1,0,0]]
=> ?
=> ?
=> ? = 6 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,0,1],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,1,0,0,0,0]]
=> ?
=> ?
=> ? = 6 - 1
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? = 7 - 1
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 6 - 1
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? = 7 - 1
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 6 - 1
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0]]
=> ?
=> ?
=> ? = 6 - 1
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? = 7 - 1
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 6 - 1
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? = 7 - 1
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 6 - 1
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0]]
=> ?
=> ?
=> ? = 6 - 1
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? = 7 - 1
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 6 - 1
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0]]
=> ?
=> ?
=> ? = 6 - 1
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,1,0,0,0]]
=> ?
=> ?
=> ? = 6 - 1
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? = 7 - 1
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 6 - 1
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? = 7 - 1
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 6 - 1
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0]]
=> ?
=> ?
=> ? = 6 - 1
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? = 7 - 1
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 6 - 1
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? = 7 - 1
Description
The sum of the semi-lengths of tunnels before a valley of a Dyck path.
For each valley $v$ in a Dyck path $D$ there is a corresponding tunnel, which
is the factor $T_v = s_i\dots s_j$ of $D$ where $s_i$ is the step after the first intersection of $D$ with the line $y = ht(v)$ to the left of $s_j$. This statistic is
$$
\sum_v (j_v-i_v)/2.
$$
Matching statistic: St000147
Mp00005: Alternating sign matrices —transpose⟶ Alternating sign matrices
Mp00007: Alternating sign matrices —to Dyck path⟶ Dyck paths
Mp00027: Dyck paths —to partition⟶ Integer partitions
St000147: Integer partitions ⟶ ℤResult quality: 95% ●values known / values provided: 95%●distinct values known / distinct values provided: 100%
Mp00007: Alternating sign matrices —to Dyck path⟶ Dyck paths
Mp00027: Dyck paths —to partition⟶ Integer partitions
St000147: Integer partitions ⟶ ℤResult quality: 95% ●values known / values provided: 95%●distinct values known / distinct values provided: 100%
Values
[[1]]
=> [[1]]
=> [1,0]
=> []
=> 0 = 1 - 1
[[1,0],[0,1]]
=> [[1,0],[0,1]]
=> [1,0,1,0]
=> [1]
=> 1 = 2 - 1
[[0,1],[1,0]]
=> [[0,1],[1,0]]
=> [1,1,0,0]
=> []
=> 0 = 1 - 1
[[1,0,0],[0,1,0],[0,0,1]]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,0,1,0,1,0]
=> [2,1]
=> 2 = 3 - 1
[[0,1,0],[1,0,0],[0,0,1]]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [1,1,0,0,1,0]
=> [2]
=> 2 = 3 - 1
[[1,0,0],[0,0,1],[0,1,0]]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,0,1,1,0,0]
=> [1,1]
=> 1 = 2 - 1
[[0,1,0],[1,-1,1],[0,1,0]]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,1,0,1,0,0]
=> [1]
=> 1 = 2 - 1
[[0,0,1],[1,0,0],[0,1,0]]
=> [[0,1,0],[0,0,1],[1,0,0]]
=> [1,1,0,1,0,0]
=> [1]
=> 1 = 2 - 1
[[0,1,0],[0,0,1],[1,0,0]]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [1,1,1,0,0,0]
=> []
=> 0 = 1 - 1
[[0,0,1],[0,1,0],[1,0,0]]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> [1,1,1,0,0,0]
=> []
=> 0 = 1 - 1
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 3 = 4 - 1
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,1,0,0,1,0,1,0]
=> [3,2]
=> 3 = 4 - 1
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> 3 = 4 - 1
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> 3 = 4 - 1
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> 3 = 4 - 1
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> 3 = 4 - 1
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> 3 = 4 - 1
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> 2 = 3 - 1
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> 2 = 3 - 1
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> 2 = 3 - 1
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> 2 = 3 - 1
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> 2 = 3 - 1
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 2 = 3 - 1
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 2 = 3 - 1
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> 2 = 3 - 1
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> 2 = 3 - 1
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> 2 = 3 - 1
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> 2 = 3 - 1
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 2 = 3 - 1
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 2 = 3 - 1
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 2 = 3 - 1
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 1 = 2 - 1
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> 1 = 2 - 1
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> 1 = 2 - 1
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> 1 = 2 - 1
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> 1 = 2 - 1
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 1 = 2 - 1
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> 1 = 2 - 1
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> 1 = 2 - 1
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> 1 = 2 - 1
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> 1 = 2 - 1
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> 1 = 2 - 1
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> 1 = 2 - 1
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> 1 = 2 - 1
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> 1 = 2 - 1
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> []
=> 0 = 1 - 1
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> []
=> 0 = 1 - 1
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> []
=> 0 = 1 - 1
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> []
=> 0 = 1 - 1
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> []
=> 0 = 1 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2,1]
=> ? = 7 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [5,5,4,3,2,1]
=> ? = 6 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? = 7 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [5,4,4,3,2,1]
=> ? = 6 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0]]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [5,4,4,3,2,1]
=> ? = 6 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? = 7 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 6 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? = 7 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [5,4,3,3,2,1]
=> ? = 6 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0]]
=> ?
=> ?
=> ? = 6 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? = 7 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,0,1,0]]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [5,4,3,3,2,1]
=> ? = 6 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0]]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [5,4,3,3,2,1]
=> ? = 6 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,1,0,0,0]]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [5,4,3,3,2,1]
=> ? = 6 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? = 7 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 6 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? = 7 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 6 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0]]
=> ?
=> ?
=> ? = 6 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? = 7 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 6 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? = 7 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [5,4,3,2,2,1]
=> ? = 6 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0]]
=> ?
=> ?
=> ? = 6 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? = 7 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 6 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,0,0,1,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0]]
=> ?
=> ?
=> ? = 6 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,1,0,0,0]]
=> ?
=> ?
=> ? = 6 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? = 7 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 6 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? = 7 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [5,4,3,2,2,1]
=> ? = 6 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0]]
=> ?
=> ?
=> ? = 6 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? = 7 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,0,1,0]]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [5,4,3,2,2,1]
=> ? = 6 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0]]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [5,4,3,2,2,1]
=> ? = 6 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,-1,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,1,-1,0,1,0],[0,0,0,0,0,0,1],[0,0,0,1,0,0,0]]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [5,4,3,2,2,1]
=> ? = 6 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? = 7 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,1,0,0,-1,1],[0,0,0,0,0,1,0]]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [5,4,3,2,2,1]
=> ? = 6 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,-1,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,1,0,-1,0,1],[0,0,0,0,1,0,0]]
=> ?
=> ?
=> ? = 6 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,1,0,0,-1,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,1,-1,0,0,1],[0,0,0,1,0,0,0]]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [5,4,3,2,2,1]
=> ? = 6 - 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,0,1],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,1,0,0,0,0]]
=> ?
=> ?
=> ? = 6 - 1
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? = 7 - 1
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 6 - 1
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? = 7 - 1
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 6 - 1
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0]]
=> ?
=> ?
=> ? = 6 - 1
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? = 7 - 1
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> ?
=> ?
=> ? = 6 - 1
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> ?
=> ?
=> ? = 7 - 1
Description
The largest part of an integer partition.
Matching statistic: St000054
(load all 10 compositions to match this statistic)
(load all 10 compositions to match this statistic)
Mp00002: Alternating sign matrices —to left key permutation⟶ Permutations
Mp00067: Permutations —Foata bijection⟶ Permutations
Mp00064: Permutations —reverse⟶ Permutations
St000054: Permutations ⟶ ℤResult quality: 95% ●values known / values provided: 95%●distinct values known / distinct values provided: 100%
Mp00067: Permutations —Foata bijection⟶ Permutations
Mp00064: Permutations —reverse⟶ Permutations
St000054: Permutations ⟶ ℤResult quality: 95% ●values known / values provided: 95%●distinct values known / distinct values provided: 100%
Values
[[1]]
=> [1] => [1] => [1] => 1
[[1,0],[0,1]]
=> [1,2] => [1,2] => [2,1] => 2
[[0,1],[1,0]]
=> [2,1] => [2,1] => [1,2] => 1
[[1,0,0],[0,1,0],[0,0,1]]
=> [1,2,3] => [1,2,3] => [3,2,1] => 3
[[0,1,0],[1,0,0],[0,0,1]]
=> [2,1,3] => [2,1,3] => [3,1,2] => 3
[[1,0,0],[0,0,1],[0,1,0]]
=> [1,3,2] => [3,1,2] => [2,1,3] => 2
[[0,1,0],[1,-1,1],[0,1,0]]
=> [1,3,2] => [3,1,2] => [2,1,3] => 2
[[0,0,1],[1,0,0],[0,1,0]]
=> [3,1,2] => [1,3,2] => [2,3,1] => 2
[[0,1,0],[0,0,1],[1,0,0]]
=> [2,3,1] => [2,3,1] => [1,3,2] => 1
[[0,0,1],[0,1,0],[1,0,0]]
=> [3,2,1] => [3,2,1] => [1,2,3] => 1
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,2,3,4] => [1,2,3,4] => [4,3,2,1] => 4
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [2,1,3,4] => [2,1,3,4] => [4,3,1,2] => 4
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => [3,1,2,4] => [4,2,1,3] => 4
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => [3,1,2,4] => [4,2,1,3] => 4
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [3,1,2,4] => [1,3,2,4] => [4,2,3,1] => 4
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [2,3,1,4] => [2,3,1,4] => [4,1,3,2] => 4
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [3,2,1,4] => [3,2,1,4] => [4,1,2,3] => 4
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,2,4,3] => [4,1,2,3] => [3,2,1,4] => 3
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [2,1,4,3] => [4,2,1,3] => [3,1,2,4] => 3
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => [4,1,2,3] => [3,2,1,4] => 3
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => [4,1,2,3] => [3,2,1,4] => 3
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [2,1,4,3] => [4,2,1,3] => [3,1,2,4] => 3
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> [2,1,4,3] => [4,2,1,3] => [3,1,2,4] => 3
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [2,1,4,3] => [4,2,1,3] => [3,1,2,4] => 3
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => [1,4,2,3] => [3,2,4,1] => 3
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => [1,4,2,3] => [3,2,4,1] => 3
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => [1,4,2,3] => [3,2,4,1] => 3
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [4,1,2,3] => [1,2,4,3] => [3,4,2,1] => 3
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [2,4,1,3] => [2,1,4,3] => [3,4,1,2] => 3
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> [2,4,1,3] => [2,1,4,3] => [3,4,1,2] => 3
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [4,2,1,3] => [2,4,1,3] => [3,1,4,2] => 3
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,3,4,2] => [3,1,4,2] => [2,4,1,3] => 2
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> [1,3,4,2] => [3,1,4,2] => [2,4,1,3] => 2
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [3,1,4,2] => [3,4,1,2] => [2,1,4,3] => 2
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> [1,3,4,2] => [3,1,4,2] => [2,4,1,3] => 2
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> [3,1,4,2] => [3,4,1,2] => [2,1,4,3] => 2
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,4,3,2] => [4,3,1,2] => [2,1,3,4] => 2
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,4,3,2] => [4,3,1,2] => [2,1,3,4] => 2
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> [1,4,3,2] => [4,3,1,2] => [2,1,3,4] => 2
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [4,1,3,2] => [4,1,3,2] => [2,3,1,4] => 2
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> [1,4,3,2] => [4,3,1,2] => [2,1,3,4] => 2
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,4,3,2] => [4,3,1,2] => [2,1,3,4] => 2
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [4,1,3,2] => [4,1,3,2] => [2,3,1,4] => 2
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [3,4,1,2] => [1,3,4,2] => [2,4,3,1] => 2
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [4,3,1,2] => [1,4,3,2] => [2,3,4,1] => 2
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [2,3,4,1] => [2,3,4,1] => [1,4,3,2] => 1
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [3,2,4,1] => [3,2,4,1] => [1,4,2,3] => 1
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [2,4,3,1] => [4,2,3,1] => [1,3,2,4] => 1
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> [2,4,3,1] => [4,2,3,1] => [1,3,2,4] => 1
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [4,2,3,1] => [2,4,3,1] => [1,3,4,2] => 1
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [1,2,3,4,6,5,7] => [6,1,2,3,4,5,7] => [7,5,4,3,2,1,6] => ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [1,2,3,4,7,5,6] => [1,7,2,3,4,5,6] => [6,5,4,3,2,7,1] => ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,2,3,5,4,6,7] => [5,1,2,3,4,6,7] => [7,6,4,3,2,1,5] => ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [1,2,3,5,4,7,6] => [7,5,1,2,3,4,6] => [6,4,3,2,1,5,7] => ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [1,2,3,4,6,5,7] => [6,1,2,3,4,5,7] => [7,5,4,3,2,1,6] => ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [1,2,3,4,7,5,6] => [1,7,2,3,4,5,6] => [6,5,4,3,2,7,1] => ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [1,2,3,6,4,5,7] => [1,6,2,3,4,5,7] => [7,5,4,3,2,6,1] => ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [1,2,3,5,4,7,6] => [7,5,1,2,3,4,6] => [6,4,3,2,1,5,7] => ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [1,2,3,4,7,5,6] => [1,7,2,3,4,5,6] => [6,5,4,3,2,7,1] => ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [1,2,3,7,4,5,6] => [1,2,7,3,4,5,6] => [6,5,4,3,7,2,1] => ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,2,4,3,5,6,7] => [4,1,2,3,5,6,7] => [7,6,5,3,2,1,4] => ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [1,2,4,3,5,7,6] => [7,4,1,2,3,5,6] => [6,5,3,2,1,4,7] => ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [1,2,4,3,6,5,7] => [6,4,1,2,3,5,7] => [7,5,3,2,1,4,6] => ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [1,2,4,3,5,7,6] => [7,4,1,2,3,5,6] => [6,5,3,2,1,4,7] => ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [1,2,4,3,7,5,6] => [4,7,1,2,3,5,6] => [6,5,3,2,1,7,4] => ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,2,3,5,4,6,7] => [5,1,2,3,4,6,7] => [7,6,4,3,2,1,5] => ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [1,2,3,5,4,7,6] => [7,5,1,2,3,4,6] => [6,4,3,2,1,5,7] => ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [1,2,3,4,6,5,7] => [6,1,2,3,4,5,7] => [7,5,4,3,2,1,6] => ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [1,2,3,4,7,5,6] => [1,7,2,3,4,5,6] => [6,5,4,3,2,7,1] => ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [1,2,3,6,4,5,7] => [1,6,2,3,4,5,7] => [7,5,4,3,2,6,1] => ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [1,2,3,5,4,7,6] => [7,5,1,2,3,4,6] => [6,4,3,2,1,5,7] => ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [1,2,3,4,7,5,6] => [1,7,2,3,4,5,6] => [6,5,4,3,2,7,1] => ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [1,2,3,7,4,5,6] => [1,2,7,3,4,5,6] => [6,5,4,3,7,2,1] => ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,2,5,3,4,6,7] => [1,5,2,3,4,6,7] => [7,6,4,3,2,5,1] => ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [1,2,4,3,6,5,7] => [6,4,1,2,3,5,7] => [7,5,3,2,1,4,6] => ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [1,2,4,3,5,7,6] => [7,4,1,2,3,5,6] => [6,5,3,2,1,4,7] => ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [1,2,4,3,7,5,6] => [4,7,1,2,3,5,6] => [6,5,3,2,1,7,4] => ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [1,2,3,6,4,5,7] => [1,6,2,3,4,5,7] => [7,5,4,3,2,6,1] => ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [1,2,3,5,4,7,6] => [7,5,1,2,3,4,6] => [6,4,3,2,1,5,7] => ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [1,2,3,4,7,5,6] => [1,7,2,3,4,5,6] => [6,5,4,3,2,7,1] => ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,-1,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [1,2,3,7,4,5,6] => [1,2,7,3,4,5,6] => [6,5,4,3,7,2,1] => ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [1,2,6,3,4,5,7] => [1,2,6,3,4,5,7] => [7,5,4,3,6,2,1] => ? = 7
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,1,0,0,0,0],[0,0,0,1,0,-1,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [1,2,4,3,7,5,6] => [4,7,1,2,3,5,6] => [6,5,3,2,1,7,4] => ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,1,0,0,-1,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [1,2,3,7,4,5,6] => [1,2,7,3,4,5,6] => [6,5,4,3,7,2,1] => ? = 6
[[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,0,1],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [1,2,7,3,4,5,6] => [1,2,3,7,4,5,6] => [6,5,4,7,3,2,1] => ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,3,2,4,5,6,7] => [3,1,2,4,5,6,7] => [7,6,5,4,2,1,3] => ? = 7
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [1,3,2,4,5,7,6] => [7,3,1,2,4,5,6] => [6,5,4,2,1,3,7] => ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [1,3,2,4,6,5,7] => [6,3,1,2,4,5,7] => [7,5,4,2,1,3,6] => ? = 7
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [1,3,2,4,5,7,6] => [7,3,1,2,4,5,6] => [6,5,4,2,1,3,7] => ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [1,3,2,4,7,5,6] => [3,7,1,2,4,5,6] => [6,5,4,2,1,7,3] => ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,3,2,5,4,6,7] => [5,3,1,2,4,6,7] => [7,6,4,2,1,3,5] => ? = 7
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [1,3,2,5,4,7,6] => [7,5,3,1,2,4,6] => [6,4,2,1,3,5,7] => ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [1,3,2,4,6,5,7] => [6,3,1,2,4,5,7] => [7,5,4,2,1,3,6] => ? = 7
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [1,3,2,4,5,7,6] => [7,3,1,2,4,5,6] => [6,5,4,2,1,3,7] => ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [1,3,2,4,7,5,6] => [3,7,1,2,4,5,6] => [6,5,4,2,1,7,3] => ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [1,3,2,6,4,5,7] => [3,6,1,2,4,5,7] => [7,5,4,2,1,6,3] => ? = 7
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [1,3,2,5,4,7,6] => [7,5,3,1,2,4,6] => [6,4,2,1,3,5,7] => ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,-1,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [1,3,2,4,7,5,6] => [3,7,1,2,4,5,6] => [6,5,4,2,1,7,3] => ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [1,3,2,7,4,5,6] => [3,1,7,2,4,5,6] => [6,5,4,2,7,1,3] => ? = 6
[[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,2,4,3,5,6,7] => [4,1,2,3,5,6,7] => [7,6,5,3,2,1,4] => ? = 7
Description
The first entry of the permutation.
This can be described as 1 plus the number of occurrences of the vincular pattern ([2,1], {(0,0),(0,1),(0,2)}), i.e., the first column is shaded, see [1].
This statistic is related to the number of deficiencies [[St000703]] as follows: consider the arc diagram of a permutation $\pi$ of $n$, together with its rotations, obtained by conjugating with the long cycle $(1,\dots,n)$. Drawing the labels $1$ to $n$ in this order on a circle, and the arcs $(i, \pi(i))$ as straight lines, the rotation of $\pi$ is obtained by replacing each number $i$ by $(i\bmod n) +1$. Then, $\pi(1)-1$ is the number of rotations of $\pi$ where the arc $(1, \pi(1))$ is a deficiency. In particular, if $O(\pi)$ is the orbit of rotations of $\pi$, then the number of deficiencies of $\pi$ equals
$$
\frac{1}{|O(\pi)|}\sum_{\sigma\in O(\pi)} (\sigma(1)-1).
$$
The following 20 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000141The maximum drop size of a permutation. St001497The position of the largest weak excedence of a permutation. St000007The number of saliances of the permutation. St000989The number of final rises of a permutation. St001184Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra. St001291The number of indecomposable summands of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St000314The number of left-to-right-maxima of a permutation. St000838The number of terminal right-hand endpoints when the vertices are written in order. St000051The size of the left subtree of a binary tree. St000316The number of non-left-to-right-maxima of a permutation. St001185The number of indecomposable injective modules of grade at least 2 in the corresponding Nakayama algebra. St001227The vector space dimension of the first extension group between the socle of the regular module and the Jacobson radical of the corresponding Nakayama algebra. St000653The last descent of a permutation. St001480The number of simple summands of the module J^2/J^3. St000066The column of the unique '1' in the first row of the alternating sign matrix. St000840The number of closers smaller than the largest opener in a perfect matching. St000199The column of the unique '1' in the last row of the alternating sign matrix. St000193The row of the unique '1' in the first column of the alternating sign matrix. St000200The row of the unique '1' in the last column of the alternating sign matrix. St001085The number of occurrences of the vincular pattern |21-3 in a permutation.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!