searching the database
Your data matches 2 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000771
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1
([],2)
=> ([],2)
=> ([],2)
=> ([(0,1)],2)
=> 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1
([],3)
=> ([],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(1,2)],3)
=> ([(1,2)],3)
=> ([],2)
=> ([(0,1)],2)
=> 1
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> 1
([],4)
=> ([],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(2,3)],4)
=> ([(2,3)],4)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([],2)
=> ([(0,1)],2)
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([],2)
=> ([(0,1)],2)
=> 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([],1)
=> ([],1)
=> 1
([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
([],5)
=> ([],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(3,4)],5)
=> ([(3,4)],5)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([],2)
=> ([(0,1)],2)
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> 1
([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([],2)
=> ([(0,1)],2)
=> 1
([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ([],2)
=> ([(0,1)],2)
=> 1
([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([],1)
=> ([],1)
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
([],6)
=> ([],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
([(4,5)],6)
=> ([(4,5)],6)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([],2)
=> ([(0,1)],2)
=> 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> ([],1)
=> 1
([(2,5),(3,4)],6)
=> ([(2,5),(3,4)],6)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(2,5),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(1,2),(3,5),(4,5)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([],2)
=> ([(0,1)],2)
=> 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(2,5),(3,5),(4,5)],6)
=> ([],2)
=> ([(0,1)],2)
=> 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([],1)
=> ([],1)
=> 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,5),(1,5),(2,4),(3,4)],6)
=> ([],2)
=> ([(0,1)],2)
=> 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([],1)
=> ([],1)
=> 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
Description
The largest multiplicity of a distance Laplacian eigenvalue in a connected graph.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
$$
\left(\begin{array}{rrrr}
4 & -1 & -2 & -1 \\
-1 & 4 & -1 & -2 \\
-2 & -1 & 4 & -1 \\
-1 & -2 & -1 & 4
\end{array}\right).
$$
Its eigenvalues are $0,4,4,6$, so the statistic is $2$.
The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore statistic $1$.
Matching statistic: St000422
Values
([],1)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
([],2)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> ? = 1 + 1
([(0,1)],2)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
([],3)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 2 + 1
([(1,2)],3)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> ? = 1 + 1
([(0,2),(1,2)],3)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
([],4)
=> ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 3 + 1
([(2,3)],4)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 2 + 1
([(1,3),(2,3)],4)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> ? = 1 + 1
([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,3),(1,2)],4)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> ? = 1 + 1
([(0,3),(1,2),(2,3)],4)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
([],5)
=> ([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 4 + 1
([(3,4)],5)
=> ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 3 + 1
([(2,4),(3,4)],5)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 2 + 1
([(1,4),(2,4),(3,4)],5)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> ? = 1 + 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(1,4),(2,3)],5)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 2 + 1
([(1,4),(2,3),(3,4)],5)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> ? = 1 + 1
([(0,1),(2,4),(3,4)],5)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> ? = 1 + 1
([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? = 3 + 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ? = 2 + 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
([],6)
=> ([],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 5 + 1
([(4,5)],6)
=> ([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 4 + 1
([(3,5),(4,5)],6)
=> ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 3 + 1
([(2,5),(3,5),(4,5)],6)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 2 + 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> ? = 1 + 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(2,5),(3,4)],6)
=> ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 3 + 1
([(2,5),(3,4),(4,5)],6)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 2 + 1
([(1,2),(3,5),(4,5)],6)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 2 + 1
([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 + 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> ? = 1 + 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> ? = 1 + 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 3 + 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> ? = 1 + 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? = 2 + 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 + 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 2 + 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
([(0,5),(1,4),(2,3)],6)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 2 + 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> ? = 1 + 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> ? = 1 + 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 2 + 1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 + 1
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ? = 2 + 1
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(3,6),(4,6),(5,6)],7)
=> ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 3 + 1
([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(3,6),(4,5),(5,6)],7)
=> ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 3 + 1
([(2,3),(4,6),(5,6)],7)
=> ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 3 + 1
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(1,6),(2,5),(3,4)],7)
=> ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 3 + 1
([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 1 + 1
Description
The energy of a graph, if it is integral.
The energy of a graph is the sum of the absolute values of its eigenvalues. This statistic is only defined for graphs with integral energy. It is known, that the energy is never an odd integer [2]. In fact, it is never the square root of an odd integer [3].
The energy of a graph is the sum of the energies of the connected components of a graph. The energy of the complete graph $K_n$ equals $2n-2$. For this reason, we do not define the energy of the empty graph.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!