Your data matches 1 statistic following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000771
Mp00081: Standard tableaux reading word permutationPermutations
Mp00160: Permutations graph of inversionsGraphs
St000771: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1]]
=> [1] => ([],1)
=> 1
[[1],[2]]
=> [2,1] => ([(0,1)],2)
=> 1
[[1,2],[3]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[1],[2],[3]]
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[[1,2,3],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,3],[2,4]]
=> [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 1
[[1,2],[3,4]]
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[[1,3],[2],[4]]
=> [4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[1,2],[3],[4]]
=> [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[[1],[2],[3],[4]]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[1,2,3,4],[5]]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[[1,3,4],[2,5]]
=> [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
[[1,2,4],[3,5]]
=> [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 1
[[1,2,3],[4,5]]
=> [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[[1,3,4],[2],[5]]
=> [5,2,1,3,4] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[1,2,4],[3],[5]]
=> [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[1,2,3],[4],[5]]
=> [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[1,4],[2,5],[3]]
=> [3,2,5,1,4] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 1
[[1,3],[2,5],[4]]
=> [4,2,5,1,3] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
[[1,2],[3,5],[4]]
=> [4,3,5,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 1
[[1,3],[2,4],[5]]
=> [5,2,4,1,3] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[1,2],[3,4],[5]]
=> [5,3,4,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2
[[1,4],[2],[3],[5]]
=> [5,3,2,1,4] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[1,3],[2],[4],[5]]
=> [5,4,2,1,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4
[[1,3,4,5],[2,6]]
=> [2,6,1,3,4,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 2
[[1,2,4,5],[3,6]]
=> [3,6,1,2,4,5] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 1
[[1,2,3,5],[4,6]]
=> [4,6,1,2,3,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 3
[[1,3,4,5],[2],[6]]
=> [6,2,1,3,4,5] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,2,4,5],[3],[6]]
=> [6,3,1,2,4,5] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,2,3,5],[4],[6]]
=> [6,4,1,2,3,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,3,5],[2,4,6]]
=> [2,4,6,1,3,5] => ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 1
[[1,2,5],[3,4,6]]
=> [3,4,6,1,2,5] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 2
[[1,3,4],[2,5,6]]
=> [2,5,6,1,3,4] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 2
[[1,2,4],[3,5,6]]
=> [3,5,6,1,2,4] => ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 3
[[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> 4
[[1,4,5],[2,6],[3]]
=> [3,2,6,1,4,5] => ([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> 1
[[1,3,5],[2,6],[4]]
=> [4,2,6,1,3,5] => ([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[[1,2,5],[3,6],[4]]
=> [4,3,6,1,2,5] => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 3
[[1,3,4],[2,6],[5]]
=> [5,2,6,1,3,4] => ([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> 1
[[1,2,4],[3,6],[5]]
=> [5,3,6,1,2,4] => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[[1,2,3],[4,6],[5]]
=> [5,4,6,1,2,3] => ([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,3,5],[2,4],[6]]
=> [6,2,4,1,3,5] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,2,5],[3,4],[6]]
=> [6,3,4,1,2,5] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 2
[[1,3,4],[2,5],[6]]
=> [6,2,5,1,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,2,4],[3,5],[6]]
=> [6,3,5,1,2,4] => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
Description
The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue. For example, the cycle on four vertices has distance Laplacian $$ \left(\begin{array}{rrrr} 4 & -1 & -2 & -1 \\ -1 & 4 & -1 & -2 \\ -2 & -1 & 4 & -1 \\ -1 & -2 & -1 & 4 \end{array}\right). $$ Its eigenvalues are $0,4,4,6$, so the statistic is $2$. The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore statistic $1$.