Your data matches 146 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00224: Binary words runsortBinary words
Mp00269: Binary words flag zeros to zerosBinary words
St000982: Binary words ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
0 => 0 => 0 => 1
1 => 1 => 1 => 1
01 => 01 => 10 => 1
10 => 01 => 10 => 1
001 => 001 => 101 => 1
010 => 001 => 101 => 1
100 => 001 => 101 => 1
0001 => 0001 => 1011 => 2
0010 => 0001 => 1011 => 2
0100 => 0001 => 1011 => 2
0101 => 0101 => 1000 => 3
1000 => 0001 => 1011 => 2
00001 => 00001 => 10111 => 3
00010 => 00001 => 10111 => 3
00100 => 00001 => 10111 => 3
00101 => 00101 => 10001 => 3
01000 => 00001 => 10111 => 3
01001 => 00101 => 10001 => 3
01010 => 00101 => 10001 => 3
10000 => 00001 => 10111 => 3
000001 => 000001 => 101111 => 4
000010 => 000001 => 101111 => 4
000100 => 000001 => 101111 => 4
000101 => 000101 => 100011 => 3
001000 => 000001 => 101111 => 4
001001 => 001001 => 101001 => 2
001010 => 000101 => 100011 => 3
001101 => 001101 => 100101 => 2
010000 => 000001 => 101111 => 4
010001 => 000101 => 100011 => 3
010010 => 000101 => 100011 => 3
010011 => 001101 => 100101 => 2
010100 => 000101 => 100011 => 3
010101 => 010101 => 100000 => 5
100000 => 000001 => 101111 => 4
0000001 => 0000001 => 1011111 => 5
0000010 => 0000001 => 1011111 => 5
0000100 => 0000001 => 1011111 => 5
0000101 => 0000101 => 1000111 => 3
0001000 => 0000001 => 1011111 => 5
0001001 => 0001001 => 1010011 => 2
0001010 => 0000101 => 1000111 => 3
0001101 => 0001101 => 1001011 => 2
0010000 => 0000001 => 1011111 => 5
0010001 => 0001001 => 1010011 => 2
0010010 => 0001001 => 1010011 => 2
0010100 => 0000101 => 1000111 => 3
0010101 => 0010101 => 1000001 => 5
0011010 => 0001101 => 1001011 => 2
0011101 => 0011101 => 1001101 => 2
Description
The length of the longest constant subword.
Matching statistic: St000771
Mp00224: Binary words runsortBinary words
Mp00097: Binary words delta morphismInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000771: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
0 => 0 => [1] => ([],1)
=> 1
1 => 1 => [1] => ([],1)
=> 1
01 => 01 => [1,1] => ([(0,1)],2)
=> 1
10 => 01 => [1,1] => ([(0,1)],2)
=> 1
001 => 001 => [2,1] => ([(0,2),(1,2)],3)
=> 1
010 => 001 => [2,1] => ([(0,2),(1,2)],3)
=> 1
100 => 001 => [2,1] => ([(0,2),(1,2)],3)
=> 1
0001 => 0001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
0010 => 0001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
0100 => 0001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
0101 => 0101 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
1000 => 0001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
00001 => 00001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
00010 => 00001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
00100 => 00001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
00101 => 00101 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
01000 => 00001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
01001 => 00101 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
01010 => 00101 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
10000 => 00001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
000001 => 000001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4
000010 => 000001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4
000100 => 000001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4
000101 => 000101 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
001000 => 000001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4
001001 => 001001 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
001010 => 000101 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
001101 => 001101 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
010000 => 000001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4
010001 => 000101 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
010010 => 000101 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
010011 => 001101 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
010100 => 000101 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
010101 => 010101 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
100000 => 000001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4
0000001 => 0000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5
0000010 => 0000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5
0000100 => 0000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5
0000101 => 0000101 => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
0001000 => 0000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5
0001001 => 0001001 => [3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2
0001010 => 0000101 => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
0001101 => 0001101 => [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2
0010000 => 0000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5
0010001 => 0001001 => [3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2
0010010 => 0001001 => [3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2
0010100 => 0000101 => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
0010101 => 0010101 => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 5
0011010 => 0001101 => [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2
0011101 => 0011101 => [2,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2
Description
The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue. For example, the cycle on four vertices has distance Laplacian $$ \left(\begin{array}{rrrr} 4 & -1 & -2 & -1 \\ -1 & 4 & -1 & -2 \\ -2 & -1 & 4 & -1 \\ -1 & -2 & -1 & 4 \end{array}\right). $$ Its eigenvalues are $0,4,4,6$, so the statistic is $2$. The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore statistic $1$.
Matching statistic: St000774
Mp00224: Binary words runsortBinary words
Mp00097: Binary words delta morphismInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000774: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
0 => 0 => [1] => ([],1)
=> 1
1 => 1 => [1] => ([],1)
=> 1
01 => 01 => [1,1] => ([(0,1)],2)
=> 1
10 => 01 => [1,1] => ([(0,1)],2)
=> 1
001 => 001 => [2,1] => ([(0,2),(1,2)],3)
=> 1
010 => 001 => [2,1] => ([(0,2),(1,2)],3)
=> 1
100 => 001 => [2,1] => ([(0,2),(1,2)],3)
=> 1
0001 => 0001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
0010 => 0001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
0100 => 0001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
0101 => 0101 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
1000 => 0001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
00001 => 00001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
00010 => 00001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
00100 => 00001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
00101 => 00101 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
01000 => 00001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
01001 => 00101 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
01010 => 00101 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
10000 => 00001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
000001 => 000001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4
000010 => 000001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4
000100 => 000001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4
000101 => 000101 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
001000 => 000001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4
001001 => 001001 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
001010 => 000101 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
001101 => 001101 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
010000 => 000001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4
010001 => 000101 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
010010 => 000101 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
010011 => 001101 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
010100 => 000101 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
010101 => 010101 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
100000 => 000001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4
0000001 => 0000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5
0000010 => 0000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5
0000100 => 0000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5
0000101 => 0000101 => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
0001000 => 0000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5
0001001 => 0001001 => [3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2
0001010 => 0000101 => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
0001101 => 0001101 => [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2
0010000 => 0000001 => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 5
0010001 => 0001001 => [3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2
0010010 => 0001001 => [3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2
0010100 => 0000101 => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
0010101 => 0010101 => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 5
0011010 => 0001101 => [3,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2
0011101 => 0011101 => [2,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2
Description
The maximal multiplicity of a Laplacian eigenvalue in a graph.
Matching statistic: St001491
Mp00224: Binary words runsortBinary words
Mp00104: Binary words reverseBinary words
Mp00269: Binary words flag zeros to zerosBinary words
St001491: Binary words ⟶ ℤResult quality: 13% values known / values provided: 13%distinct values known / distinct values provided: 40%
Values
0 => 0 => 0 => 0 => ? = 1
1 => 1 => 1 => 1 => 1
01 => 01 => 10 => 00 => ? = 1
10 => 01 => 10 => 00 => ? = 1
001 => 001 => 100 => 010 => 1
010 => 001 => 100 => 010 => 1
100 => 001 => 100 => 010 => 1
0001 => 0001 => 1000 => 0110 => 2
0010 => 0001 => 1000 => 0110 => 2
0100 => 0001 => 1000 => 0110 => 2
0101 => 0101 => 1010 => 0000 => ? = 3
1000 => 0001 => 1000 => 0110 => 2
00001 => 00001 => 10000 => 01110 => ? = 3
00010 => 00001 => 10000 => 01110 => ? = 3
00100 => 00001 => 10000 => 01110 => ? = 3
00101 => 00101 => 10100 => 01000 => ? = 3
01000 => 00001 => 10000 => 01110 => ? = 3
01001 => 00101 => 10100 => 01000 => ? = 3
01010 => 00101 => 10100 => 01000 => ? = 3
10000 => 00001 => 10000 => 01110 => ? = 3
000001 => 000001 => 100000 => 011110 => ? = 4
000010 => 000001 => 100000 => 011110 => ? = 4
000100 => 000001 => 100000 => 011110 => ? = 4
000101 => 000101 => 101000 => 011000 => ? = 3
001000 => 000001 => 100000 => 011110 => ? = 4
001001 => 001001 => 100100 => 010010 => ? = 2
001010 => 000101 => 101000 => 011000 => ? = 3
001101 => 001101 => 101100 => 010100 => ? = 2
010000 => 000001 => 100000 => 011110 => ? = 4
010001 => 000101 => 101000 => 011000 => ? = 3
010010 => 000101 => 101000 => 011000 => ? = 3
010011 => 001101 => 101100 => 010100 => ? = 2
010100 => 000101 => 101000 => 011000 => ? = 3
010101 => 010101 => 101010 => 000000 => ? = 5
100000 => 000001 => 100000 => 011110 => ? = 4
0000001 => 0000001 => 1000000 => 0111110 => ? = 5
0000010 => 0000001 => 1000000 => 0111110 => ? = 5
0000100 => 0000001 => 1000000 => 0111110 => ? = 5
0000101 => 0000101 => 1010000 => 0111000 => ? = 3
0001000 => 0000001 => 1000000 => 0111110 => ? = 5
0001001 => 0001001 => 1001000 => 0110010 => ? = 2
0001010 => 0000101 => 1010000 => 0111000 => ? = 3
0001101 => 0001101 => 1011000 => 0110100 => ? = 2
0010000 => 0000001 => 1000000 => 0111110 => ? = 5
0010001 => 0001001 => 1001000 => 0110010 => ? = 2
0010010 => 0001001 => 1001000 => 0110010 => ? = 2
0010100 => 0000101 => 1010000 => 0111000 => ? = 3
0010101 => 0010101 => 1010100 => 0100000 => ? = 5
0011010 => 0001101 => 1011000 => 0110100 => ? = 2
0011101 => 0011101 => 1011100 => 0101100 => ? = 2
0100000 => 0000001 => 1000000 => 0111110 => ? = 5
0100001 => 0000101 => 1010000 => 0111000 => ? = 3
0100010 => 0000101 => 1010000 => 0111000 => ? = 3
0100011 => 0001101 => 1011000 => 0110100 => ? = 2
0100100 => 0000101 => 1010000 => 0111000 => ? = 3
0100101 => 0010101 => 1010100 => 0100000 => ? = 5
0100110 => 0001101 => 1011000 => 0110100 => ? = 2
0100111 => 0011101 => 1011100 => 0101100 => ? = 2
Description
The number of indecomposable projective-injective modules in the algebra corresponding to a subset. Let $A_n=K[x]/(x^n)$. We associate to a nonempty subset S of an (n-1)-set the module $M_S$, which is the direct sum of $A_n$-modules with indecomposable non-projective direct summands of dimension $i$ when $i$ is in $S$ (note that such modules have vector space dimension at most n-1). Then the corresponding algebra associated to S is the stable endomorphism ring of $M_S$. We decode the subset as a binary word so that for example the subset $S=\{1,3 \} $ of $\{1,2,3 \}$ is decoded as 101.
Mp00262: Binary words poset of factorsPosets
St000908: Posets ⟶ ℤResult quality: 11% values known / values provided: 11%distinct values known / distinct values provided: 20%
Values
0 => ([(0,1)],2)
=> 1
1 => ([(0,1)],2)
=> 1
01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
10 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 1
100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
0001 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2
0010 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 2
0100 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 2
0101 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ? = 3
1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2
00001 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 3
00010 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 3
00100 => ([(0,2),(0,3),(1,5),(1,6),(2,10),(2,11),(3,1),(3,10),(3,11),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9)],12)
=> ? = 3
00101 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ? = 3
01000 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 3
01001 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ? = 3
01010 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ? = 3
10000 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 3
000001 => ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> ? = 4
000010 => ([(0,4),(0,5),(1,3),(1,12),(2,11),(3,2),(3,14),(4,10),(4,13),(5,1),(5,10),(5,13),(7,8),(8,9),(9,6),(10,7),(11,6),(12,8),(12,14),(13,7),(13,12),(14,9),(14,11)],15)
=> ? = 4
000100 => ([(0,3),(0,4),(1,10),(2,1),(2,6),(2,12),(3,14),(3,15),(4,2),(4,14),(4,15),(6,7),(7,8),(8,5),(9,5),(10,9),(11,7),(11,13),(12,10),(12,13),(13,8),(13,9),(14,6),(14,11),(15,11),(15,12)],16)
=> ? = 4
000101 => ([(0,3),(0,4),(1,2),(1,14),(2,6),(3,13),(3,15),(4,1),(4,13),(4,15),(6,9),(7,8),(8,10),(9,5),(10,5),(11,8),(11,12),(12,9),(12,10),(13,7),(13,11),(14,6),(14,12),(15,7),(15,11),(15,14)],16)
=> ? = 3
001000 => ([(0,3),(0,4),(1,10),(2,1),(2,6),(2,12),(3,14),(3,15),(4,2),(4,14),(4,15),(6,7),(7,8),(8,5),(9,5),(10,9),(11,7),(11,13),(12,10),(12,13),(13,8),(13,9),(14,6),(14,11),(15,11),(15,12)],16)
=> ? = 4
001001 => ([(0,2),(0,3),(1,11),(1,12),(2,13),(2,14),(3,1),(3,13),(3,14),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,9),(11,6),(11,9),(12,5),(12,6),(13,10),(13,11),(14,10),(14,12)],15)
=> ? = 2
001010 => ([(0,2),(0,3),(1,9),(2,12),(2,14),(3,1),(3,12),(3,14),(5,7),(6,8),(7,4),(8,4),(9,5),(10,6),(10,11),(11,7),(11,8),(12,10),(12,13),(13,5),(13,6),(13,11),(14,9),(14,10),(14,13)],15)
=> ? = 3
001101 => ([(0,3),(0,4),(1,11),(2,12),(2,13),(3,2),(3,15),(3,16),(4,1),(4,15),(4,16),(6,7),(7,9),(8,10),(9,5),(10,5),(11,8),(12,7),(12,14),(13,8),(13,14),(14,9),(14,10),(15,6),(15,12),(16,6),(16,11),(16,13)],17)
=> ? = 2
010000 => ([(0,4),(0,5),(1,3),(1,12),(2,11),(3,2),(3,14),(4,10),(4,13),(5,1),(5,10),(5,13),(7,8),(8,9),(9,6),(10,7),(11,6),(12,8),(12,14),(13,7),(13,12),(14,9),(14,11)],15)
=> ? = 4
010001 => ([(0,3),(0,4),(1,2),(1,11),(1,15),(2,7),(2,12),(3,13),(3,14),(4,1),(4,13),(4,14),(6,9),(7,10),(8,6),(9,5),(10,5),(11,7),(12,9),(12,10),(13,8),(13,15),(14,8),(14,11),(15,6),(15,12)],16)
=> ? = 3
010010 => ([(0,2),(0,3),(1,10),(1,11),(2,13),(2,14),(3,1),(3,13),(3,14),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9),(12,5),(12,6),(13,10),(13,12),(14,11),(14,12)],15)
=> ? = 3
010011 => ([(0,3),(0,4),(1,11),(2,12),(2,13),(3,2),(3,15),(3,16),(4,1),(4,15),(4,16),(6,7),(7,9),(8,10),(9,5),(10,5),(11,8),(12,7),(12,14),(13,8),(13,14),(14,9),(14,10),(15,6),(15,12),(16,6),(16,11),(16,13)],17)
=> ? = 2
010100 => ([(0,2),(0,3),(1,9),(2,12),(2,14),(3,1),(3,12),(3,14),(5,7),(6,8),(7,4),(8,4),(9,5),(10,6),(10,11),(11,7),(11,8),(12,10),(12,13),(13,5),(13,6),(13,11),(14,9),(14,10),(14,13)],15)
=> ? = 3
010101 => ([(0,1),(0,2),(1,10),(1,11),(2,10),(2,11),(4,3),(5,3),(6,8),(6,9),(7,8),(7,9),(8,4),(8,5),(9,4),(9,5),(10,6),(10,7),(11,6),(11,7)],12)
=> ? = 5
100000 => ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> ? = 4
0000001 => ([(0,2),(0,7),(1,9),(2,8),(3,4),(3,11),(4,6),(4,10),(5,3),(5,13),(6,1),(6,12),(7,5),(7,8),(8,13),(10,12),(11,10),(12,9),(13,11)],14)
=> ? = 5
0000010 => ([(0,5),(0,6),(1,4),(1,14),(2,13),(3,2),(3,16),(4,3),(4,17),(5,12),(5,15),(6,1),(6,12),(6,15),(8,11),(9,10),(10,8),(11,7),(12,9),(13,7),(14,10),(14,17),(15,9),(15,14),(16,11),(16,13),(17,8),(17,16)],18)
=> ? = 5
0000100 => ([(0,4),(0,5),(1,2),(1,17),(2,7),(3,1),(3,8),(3,16),(4,18),(4,19),(5,3),(5,18),(5,19),(7,12),(8,9),(9,10),(10,11),(11,6),(12,6),(13,10),(13,14),(14,11),(14,12),(15,9),(15,13),(16,13),(16,17),(17,7),(17,14),(18,15),(18,16),(19,8),(19,15)],20)
=> ? = 5
0000101 => ([(0,4),(0,5),(1,3),(1,14),(2,12),(3,2),(3,18),(4,17),(4,19),(5,1),(5,17),(5,19),(7,8),(8,9),(9,10),(10,6),(11,6),(12,11),(13,8),(13,16),(14,16),(14,18),(15,10),(15,11),(16,9),(16,15),(17,7),(17,13),(18,12),(18,15),(19,7),(19,13),(19,14)],20)
=> ? = 3
0001000 => ([(0,3),(0,4),(1,2),(1,18),(1,19),(2,6),(2,7),(3,16),(3,17),(4,1),(4,16),(4,17),(6,9),(7,8),(8,10),(9,11),(10,5),(11,5),(12,14),(12,15),(13,10),(13,11),(14,8),(14,13),(15,9),(15,13),(16,12),(16,18),(17,12),(17,19),(18,7),(18,14),(19,6),(19,15)],20)
=> ? = 5
0001001 => ([(0,3),(0,4),(1,11),(2,1),(2,15),(2,19),(3,17),(3,18),(4,2),(4,17),(4,18),(6,10),(7,8),(8,9),(9,5),(10,5),(11,6),(12,8),(12,13),(13,9),(13,10),(14,12),(14,16),(15,7),(15,12),(16,6),(16,13),(17,14),(17,15),(18,14),(18,19),(19,7),(19,11),(19,16)],20)
=> ? = 2
0001010 => ([(0,3),(0,4),(1,2),(1,17),(2,6),(3,16),(3,19),(4,1),(4,16),(4,19),(6,8),(7,10),(8,11),(9,7),(10,5),(11,5),(12,9),(12,14),(13,8),(13,15),(14,7),(14,15),(15,10),(15,11),(16,12),(16,18),(17,6),(17,13),(18,9),(18,13),(18,14),(19,12),(19,17),(19,18)],20)
=> ? = 3
0001101 => ([(0,4),(0,5),(1,13),(2,1),(2,15),(3,14),(3,16),(4,2),(4,20),(4,21),(5,3),(5,20),(5,21),(7,8),(8,9),(9,11),(10,12),(11,6),(12,6),(13,10),(14,8),(14,18),(15,13),(15,17),(16,17),(16,18),(17,10),(17,19),(18,9),(18,19),(19,11),(19,12),(20,7),(20,14),(21,7),(21,15),(21,16)],22)
=> ? = 2
0010000 => ([(0,4),(0,5),(1,2),(1,17),(2,7),(3,1),(3,8),(3,16),(4,18),(4,19),(5,3),(5,18),(5,19),(7,12),(8,9),(9,10),(10,11),(11,6),(12,6),(13,10),(13,14),(14,11),(14,12),(15,9),(15,13),(16,13),(16,17),(17,7),(17,14),(18,15),(18,16),(19,8),(19,15)],20)
=> ? = 5
0010001 => ([(0,3),(0,4),(1,2),(1,18),(1,19),(2,7),(2,14),(3,15),(3,16),(4,1),(4,15),(4,16),(6,8),(7,9),(8,10),(9,11),(10,5),(11,5),(12,10),(12,11),(13,8),(13,12),(14,9),(14,12),(15,17),(15,19),(16,17),(16,18),(17,6),(17,13),(18,13),(18,14),(19,6),(19,7)],20)
=> ? = 2
0010010 => ([(0,2),(0,3),(1,11),(1,12),(2,16),(2,17),(3,1),(3,16),(3,17),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,13),(10,15),(11,14),(11,15),(12,13),(12,14),(13,5),(13,9),(14,6),(14,9),(15,5),(15,6),(16,10),(16,12),(17,10),(17,11)],18)
=> ? = 2
0010100 => ([(0,2),(0,3),(1,7),(1,8),(2,17),(2,18),(3,1),(3,17),(3,18),(5,10),(6,9),(7,6),(8,5),(9,11),(10,12),(11,4),(12,4),(13,14),(13,15),(14,9),(14,16),(15,10),(15,16),(16,11),(16,12),(17,7),(17,13),(17,19),(18,8),(18,13),(18,19),(19,5),(19,6),(19,14),(19,15)],20)
=> ? = 3
0010101 => ([(0,2),(0,3),(1,10),(2,14),(2,17),(3,1),(3,14),(3,17),(5,8),(6,5),(7,9),(8,4),(9,4),(10,6),(11,13),(11,16),(12,8),(12,9),(13,7),(13,12),(14,11),(14,15),(15,6),(15,13),(15,16),(16,5),(16,7),(16,12),(17,10),(17,11),(17,15)],18)
=> ? = 5
0011010 => ([(0,3),(0,4),(1,13),(2,14),(2,15),(3,2),(3,20),(3,21),(4,1),(4,20),(4,21),(6,7),(7,8),(8,11),(9,12),(10,9),(11,5),(12,5),(13,10),(14,10),(14,18),(15,17),(15,18),(16,7),(16,17),(17,8),(17,19),(18,9),(18,19),(19,11),(19,12),(20,6),(20,15),(20,16),(21,6),(21,13),(21,14),(21,16)],22)
=> ? = 2
0011101 => ([(0,4),(0,5),(1,14),(2,3),(2,19),(2,20),(3,15),(3,16),(4,1),(4,17),(4,21),(5,2),(5,17),(5,21),(7,10),(8,9),(9,12),(10,13),(11,7),(12,6),(13,6),(14,8),(15,10),(15,18),(16,9),(16,18),(17,11),(17,20),(18,12),(18,13),(19,8),(19,16),(20,7),(20,15),(21,11),(21,14),(21,19)],22)
=> ? = 2
0100000 => ([(0,5),(0,6),(1,4),(1,14),(2,13),(3,2),(3,16),(4,3),(4,17),(5,12),(5,15),(6,1),(6,12),(6,15),(8,11),(9,10),(10,8),(11,7),(12,9),(13,7),(14,10),(14,17),(15,9),(15,14),(16,11),(16,13),(17,8),(17,16)],18)
=> ? = 5
0100001 => ([(0,4),(0,5),(1,3),(1,9),(1,17),(2,14),(2,19),(3,2),(3,13),(3,18),(4,15),(4,16),(5,1),(5,15),(5,16),(7,11),(8,7),(9,13),(10,8),(11,6),(12,6),(13,14),(14,12),(15,9),(15,10),(16,10),(16,17),(17,8),(17,18),(18,7),(18,19),(19,11),(19,12)],20)
=> ? = 3
0100010 => ([(0,3),(0,4),(1,2),(1,18),(1,19),(2,13),(2,14),(3,15),(3,16),(4,1),(4,15),(4,16),(6,9),(7,8),(8,10),(9,11),(10,5),(11,5),(12,10),(12,11),(13,8),(13,12),(14,9),(14,12),(15,17),(15,18),(16,17),(16,19),(17,6),(17,7),(18,7),(18,13),(19,6),(19,14)],20)
=> ? = 3
0100011 => ([(0,4),(0,5),(1,14),(2,3),(2,19),(2,20),(3,15),(3,16),(4,1),(4,17),(4,21),(5,2),(5,17),(5,21),(7,10),(8,9),(9,12),(10,13),(11,7),(12,6),(13,6),(14,8),(15,10),(15,18),(16,9),(16,18),(17,11),(17,20),(18,12),(18,13),(19,8),(19,16),(20,7),(20,15),(21,11),(21,14),(21,19)],22)
=> ? = 2
0100100 => ([(0,2),(0,3),(1,11),(1,12),(2,16),(2,17),(3,1),(3,16),(3,17),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,13),(10,15),(11,14),(11,15),(12,13),(12,14),(13,5),(13,9),(14,6),(14,9),(15,5),(15,6),(16,10),(16,12),(17,10),(17,11)],18)
=> ? = 3
0100101 => ([(0,2),(0,3),(1,12),(1,13),(2,18),(2,19),(3,1),(3,18),(3,19),(5,8),(6,5),(7,10),(8,11),(9,7),(10,4),(11,4),(12,9),(12,15),(13,14),(13,15),(14,8),(14,16),(15,7),(15,16),(16,10),(16,11),(17,5),(17,9),(17,14),(18,6),(18,12),(18,17),(19,6),(19,13),(19,17)],20)
=> ? = 5
0100110 => ([(0,3),(0,4),(1,17),(1,19),(2,13),(2,18),(3,1),(3,20),(3,21),(4,2),(4,20),(4,21),(6,9),(7,10),(8,6),(9,11),(10,12),(11,5),(12,5),(13,7),(14,9),(14,16),(15,10),(15,16),(16,11),(16,12),(17,6),(17,14),(18,7),(18,15),(19,14),(19,15),(20,8),(20,18),(20,19),(21,8),(21,13),(21,17)],22)
=> ? = 2
Description
The length of the shortest maximal antichain in a poset.
Mp00262: Binary words poset of factorsPosets
St000914: Posets ⟶ ℤResult quality: 11% values known / values provided: 11%distinct values known / distinct values provided: 20%
Values
0 => ([(0,1)],2)
=> 1
1 => ([(0,1)],2)
=> 1
01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
10 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 1
100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
0001 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2
0010 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 2
0100 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 2
0101 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ? = 3
1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2
00001 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 3
00010 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 3
00100 => ([(0,2),(0,3),(1,5),(1,6),(2,10),(2,11),(3,1),(3,10),(3,11),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9)],12)
=> ? = 3
00101 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ? = 3
01000 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 3
01001 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ? = 3
01010 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ? = 3
10000 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 3
000001 => ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> ? = 4
000010 => ([(0,4),(0,5),(1,3),(1,12),(2,11),(3,2),(3,14),(4,10),(4,13),(5,1),(5,10),(5,13),(7,8),(8,9),(9,6),(10,7),(11,6),(12,8),(12,14),(13,7),(13,12),(14,9),(14,11)],15)
=> ? = 4
000100 => ([(0,3),(0,4),(1,10),(2,1),(2,6),(2,12),(3,14),(3,15),(4,2),(4,14),(4,15),(6,7),(7,8),(8,5),(9,5),(10,9),(11,7),(11,13),(12,10),(12,13),(13,8),(13,9),(14,6),(14,11),(15,11),(15,12)],16)
=> ? = 4
000101 => ([(0,3),(0,4),(1,2),(1,14),(2,6),(3,13),(3,15),(4,1),(4,13),(4,15),(6,9),(7,8),(8,10),(9,5),(10,5),(11,8),(11,12),(12,9),(12,10),(13,7),(13,11),(14,6),(14,12),(15,7),(15,11),(15,14)],16)
=> ? = 3
001000 => ([(0,3),(0,4),(1,10),(2,1),(2,6),(2,12),(3,14),(3,15),(4,2),(4,14),(4,15),(6,7),(7,8),(8,5),(9,5),(10,9),(11,7),(11,13),(12,10),(12,13),(13,8),(13,9),(14,6),(14,11),(15,11),(15,12)],16)
=> ? = 4
001001 => ([(0,2),(0,3),(1,11),(1,12),(2,13),(2,14),(3,1),(3,13),(3,14),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,9),(11,6),(11,9),(12,5),(12,6),(13,10),(13,11),(14,10),(14,12)],15)
=> ? = 2
001010 => ([(0,2),(0,3),(1,9),(2,12),(2,14),(3,1),(3,12),(3,14),(5,7),(6,8),(7,4),(8,4),(9,5),(10,6),(10,11),(11,7),(11,8),(12,10),(12,13),(13,5),(13,6),(13,11),(14,9),(14,10),(14,13)],15)
=> ? = 3
001101 => ([(0,3),(0,4),(1,11),(2,12),(2,13),(3,2),(3,15),(3,16),(4,1),(4,15),(4,16),(6,7),(7,9),(8,10),(9,5),(10,5),(11,8),(12,7),(12,14),(13,8),(13,14),(14,9),(14,10),(15,6),(15,12),(16,6),(16,11),(16,13)],17)
=> ? = 2
010000 => ([(0,4),(0,5),(1,3),(1,12),(2,11),(3,2),(3,14),(4,10),(4,13),(5,1),(5,10),(5,13),(7,8),(8,9),(9,6),(10,7),(11,6),(12,8),(12,14),(13,7),(13,12),(14,9),(14,11)],15)
=> ? = 4
010001 => ([(0,3),(0,4),(1,2),(1,11),(1,15),(2,7),(2,12),(3,13),(3,14),(4,1),(4,13),(4,14),(6,9),(7,10),(8,6),(9,5),(10,5),(11,7),(12,9),(12,10),(13,8),(13,15),(14,8),(14,11),(15,6),(15,12)],16)
=> ? = 3
010010 => ([(0,2),(0,3),(1,10),(1,11),(2,13),(2,14),(3,1),(3,13),(3,14),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9),(12,5),(12,6),(13,10),(13,12),(14,11),(14,12)],15)
=> ? = 3
010011 => ([(0,3),(0,4),(1,11),(2,12),(2,13),(3,2),(3,15),(3,16),(4,1),(4,15),(4,16),(6,7),(7,9),(8,10),(9,5),(10,5),(11,8),(12,7),(12,14),(13,8),(13,14),(14,9),(14,10),(15,6),(15,12),(16,6),(16,11),(16,13)],17)
=> ? = 2
010100 => ([(0,2),(0,3),(1,9),(2,12),(2,14),(3,1),(3,12),(3,14),(5,7),(6,8),(7,4),(8,4),(9,5),(10,6),(10,11),(11,7),(11,8),(12,10),(12,13),(13,5),(13,6),(13,11),(14,9),(14,10),(14,13)],15)
=> ? = 3
010101 => ([(0,1),(0,2),(1,10),(1,11),(2,10),(2,11),(4,3),(5,3),(6,8),(6,9),(7,8),(7,9),(8,4),(8,5),(9,4),(9,5),(10,6),(10,7),(11,6),(11,7)],12)
=> ? = 5
100000 => ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> ? = 4
0000001 => ([(0,2),(0,7),(1,9),(2,8),(3,4),(3,11),(4,6),(4,10),(5,3),(5,13),(6,1),(6,12),(7,5),(7,8),(8,13),(10,12),(11,10),(12,9),(13,11)],14)
=> ? = 5
0000010 => ([(0,5),(0,6),(1,4),(1,14),(2,13),(3,2),(3,16),(4,3),(4,17),(5,12),(5,15),(6,1),(6,12),(6,15),(8,11),(9,10),(10,8),(11,7),(12,9),(13,7),(14,10),(14,17),(15,9),(15,14),(16,11),(16,13),(17,8),(17,16)],18)
=> ? = 5
0000100 => ([(0,4),(0,5),(1,2),(1,17),(2,7),(3,1),(3,8),(3,16),(4,18),(4,19),(5,3),(5,18),(5,19),(7,12),(8,9),(9,10),(10,11),(11,6),(12,6),(13,10),(13,14),(14,11),(14,12),(15,9),(15,13),(16,13),(16,17),(17,7),(17,14),(18,15),(18,16),(19,8),(19,15)],20)
=> ? = 5
0000101 => ([(0,4),(0,5),(1,3),(1,14),(2,12),(3,2),(3,18),(4,17),(4,19),(5,1),(5,17),(5,19),(7,8),(8,9),(9,10),(10,6),(11,6),(12,11),(13,8),(13,16),(14,16),(14,18),(15,10),(15,11),(16,9),(16,15),(17,7),(17,13),(18,12),(18,15),(19,7),(19,13),(19,14)],20)
=> ? = 3
0001000 => ([(0,3),(0,4),(1,2),(1,18),(1,19),(2,6),(2,7),(3,16),(3,17),(4,1),(4,16),(4,17),(6,9),(7,8),(8,10),(9,11),(10,5),(11,5),(12,14),(12,15),(13,10),(13,11),(14,8),(14,13),(15,9),(15,13),(16,12),(16,18),(17,12),(17,19),(18,7),(18,14),(19,6),(19,15)],20)
=> ? = 5
0001001 => ([(0,3),(0,4),(1,11),(2,1),(2,15),(2,19),(3,17),(3,18),(4,2),(4,17),(4,18),(6,10),(7,8),(8,9),(9,5),(10,5),(11,6),(12,8),(12,13),(13,9),(13,10),(14,12),(14,16),(15,7),(15,12),(16,6),(16,13),(17,14),(17,15),(18,14),(18,19),(19,7),(19,11),(19,16)],20)
=> ? = 2
0001010 => ([(0,3),(0,4),(1,2),(1,17),(2,6),(3,16),(3,19),(4,1),(4,16),(4,19),(6,8),(7,10),(8,11),(9,7),(10,5),(11,5),(12,9),(12,14),(13,8),(13,15),(14,7),(14,15),(15,10),(15,11),(16,12),(16,18),(17,6),(17,13),(18,9),(18,13),(18,14),(19,12),(19,17),(19,18)],20)
=> ? = 3
0001101 => ([(0,4),(0,5),(1,13),(2,1),(2,15),(3,14),(3,16),(4,2),(4,20),(4,21),(5,3),(5,20),(5,21),(7,8),(8,9),(9,11),(10,12),(11,6),(12,6),(13,10),(14,8),(14,18),(15,13),(15,17),(16,17),(16,18),(17,10),(17,19),(18,9),(18,19),(19,11),(19,12),(20,7),(20,14),(21,7),(21,15),(21,16)],22)
=> ? = 2
0010000 => ([(0,4),(0,5),(1,2),(1,17),(2,7),(3,1),(3,8),(3,16),(4,18),(4,19),(5,3),(5,18),(5,19),(7,12),(8,9),(9,10),(10,11),(11,6),(12,6),(13,10),(13,14),(14,11),(14,12),(15,9),(15,13),(16,13),(16,17),(17,7),(17,14),(18,15),(18,16),(19,8),(19,15)],20)
=> ? = 5
0010001 => ([(0,3),(0,4),(1,2),(1,18),(1,19),(2,7),(2,14),(3,15),(3,16),(4,1),(4,15),(4,16),(6,8),(7,9),(8,10),(9,11),(10,5),(11,5),(12,10),(12,11),(13,8),(13,12),(14,9),(14,12),(15,17),(15,19),(16,17),(16,18),(17,6),(17,13),(18,13),(18,14),(19,6),(19,7)],20)
=> ? = 2
0010010 => ([(0,2),(0,3),(1,11),(1,12),(2,16),(2,17),(3,1),(3,16),(3,17),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,13),(10,15),(11,14),(11,15),(12,13),(12,14),(13,5),(13,9),(14,6),(14,9),(15,5),(15,6),(16,10),(16,12),(17,10),(17,11)],18)
=> ? = 2
0010100 => ([(0,2),(0,3),(1,7),(1,8),(2,17),(2,18),(3,1),(3,17),(3,18),(5,10),(6,9),(7,6),(8,5),(9,11),(10,12),(11,4),(12,4),(13,14),(13,15),(14,9),(14,16),(15,10),(15,16),(16,11),(16,12),(17,7),(17,13),(17,19),(18,8),(18,13),(18,19),(19,5),(19,6),(19,14),(19,15)],20)
=> ? = 3
0010101 => ([(0,2),(0,3),(1,10),(2,14),(2,17),(3,1),(3,14),(3,17),(5,8),(6,5),(7,9),(8,4),(9,4),(10,6),(11,13),(11,16),(12,8),(12,9),(13,7),(13,12),(14,11),(14,15),(15,6),(15,13),(15,16),(16,5),(16,7),(16,12),(17,10),(17,11),(17,15)],18)
=> ? = 5
0011010 => ([(0,3),(0,4),(1,13),(2,14),(2,15),(3,2),(3,20),(3,21),(4,1),(4,20),(4,21),(6,7),(7,8),(8,11),(9,12),(10,9),(11,5),(12,5),(13,10),(14,10),(14,18),(15,17),(15,18),(16,7),(16,17),(17,8),(17,19),(18,9),(18,19),(19,11),(19,12),(20,6),(20,15),(20,16),(21,6),(21,13),(21,14),(21,16)],22)
=> ? = 2
0011101 => ([(0,4),(0,5),(1,14),(2,3),(2,19),(2,20),(3,15),(3,16),(4,1),(4,17),(4,21),(5,2),(5,17),(5,21),(7,10),(8,9),(9,12),(10,13),(11,7),(12,6),(13,6),(14,8),(15,10),(15,18),(16,9),(16,18),(17,11),(17,20),(18,12),(18,13),(19,8),(19,16),(20,7),(20,15),(21,11),(21,14),(21,19)],22)
=> ? = 2
0100000 => ([(0,5),(0,6),(1,4),(1,14),(2,13),(3,2),(3,16),(4,3),(4,17),(5,12),(5,15),(6,1),(6,12),(6,15),(8,11),(9,10),(10,8),(11,7),(12,9),(13,7),(14,10),(14,17),(15,9),(15,14),(16,11),(16,13),(17,8),(17,16)],18)
=> ? = 5
0100001 => ([(0,4),(0,5),(1,3),(1,9),(1,17),(2,14),(2,19),(3,2),(3,13),(3,18),(4,15),(4,16),(5,1),(5,15),(5,16),(7,11),(8,7),(9,13),(10,8),(11,6),(12,6),(13,14),(14,12),(15,9),(15,10),(16,10),(16,17),(17,8),(17,18),(18,7),(18,19),(19,11),(19,12)],20)
=> ? = 3
0100010 => ([(0,3),(0,4),(1,2),(1,18),(1,19),(2,13),(2,14),(3,15),(3,16),(4,1),(4,15),(4,16),(6,9),(7,8),(8,10),(9,11),(10,5),(11,5),(12,10),(12,11),(13,8),(13,12),(14,9),(14,12),(15,17),(15,18),(16,17),(16,19),(17,6),(17,7),(18,7),(18,13),(19,6),(19,14)],20)
=> ? = 3
0100011 => ([(0,4),(0,5),(1,14),(2,3),(2,19),(2,20),(3,15),(3,16),(4,1),(4,17),(4,21),(5,2),(5,17),(5,21),(7,10),(8,9),(9,12),(10,13),(11,7),(12,6),(13,6),(14,8),(15,10),(15,18),(16,9),(16,18),(17,11),(17,20),(18,12),(18,13),(19,8),(19,16),(20,7),(20,15),(21,11),(21,14),(21,19)],22)
=> ? = 2
0100100 => ([(0,2),(0,3),(1,11),(1,12),(2,16),(2,17),(3,1),(3,16),(3,17),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,13),(10,15),(11,14),(11,15),(12,13),(12,14),(13,5),(13,9),(14,6),(14,9),(15,5),(15,6),(16,10),(16,12),(17,10),(17,11)],18)
=> ? = 3
0100101 => ([(0,2),(0,3),(1,12),(1,13),(2,18),(2,19),(3,1),(3,18),(3,19),(5,8),(6,5),(7,10),(8,11),(9,7),(10,4),(11,4),(12,9),(12,15),(13,14),(13,15),(14,8),(14,16),(15,7),(15,16),(16,10),(16,11),(17,5),(17,9),(17,14),(18,6),(18,12),(18,17),(19,6),(19,13),(19,17)],20)
=> ? = 5
0100110 => ([(0,3),(0,4),(1,17),(1,19),(2,13),(2,18),(3,1),(3,20),(3,21),(4,2),(4,20),(4,21),(6,9),(7,10),(8,6),(9,11),(10,12),(11,5),(12,5),(13,7),(14,9),(14,16),(15,10),(15,16),(16,11),(16,12),(17,6),(17,14),(18,7),(18,15),(19,14),(19,15),(20,8),(20,18),(20,19),(21,8),(21,13),(21,17)],22)
=> ? = 2
Description
The sum of the values of the Möbius function of a poset. The Möbius function $\mu$ of a finite poset is defined as $$\mu (x,y)=\begin{cases} 1& \text{if }x = y\\ -\sum _{z: x\leq z < y}\mu (x,z)& \text{for }x < y\\ 0&\text{otherwise}. \end{cases} $$ Since $\mu(x,y)=0$ whenever $x\not\leq y$, this statistic is $$ \sum_{x\leq y} \mu(x,y). $$ If the poset has a minimal or a maximal element, then the definition implies immediately that the statistic equals $1$. Moreover, the statistic equals the sum of the statistics of the connected components. This statistic is also called the magnitude of a poset.
Mp00262: Binary words poset of factorsPosets
St001532: Posets ⟶ ℤResult quality: 11% values known / values provided: 11%distinct values known / distinct values provided: 20%
Values
0 => ([(0,1)],2)
=> 1
1 => ([(0,1)],2)
=> 1
01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
10 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 1
100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
0001 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2
0010 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 2
0100 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 2
0101 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ? = 3
1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2
00001 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 3
00010 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 3
00100 => ([(0,2),(0,3),(1,5),(1,6),(2,10),(2,11),(3,1),(3,10),(3,11),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9)],12)
=> ? = 3
00101 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ? = 3
01000 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 3
01001 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ? = 3
01010 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ? = 3
10000 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 3
000001 => ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> ? = 4
000010 => ([(0,4),(0,5),(1,3),(1,12),(2,11),(3,2),(3,14),(4,10),(4,13),(5,1),(5,10),(5,13),(7,8),(8,9),(9,6),(10,7),(11,6),(12,8),(12,14),(13,7),(13,12),(14,9),(14,11)],15)
=> ? = 4
000100 => ([(0,3),(0,4),(1,10),(2,1),(2,6),(2,12),(3,14),(3,15),(4,2),(4,14),(4,15),(6,7),(7,8),(8,5),(9,5),(10,9),(11,7),(11,13),(12,10),(12,13),(13,8),(13,9),(14,6),(14,11),(15,11),(15,12)],16)
=> ? = 4
000101 => ([(0,3),(0,4),(1,2),(1,14),(2,6),(3,13),(3,15),(4,1),(4,13),(4,15),(6,9),(7,8),(8,10),(9,5),(10,5),(11,8),(11,12),(12,9),(12,10),(13,7),(13,11),(14,6),(14,12),(15,7),(15,11),(15,14)],16)
=> ? = 3
001000 => ([(0,3),(0,4),(1,10),(2,1),(2,6),(2,12),(3,14),(3,15),(4,2),(4,14),(4,15),(6,7),(7,8),(8,5),(9,5),(10,9),(11,7),(11,13),(12,10),(12,13),(13,8),(13,9),(14,6),(14,11),(15,11),(15,12)],16)
=> ? = 4
001001 => ([(0,2),(0,3),(1,11),(1,12),(2,13),(2,14),(3,1),(3,13),(3,14),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,9),(11,6),(11,9),(12,5),(12,6),(13,10),(13,11),(14,10),(14,12)],15)
=> ? = 2
001010 => ([(0,2),(0,3),(1,9),(2,12),(2,14),(3,1),(3,12),(3,14),(5,7),(6,8),(7,4),(8,4),(9,5),(10,6),(10,11),(11,7),(11,8),(12,10),(12,13),(13,5),(13,6),(13,11),(14,9),(14,10),(14,13)],15)
=> ? = 3
001101 => ([(0,3),(0,4),(1,11),(2,12),(2,13),(3,2),(3,15),(3,16),(4,1),(4,15),(4,16),(6,7),(7,9),(8,10),(9,5),(10,5),(11,8),(12,7),(12,14),(13,8),(13,14),(14,9),(14,10),(15,6),(15,12),(16,6),(16,11),(16,13)],17)
=> ? = 2
010000 => ([(0,4),(0,5),(1,3),(1,12),(2,11),(3,2),(3,14),(4,10),(4,13),(5,1),(5,10),(5,13),(7,8),(8,9),(9,6),(10,7),(11,6),(12,8),(12,14),(13,7),(13,12),(14,9),(14,11)],15)
=> ? = 4
010001 => ([(0,3),(0,4),(1,2),(1,11),(1,15),(2,7),(2,12),(3,13),(3,14),(4,1),(4,13),(4,14),(6,9),(7,10),(8,6),(9,5),(10,5),(11,7),(12,9),(12,10),(13,8),(13,15),(14,8),(14,11),(15,6),(15,12)],16)
=> ? = 3
010010 => ([(0,2),(0,3),(1,10),(1,11),(2,13),(2,14),(3,1),(3,13),(3,14),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9),(12,5),(12,6),(13,10),(13,12),(14,11),(14,12)],15)
=> ? = 3
010011 => ([(0,3),(0,4),(1,11),(2,12),(2,13),(3,2),(3,15),(3,16),(4,1),(4,15),(4,16),(6,7),(7,9),(8,10),(9,5),(10,5),(11,8),(12,7),(12,14),(13,8),(13,14),(14,9),(14,10),(15,6),(15,12),(16,6),(16,11),(16,13)],17)
=> ? = 2
010100 => ([(0,2),(0,3),(1,9),(2,12),(2,14),(3,1),(3,12),(3,14),(5,7),(6,8),(7,4),(8,4),(9,5),(10,6),(10,11),(11,7),(11,8),(12,10),(12,13),(13,5),(13,6),(13,11),(14,9),(14,10),(14,13)],15)
=> ? = 3
010101 => ([(0,1),(0,2),(1,10),(1,11),(2,10),(2,11),(4,3),(5,3),(6,8),(6,9),(7,8),(7,9),(8,4),(8,5),(9,4),(9,5),(10,6),(10,7),(11,6),(11,7)],12)
=> ? = 5
100000 => ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> ? = 4
0000001 => ([(0,2),(0,7),(1,9),(2,8),(3,4),(3,11),(4,6),(4,10),(5,3),(5,13),(6,1),(6,12),(7,5),(7,8),(8,13),(10,12),(11,10),(12,9),(13,11)],14)
=> ? = 5
0000010 => ([(0,5),(0,6),(1,4),(1,14),(2,13),(3,2),(3,16),(4,3),(4,17),(5,12),(5,15),(6,1),(6,12),(6,15),(8,11),(9,10),(10,8),(11,7),(12,9),(13,7),(14,10),(14,17),(15,9),(15,14),(16,11),(16,13),(17,8),(17,16)],18)
=> ? = 5
0000100 => ([(0,4),(0,5),(1,2),(1,17),(2,7),(3,1),(3,8),(3,16),(4,18),(4,19),(5,3),(5,18),(5,19),(7,12),(8,9),(9,10),(10,11),(11,6),(12,6),(13,10),(13,14),(14,11),(14,12),(15,9),(15,13),(16,13),(16,17),(17,7),(17,14),(18,15),(18,16),(19,8),(19,15)],20)
=> ? = 5
0000101 => ([(0,4),(0,5),(1,3),(1,14),(2,12),(3,2),(3,18),(4,17),(4,19),(5,1),(5,17),(5,19),(7,8),(8,9),(9,10),(10,6),(11,6),(12,11),(13,8),(13,16),(14,16),(14,18),(15,10),(15,11),(16,9),(16,15),(17,7),(17,13),(18,12),(18,15),(19,7),(19,13),(19,14)],20)
=> ? = 3
0001000 => ([(0,3),(0,4),(1,2),(1,18),(1,19),(2,6),(2,7),(3,16),(3,17),(4,1),(4,16),(4,17),(6,9),(7,8),(8,10),(9,11),(10,5),(11,5),(12,14),(12,15),(13,10),(13,11),(14,8),(14,13),(15,9),(15,13),(16,12),(16,18),(17,12),(17,19),(18,7),(18,14),(19,6),(19,15)],20)
=> ? = 5
0001001 => ([(0,3),(0,4),(1,11),(2,1),(2,15),(2,19),(3,17),(3,18),(4,2),(4,17),(4,18),(6,10),(7,8),(8,9),(9,5),(10,5),(11,6),(12,8),(12,13),(13,9),(13,10),(14,12),(14,16),(15,7),(15,12),(16,6),(16,13),(17,14),(17,15),(18,14),(18,19),(19,7),(19,11),(19,16)],20)
=> ? = 2
0001010 => ([(0,3),(0,4),(1,2),(1,17),(2,6),(3,16),(3,19),(4,1),(4,16),(4,19),(6,8),(7,10),(8,11),(9,7),(10,5),(11,5),(12,9),(12,14),(13,8),(13,15),(14,7),(14,15),(15,10),(15,11),(16,12),(16,18),(17,6),(17,13),(18,9),(18,13),(18,14),(19,12),(19,17),(19,18)],20)
=> ? = 3
0001101 => ([(0,4),(0,5),(1,13),(2,1),(2,15),(3,14),(3,16),(4,2),(4,20),(4,21),(5,3),(5,20),(5,21),(7,8),(8,9),(9,11),(10,12),(11,6),(12,6),(13,10),(14,8),(14,18),(15,13),(15,17),(16,17),(16,18),(17,10),(17,19),(18,9),(18,19),(19,11),(19,12),(20,7),(20,14),(21,7),(21,15),(21,16)],22)
=> ? = 2
0010000 => ([(0,4),(0,5),(1,2),(1,17),(2,7),(3,1),(3,8),(3,16),(4,18),(4,19),(5,3),(5,18),(5,19),(7,12),(8,9),(9,10),(10,11),(11,6),(12,6),(13,10),(13,14),(14,11),(14,12),(15,9),(15,13),(16,13),(16,17),(17,7),(17,14),(18,15),(18,16),(19,8),(19,15)],20)
=> ? = 5
0010001 => ([(0,3),(0,4),(1,2),(1,18),(1,19),(2,7),(2,14),(3,15),(3,16),(4,1),(4,15),(4,16),(6,8),(7,9),(8,10),(9,11),(10,5),(11,5),(12,10),(12,11),(13,8),(13,12),(14,9),(14,12),(15,17),(15,19),(16,17),(16,18),(17,6),(17,13),(18,13),(18,14),(19,6),(19,7)],20)
=> ? = 2
0010010 => ([(0,2),(0,3),(1,11),(1,12),(2,16),(2,17),(3,1),(3,16),(3,17),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,13),(10,15),(11,14),(11,15),(12,13),(12,14),(13,5),(13,9),(14,6),(14,9),(15,5),(15,6),(16,10),(16,12),(17,10),(17,11)],18)
=> ? = 2
0010100 => ([(0,2),(0,3),(1,7),(1,8),(2,17),(2,18),(3,1),(3,17),(3,18),(5,10),(6,9),(7,6),(8,5),(9,11),(10,12),(11,4),(12,4),(13,14),(13,15),(14,9),(14,16),(15,10),(15,16),(16,11),(16,12),(17,7),(17,13),(17,19),(18,8),(18,13),(18,19),(19,5),(19,6),(19,14),(19,15)],20)
=> ? = 3
0010101 => ([(0,2),(0,3),(1,10),(2,14),(2,17),(3,1),(3,14),(3,17),(5,8),(6,5),(7,9),(8,4),(9,4),(10,6),(11,13),(11,16),(12,8),(12,9),(13,7),(13,12),(14,11),(14,15),(15,6),(15,13),(15,16),(16,5),(16,7),(16,12),(17,10),(17,11),(17,15)],18)
=> ? = 5
0011010 => ([(0,3),(0,4),(1,13),(2,14),(2,15),(3,2),(3,20),(3,21),(4,1),(4,20),(4,21),(6,7),(7,8),(8,11),(9,12),(10,9),(11,5),(12,5),(13,10),(14,10),(14,18),(15,17),(15,18),(16,7),(16,17),(17,8),(17,19),(18,9),(18,19),(19,11),(19,12),(20,6),(20,15),(20,16),(21,6),(21,13),(21,14),(21,16)],22)
=> ? = 2
0011101 => ([(0,4),(0,5),(1,14),(2,3),(2,19),(2,20),(3,15),(3,16),(4,1),(4,17),(4,21),(5,2),(5,17),(5,21),(7,10),(8,9),(9,12),(10,13),(11,7),(12,6),(13,6),(14,8),(15,10),(15,18),(16,9),(16,18),(17,11),(17,20),(18,12),(18,13),(19,8),(19,16),(20,7),(20,15),(21,11),(21,14),(21,19)],22)
=> ? = 2
0100000 => ([(0,5),(0,6),(1,4),(1,14),(2,13),(3,2),(3,16),(4,3),(4,17),(5,12),(5,15),(6,1),(6,12),(6,15),(8,11),(9,10),(10,8),(11,7),(12,9),(13,7),(14,10),(14,17),(15,9),(15,14),(16,11),(16,13),(17,8),(17,16)],18)
=> ? = 5
0100001 => ([(0,4),(0,5),(1,3),(1,9),(1,17),(2,14),(2,19),(3,2),(3,13),(3,18),(4,15),(4,16),(5,1),(5,15),(5,16),(7,11),(8,7),(9,13),(10,8),(11,6),(12,6),(13,14),(14,12),(15,9),(15,10),(16,10),(16,17),(17,8),(17,18),(18,7),(18,19),(19,11),(19,12)],20)
=> ? = 3
0100010 => ([(0,3),(0,4),(1,2),(1,18),(1,19),(2,13),(2,14),(3,15),(3,16),(4,1),(4,15),(4,16),(6,9),(7,8),(8,10),(9,11),(10,5),(11,5),(12,10),(12,11),(13,8),(13,12),(14,9),(14,12),(15,17),(15,18),(16,17),(16,19),(17,6),(17,7),(18,7),(18,13),(19,6),(19,14)],20)
=> ? = 3
0100011 => ([(0,4),(0,5),(1,14),(2,3),(2,19),(2,20),(3,15),(3,16),(4,1),(4,17),(4,21),(5,2),(5,17),(5,21),(7,10),(8,9),(9,12),(10,13),(11,7),(12,6),(13,6),(14,8),(15,10),(15,18),(16,9),(16,18),(17,11),(17,20),(18,12),(18,13),(19,8),(19,16),(20,7),(20,15),(21,11),(21,14),(21,19)],22)
=> ? = 2
0100100 => ([(0,2),(0,3),(1,11),(1,12),(2,16),(2,17),(3,1),(3,16),(3,17),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,13),(10,15),(11,14),(11,15),(12,13),(12,14),(13,5),(13,9),(14,6),(14,9),(15,5),(15,6),(16,10),(16,12),(17,10),(17,11)],18)
=> ? = 3
0100101 => ([(0,2),(0,3),(1,12),(1,13),(2,18),(2,19),(3,1),(3,18),(3,19),(5,8),(6,5),(7,10),(8,11),(9,7),(10,4),(11,4),(12,9),(12,15),(13,14),(13,15),(14,8),(14,16),(15,7),(15,16),(16,10),(16,11),(17,5),(17,9),(17,14),(18,6),(18,12),(18,17),(19,6),(19,13),(19,17)],20)
=> ? = 5
0100110 => ([(0,3),(0,4),(1,17),(1,19),(2,13),(2,18),(3,1),(3,20),(3,21),(4,2),(4,20),(4,21),(6,9),(7,10),(8,6),(9,11),(10,12),(11,5),(12,5),(13,7),(14,9),(14,16),(15,10),(15,16),(16,11),(16,12),(17,6),(17,14),(18,7),(18,15),(19,14),(19,15),(20,8),(20,18),(20,19),(21,8),(21,13),(21,17)],22)
=> ? = 2
Description
The leading coefficient of the Poincare polynomial of the poset cone. For a poset $P$ on $\{1,\dots,n\}$, let $\mathcal K_P = \{\vec x\in\mathbb R^n| x_i < x_j \text{ for } i < _P j\}$. Furthermore let $\mathcal L(\mathcal A)$ be the intersection lattice of the braid arrangement $A_{n-1}$ and let $\mathcal L^{int} = \{ X \in \mathcal L(\mathcal A) | X \cap \mathcal K_P \neq \emptyset \}$. Then the Poincare polynomial of the poset cone is $Poin(t) = \sum_{X\in\mathcal L^{int}} |\mu(0, X)| t^{codim X}$. This statistic records its leading coefficient.
Mp00262: Binary words poset of factorsPosets
St000907: Posets ⟶ ℤResult quality: 11% values known / values provided: 11%distinct values known / distinct values provided: 20%
Values
0 => ([(0,1)],2)
=> 2 = 1 + 1
1 => ([(0,1)],2)
=> 2 = 1 + 1
01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
10 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 1 + 1
010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 2 = 1 + 1
100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 1 + 1
0001 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2 + 1
0010 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 2 + 1
0100 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 2 + 1
0101 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ? = 3 + 1
1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2 + 1
00001 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 3 + 1
00010 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 3 + 1
00100 => ([(0,2),(0,3),(1,5),(1,6),(2,10),(2,11),(3,1),(3,10),(3,11),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9)],12)
=> ? = 3 + 1
00101 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ? = 3 + 1
01000 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 3 + 1
01001 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ? = 3 + 1
01010 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ? = 3 + 1
10000 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 3 + 1
000001 => ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> ? = 4 + 1
000010 => ([(0,4),(0,5),(1,3),(1,12),(2,11),(3,2),(3,14),(4,10),(4,13),(5,1),(5,10),(5,13),(7,8),(8,9),(9,6),(10,7),(11,6),(12,8),(12,14),(13,7),(13,12),(14,9),(14,11)],15)
=> ? = 4 + 1
000100 => ([(0,3),(0,4),(1,10),(2,1),(2,6),(2,12),(3,14),(3,15),(4,2),(4,14),(4,15),(6,7),(7,8),(8,5),(9,5),(10,9),(11,7),(11,13),(12,10),(12,13),(13,8),(13,9),(14,6),(14,11),(15,11),(15,12)],16)
=> ? = 4 + 1
000101 => ([(0,3),(0,4),(1,2),(1,14),(2,6),(3,13),(3,15),(4,1),(4,13),(4,15),(6,9),(7,8),(8,10),(9,5),(10,5),(11,8),(11,12),(12,9),(12,10),(13,7),(13,11),(14,6),(14,12),(15,7),(15,11),(15,14)],16)
=> ? = 3 + 1
001000 => ([(0,3),(0,4),(1,10),(2,1),(2,6),(2,12),(3,14),(3,15),(4,2),(4,14),(4,15),(6,7),(7,8),(8,5),(9,5),(10,9),(11,7),(11,13),(12,10),(12,13),(13,8),(13,9),(14,6),(14,11),(15,11),(15,12)],16)
=> ? = 4 + 1
001001 => ([(0,2),(0,3),(1,11),(1,12),(2,13),(2,14),(3,1),(3,13),(3,14),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,9),(11,6),(11,9),(12,5),(12,6),(13,10),(13,11),(14,10),(14,12)],15)
=> ? = 2 + 1
001010 => ([(0,2),(0,3),(1,9),(2,12),(2,14),(3,1),(3,12),(3,14),(5,7),(6,8),(7,4),(8,4),(9,5),(10,6),(10,11),(11,7),(11,8),(12,10),(12,13),(13,5),(13,6),(13,11),(14,9),(14,10),(14,13)],15)
=> ? = 3 + 1
001101 => ([(0,3),(0,4),(1,11),(2,12),(2,13),(3,2),(3,15),(3,16),(4,1),(4,15),(4,16),(6,7),(7,9),(8,10),(9,5),(10,5),(11,8),(12,7),(12,14),(13,8),(13,14),(14,9),(14,10),(15,6),(15,12),(16,6),(16,11),(16,13)],17)
=> ? = 2 + 1
010000 => ([(0,4),(0,5),(1,3),(1,12),(2,11),(3,2),(3,14),(4,10),(4,13),(5,1),(5,10),(5,13),(7,8),(8,9),(9,6),(10,7),(11,6),(12,8),(12,14),(13,7),(13,12),(14,9),(14,11)],15)
=> ? = 4 + 1
010001 => ([(0,3),(0,4),(1,2),(1,11),(1,15),(2,7),(2,12),(3,13),(3,14),(4,1),(4,13),(4,14),(6,9),(7,10),(8,6),(9,5),(10,5),(11,7),(12,9),(12,10),(13,8),(13,15),(14,8),(14,11),(15,6),(15,12)],16)
=> ? = 3 + 1
010010 => ([(0,2),(0,3),(1,10),(1,11),(2,13),(2,14),(3,1),(3,13),(3,14),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9),(12,5),(12,6),(13,10),(13,12),(14,11),(14,12)],15)
=> ? = 3 + 1
010011 => ([(0,3),(0,4),(1,11),(2,12),(2,13),(3,2),(3,15),(3,16),(4,1),(4,15),(4,16),(6,7),(7,9),(8,10),(9,5),(10,5),(11,8),(12,7),(12,14),(13,8),(13,14),(14,9),(14,10),(15,6),(15,12),(16,6),(16,11),(16,13)],17)
=> ? = 2 + 1
010100 => ([(0,2),(0,3),(1,9),(2,12),(2,14),(3,1),(3,12),(3,14),(5,7),(6,8),(7,4),(8,4),(9,5),(10,6),(10,11),(11,7),(11,8),(12,10),(12,13),(13,5),(13,6),(13,11),(14,9),(14,10),(14,13)],15)
=> ? = 3 + 1
010101 => ([(0,1),(0,2),(1,10),(1,11),(2,10),(2,11),(4,3),(5,3),(6,8),(6,9),(7,8),(7,9),(8,4),(8,5),(9,4),(9,5),(10,6),(10,7),(11,6),(11,7)],12)
=> ? = 5 + 1
100000 => ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> ? = 4 + 1
0000001 => ([(0,2),(0,7),(1,9),(2,8),(3,4),(3,11),(4,6),(4,10),(5,3),(5,13),(6,1),(6,12),(7,5),(7,8),(8,13),(10,12),(11,10),(12,9),(13,11)],14)
=> ? = 5 + 1
0000010 => ([(0,5),(0,6),(1,4),(1,14),(2,13),(3,2),(3,16),(4,3),(4,17),(5,12),(5,15),(6,1),(6,12),(6,15),(8,11),(9,10),(10,8),(11,7),(12,9),(13,7),(14,10),(14,17),(15,9),(15,14),(16,11),(16,13),(17,8),(17,16)],18)
=> ? = 5 + 1
0000100 => ([(0,4),(0,5),(1,2),(1,17),(2,7),(3,1),(3,8),(3,16),(4,18),(4,19),(5,3),(5,18),(5,19),(7,12),(8,9),(9,10),(10,11),(11,6),(12,6),(13,10),(13,14),(14,11),(14,12),(15,9),(15,13),(16,13),(16,17),(17,7),(17,14),(18,15),(18,16),(19,8),(19,15)],20)
=> ? = 5 + 1
0000101 => ([(0,4),(0,5),(1,3),(1,14),(2,12),(3,2),(3,18),(4,17),(4,19),(5,1),(5,17),(5,19),(7,8),(8,9),(9,10),(10,6),(11,6),(12,11),(13,8),(13,16),(14,16),(14,18),(15,10),(15,11),(16,9),(16,15),(17,7),(17,13),(18,12),(18,15),(19,7),(19,13),(19,14)],20)
=> ? = 3 + 1
0001000 => ([(0,3),(0,4),(1,2),(1,18),(1,19),(2,6),(2,7),(3,16),(3,17),(4,1),(4,16),(4,17),(6,9),(7,8),(8,10),(9,11),(10,5),(11,5),(12,14),(12,15),(13,10),(13,11),(14,8),(14,13),(15,9),(15,13),(16,12),(16,18),(17,12),(17,19),(18,7),(18,14),(19,6),(19,15)],20)
=> ? = 5 + 1
0001001 => ([(0,3),(0,4),(1,11),(2,1),(2,15),(2,19),(3,17),(3,18),(4,2),(4,17),(4,18),(6,10),(7,8),(8,9),(9,5),(10,5),(11,6),(12,8),(12,13),(13,9),(13,10),(14,12),(14,16),(15,7),(15,12),(16,6),(16,13),(17,14),(17,15),(18,14),(18,19),(19,7),(19,11),(19,16)],20)
=> ? = 2 + 1
0001010 => ([(0,3),(0,4),(1,2),(1,17),(2,6),(3,16),(3,19),(4,1),(4,16),(4,19),(6,8),(7,10),(8,11),(9,7),(10,5),(11,5),(12,9),(12,14),(13,8),(13,15),(14,7),(14,15),(15,10),(15,11),(16,12),(16,18),(17,6),(17,13),(18,9),(18,13),(18,14),(19,12),(19,17),(19,18)],20)
=> ? = 3 + 1
0001101 => ([(0,4),(0,5),(1,13),(2,1),(2,15),(3,14),(3,16),(4,2),(4,20),(4,21),(5,3),(5,20),(5,21),(7,8),(8,9),(9,11),(10,12),(11,6),(12,6),(13,10),(14,8),(14,18),(15,13),(15,17),(16,17),(16,18),(17,10),(17,19),(18,9),(18,19),(19,11),(19,12),(20,7),(20,14),(21,7),(21,15),(21,16)],22)
=> ? = 2 + 1
0010000 => ([(0,4),(0,5),(1,2),(1,17),(2,7),(3,1),(3,8),(3,16),(4,18),(4,19),(5,3),(5,18),(5,19),(7,12),(8,9),(9,10),(10,11),(11,6),(12,6),(13,10),(13,14),(14,11),(14,12),(15,9),(15,13),(16,13),(16,17),(17,7),(17,14),(18,15),(18,16),(19,8),(19,15)],20)
=> ? = 5 + 1
0010001 => ([(0,3),(0,4),(1,2),(1,18),(1,19),(2,7),(2,14),(3,15),(3,16),(4,1),(4,15),(4,16),(6,8),(7,9),(8,10),(9,11),(10,5),(11,5),(12,10),(12,11),(13,8),(13,12),(14,9),(14,12),(15,17),(15,19),(16,17),(16,18),(17,6),(17,13),(18,13),(18,14),(19,6),(19,7)],20)
=> ? = 2 + 1
0010010 => ([(0,2),(0,3),(1,11),(1,12),(2,16),(2,17),(3,1),(3,16),(3,17),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,13),(10,15),(11,14),(11,15),(12,13),(12,14),(13,5),(13,9),(14,6),(14,9),(15,5),(15,6),(16,10),(16,12),(17,10),(17,11)],18)
=> ? = 2 + 1
0010100 => ([(0,2),(0,3),(1,7),(1,8),(2,17),(2,18),(3,1),(3,17),(3,18),(5,10),(6,9),(7,6),(8,5),(9,11),(10,12),(11,4),(12,4),(13,14),(13,15),(14,9),(14,16),(15,10),(15,16),(16,11),(16,12),(17,7),(17,13),(17,19),(18,8),(18,13),(18,19),(19,5),(19,6),(19,14),(19,15)],20)
=> ? = 3 + 1
0010101 => ([(0,2),(0,3),(1,10),(2,14),(2,17),(3,1),(3,14),(3,17),(5,8),(6,5),(7,9),(8,4),(9,4),(10,6),(11,13),(11,16),(12,8),(12,9),(13,7),(13,12),(14,11),(14,15),(15,6),(15,13),(15,16),(16,5),(16,7),(16,12),(17,10),(17,11),(17,15)],18)
=> ? = 5 + 1
0011010 => ([(0,3),(0,4),(1,13),(2,14),(2,15),(3,2),(3,20),(3,21),(4,1),(4,20),(4,21),(6,7),(7,8),(8,11),(9,12),(10,9),(11,5),(12,5),(13,10),(14,10),(14,18),(15,17),(15,18),(16,7),(16,17),(17,8),(17,19),(18,9),(18,19),(19,11),(19,12),(20,6),(20,15),(20,16),(21,6),(21,13),(21,14),(21,16)],22)
=> ? = 2 + 1
0011101 => ([(0,4),(0,5),(1,14),(2,3),(2,19),(2,20),(3,15),(3,16),(4,1),(4,17),(4,21),(5,2),(5,17),(5,21),(7,10),(8,9),(9,12),(10,13),(11,7),(12,6),(13,6),(14,8),(15,10),(15,18),(16,9),(16,18),(17,11),(17,20),(18,12),(18,13),(19,8),(19,16),(20,7),(20,15),(21,11),(21,14),(21,19)],22)
=> ? = 2 + 1
0100000 => ([(0,5),(0,6),(1,4),(1,14),(2,13),(3,2),(3,16),(4,3),(4,17),(5,12),(5,15),(6,1),(6,12),(6,15),(8,11),(9,10),(10,8),(11,7),(12,9),(13,7),(14,10),(14,17),(15,9),(15,14),(16,11),(16,13),(17,8),(17,16)],18)
=> ? = 5 + 1
0100001 => ([(0,4),(0,5),(1,3),(1,9),(1,17),(2,14),(2,19),(3,2),(3,13),(3,18),(4,15),(4,16),(5,1),(5,15),(5,16),(7,11),(8,7),(9,13),(10,8),(11,6),(12,6),(13,14),(14,12),(15,9),(15,10),(16,10),(16,17),(17,8),(17,18),(18,7),(18,19),(19,11),(19,12)],20)
=> ? = 3 + 1
0100010 => ([(0,3),(0,4),(1,2),(1,18),(1,19),(2,13),(2,14),(3,15),(3,16),(4,1),(4,15),(4,16),(6,9),(7,8),(8,10),(9,11),(10,5),(11,5),(12,10),(12,11),(13,8),(13,12),(14,9),(14,12),(15,17),(15,18),(16,17),(16,19),(17,6),(17,7),(18,7),(18,13),(19,6),(19,14)],20)
=> ? = 3 + 1
0100011 => ([(0,4),(0,5),(1,14),(2,3),(2,19),(2,20),(3,15),(3,16),(4,1),(4,17),(4,21),(5,2),(5,17),(5,21),(7,10),(8,9),(9,12),(10,13),(11,7),(12,6),(13,6),(14,8),(15,10),(15,18),(16,9),(16,18),(17,11),(17,20),(18,12),(18,13),(19,8),(19,16),(20,7),(20,15),(21,11),(21,14),(21,19)],22)
=> ? = 2 + 1
0100100 => ([(0,2),(0,3),(1,11),(1,12),(2,16),(2,17),(3,1),(3,16),(3,17),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,13),(10,15),(11,14),(11,15),(12,13),(12,14),(13,5),(13,9),(14,6),(14,9),(15,5),(15,6),(16,10),(16,12),(17,10),(17,11)],18)
=> ? = 3 + 1
0100101 => ([(0,2),(0,3),(1,12),(1,13),(2,18),(2,19),(3,1),(3,18),(3,19),(5,8),(6,5),(7,10),(8,11),(9,7),(10,4),(11,4),(12,9),(12,15),(13,14),(13,15),(14,8),(14,16),(15,7),(15,16),(16,10),(16,11),(17,5),(17,9),(17,14),(18,6),(18,12),(18,17),(19,6),(19,13),(19,17)],20)
=> ? = 5 + 1
0100110 => ([(0,3),(0,4),(1,17),(1,19),(2,13),(2,18),(3,1),(3,20),(3,21),(4,2),(4,20),(4,21),(6,9),(7,10),(8,6),(9,11),(10,12),(11,5),(12,5),(13,7),(14,9),(14,16),(15,10),(15,16),(16,11),(16,12),(17,6),(17,14),(18,7),(18,15),(19,14),(19,15),(20,8),(20,18),(20,19),(21,8),(21,13),(21,17)],22)
=> ? = 2 + 1
Description
The number of maximal antichains of minimal length in a poset.
Mp00262: Binary words poset of factorsPosets
St001301: Posets ⟶ ℤResult quality: 11% values known / values provided: 11%distinct values known / distinct values provided: 20%
Values
0 => ([(0,1)],2)
=> 0 = 1 - 1
1 => ([(0,1)],2)
=> 0 = 1 - 1
01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
10 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 0 = 1 - 1
010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 0 = 1 - 1
100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 0 = 1 - 1
0001 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2 - 1
0010 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 2 - 1
0100 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 2 - 1
0101 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ? = 3 - 1
1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2 - 1
00001 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 3 - 1
00010 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 3 - 1
00100 => ([(0,2),(0,3),(1,5),(1,6),(2,10),(2,11),(3,1),(3,10),(3,11),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9)],12)
=> ? = 3 - 1
00101 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ? = 3 - 1
01000 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 3 - 1
01001 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ? = 3 - 1
01010 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ? = 3 - 1
10000 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 3 - 1
000001 => ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> ? = 4 - 1
000010 => ([(0,4),(0,5),(1,3),(1,12),(2,11),(3,2),(3,14),(4,10),(4,13),(5,1),(5,10),(5,13),(7,8),(8,9),(9,6),(10,7),(11,6),(12,8),(12,14),(13,7),(13,12),(14,9),(14,11)],15)
=> ? = 4 - 1
000100 => ([(0,3),(0,4),(1,10),(2,1),(2,6),(2,12),(3,14),(3,15),(4,2),(4,14),(4,15),(6,7),(7,8),(8,5),(9,5),(10,9),(11,7),(11,13),(12,10),(12,13),(13,8),(13,9),(14,6),(14,11),(15,11),(15,12)],16)
=> ? = 4 - 1
000101 => ([(0,3),(0,4),(1,2),(1,14),(2,6),(3,13),(3,15),(4,1),(4,13),(4,15),(6,9),(7,8),(8,10),(9,5),(10,5),(11,8),(11,12),(12,9),(12,10),(13,7),(13,11),(14,6),(14,12),(15,7),(15,11),(15,14)],16)
=> ? = 3 - 1
001000 => ([(0,3),(0,4),(1,10),(2,1),(2,6),(2,12),(3,14),(3,15),(4,2),(4,14),(4,15),(6,7),(7,8),(8,5),(9,5),(10,9),(11,7),(11,13),(12,10),(12,13),(13,8),(13,9),(14,6),(14,11),(15,11),(15,12)],16)
=> ? = 4 - 1
001001 => ([(0,2),(0,3),(1,11),(1,12),(2,13),(2,14),(3,1),(3,13),(3,14),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,9),(11,6),(11,9),(12,5),(12,6),(13,10),(13,11),(14,10),(14,12)],15)
=> ? = 2 - 1
001010 => ([(0,2),(0,3),(1,9),(2,12),(2,14),(3,1),(3,12),(3,14),(5,7),(6,8),(7,4),(8,4),(9,5),(10,6),(10,11),(11,7),(11,8),(12,10),(12,13),(13,5),(13,6),(13,11),(14,9),(14,10),(14,13)],15)
=> ? = 3 - 1
001101 => ([(0,3),(0,4),(1,11),(2,12),(2,13),(3,2),(3,15),(3,16),(4,1),(4,15),(4,16),(6,7),(7,9),(8,10),(9,5),(10,5),(11,8),(12,7),(12,14),(13,8),(13,14),(14,9),(14,10),(15,6),(15,12),(16,6),(16,11),(16,13)],17)
=> ? = 2 - 1
010000 => ([(0,4),(0,5),(1,3),(1,12),(2,11),(3,2),(3,14),(4,10),(4,13),(5,1),(5,10),(5,13),(7,8),(8,9),(9,6),(10,7),(11,6),(12,8),(12,14),(13,7),(13,12),(14,9),(14,11)],15)
=> ? = 4 - 1
010001 => ([(0,3),(0,4),(1,2),(1,11),(1,15),(2,7),(2,12),(3,13),(3,14),(4,1),(4,13),(4,14),(6,9),(7,10),(8,6),(9,5),(10,5),(11,7),(12,9),(12,10),(13,8),(13,15),(14,8),(14,11),(15,6),(15,12)],16)
=> ? = 3 - 1
010010 => ([(0,2),(0,3),(1,10),(1,11),(2,13),(2,14),(3,1),(3,13),(3,14),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9),(12,5),(12,6),(13,10),(13,12),(14,11),(14,12)],15)
=> ? = 3 - 1
010011 => ([(0,3),(0,4),(1,11),(2,12),(2,13),(3,2),(3,15),(3,16),(4,1),(4,15),(4,16),(6,7),(7,9),(8,10),(9,5),(10,5),(11,8),(12,7),(12,14),(13,8),(13,14),(14,9),(14,10),(15,6),(15,12),(16,6),(16,11),(16,13)],17)
=> ? = 2 - 1
010100 => ([(0,2),(0,3),(1,9),(2,12),(2,14),(3,1),(3,12),(3,14),(5,7),(6,8),(7,4),(8,4),(9,5),(10,6),(10,11),(11,7),(11,8),(12,10),(12,13),(13,5),(13,6),(13,11),(14,9),(14,10),(14,13)],15)
=> ? = 3 - 1
010101 => ([(0,1),(0,2),(1,10),(1,11),(2,10),(2,11),(4,3),(5,3),(6,8),(6,9),(7,8),(7,9),(8,4),(8,5),(9,4),(9,5),(10,6),(10,7),(11,6),(11,7)],12)
=> ? = 5 - 1
100000 => ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> ? = 4 - 1
0000001 => ([(0,2),(0,7),(1,9),(2,8),(3,4),(3,11),(4,6),(4,10),(5,3),(5,13),(6,1),(6,12),(7,5),(7,8),(8,13),(10,12),(11,10),(12,9),(13,11)],14)
=> ? = 5 - 1
0000010 => ([(0,5),(0,6),(1,4),(1,14),(2,13),(3,2),(3,16),(4,3),(4,17),(5,12),(5,15),(6,1),(6,12),(6,15),(8,11),(9,10),(10,8),(11,7),(12,9),(13,7),(14,10),(14,17),(15,9),(15,14),(16,11),(16,13),(17,8),(17,16)],18)
=> ? = 5 - 1
0000100 => ([(0,4),(0,5),(1,2),(1,17),(2,7),(3,1),(3,8),(3,16),(4,18),(4,19),(5,3),(5,18),(5,19),(7,12),(8,9),(9,10),(10,11),(11,6),(12,6),(13,10),(13,14),(14,11),(14,12),(15,9),(15,13),(16,13),(16,17),(17,7),(17,14),(18,15),(18,16),(19,8),(19,15)],20)
=> ? = 5 - 1
0000101 => ([(0,4),(0,5),(1,3),(1,14),(2,12),(3,2),(3,18),(4,17),(4,19),(5,1),(5,17),(5,19),(7,8),(8,9),(9,10),(10,6),(11,6),(12,11),(13,8),(13,16),(14,16),(14,18),(15,10),(15,11),(16,9),(16,15),(17,7),(17,13),(18,12),(18,15),(19,7),(19,13),(19,14)],20)
=> ? = 3 - 1
0001000 => ([(0,3),(0,4),(1,2),(1,18),(1,19),(2,6),(2,7),(3,16),(3,17),(4,1),(4,16),(4,17),(6,9),(7,8),(8,10),(9,11),(10,5),(11,5),(12,14),(12,15),(13,10),(13,11),(14,8),(14,13),(15,9),(15,13),(16,12),(16,18),(17,12),(17,19),(18,7),(18,14),(19,6),(19,15)],20)
=> ? = 5 - 1
0001001 => ([(0,3),(0,4),(1,11),(2,1),(2,15),(2,19),(3,17),(3,18),(4,2),(4,17),(4,18),(6,10),(7,8),(8,9),(9,5),(10,5),(11,6),(12,8),(12,13),(13,9),(13,10),(14,12),(14,16),(15,7),(15,12),(16,6),(16,13),(17,14),(17,15),(18,14),(18,19),(19,7),(19,11),(19,16)],20)
=> ? = 2 - 1
0001010 => ([(0,3),(0,4),(1,2),(1,17),(2,6),(3,16),(3,19),(4,1),(4,16),(4,19),(6,8),(7,10),(8,11),(9,7),(10,5),(11,5),(12,9),(12,14),(13,8),(13,15),(14,7),(14,15),(15,10),(15,11),(16,12),(16,18),(17,6),(17,13),(18,9),(18,13),(18,14),(19,12),(19,17),(19,18)],20)
=> ? = 3 - 1
0001101 => ([(0,4),(0,5),(1,13),(2,1),(2,15),(3,14),(3,16),(4,2),(4,20),(4,21),(5,3),(5,20),(5,21),(7,8),(8,9),(9,11),(10,12),(11,6),(12,6),(13,10),(14,8),(14,18),(15,13),(15,17),(16,17),(16,18),(17,10),(17,19),(18,9),(18,19),(19,11),(19,12),(20,7),(20,14),(21,7),(21,15),(21,16)],22)
=> ? = 2 - 1
0010000 => ([(0,4),(0,5),(1,2),(1,17),(2,7),(3,1),(3,8),(3,16),(4,18),(4,19),(5,3),(5,18),(5,19),(7,12),(8,9),(9,10),(10,11),(11,6),(12,6),(13,10),(13,14),(14,11),(14,12),(15,9),(15,13),(16,13),(16,17),(17,7),(17,14),(18,15),(18,16),(19,8),(19,15)],20)
=> ? = 5 - 1
0010001 => ([(0,3),(0,4),(1,2),(1,18),(1,19),(2,7),(2,14),(3,15),(3,16),(4,1),(4,15),(4,16),(6,8),(7,9),(8,10),(9,11),(10,5),(11,5),(12,10),(12,11),(13,8),(13,12),(14,9),(14,12),(15,17),(15,19),(16,17),(16,18),(17,6),(17,13),(18,13),(18,14),(19,6),(19,7)],20)
=> ? = 2 - 1
0010010 => ([(0,2),(0,3),(1,11),(1,12),(2,16),(2,17),(3,1),(3,16),(3,17),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,13),(10,15),(11,14),(11,15),(12,13),(12,14),(13,5),(13,9),(14,6),(14,9),(15,5),(15,6),(16,10),(16,12),(17,10),(17,11)],18)
=> ? = 2 - 1
0010100 => ([(0,2),(0,3),(1,7),(1,8),(2,17),(2,18),(3,1),(3,17),(3,18),(5,10),(6,9),(7,6),(8,5),(9,11),(10,12),(11,4),(12,4),(13,14),(13,15),(14,9),(14,16),(15,10),(15,16),(16,11),(16,12),(17,7),(17,13),(17,19),(18,8),(18,13),(18,19),(19,5),(19,6),(19,14),(19,15)],20)
=> ? = 3 - 1
0010101 => ([(0,2),(0,3),(1,10),(2,14),(2,17),(3,1),(3,14),(3,17),(5,8),(6,5),(7,9),(8,4),(9,4),(10,6),(11,13),(11,16),(12,8),(12,9),(13,7),(13,12),(14,11),(14,15),(15,6),(15,13),(15,16),(16,5),(16,7),(16,12),(17,10),(17,11),(17,15)],18)
=> ? = 5 - 1
0011010 => ([(0,3),(0,4),(1,13),(2,14),(2,15),(3,2),(3,20),(3,21),(4,1),(4,20),(4,21),(6,7),(7,8),(8,11),(9,12),(10,9),(11,5),(12,5),(13,10),(14,10),(14,18),(15,17),(15,18),(16,7),(16,17),(17,8),(17,19),(18,9),(18,19),(19,11),(19,12),(20,6),(20,15),(20,16),(21,6),(21,13),(21,14),(21,16)],22)
=> ? = 2 - 1
0011101 => ([(0,4),(0,5),(1,14),(2,3),(2,19),(2,20),(3,15),(3,16),(4,1),(4,17),(4,21),(5,2),(5,17),(5,21),(7,10),(8,9),(9,12),(10,13),(11,7),(12,6),(13,6),(14,8),(15,10),(15,18),(16,9),(16,18),(17,11),(17,20),(18,12),(18,13),(19,8),(19,16),(20,7),(20,15),(21,11),(21,14),(21,19)],22)
=> ? = 2 - 1
0100000 => ([(0,5),(0,6),(1,4),(1,14),(2,13),(3,2),(3,16),(4,3),(4,17),(5,12),(5,15),(6,1),(6,12),(6,15),(8,11),(9,10),(10,8),(11,7),(12,9),(13,7),(14,10),(14,17),(15,9),(15,14),(16,11),(16,13),(17,8),(17,16)],18)
=> ? = 5 - 1
0100001 => ([(0,4),(0,5),(1,3),(1,9),(1,17),(2,14),(2,19),(3,2),(3,13),(3,18),(4,15),(4,16),(5,1),(5,15),(5,16),(7,11),(8,7),(9,13),(10,8),(11,6),(12,6),(13,14),(14,12),(15,9),(15,10),(16,10),(16,17),(17,8),(17,18),(18,7),(18,19),(19,11),(19,12)],20)
=> ? = 3 - 1
0100010 => ([(0,3),(0,4),(1,2),(1,18),(1,19),(2,13),(2,14),(3,15),(3,16),(4,1),(4,15),(4,16),(6,9),(7,8),(8,10),(9,11),(10,5),(11,5),(12,10),(12,11),(13,8),(13,12),(14,9),(14,12),(15,17),(15,18),(16,17),(16,19),(17,6),(17,7),(18,7),(18,13),(19,6),(19,14)],20)
=> ? = 3 - 1
0100011 => ([(0,4),(0,5),(1,14),(2,3),(2,19),(2,20),(3,15),(3,16),(4,1),(4,17),(4,21),(5,2),(5,17),(5,21),(7,10),(8,9),(9,12),(10,13),(11,7),(12,6),(13,6),(14,8),(15,10),(15,18),(16,9),(16,18),(17,11),(17,20),(18,12),(18,13),(19,8),(19,16),(20,7),(20,15),(21,11),(21,14),(21,19)],22)
=> ? = 2 - 1
0100100 => ([(0,2),(0,3),(1,11),(1,12),(2,16),(2,17),(3,1),(3,16),(3,17),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,13),(10,15),(11,14),(11,15),(12,13),(12,14),(13,5),(13,9),(14,6),(14,9),(15,5),(15,6),(16,10),(16,12),(17,10),(17,11)],18)
=> ? = 3 - 1
0100101 => ([(0,2),(0,3),(1,12),(1,13),(2,18),(2,19),(3,1),(3,18),(3,19),(5,8),(6,5),(7,10),(8,11),(9,7),(10,4),(11,4),(12,9),(12,15),(13,14),(13,15),(14,8),(14,16),(15,7),(15,16),(16,10),(16,11),(17,5),(17,9),(17,14),(18,6),(18,12),(18,17),(19,6),(19,13),(19,17)],20)
=> ? = 5 - 1
0100110 => ([(0,3),(0,4),(1,17),(1,19),(2,13),(2,18),(3,1),(3,20),(3,21),(4,2),(4,20),(4,21),(6,9),(7,10),(8,6),(9,11),(10,12),(11,5),(12,5),(13,7),(14,9),(14,16),(15,10),(15,16),(16,11),(16,12),(17,6),(17,14),(18,7),(18,15),(19,14),(19,15),(20,8),(20,18),(20,19),(21,8),(21,13),(21,17)],22)
=> ? = 2 - 1
Description
The first Betti number of the order complex associated with the poset. The order complex of a poset is the simplicial complex whose faces are the chains of the poset. This statistic is the rank of the first homology group of the order complex.
Mp00262: Binary words poset of factorsPosets
St001396: Posets ⟶ ℤResult quality: 11% values known / values provided: 11%distinct values known / distinct values provided: 20%
Values
0 => ([(0,1)],2)
=> 0 = 1 - 1
1 => ([(0,1)],2)
=> 0 = 1 - 1
01 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
10 => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 0 = 1 - 1
010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 0 = 1 - 1
100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 0 = 1 - 1
0001 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2 - 1
0010 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 2 - 1
0100 => ([(0,2),(0,3),(1,6),(2,7),(2,8),(3,1),(3,7),(3,8),(5,4),(6,4),(7,5),(8,5),(8,6)],9)
=> ? = 2 - 1
0101 => ([(0,1),(0,2),(1,6),(1,7),(2,6),(2,7),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5)],8)
=> ? = 3 - 1
1000 => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2 - 1
00001 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 3 - 1
00010 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 3 - 1
00100 => ([(0,2),(0,3),(1,5),(1,6),(2,10),(2,11),(3,1),(3,10),(3,11),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9)],12)
=> ? = 3 - 1
00101 => ([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> ? = 3 - 1
01000 => ([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> ? = 3 - 1
01001 => ([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> ? = 3 - 1
01010 => ([(0,1),(0,2),(1,8),(1,9),(2,8),(2,9),(4,3),(5,3),(6,4),(6,5),(7,4),(7,5),(8,6),(8,7),(9,6),(9,7)],10)
=> ? = 3 - 1
10000 => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ? = 3 - 1
000001 => ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> ? = 4 - 1
000010 => ([(0,4),(0,5),(1,3),(1,12),(2,11),(3,2),(3,14),(4,10),(4,13),(5,1),(5,10),(5,13),(7,8),(8,9),(9,6),(10,7),(11,6),(12,8),(12,14),(13,7),(13,12),(14,9),(14,11)],15)
=> ? = 4 - 1
000100 => ([(0,3),(0,4),(1,10),(2,1),(2,6),(2,12),(3,14),(3,15),(4,2),(4,14),(4,15),(6,7),(7,8),(8,5),(9,5),(10,9),(11,7),(11,13),(12,10),(12,13),(13,8),(13,9),(14,6),(14,11),(15,11),(15,12)],16)
=> ? = 4 - 1
000101 => ([(0,3),(0,4),(1,2),(1,14),(2,6),(3,13),(3,15),(4,1),(4,13),(4,15),(6,9),(7,8),(8,10),(9,5),(10,5),(11,8),(11,12),(12,9),(12,10),(13,7),(13,11),(14,6),(14,12),(15,7),(15,11),(15,14)],16)
=> ? = 3 - 1
001000 => ([(0,3),(0,4),(1,10),(2,1),(2,6),(2,12),(3,14),(3,15),(4,2),(4,14),(4,15),(6,7),(7,8),(8,5),(9,5),(10,9),(11,7),(11,13),(12,10),(12,13),(13,8),(13,9),(14,6),(14,11),(15,11),(15,12)],16)
=> ? = 4 - 1
001001 => ([(0,2),(0,3),(1,11),(1,12),(2,13),(2,14),(3,1),(3,13),(3,14),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,9),(11,6),(11,9),(12,5),(12,6),(13,10),(13,11),(14,10),(14,12)],15)
=> ? = 2 - 1
001010 => ([(0,2),(0,3),(1,9),(2,12),(2,14),(3,1),(3,12),(3,14),(5,7),(6,8),(7,4),(8,4),(9,5),(10,6),(10,11),(11,7),(11,8),(12,10),(12,13),(13,5),(13,6),(13,11),(14,9),(14,10),(14,13)],15)
=> ? = 3 - 1
001101 => ([(0,3),(0,4),(1,11),(2,12),(2,13),(3,2),(3,15),(3,16),(4,1),(4,15),(4,16),(6,7),(7,9),(8,10),(9,5),(10,5),(11,8),(12,7),(12,14),(13,8),(13,14),(14,9),(14,10),(15,6),(15,12),(16,6),(16,11),(16,13)],17)
=> ? = 2 - 1
010000 => ([(0,4),(0,5),(1,3),(1,12),(2,11),(3,2),(3,14),(4,10),(4,13),(5,1),(5,10),(5,13),(7,8),(8,9),(9,6),(10,7),(11,6),(12,8),(12,14),(13,7),(13,12),(14,9),(14,11)],15)
=> ? = 4 - 1
010001 => ([(0,3),(0,4),(1,2),(1,11),(1,15),(2,7),(2,12),(3,13),(3,14),(4,1),(4,13),(4,14),(6,9),(7,10),(8,6),(9,5),(10,5),(11,7),(12,9),(12,10),(13,8),(13,15),(14,8),(14,11),(15,6),(15,12)],16)
=> ? = 3 - 1
010010 => ([(0,2),(0,3),(1,10),(1,11),(2,13),(2,14),(3,1),(3,13),(3,14),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9),(12,5),(12,6),(13,10),(13,12),(14,11),(14,12)],15)
=> ? = 3 - 1
010011 => ([(0,3),(0,4),(1,11),(2,12),(2,13),(3,2),(3,15),(3,16),(4,1),(4,15),(4,16),(6,7),(7,9),(8,10),(9,5),(10,5),(11,8),(12,7),(12,14),(13,8),(13,14),(14,9),(14,10),(15,6),(15,12),(16,6),(16,11),(16,13)],17)
=> ? = 2 - 1
010100 => ([(0,2),(0,3),(1,9),(2,12),(2,14),(3,1),(3,12),(3,14),(5,7),(6,8),(7,4),(8,4),(9,5),(10,6),(10,11),(11,7),(11,8),(12,10),(12,13),(13,5),(13,6),(13,11),(14,9),(14,10),(14,13)],15)
=> ? = 3 - 1
010101 => ([(0,1),(0,2),(1,10),(1,11),(2,10),(2,11),(4,3),(5,3),(6,8),(6,9),(7,8),(7,9),(8,4),(8,5),(9,4),(9,5),(10,6),(10,7),(11,6),(11,7)],12)
=> ? = 5 - 1
100000 => ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> ? = 4 - 1
0000001 => ([(0,2),(0,7),(1,9),(2,8),(3,4),(3,11),(4,6),(4,10),(5,3),(5,13),(6,1),(6,12),(7,5),(7,8),(8,13),(10,12),(11,10),(12,9),(13,11)],14)
=> ? = 5 - 1
0000010 => ([(0,5),(0,6),(1,4),(1,14),(2,13),(3,2),(3,16),(4,3),(4,17),(5,12),(5,15),(6,1),(6,12),(6,15),(8,11),(9,10),(10,8),(11,7),(12,9),(13,7),(14,10),(14,17),(15,9),(15,14),(16,11),(16,13),(17,8),(17,16)],18)
=> ? = 5 - 1
0000100 => ([(0,4),(0,5),(1,2),(1,17),(2,7),(3,1),(3,8),(3,16),(4,18),(4,19),(5,3),(5,18),(5,19),(7,12),(8,9),(9,10),(10,11),(11,6),(12,6),(13,10),(13,14),(14,11),(14,12),(15,9),(15,13),(16,13),(16,17),(17,7),(17,14),(18,15),(18,16),(19,8),(19,15)],20)
=> ? = 5 - 1
0000101 => ([(0,4),(0,5),(1,3),(1,14),(2,12),(3,2),(3,18),(4,17),(4,19),(5,1),(5,17),(5,19),(7,8),(8,9),(9,10),(10,6),(11,6),(12,11),(13,8),(13,16),(14,16),(14,18),(15,10),(15,11),(16,9),(16,15),(17,7),(17,13),(18,12),(18,15),(19,7),(19,13),(19,14)],20)
=> ? = 3 - 1
0001000 => ([(0,3),(0,4),(1,2),(1,18),(1,19),(2,6),(2,7),(3,16),(3,17),(4,1),(4,16),(4,17),(6,9),(7,8),(8,10),(9,11),(10,5),(11,5),(12,14),(12,15),(13,10),(13,11),(14,8),(14,13),(15,9),(15,13),(16,12),(16,18),(17,12),(17,19),(18,7),(18,14),(19,6),(19,15)],20)
=> ? = 5 - 1
0001001 => ([(0,3),(0,4),(1,11),(2,1),(2,15),(2,19),(3,17),(3,18),(4,2),(4,17),(4,18),(6,10),(7,8),(8,9),(9,5),(10,5),(11,6),(12,8),(12,13),(13,9),(13,10),(14,12),(14,16),(15,7),(15,12),(16,6),(16,13),(17,14),(17,15),(18,14),(18,19),(19,7),(19,11),(19,16)],20)
=> ? = 2 - 1
0001010 => ([(0,3),(0,4),(1,2),(1,17),(2,6),(3,16),(3,19),(4,1),(4,16),(4,19),(6,8),(7,10),(8,11),(9,7),(10,5),(11,5),(12,9),(12,14),(13,8),(13,15),(14,7),(14,15),(15,10),(15,11),(16,12),(16,18),(17,6),(17,13),(18,9),(18,13),(18,14),(19,12),(19,17),(19,18)],20)
=> ? = 3 - 1
0001101 => ([(0,4),(0,5),(1,13),(2,1),(2,15),(3,14),(3,16),(4,2),(4,20),(4,21),(5,3),(5,20),(5,21),(7,8),(8,9),(9,11),(10,12),(11,6),(12,6),(13,10),(14,8),(14,18),(15,13),(15,17),(16,17),(16,18),(17,10),(17,19),(18,9),(18,19),(19,11),(19,12),(20,7),(20,14),(21,7),(21,15),(21,16)],22)
=> ? = 2 - 1
0010000 => ([(0,4),(0,5),(1,2),(1,17),(2,7),(3,1),(3,8),(3,16),(4,18),(4,19),(5,3),(5,18),(5,19),(7,12),(8,9),(9,10),(10,11),(11,6),(12,6),(13,10),(13,14),(14,11),(14,12),(15,9),(15,13),(16,13),(16,17),(17,7),(17,14),(18,15),(18,16),(19,8),(19,15)],20)
=> ? = 5 - 1
0010001 => ([(0,3),(0,4),(1,2),(1,18),(1,19),(2,7),(2,14),(3,15),(3,16),(4,1),(4,15),(4,16),(6,8),(7,9),(8,10),(9,11),(10,5),(11,5),(12,10),(12,11),(13,8),(13,12),(14,9),(14,12),(15,17),(15,19),(16,17),(16,18),(17,6),(17,13),(18,13),(18,14),(19,6),(19,7)],20)
=> ? = 2 - 1
0010010 => ([(0,2),(0,3),(1,11),(1,12),(2,16),(2,17),(3,1),(3,16),(3,17),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,13),(10,15),(11,14),(11,15),(12,13),(12,14),(13,5),(13,9),(14,6),(14,9),(15,5),(15,6),(16,10),(16,12),(17,10),(17,11)],18)
=> ? = 2 - 1
0010100 => ([(0,2),(0,3),(1,7),(1,8),(2,17),(2,18),(3,1),(3,17),(3,18),(5,10),(6,9),(7,6),(8,5),(9,11),(10,12),(11,4),(12,4),(13,14),(13,15),(14,9),(14,16),(15,10),(15,16),(16,11),(16,12),(17,7),(17,13),(17,19),(18,8),(18,13),(18,19),(19,5),(19,6),(19,14),(19,15)],20)
=> ? = 3 - 1
0010101 => ([(0,2),(0,3),(1,10),(2,14),(2,17),(3,1),(3,14),(3,17),(5,8),(6,5),(7,9),(8,4),(9,4),(10,6),(11,13),(11,16),(12,8),(12,9),(13,7),(13,12),(14,11),(14,15),(15,6),(15,13),(15,16),(16,5),(16,7),(16,12),(17,10),(17,11),(17,15)],18)
=> ? = 5 - 1
0011010 => ([(0,3),(0,4),(1,13),(2,14),(2,15),(3,2),(3,20),(3,21),(4,1),(4,20),(4,21),(6,7),(7,8),(8,11),(9,12),(10,9),(11,5),(12,5),(13,10),(14,10),(14,18),(15,17),(15,18),(16,7),(16,17),(17,8),(17,19),(18,9),(18,19),(19,11),(19,12),(20,6),(20,15),(20,16),(21,6),(21,13),(21,14),(21,16)],22)
=> ? = 2 - 1
0011101 => ([(0,4),(0,5),(1,14),(2,3),(2,19),(2,20),(3,15),(3,16),(4,1),(4,17),(4,21),(5,2),(5,17),(5,21),(7,10),(8,9),(9,12),(10,13),(11,7),(12,6),(13,6),(14,8),(15,10),(15,18),(16,9),(16,18),(17,11),(17,20),(18,12),(18,13),(19,8),(19,16),(20,7),(20,15),(21,11),(21,14),(21,19)],22)
=> ? = 2 - 1
0100000 => ([(0,5),(0,6),(1,4),(1,14),(2,13),(3,2),(3,16),(4,3),(4,17),(5,12),(5,15),(6,1),(6,12),(6,15),(8,11),(9,10),(10,8),(11,7),(12,9),(13,7),(14,10),(14,17),(15,9),(15,14),(16,11),(16,13),(17,8),(17,16)],18)
=> ? = 5 - 1
0100001 => ([(0,4),(0,5),(1,3),(1,9),(1,17),(2,14),(2,19),(3,2),(3,13),(3,18),(4,15),(4,16),(5,1),(5,15),(5,16),(7,11),(8,7),(9,13),(10,8),(11,6),(12,6),(13,14),(14,12),(15,9),(15,10),(16,10),(16,17),(17,8),(17,18),(18,7),(18,19),(19,11),(19,12)],20)
=> ? = 3 - 1
0100010 => ([(0,3),(0,4),(1,2),(1,18),(1,19),(2,13),(2,14),(3,15),(3,16),(4,1),(4,15),(4,16),(6,9),(7,8),(8,10),(9,11),(10,5),(11,5),(12,10),(12,11),(13,8),(13,12),(14,9),(14,12),(15,17),(15,18),(16,17),(16,19),(17,6),(17,7),(18,7),(18,13),(19,6),(19,14)],20)
=> ? = 3 - 1
0100011 => ([(0,4),(0,5),(1,14),(2,3),(2,19),(2,20),(3,15),(3,16),(4,1),(4,17),(4,21),(5,2),(5,17),(5,21),(7,10),(8,9),(9,12),(10,13),(11,7),(12,6),(13,6),(14,8),(15,10),(15,18),(16,9),(16,18),(17,11),(17,20),(18,12),(18,13),(19,8),(19,16),(20,7),(20,15),(21,11),(21,14),(21,19)],22)
=> ? = 2 - 1
0100100 => ([(0,2),(0,3),(1,11),(1,12),(2,16),(2,17),(3,1),(3,16),(3,17),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,13),(10,15),(11,14),(11,15),(12,13),(12,14),(13,5),(13,9),(14,6),(14,9),(15,5),(15,6),(16,10),(16,12),(17,10),(17,11)],18)
=> ? = 3 - 1
0100101 => ([(0,2),(0,3),(1,12),(1,13),(2,18),(2,19),(3,1),(3,18),(3,19),(5,8),(6,5),(7,10),(8,11),(9,7),(10,4),(11,4),(12,9),(12,15),(13,14),(13,15),(14,8),(14,16),(15,7),(15,16),(16,10),(16,11),(17,5),(17,9),(17,14),(18,6),(18,12),(18,17),(19,6),(19,13),(19,17)],20)
=> ? = 5 - 1
0100110 => ([(0,3),(0,4),(1,17),(1,19),(2,13),(2,18),(3,1),(3,20),(3,21),(4,2),(4,20),(4,21),(6,9),(7,10),(8,6),(9,11),(10,12),(11,5),(12,5),(13,7),(14,9),(14,16),(15,10),(15,16),(16,11),(16,12),(17,6),(17,14),(18,7),(18,15),(19,14),(19,15),(20,8),(20,18),(20,19),(21,8),(21,13),(21,17)],22)
=> ? = 2 - 1
Description
Number of triples of incomparable elements in a finite poset. For a finite poset this is the number of 3-element sets $S \in \binom{P}{3}$ that are pairwise incomparable.
The following 136 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001634The trace of the Coxeter matrix of the incidence algebra of a poset. St000068The number of minimal elements in a poset. St000266The number of spanning subgraphs of a graph with the same connected components. St000267The number of maximal spanning forests contained in a graph. St000286The number of connected components of the complement of a graph. St000287The number of connected components of a graph. St000553The number of blocks of a graph. St000773The multiplicity of the largest Laplacian eigenvalue in a graph. St000775The multiplicity of the largest eigenvalue in a graph. St000785The number of distinct colouring schemes of a graph. St001272The number of graphs with the same degree sequence. St001282The number of graphs with the same chromatic polynomial. St001316The domatic number of a graph. St001333The cardinality of a minimal edge-isolating set of a graph. St001347The number of pairs of vertices of a graph having the same neighbourhood. St001395The number of strictly unfriendly partitions of a graph. St001475The evaluation of the Tutte polynomial of the graph at (x,y) equal to (1,0). St001476The evaluation of the Tutte polynomial of the graph at (x,y) equal to (1,-1). St001496The number of graphs with the same Laplacian spectrum as the given graph. St001518The number of graphs with the same ordinary spectrum as the given graph. St001546The number of monomials in the Tutte polynomial of a graph. St001740The number of graphs with the same symmetric edge polytope as the given graph. St001942The number of loops of the quiver corresponding to the reduced incidence algebra of a poset. St001951The number of factors in the disjoint direct product decomposition of the automorphism group of a graph. St000095The number of triangles of a graph. St000096The number of spanning trees of a graph. St000261The edge connectivity of a graph. St000262The vertex connectivity of a graph. St000274The number of perfect matchings of a graph. St000276The size of the preimage of the map 'to graph' from Ordered trees to Graphs. St000283The size of the preimage of the map 'to graph' from Binary trees to Graphs. St000303The determinant of the product of the incidence matrix and its transpose of a graph divided by $4$. St000310The minimal degree of a vertex of a graph. St000315The number of isolated vertices of a graph. St000322The skewness of a graph. St000323The minimal crossing number of a graph. St000351The determinant of the adjacency matrix of a graph. St000363The number of minimal vertex covers of a graph. St000368The Altshuler-Steinberg determinant of a graph. St000370The genus of a graph. St000379The number of Hamiltonian cycles in a graph. St000403The Szeged index minus the Wiener index of a graph. St000449The number of pairs of vertices of a graph with distance 4. St000552The number of cut vertices of a graph. St000636The hull number of a graph. St000637The length of the longest cycle in a graph. St000671The maximin edge-connectivity for choosing a subgraph. St000699The toughness times the least common multiple of 1,. St000723The maximal cardinality of a set of vertices with the same neighbourhood in a graph. St000776The maximal multiplicity of an eigenvalue in a graph. St000917The open packing number of a graph. St000948The chromatic discriminant of a graph. St000986The multiplicity of the eigenvalue zero of the adjacency matrix of the graph. St001029The size of the core of a graph. St001069The coefficient of the monomial xy of the Tutte polynomial of the graph. St001095The number of non-isomorphic posets with precisely one further covering relation. St001109The number of proper colourings of a graph with as few colours as possible. St001119The length of a shortest maximal path in a graph. St001271The competition number of a graph. St001281The normalized isoperimetric number of a graph. St001305The number of induced cycles on four vertices in a graph. St001307The number of induced stars on four vertices in a graph. St001309The number of four-cliques in a graph. St001310The number of induced diamond graphs in a graph. St001311The cyclomatic number of a graph. St001317The minimal number of occurrences of the forest-pattern in a linear ordering of the vertices of the graph. St001320The minimal number of occurrences of the path-pattern in a linear ordering of the vertices of the graph. St001323The independence gap of a graph. St001324The minimal number of occurrences of the chordal-pattern in a linear ordering of the vertices of the graph. St001325The minimal number of occurrences of the comparability-pattern in a linear ordering of the vertices of the graph. St001326The minimal number of occurrences of the interval-pattern in a linear ordering of the vertices of the graph. St001328The minimal number of occurrences of the bipartite-pattern in a linear ordering of the vertices of the graph. St001329The minimal number of occurrences of the outerplanar pattern in a linear ordering of the vertices of the graph. St001331The size of the minimal feedback vertex set. St001334The minimal number of occurrences of the 3-colorable pattern in a linear ordering of the vertices of the graph. St001335The cardinality of a minimal cycle-isolating set of a graph. St001336The minimal number of vertices in a graph whose complement is triangle-free. St001357The maximal degree of a regular spanning subgraph of a graph. St001367The smallest number which does not occur as degree of a vertex in a graph. St001572The minimal number of edges to remove to make a graph bipartite. St001573The minimal number of edges to remove to make a graph triangle-free. St001578The minimal number of edges to add or remove to make a graph a line graph. St001638The book thickness of a graph. St001654The monophonic hull number of a graph. St001672The restrained domination number of a graph. St001689The number of celebrities in a graph. St001690The length of a longest path in a graph such that after removing the paths edges, every vertex of the path has distance two from some other vertex of the path. St001691The number of kings in a graph. St001702The absolute value of the determinant of the adjacency matrix of a graph. St001736The total number of cycles in a graph. St001793The difference between the clique number and the chromatic number of a graph. St001794Half the number of sets of vertices in a graph which are dominating and non-blocking. St001795The binary logarithm of the evaluation of the Tutte polynomial of the graph at (x,y) equal to (-1,-1). St001796The absolute value of the quotient of the Tutte polynomial of the graph at (1,1) and (-1,-1). St001797The number of overfull subgraphs of a graph. St001871The number of triconnected components of a graph. St000260The radius of a connected graph. St000273The domination number of a graph. St000544The cop number of a graph. St000633The size of the automorphism group of a poset. St000916The packing number of a graph. St001056The Grundy value for the game of deleting vertices of a graph until it has no edges. St001195The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$. St001208The number of connected components of the quiver of $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra $A$ of $K[x]/(x^n)$. St001322The size of a minimal independent dominating set in a graph. St001339The irredundance number of a graph. St001340The cardinality of a minimal non-edge isolating set of a graph. St001341The number of edges in the center of a graph. St001354The number of series nodes in the modular decomposition of a graph. St001363The Euler characteristic of a graph according to Knill. St001393The induced matching number of a graph. St001399The distinguishing number of a poset. St001621The number of atoms of a lattice. St001624The breadth of a lattice. St001722The number of minimal chains with small intervals between a binary word and the top element. St001739The number of graphs with the same edge polytope as the given graph. St001743The discrepancy of a graph. St001765The number of connected components of the friends and strangers graph. St001776The degree of the minimal polynomial of the largest Laplacian eigenvalue of a graph. St001829The common independence number of a graph. St001934The number of monotone factorisations of genus zero of a permutation of given cycle type. St000258The burning number of a graph. St000447The number of pairs of vertices of a graph with distance 3. St000786The maximal number of occurrences of a colour in a proper colouring of a graph. St000850The number of 1/2-balanced pairs in a poset. St000918The 2-limited packing number of a graph. St001057The Grundy value of the game of creating an independent set in a graph. St001261The Castelnuovo-Mumford regularity of a graph. St001337The upper domination number of a graph. St001338The upper irredundance number of a graph. St001342The number of vertices in the center of a graph. St001368The number of vertices of maximal degree in a graph. St001371The length of the longest Yamanouchi prefix of a binary word. St001730The number of times the path corresponding to a binary word crosses the base line. St001472The permanent of the Coxeter matrix of the poset. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$.