searching the database
Your data matches 3 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000772
Mp00152: Graphs —Laplacian multiplicities⟶ Integer compositions
Mp00039: Integer compositions —complement⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000772: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00039: Integer compositions —complement⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000772: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],1)
=> [1] => [1] => ([],1)
=> 1
([],2)
=> [2] => [1,1] => ([(0,1)],2)
=> 1
([],3)
=> [3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
([(1,2)],3)
=> [1,2] => [2,1] => ([(0,2),(1,2)],3)
=> 1
([],4)
=> [4] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(2,3)],4)
=> [1,3] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(1,3),(2,3)],4)
=> [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
([(0,3),(1,2)],4)
=> [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(1,2),(1,3),(2,3)],4)
=> [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([],5)
=> [5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(3,4)],5)
=> [1,4] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(2,4),(3,4)],5)
=> [1,1,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,4),(2,3)],5)
=> [2,3] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
([(2,3),(2,4),(3,4)],5)
=> [2,3] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
([(1,3),(1,4),(2,3),(2,4)],5)
=> [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([],6)
=> [6] => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
([(4,5)],6)
=> [1,5] => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(3,5),(4,5)],6)
=> [1,1,4] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(2,5),(3,5),(4,5)],6)
=> [1,2,3] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,3,2] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(2,5),(3,4)],6)
=> [2,4] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(2,5),(3,4),(4,5)],6)
=> [1,1,1,3] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
([(1,2),(3,5),(4,5)],6)
=> [1,1,1,3] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
([(3,4),(3,5),(4,5)],6)
=> [2,4] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,2,2] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,3] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,2,2] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [1,2,3] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,2] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(0,5),(1,4),(2,3)],6)
=> [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> [1,1,1,1,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4
([(0,1),(2,5),(3,4),(4,5)],6)
=> [1,2,1,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(1,2),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,1,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
Description
The multiplicity of the largest distance Laplacian eigenvalue in a connected graph.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums 0, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
(4−1−2−1−14−1−2−2−14−1−1−2−14).
Its eigenvalues are 0,4,4,6, so the statistic is 1.
The path on four vertices has eigenvalues 0,4.7…,6,9.2… and therefore also statistic 1.
The graphs with statistic n−1, n−2 and n−3 have been characterised, see [1].
Matching statistic: St000993
Mp00152: Graphs —Laplacian multiplicities⟶ Integer compositions
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
St000993: Integer partitions ⟶ ℤResult quality: 49% ●values known / values provided: 49%●distinct values known / distinct values provided: 67%
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
St000993: Integer partitions ⟶ ℤResult quality: 49% ●values known / values provided: 49%●distinct values known / distinct values provided: 67%
Values
([],1)
=> [1] => [[1],[]]
=> []
=> ? = 1
([],2)
=> [2] => [[2],[]]
=> []
=> ? = 1
([],3)
=> [3] => [[3],[]]
=> []
=> ? = 2
([(1,2)],3)
=> [1,2] => [[2,1],[]]
=> []
=> ? = 1
([],4)
=> [4] => [[4],[]]
=> []
=> ? = 3
([(2,3)],4)
=> [1,3] => [[3,1],[]]
=> []
=> ? = 1
([(1,3),(2,3)],4)
=> [1,1,2] => [[2,1,1],[]]
=> []
=> ? = 2
([(0,3),(1,2)],4)
=> [2,2] => [[3,2],[1]]
=> [1]
=> ? = 1
([(1,2),(1,3),(2,3)],4)
=> [2,2] => [[3,2],[1]]
=> [1]
=> ? = 1
([],5)
=> [5] => [[5],[]]
=> []
=> ? = 4
([(3,4)],5)
=> [1,4] => [[4,1],[]]
=> []
=> ? = 1
([(2,4),(3,4)],5)
=> [1,1,3] => [[3,1,1],[]]
=> []
=> ? = 2
([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => [[3,2,1],[1]]
=> [1]
=> ? = 1
([(1,4),(2,3)],5)
=> [2,3] => [[4,2],[1]]
=> [1]
=> ? = 1
([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => [[2,1,1,1],[]]
=> []
=> ? = 3
([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => [[2,1,1,1],[]]
=> []
=> ? = 3
([(2,3),(2,4),(3,4)],5)
=> [2,3] => [[4,2],[1]]
=> [1]
=> ? = 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => [[2,1,1,1],[]]
=> []
=> ? = 3
([(1,3),(1,4),(2,3),(2,4)],5)
=> [1,2,2] => [[3,2,1],[1]]
=> [1]
=> ? = 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => [[4,3],[2]]
=> [2]
=> 1
([],6)
=> [6] => [[6],[]]
=> []
=> ? = 5
([(4,5)],6)
=> [1,5] => [[5,1],[]]
=> []
=> ? = 1
([(3,5),(4,5)],6)
=> [1,1,4] => [[4,1,1],[]]
=> []
=> ? = 2
([(2,5),(3,5),(4,5)],6)
=> [1,2,3] => [[4,2,1],[1]]
=> [1]
=> ? = 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,3,2] => [[4,3,1],[2]]
=> [2]
=> 1
([(2,5),(3,4)],6)
=> [2,4] => [[5,2],[1]]
=> [1]
=> ? = 1
([(2,5),(3,4),(4,5)],6)
=> [1,1,1,3] => [[3,1,1,1],[]]
=> []
=> ? = 3
([(1,2),(3,5),(4,5)],6)
=> [1,1,1,3] => [[3,1,1,1],[]]
=> []
=> ? = 3
([(3,4),(3,5),(4,5)],6)
=> [2,4] => [[5,2],[1]]
=> [1]
=> ? = 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? = 4
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> ? = 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,3] => [[3,1,1,1],[]]
=> []
=> ? = 3
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> ? = 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [1,2,3] => [[4,2,1],[1]]
=> [1]
=> ? = 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? = 4
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? = 4
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? = 4
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> ? = 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> 1
([(0,5),(1,4),(2,3)],6)
=> [3,3] => [[5,3],[2]]
=> [2]
=> 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? = 4
([(0,1),(2,5),(3,4),(4,5)],6)
=> [1,2,1,2] => [[3,2,2,1],[1,1]]
=> [1,1]
=> 2
([(1,2),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> 2
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? = 4
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? = 4
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,1,2] => [[3,2,2,1],[1,1]]
=> [1,1]
=> 2
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> 1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? = 4
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? = 4
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? = 4
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,3,2] => [[4,3,1],[2]]
=> [2]
=> 1
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,1,2] => [[4,3,3],[2,2]]
=> [2,2]
=> 2
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> 1
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3] => [[5,3],[2]]
=> [2]
=> 1
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,2,1,2] => [[3,2,2,1],[1,1]]
=> [1,1]
=> 2
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,1,2] => [[3,2,2,2],[1,1,1]]
=> [1,1,1]
=> 3
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? = 4
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> 1
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,2] => [[4,3,3],[2,2]]
=> [2,2]
=> 2
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [4,2] => [[5,4],[3]]
=> [3]
=> 1
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,2] => [[4,3,3],[2,2]]
=> [2,2]
=> 2
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2] => [[5,4],[3]]
=> [3]
=> 1
([],7)
=> [7] => [[7],[]]
=> []
=> ? = 6
([(5,6)],7)
=> [1,6] => [[6,1],[]]
=> []
=> ? = 1
([(4,6),(5,6)],7)
=> [1,1,5] => [[5,1,1],[]]
=> []
=> ? = 2
([(3,6),(4,6),(5,6)],7)
=> [1,2,4] => [[5,2,1],[1]]
=> [1]
=> ? = 1
([(2,6),(3,6),(4,6),(5,6)],7)
=> [1,3,3] => [[5,3,1],[2]]
=> [2]
=> 1
([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> [1,4,2] => [[5,4,1],[3]]
=> [3]
=> 1
([(3,6),(4,5)],7)
=> [2,5] => [[6,2],[1]]
=> [1]
=> ? = 1
([(3,6),(4,5),(5,6)],7)
=> [1,1,1,4] => [[4,1,1,1],[]]
=> []
=> ? = 3
([(2,3),(4,6),(5,6)],7)
=> [1,1,1,4] => [[4,1,1,1],[]]
=> []
=> ? = 3
([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> [1,1,2,1,2] => [[3,2,2,1,1],[1,1]]
=> [1,1]
=> 2
([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> [1,1,3,2] => [[4,3,1,1],[2]]
=> [2]
=> 1
([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,3,2] => [[4,3,1,1],[2]]
=> [2]
=> 1
([(1,6),(2,6),(3,5),(4,5)],7)
=> [2,2,3] => [[5,3,2],[2,1]]
=> [2,1]
=> 1
([(0,6),(1,6),(2,6),(3,5),(4,5)],7)
=> [1,1,3,2] => [[4,3,1,1],[2]]
=> [2]
=> 1
([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [2,1,4] => [[5,2,2],[1,1]]
=> [1,1]
=> 2
([(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> [1,1,2,1,2] => [[3,2,2,1,1],[1,1]]
=> [1,1]
=> 2
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [1,1,2,1,2] => [[3,2,2,1,1],[1,1]]
=> [1,1]
=> 2
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [2,2,3] => [[5,3,2],[2,1]]
=> [2,1]
=> 1
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,2,1,2] => [[3,2,2,1,1],[1,1]]
=> [1,1]
=> 2
([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [1,1,3,2] => [[4,3,1,1],[2]]
=> [2]
=> 1
([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [2,3,2] => [[5,4,2],[3,1]]
=> [3,1]
=> 1
([(1,6),(2,5),(3,4)],7)
=> [3,4] => [[6,3],[2]]
=> [2]
=> 1
([(1,2),(3,6),(4,5),(5,6)],7)
=> [1,2,1,3] => [[4,2,2,1],[1,1]]
=> [1,1]
=> 2
([(0,3),(1,2),(4,6),(5,6)],7)
=> [1,2,1,3] => [[4,2,2,1],[1,1]]
=> [1,1]
=> 2
([(2,3),(4,5),(4,6),(5,6)],7)
=> [2,1,4] => [[5,2,2],[1,1]]
=> [1,1]
=> 2
([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> [1,2,1,3] => [[4,2,2,1],[1,1]]
=> [1,1]
=> 2
([(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> [1,2,2,2] => [[4,3,2,1],[2,1]]
=> [2,1]
=> 1
([(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> [2,2,3] => [[5,3,2],[2,1]]
=> [2,1]
=> 1
([(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7)
=> [2,1,2,2] => [[4,3,2,2],[2,1,1]]
=> [2,1,1]
=> 1
([(1,2),(3,5),(3,6),(4,5),(4,6)],7)
=> [1,3,3] => [[5,3,1],[2]]
=> [2]
=> 1
([(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> [3,1,3] => [[5,3,3],[2,2]]
=> [2,2]
=> 2
([(1,5),(2,3),(2,4),(3,6),(4,6),(5,6)],7)
=> [1,1,2,1,2] => [[3,2,2,1,1],[1,1]]
=> [1,1]
=> 2
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [1,1,2,1,2] => [[3,2,2,1,1],[1,1]]
=> [1,1]
=> 2
([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6)],7)
=> [1,2,1,1,2] => [[3,2,2,2,1],[1,1,1]]
=> [1,1,1]
=> 3
Description
The multiplicity of the largest part of an integer partition.
Matching statistic: St000455
Mp00152: Graphs —Laplacian multiplicities⟶ Integer compositions
Mp00173: Integer compositions —rotate front to back⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000455: Graphs ⟶ ℤResult quality: 9% ●values known / values provided: 9%●distinct values known / distinct values provided: 17%
Mp00173: Integer compositions —rotate front to back⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000455: Graphs ⟶ ℤResult quality: 9% ●values known / values provided: 9%●distinct values known / distinct values provided: 17%
Values
([],1)
=> [1] => [1] => ([],1)
=> ? = 1 - 1
([],2)
=> [2] => [2] => ([],2)
=> ? = 1 - 1
([],3)
=> [3] => [3] => ([],3)
=> ? = 2 - 1
([(1,2)],3)
=> [1,2] => [2,1] => ([(0,2),(1,2)],3)
=> 0 = 1 - 1
([],4)
=> [4] => [4] => ([],4)
=> ? = 3 - 1
([(2,3)],4)
=> [1,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 1 - 1
([(1,3),(2,3)],4)
=> [1,1,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 - 1
([(0,3),(1,2)],4)
=> [2,2] => [2,2] => ([(1,3),(2,3)],4)
=> 0 = 1 - 1
([(1,2),(1,3),(2,3)],4)
=> [2,2] => [2,2] => ([(1,3),(2,3)],4)
=> 0 = 1 - 1
([],5)
=> [5] => [5] => ([],5)
=> ? = 4 - 1
([(3,4)],5)
=> [1,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
([(2,4),(3,4)],5)
=> [1,1,3] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 1
([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 - 1
([(1,4),(2,3)],5)
=> [2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 - 1
([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 - 1
([(2,3),(2,4),(3,4)],5)
=> [2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => [2,3] => ([(2,4),(3,4)],5)
=> 0 = 1 - 1
([],6)
=> [6] => [6] => ([],6)
=> ? = 5 - 1
([(4,5)],6)
=> [1,5] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 1 - 1
([(3,5),(4,5)],6)
=> [1,1,4] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 1
([(2,5),(3,5),(4,5)],6)
=> [1,2,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 - 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,3,2] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 - 1
([(2,5),(3,4)],6)
=> [2,4] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 1 - 1
([(2,5),(3,4),(4,5)],6)
=> [1,1,1,3] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(1,2),(3,5),(4,5)],6)
=> [1,1,1,3] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(3,4),(3,5),(4,5)],6)
=> [2,4] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 1 - 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 - 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,3] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 - 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [1,2,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 - 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [2,2,2] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 - 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 - 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 - 1
([(0,5),(1,4),(2,3)],6)
=> [3,3] => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> 0 = 1 - 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> [1,1,1,1,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> [1,2,1,2] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,1,2] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 1
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [2,2,2] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 - 1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,3,2] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 - 1
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,1,2] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 1
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 - 1
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3] => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> 0 = 1 - 1
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,2,1,2] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 1
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,1,2] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,1,1,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [2,2,2] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 - 1
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,2] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [4,2] => [2,4] => ([(3,5),(4,5)],6)
=> 0 = 1 - 1
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2] => [2,4] => ([(3,5),(4,5)],6)
=> 0 = 1 - 1
([(5,6)],7)
=> [1,6] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 0 = 1 - 1
([(3,6),(4,5)],7)
=> [2,5] => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 0 = 1 - 1
([(4,5),(4,6),(5,6)],7)
=> [2,5] => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 0 = 1 - 1
([(1,6),(2,5),(3,4)],7)
=> [3,4] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 0 = 1 - 1
([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [3,4] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> 0 = 1 - 1
([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7)
=> [4,3] => [3,4] => ([(3,6),(4,6),(5,6)],7)
=> 0 = 1 - 1
([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [4,3] => [3,4] => ([(3,6),(4,6),(5,6)],7)
=> 0 = 1 - 1
([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,2] => [2,5] => ([(4,6),(5,6)],7)
=> 0 = 1 - 1
Description
The second largest eigenvalue of a graph if it is integral.
This statistic is undefined if the second largest eigenvalue of the graph is not integral.
Chapter 4 of [1] provides lots of context.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!