Your data matches 16 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00133: Integer compositions delta morphismInteger compositions
St001486: Integer compositions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1] => 1
[1,1] => [2] => 2
[2] => [1] => 1
[1,1,1] => [3] => 2
[3] => [1] => 1
[1,1,1,1] => [4] => 2
[2,1,1] => [1,2] => 3
[2,2] => [2] => 2
[4] => [1] => 1
[1,1,1,1,1] => [5] => 2
[1,2,1,1] => [1,1,2] => 3
[1,2,2] => [1,2] => 3
[2,1,1,1] => [1,3] => 3
[3,1,1] => [1,2] => 3
[5] => [1] => 1
[1,1,1,1,1,1] => [6] => 2
[1,1,2,1,1] => [2,1,2] => 4
[1,1,2,2] => [2,2] => 4
[1,2,1,1,1] => [1,1,3] => 3
[1,3,1,1] => [1,1,2] => 3
[2,1,1,1,1] => [1,4] => 3
[2,2,1,1] => [2,2] => 4
[2,2,2] => [3] => 2
[3,1,1,1] => [1,3] => 3
[3,3] => [2] => 2
[4,1,1] => [1,2] => 3
[6] => [1] => 1
[1,1,1,1,1,1,1] => [7] => 2
[1,1,1,2,1,1] => [3,1,2] => 4
[1,1,1,2,2] => [3,2] => 4
[1,1,2,1,1,1] => [2,1,3] => 4
[1,1,3,1,1] => [2,1,2] => 4
[1,2,1,1,1,1] => [1,1,4] => 3
[1,2,2,1,1] => [1,2,2] => 5
[1,2,2,2] => [1,3] => 3
[1,3,1,1,1] => [1,1,3] => 3
[1,3,3] => [1,2] => 3
[1,4,1,1] => [1,1,2] => 3
[2,1,1,1,1,1] => [1,5] => 3
[2,1,2,1,1] => [1,1,1,2] => 3
[2,1,2,2] => [1,1,2] => 3
[2,2,1,1,1] => [2,3] => 4
[2,3,1,1] => [1,1,2] => 3
[3,1,1,1,1] => [1,4] => 3
[3,2,1,1] => [1,1,2] => 3
[3,2,2] => [1,2] => 3
[4,1,1,1] => [1,3] => 3
[5,1,1] => [1,2] => 3
[7] => [1] => 1
[1,1,1,1,2,1,1] => [4,1,2] => 4
Description
The number of corners of the ribbon associated with an integer composition. We associate a ribbon shape to a composition $c=(c_1,\dots,c_n)$ with $c_i$ cells in the $i$-th row from bottom to top, such that the cells in two rows overlap in precisely one cell. This statistic records the total number of corners of the ribbon shape.
Mp00133: Integer compositions delta morphismInteger compositions
Mp00039: Integer compositions complementInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000777: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1] => [1] => ([],1)
=> 1
[1,1] => [2] => [1,1] => ([(0,1)],2)
=> 2
[2] => [1] => [1] => ([],1)
=> 1
[1,1,1] => [3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[3] => [1] => [1] => ([],1)
=> 1
[1,1,1,1] => [4] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[2,1,1] => [1,2] => [2,1] => ([(0,2),(1,2)],3)
=> 3
[2,2] => [2] => [1,1] => ([(0,1)],2)
=> 2
[4] => [1] => [1] => ([],1)
=> 1
[1,1,1,1,1] => [5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,2,1,1] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
[1,2,2] => [1,2] => [2,1] => ([(0,2),(1,2)],3)
=> 3
[2,1,1,1] => [1,3] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[3,1,1] => [1,2] => [2,1] => ([(0,2),(1,2)],3)
=> 3
[5] => [1] => [1] => ([],1)
=> 1
[1,1,1,1,1,1] => [6] => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,2,1,1] => [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,1,2,2] => [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,2,1,1,1] => [1,1,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,3,1,1] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
[2,1,1,1,1] => [1,4] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[2,2,1,1] => [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[2,2,2] => [3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[3,1,1,1] => [1,3] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[3,3] => [2] => [1,1] => ([(0,1)],2)
=> 2
[4,1,1] => [1,2] => [2,1] => ([(0,2),(1,2)],3)
=> 3
[6] => [1] => [1] => ([],1)
=> 1
[1,1,1,1,1,1,1] => [7] => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2
[1,1,1,2,1,1] => [3,1,2] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,1,2,2] => [3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,1,2,1,1,1] => [2,1,3] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,3,1,1] => [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,2,1,1,1,1] => [1,1,4] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,2,2,1,1] => [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[1,2,2,2] => [1,3] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,3,1,1,1] => [1,1,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,3,3] => [1,2] => [2,1] => ([(0,2),(1,2)],3)
=> 3
[1,4,1,1] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
[2,1,1,1,1,1] => [1,5] => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[2,1,2,1,1] => [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[2,1,2,2] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
[2,2,1,1,1] => [2,3] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[2,3,1,1] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
[3,1,1,1,1] => [1,4] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[3,2,1,1] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
[3,2,2] => [1,2] => [2,1] => ([(0,2),(1,2)],3)
=> 3
[4,1,1,1] => [1,3] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[5,1,1] => [1,2] => [2,1] => ([(0,2),(1,2)],3)
=> 3
[7] => [1] => [1] => ([],1)
=> 1
[1,1,1,1,2,1,1] => [4,1,2] => [1,1,1,3,1] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4
Description
The number of distinct eigenvalues of the distance Laplacian of a connected graph.
Mp00133: Integer compositions delta morphismInteger compositions
Mp00173: Integer compositions rotate front to backInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
St000340: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1] => [1] => [1,0]
=> 0 = 1 - 1
[1,1] => [2] => [2] => [1,1,0,0]
=> 1 = 2 - 1
[2] => [1] => [1] => [1,0]
=> 0 = 1 - 1
[1,1,1] => [3] => [3] => [1,1,1,0,0,0]
=> 1 = 2 - 1
[3] => [1] => [1] => [1,0]
=> 0 = 1 - 1
[1,1,1,1] => [4] => [4] => [1,1,1,1,0,0,0,0]
=> 1 = 2 - 1
[2,1,1] => [1,2] => [2,1] => [1,1,0,0,1,0]
=> 2 = 3 - 1
[2,2] => [2] => [2] => [1,1,0,0]
=> 1 = 2 - 1
[4] => [1] => [1] => [1,0]
=> 0 = 1 - 1
[1,1,1,1,1] => [5] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 1 = 2 - 1
[1,2,1,1] => [1,1,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[1,2,2] => [1,2] => [2,1] => [1,1,0,0,1,0]
=> 2 = 3 - 1
[2,1,1,1] => [1,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> 2 = 3 - 1
[3,1,1] => [1,2] => [2,1] => [1,1,0,0,1,0]
=> 2 = 3 - 1
[5] => [1] => [1] => [1,0]
=> 0 = 1 - 1
[1,1,1,1,1,1] => [6] => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 1 = 2 - 1
[1,1,2,1,1] => [2,1,2] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 3 = 4 - 1
[1,1,2,2] => [2,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> 3 = 4 - 1
[1,2,1,1,1] => [1,1,3] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 2 = 3 - 1
[1,3,1,1] => [1,1,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[2,1,1,1,1] => [1,4] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 2 = 3 - 1
[2,2,1,1] => [2,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> 3 = 4 - 1
[2,2,2] => [3] => [3] => [1,1,1,0,0,0]
=> 1 = 2 - 1
[3,1,1,1] => [1,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> 2 = 3 - 1
[3,3] => [2] => [2] => [1,1,0,0]
=> 1 = 2 - 1
[4,1,1] => [1,2] => [2,1] => [1,1,0,0,1,0]
=> 2 = 3 - 1
[6] => [1] => [1] => [1,0]
=> 0 = 1 - 1
[1,1,1,1,1,1,1] => [7] => [7] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> 1 = 2 - 1
[1,1,1,2,1,1] => [3,1,2] => [1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> 3 = 4 - 1
[1,1,1,2,2] => [3,2] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 3 = 4 - 1
[1,1,2,1,1,1] => [2,1,3] => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> 3 = 4 - 1
[1,1,3,1,1] => [2,1,2] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 3 = 4 - 1
[1,2,1,1,1,1] => [1,1,4] => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> 2 = 3 - 1
[1,2,2,1,1] => [1,2,2] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 4 = 5 - 1
[1,2,2,2] => [1,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> 2 = 3 - 1
[1,3,1,1,1] => [1,1,3] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 2 = 3 - 1
[1,3,3] => [1,2] => [2,1] => [1,1,0,0,1,0]
=> 2 = 3 - 1
[1,4,1,1] => [1,1,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[2,1,1,1,1,1] => [1,5] => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2 = 3 - 1
[2,1,2,1,1] => [1,1,1,2] => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[2,1,2,2] => [1,1,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[2,2,1,1,1] => [2,3] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3 = 4 - 1
[2,3,1,1] => [1,1,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[3,1,1,1,1] => [1,4] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 2 = 3 - 1
[3,2,1,1] => [1,1,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[3,2,2] => [1,2] => [2,1] => [1,1,0,0,1,0]
=> 2 = 3 - 1
[4,1,1,1] => [1,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> 2 = 3 - 1
[5,1,1] => [1,2] => [2,1] => [1,1,0,0,1,0]
=> 2 = 3 - 1
[7] => [1] => [1] => [1,0]
=> 0 = 1 - 1
[1,1,1,1,2,1,1] => [4,1,2] => [1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> 3 = 4 - 1
Description
The number of non-final maximal constant sub-paths of length greater than one. This is the total number of occurrences of the patterns $110$ and $001$.
Mp00133: Integer compositions delta morphismInteger compositions
Mp00173: Integer compositions rotate front to backInteger compositions
Mp00094: Integer compositions to binary wordBinary words
St000691: Binary words ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1] => [1] => 1 => 0 = 1 - 1
[1,1] => [2] => [2] => 10 => 1 = 2 - 1
[2] => [1] => [1] => 1 => 0 = 1 - 1
[1,1,1] => [3] => [3] => 100 => 1 = 2 - 1
[3] => [1] => [1] => 1 => 0 = 1 - 1
[1,1,1,1] => [4] => [4] => 1000 => 1 = 2 - 1
[2,1,1] => [1,2] => [2,1] => 101 => 2 = 3 - 1
[2,2] => [2] => [2] => 10 => 1 = 2 - 1
[4] => [1] => [1] => 1 => 0 = 1 - 1
[1,1,1,1,1] => [5] => [5] => 10000 => 1 = 2 - 1
[1,2,1,1] => [1,1,2] => [1,2,1] => 1101 => 2 = 3 - 1
[1,2,2] => [1,2] => [2,1] => 101 => 2 = 3 - 1
[2,1,1,1] => [1,3] => [3,1] => 1001 => 2 = 3 - 1
[3,1,1] => [1,2] => [2,1] => 101 => 2 = 3 - 1
[5] => [1] => [1] => 1 => 0 = 1 - 1
[1,1,1,1,1,1] => [6] => [6] => 100000 => 1 = 2 - 1
[1,1,2,1,1] => [2,1,2] => [1,2,2] => 11010 => 3 = 4 - 1
[1,1,2,2] => [2,2] => [2,2] => 1010 => 3 = 4 - 1
[1,2,1,1,1] => [1,1,3] => [1,3,1] => 11001 => 2 = 3 - 1
[1,3,1,1] => [1,1,2] => [1,2,1] => 1101 => 2 = 3 - 1
[2,1,1,1,1] => [1,4] => [4,1] => 10001 => 2 = 3 - 1
[2,2,1,1] => [2,2] => [2,2] => 1010 => 3 = 4 - 1
[2,2,2] => [3] => [3] => 100 => 1 = 2 - 1
[3,1,1,1] => [1,3] => [3,1] => 1001 => 2 = 3 - 1
[3,3] => [2] => [2] => 10 => 1 = 2 - 1
[4,1,1] => [1,2] => [2,1] => 101 => 2 = 3 - 1
[6] => [1] => [1] => 1 => 0 = 1 - 1
[1,1,1,1,1,1,1] => [7] => [7] => 1000000 => 1 = 2 - 1
[1,1,1,2,1,1] => [3,1,2] => [1,2,3] => 110100 => 3 = 4 - 1
[1,1,1,2,2] => [3,2] => [2,3] => 10100 => 3 = 4 - 1
[1,1,2,1,1,1] => [2,1,3] => [1,3,2] => 110010 => 3 = 4 - 1
[1,1,3,1,1] => [2,1,2] => [1,2,2] => 11010 => 3 = 4 - 1
[1,2,1,1,1,1] => [1,1,4] => [1,4,1] => 110001 => 2 = 3 - 1
[1,2,2,1,1] => [1,2,2] => [2,2,1] => 10101 => 4 = 5 - 1
[1,2,2,2] => [1,3] => [3,1] => 1001 => 2 = 3 - 1
[1,3,1,1,1] => [1,1,3] => [1,3,1] => 11001 => 2 = 3 - 1
[1,3,3] => [1,2] => [2,1] => 101 => 2 = 3 - 1
[1,4,1,1] => [1,1,2] => [1,2,1] => 1101 => 2 = 3 - 1
[2,1,1,1,1,1] => [1,5] => [5,1] => 100001 => 2 = 3 - 1
[2,1,2,1,1] => [1,1,1,2] => [1,1,2,1] => 11101 => 2 = 3 - 1
[2,1,2,2] => [1,1,2] => [1,2,1] => 1101 => 2 = 3 - 1
[2,2,1,1,1] => [2,3] => [3,2] => 10010 => 3 = 4 - 1
[2,3,1,1] => [1,1,2] => [1,2,1] => 1101 => 2 = 3 - 1
[3,1,1,1,1] => [1,4] => [4,1] => 10001 => 2 = 3 - 1
[3,2,1,1] => [1,1,2] => [1,2,1] => 1101 => 2 = 3 - 1
[3,2,2] => [1,2] => [2,1] => 101 => 2 = 3 - 1
[4,1,1,1] => [1,3] => [3,1] => 1001 => 2 = 3 - 1
[5,1,1] => [1,2] => [2,1] => 101 => 2 = 3 - 1
[7] => [1] => [1] => 1 => 0 = 1 - 1
[1,1,1,1,2,1,1] => [4,1,2] => [1,2,4] => 1101000 => 3 = 4 - 1
Description
The number of changes of a binary word. This is the number of indices $i$ such that $w_i \neq w_{i+1}$.
Mp00133: Integer compositions delta morphismInteger compositions
Mp00039: Integer compositions complementInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000453: Graphs ⟶ ℤResult quality: 99% values known / values provided: 99%distinct values known / distinct values provided: 100%
Values
[1] => [1] => [1] => ([],1)
=> 1
[1,1] => [2] => [1,1] => ([(0,1)],2)
=> 2
[2] => [1] => [1] => ([],1)
=> 1
[1,1,1] => [3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[3] => [1] => [1] => ([],1)
=> 1
[1,1,1,1] => [4] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[2,1,1] => [1,2] => [2,1] => ([(0,2),(1,2)],3)
=> 3
[2,2] => [2] => [1,1] => ([(0,1)],2)
=> 2
[4] => [1] => [1] => ([],1)
=> 1
[1,1,1,1,1] => [5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,2,1,1] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
[1,2,2] => [1,2] => [2,1] => ([(0,2),(1,2)],3)
=> 3
[2,1,1,1] => [1,3] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[3,1,1] => [1,2] => [2,1] => ([(0,2),(1,2)],3)
=> 3
[5] => [1] => [1] => ([],1)
=> 1
[1,1,1,1,1,1] => [6] => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,2,1,1] => [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,1,2,2] => [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,2,1,1,1] => [1,1,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,3,1,1] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
[2,1,1,1,1] => [1,4] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[2,2,1,1] => [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[2,2,2] => [3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[3,1,1,1] => [1,3] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[3,3] => [2] => [1,1] => ([(0,1)],2)
=> 2
[4,1,1] => [1,2] => [2,1] => ([(0,2),(1,2)],3)
=> 3
[6] => [1] => [1] => ([],1)
=> 1
[1,1,1,1,1,1,1] => [7] => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2
[1,1,1,2,1,1] => [3,1,2] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,1,2,2] => [3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,1,2,1,1,1] => [2,1,3] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,3,1,1] => [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,2,1,1,1,1] => [1,1,4] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,2,2,1,1] => [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[1,2,2,2] => [1,3] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,3,1,1,1] => [1,1,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,3,3] => [1,2] => [2,1] => ([(0,2),(1,2)],3)
=> 3
[1,4,1,1] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
[2,1,1,1,1,1] => [1,5] => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[2,1,2,1,1] => [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[2,1,2,2] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
[2,2,1,1,1] => [2,3] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[2,3,1,1] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
[3,1,1,1,1] => [1,4] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[3,2,1,1] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
[3,2,2] => [1,2] => [2,1] => ([(0,2),(1,2)],3)
=> 3
[4,1,1,1] => [1,3] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[5,1,1] => [1,2] => [2,1] => ([(0,2),(1,2)],3)
=> 3
[7] => [1] => [1] => ([],1)
=> 1
[1,1,1,1,2,1,1] => [4,1,2] => [1,1,1,3,1] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4
[1,1,1,2,1,1,1] => [3,1,3] => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[1,1,1,3,1,1,1] => [3,1,3] => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[1,1,1,4,1,1,1] => [3,1,3] => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[1,1,1,4,2,2,2] => [3,1,3] => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[1,1,1,6,1,1,1] => [3,1,3] => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[2,2,2,4,1,1,1] => [3,1,3] => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[2,2,2,3,1,1,1] => [3,1,3] => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[1,1,1,5,1,1,1] => [3,1,3] => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[1,1,1,7,1,1,1] => [3,1,3] => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
Description
The number of distinct Laplacian eigenvalues of a graph.
Mp00133: Integer compositions delta morphismInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00229: Dyck paths Delest-ViennotDyck paths
St001035: Dyck paths ⟶ ℤResult quality: 86% values known / values provided: 98%distinct values known / distinct values provided: 86%
Values
[1] => [1] => [1,0]
=> [1,0]
=> ? = 1 - 2
[1,1] => [2] => [1,1,0,0]
=> [1,0,1,0]
=> 0 = 2 - 2
[2] => [1] => [1,0]
=> [1,0]
=> ? = 1 - 2
[1,1,1] => [3] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 0 = 2 - 2
[3] => [1] => [1,0]
=> [1,0]
=> ? = 1 - 2
[1,1,1,1] => [4] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0 = 2 - 2
[2,1,1] => [1,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1 = 3 - 2
[2,2] => [2] => [1,1,0,0]
=> [1,0,1,0]
=> 0 = 2 - 2
[4] => [1] => [1,0]
=> [1,0]
=> ? = 1 - 2
[1,1,1,1,1] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 2 - 2
[1,2,1,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1 = 3 - 2
[1,2,2] => [1,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1 = 3 - 2
[2,1,1,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1 = 3 - 2
[3,1,1] => [1,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1 = 3 - 2
[5] => [1] => [1,0]
=> [1,0]
=> ? = 1 - 2
[1,1,1,1,1,1] => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 0 = 2 - 2
[1,1,2,1,1] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 2 = 4 - 2
[1,1,2,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 4 - 2
[1,2,1,1,1] => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1 = 3 - 2
[1,3,1,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1 = 3 - 2
[2,1,1,1,1] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1 = 3 - 2
[2,2,1,1] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 4 - 2
[2,2,2] => [3] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 0 = 2 - 2
[3,1,1,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1 = 3 - 2
[3,3] => [2] => [1,1,0,0]
=> [1,0,1,0]
=> 0 = 2 - 2
[4,1,1] => [1,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1 = 3 - 2
[6] => [1] => [1,0]
=> [1,0]
=> ? = 1 - 2
[1,1,1,1,1,1,1] => [7] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> 0 = 2 - 2
[1,1,1,2,1,1] => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> 2 = 4 - 2
[1,1,1,2,2] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 2 = 4 - 2
[1,1,2,1,1,1] => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> 2 = 4 - 2
[1,1,3,1,1] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 2 = 4 - 2
[1,2,1,1,1,1] => [1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> 1 = 3 - 2
[1,2,2,1,1] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 3 = 5 - 2
[1,2,2,2] => [1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1 = 3 - 2
[1,3,1,1,1] => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1 = 3 - 2
[1,3,3] => [1,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1 = 3 - 2
[1,4,1,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1 = 3 - 2
[2,1,1,1,1,1] => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> 1 = 3 - 2
[2,1,2,1,1] => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 1 = 3 - 2
[2,1,2,2] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1 = 3 - 2
[2,2,1,1,1] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 2 = 4 - 2
[2,3,1,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1 = 3 - 2
[3,1,1,1,1] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1 = 3 - 2
[3,2,1,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1 = 3 - 2
[3,2,2] => [1,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1 = 3 - 2
[4,1,1,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1 = 3 - 2
[5,1,1] => [1,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1 = 3 - 2
[7] => [1] => [1,0]
=> [1,0]
=> ? = 1 - 2
[1,1,1,1,2,1,1] => [4,1,2] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> 2 = 4 - 2
[1,1,1,1,2,2] => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 2 = 4 - 2
[1,1,1,2,1,1,1] => [3,1,3] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> 2 = 4 - 2
[1,1,1,3,1,1] => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> 2 = 4 - 2
[1,1,2,1,1,1,1] => [2,1,4] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> 2 = 4 - 2
[1,1,2,2,1,1] => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 4 = 6 - 2
[1,1,2,2,2] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 2 = 4 - 2
[1,1,3,1,1,1] => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> 2 = 4 - 2
[8] => [1] => [1,0]
=> [1,0]
=> ? = 1 - 2
[9] => [1] => [1,0]
=> [1,0]
=> ? = 1 - 2
[10] => [1] => [1,0]
=> [1,0]
=> ? = 1 - 2
[12] => [1] => [1,0]
=> [1,0]
=> ? = 1 - 2
[11] => [1] => [1,0]
=> [1,0]
=> ? = 1 - 2
Description
The convexity degree of the parallelogram polyomino associated with the Dyck path. A parallelogram polyomino is $k$-convex if $k$ is the maximal number of turns an axis-parallel path must take to connect two cells of the polyomino. For example, any rotation of a Ferrers shape has convexity degree at most one. The (bivariate) generating function is given in Theorem 2 of [1].
Matching statistic: St000796
Mp00133: Integer compositions delta morphismInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
St000796: Permutations ⟶ ℤResult quality: 66% values known / values provided: 66%distinct values known / distinct values provided: 71%
Values
[1] => [1] => [1,0]
=> [1] => ? = 1 - 2
[1,1] => [2] => [1,1,0,0]
=> [1,2] => 0 = 2 - 2
[2] => [1] => [1,0]
=> [1] => ? = 1 - 2
[1,1,1] => [3] => [1,1,1,0,0,0]
=> [1,2,3] => 0 = 2 - 2
[3] => [1] => [1,0]
=> [1] => ? = 1 - 2
[1,1,1,1] => [4] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0 = 2 - 2
[2,1,1] => [1,2] => [1,0,1,1,0,0]
=> [2,1,3] => 1 = 3 - 2
[2,2] => [2] => [1,1,0,0]
=> [1,2] => 0 = 2 - 2
[4] => [1] => [1,0]
=> [1] => ? = 1 - 2
[1,1,1,1,1] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 0 = 2 - 2
[1,2,1,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 1 = 3 - 2
[1,2,2] => [1,2] => [1,0,1,1,0,0]
=> [2,1,3] => 1 = 3 - 2
[2,1,1,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> [2,1,3,4] => 1 = 3 - 2
[3,1,1] => [1,2] => [1,0,1,1,0,0]
=> [2,1,3] => 1 = 3 - 2
[5] => [1] => [1,0]
=> [1] => ? = 1 - 2
[1,1,1,1,1,1] => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => 0 = 2 - 2
[1,1,2,1,1] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => 2 = 4 - 2
[1,1,2,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 2 = 4 - 2
[1,2,1,1,1] => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => 1 = 3 - 2
[1,3,1,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 1 = 3 - 2
[2,1,1,1,1] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => 1 = 3 - 2
[2,2,1,1] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 2 = 4 - 2
[2,2,2] => [3] => [1,1,1,0,0,0]
=> [1,2,3] => 0 = 2 - 2
[3,1,1,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> [2,1,3,4] => 1 = 3 - 2
[3,3] => [2] => [1,1,0,0]
=> [1,2] => 0 = 2 - 2
[4,1,1] => [1,2] => [1,0,1,1,0,0]
=> [2,1,3] => 1 = 3 - 2
[6] => [1] => [1,0]
=> [1] => ? = 1 - 2
[1,1,1,1,1,1,1] => [7] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,7] => 0 = 2 - 2
[1,1,1,2,1,1] => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,2,4,5,3,6] => 2 = 4 - 2
[1,1,1,2,2] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => 2 = 4 - 2
[1,1,2,1,1,1] => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,3,4,2,5,6] => 2 = 4 - 2
[1,1,3,1,1] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => 2 = 4 - 2
[1,2,1,1,1,1] => [1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,3,1,4,5,6] => 1 = 3 - 2
[1,2,2,1,1] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => 3 = 5 - 2
[1,2,2,2] => [1,3] => [1,0,1,1,1,0,0,0]
=> [2,1,3,4] => 1 = 3 - 2
[1,3,1,1,1] => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => 1 = 3 - 2
[1,3,3] => [1,2] => [1,0,1,1,0,0]
=> [2,1,3] => 1 = 3 - 2
[1,4,1,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 1 = 3 - 2
[2,1,1,1,1,1] => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,1,3,4,5,6] => 1 = 3 - 2
[2,1,2,1,1] => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => 1 = 3 - 2
[2,1,2,2] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 1 = 3 - 2
[2,2,1,1,1] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => 2 = 4 - 2
[2,3,1,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 1 = 3 - 2
[3,1,1,1,1] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => 1 = 3 - 2
[3,2,1,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 1 = 3 - 2
[3,2,2] => [1,2] => [1,0,1,1,0,0]
=> [2,1,3] => 1 = 3 - 2
[4,1,1,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> [2,1,3,4] => 1 = 3 - 2
[5,1,1] => [1,2] => [1,0,1,1,0,0]
=> [2,1,3] => 1 = 3 - 2
[7] => [1] => [1,0]
=> [1] => ? = 1 - 2
[1,1,1,1,2,1,1] => [4,1,2] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [1,2,3,5,6,4,7] => 2 = 4 - 2
[1,1,1,1,2,2] => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,2,3,5,4,6] => 2 = 4 - 2
[1,1,1,2,1,1,1] => [3,1,3] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [1,2,4,5,3,6,7] => 2 = 4 - 2
[1,1,1,3,1,1] => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,2,4,5,3,6] => 2 = 4 - 2
[1,1,2,1,1,1,1] => [2,1,4] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [1,3,4,2,5,6,7] => 2 = 4 - 2
[1,1,2,2,1,1] => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4,6] => 4 = 6 - 2
[1,1,2,2,2] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => 2 = 4 - 2
[1,1,3,1,1,1] => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,3,4,2,5,6] => 2 = 4 - 2
[1,2,1,1,1,1,1] => [1,1,5] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,3,1,4,5,6,7] => ? = 3 - 2
[2,1,1,1,1,1,1] => [1,6] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7] => ? = 3 - 2
[8] => [1] => [1,0]
=> [1] => ? = 1 - 2
[1,2,1,1,2,1,1] => [1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,3,1,5,6,4,7] => ? = 5 - 2
[1,2,1,2,1,1,1] => [1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [2,3,4,5,1,6,7] => ? = 3 - 2
[1,2,2,1,1,1,1] => [1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,1,4,3,5,6,7] => ? = 5 - 2
[1,3,1,1,1,1,1] => [1,1,5] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,3,1,4,5,6,7] => ? = 3 - 2
[2,1,1,1,2,1,1] => [1,3,1,2] => [1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,1,3,5,6,4,7] => ? = 5 - 2
[2,1,1,2,1,1,1] => [1,2,1,3] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,1,4,5,3,6,7] => ? = 5 - 2
[2,1,2,1,1,1,1] => [1,1,1,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,1,5,6,7] => ? = 3 - 2
[3,1,1,1,1,1,1] => [1,6] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7] => ? = 3 - 2
[9] => [1] => [1,0]
=> [1] => ? = 1 - 2
[1,2,1,1,1,2,2] => [1,1,3,2] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [2,3,1,4,6,5,7] => ? = 5 - 2
[1,2,1,1,3,1,1] => [1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,3,1,5,6,4,7] => ? = 5 - 2
[1,2,1,2,2,1,1] => [1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,3,4,1,6,5,7] => ? = 5 - 2
[1,2,1,3,1,1,1] => [1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [2,3,4,5,1,6,7] => ? = 3 - 2
[1,2,2,1,2,1,1] => [1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,4,5,6,3,7] => ? = 5 - 2
[1,2,2,2,1,1,1] => [1,3,3] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,1,3,5,4,6,7] => ? = 5 - 2
[1,2,3,1,1,1,1] => [1,1,1,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,1,5,6,7] => ? = 3 - 2
[1,3,1,1,2,1,1] => [1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,3,1,5,6,4,7] => ? = 5 - 2
[1,3,1,2,1,1,1] => [1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [2,3,4,5,1,6,7] => ? = 3 - 2
[1,3,2,1,1,1,1] => [1,1,1,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,1,5,6,7] => ? = 3 - 2
[1,4,1,1,1,1,1] => [1,1,5] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,3,1,4,5,6,7] => ? = 3 - 2
[2,1,1,1,1,2,2] => [1,4,2] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,1,3,4,6,5,7] => ? = 5 - 2
[2,1,1,1,3,1,1] => [1,3,1,2] => [1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,1,3,5,6,4,7] => ? = 5 - 2
[2,1,1,2,2,1,1] => [1,2,2,2] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,6,5,7] => ? = 7 - 2
[2,1,1,3,1,1,1] => [1,2,1,3] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,1,4,5,3,6,7] => ? = 5 - 2
[2,1,2,1,2,1,1] => [1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,5,6,1,7] => ? = 3 - 2
[2,1,2,2,1,1,1] => [1,1,2,3] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [2,3,1,5,4,6,7] => ? = 5 - 2
[2,1,3,1,1,1,1] => [1,1,1,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,1,5,6,7] => ? = 3 - 2
[2,3,1,1,1,1,1] => [1,1,5] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,3,1,4,5,6,7] => ? = 3 - 2
[3,1,1,1,2,1,1] => [1,3,1,2] => [1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,1,3,5,6,4,7] => ? = 5 - 2
[3,1,1,2,1,1,1] => [1,2,1,3] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,1,4,5,3,6,7] => ? = 5 - 2
[3,1,2,1,1,1,1] => [1,1,1,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,1,5,6,7] => ? = 3 - 2
[3,2,1,1,1,1,1] => [1,1,5] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,3,1,4,5,6,7] => ? = 3 - 2
[4,1,1,1,1,1,1] => [1,6] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7] => ? = 3 - 2
[10] => [1] => [1,0]
=> [1] => ? = 1 - 2
[1,2,2,2,2,2,2] => [1,6] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7] => ? = 3 - 2
[1,2,2,1,3,2,2] => [1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,4,5,6,3,7] => ? = 5 - 2
[1,2,2,1,1,3,3] => [1,2,2,2] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,6,5,7] => ? = 7 - 2
[1,2,1,3,2,2,2] => [1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [2,3,4,5,1,6,7] => ? = 3 - 2
[1,2,1,2,3,2,2] => [1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,5,6,1,7] => ? = 3 - 2
[1,2,1,2,1,3,3] => [1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,5,6,1,7] => ? = 3 - 2
Description
The stat' of a permutation. According to [1], this is the sum of the number of occurrences of the vincular patterns $(\underline{13}2)$, $(\underline{31}2)$, $(\underline{32}2)$ and $(\underline{21})$, where matches of the underlined letters must be adjacent.
Matching statistic: St000388
Mp00133: Integer compositions delta morphismInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
Mp00203: Graphs coneGraphs
St000388: Graphs ⟶ ℤResult quality: 54% values known / values provided: 54%distinct values known / distinct values provided: 86%
Values
[1] => [1] => ([],1)
=> ([(0,1)],2)
=> 1
[1,1] => [2] => ([],2)
=> ([(0,2),(1,2)],3)
=> 2
[2] => [1] => ([],1)
=> ([(0,1)],2)
=> 1
[1,1,1] => [3] => ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
[3] => [1] => ([],1)
=> ([(0,1)],2)
=> 1
[1,1,1,1] => [4] => ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[2,1,1] => [1,2] => ([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[2,2] => [2] => ([],2)
=> ([(0,2),(1,2)],3)
=> 2
[4] => [1] => ([],1)
=> ([(0,1)],2)
=> 1
[1,1,1,1,1] => [5] => ([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[1,2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,2,2] => [1,2] => ([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[2,1,1,1] => [1,3] => ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[3,1,1] => [1,2] => ([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[5] => [1] => ([],1)
=> ([(0,1)],2)
=> 1
[1,1,1,1,1,1] => [6] => ([],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2
[1,1,2,1,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,2,2] => [2,2] => ([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,2,1,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,3,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[2,1,1,1,1] => [1,4] => ([(3,4)],5)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[2,2,1,1] => [2,2] => ([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[2,2,2] => [3] => ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
[3,1,1,1] => [1,3] => ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[3,3] => [2] => ([],2)
=> ([(0,2),(1,2)],3)
=> 2
[4,1,1] => [1,2] => ([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[6] => [1] => ([],1)
=> ([(0,1)],2)
=> 1
[1,1,1,1,1,1,1] => [7] => ([],7)
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 2
[1,1,1,2,1,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4
[1,1,1,2,2] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,2,1,1,1] => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4
[1,1,3,1,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,2,1,1,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
[1,2,2,1,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[1,2,2,2] => [1,3] => ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,3,1,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,3,3] => [1,2] => ([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,4,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[2,1,1,1,1,1] => [1,5] => ([(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
[2,1,2,1,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[2,1,2,2] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[2,2,1,1,1] => [2,3] => ([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[2,3,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[3,1,1,1,1] => [1,4] => ([(3,4)],5)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[3,2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[3,2,2] => [1,2] => ([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[4,1,1,1] => [1,3] => ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[5,1,1] => [1,2] => ([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[7] => [1] => ([],1)
=> ([(0,1)],2)
=> 1
[1,1,1,1,2,1,1] => [4,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,1,1,1,2,2] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4
[1,1,1,2,1,1,1] => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,1,1,3,1,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4
[1,1,2,1,1,1,1] => [2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,2,1,1,1,1,1] => [1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[2,1,1,1,1,1,1] => [1,6] => ([(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[1,1,1,1,1,2,2] => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,1,1,1,3,1,1] => [4,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,1,1,2,2,1,1] => [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6
[1,1,1,3,1,1,1] => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,1,2,1,2,1,1] => [2,1,1,1,2] => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,1,2,2,1,1,1] => [2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6
[1,1,3,1,1,1,1] => [2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,2,1,1,2,1,1] => [1,1,2,1,2] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
[1,2,1,2,1,1,1] => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[1,2,2,1,1,1,1] => [1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
[1,3,1,1,1,1,1] => [1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[2,1,1,1,2,1,1] => [1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
[2,1,1,2,1,1,1] => [1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
[2,1,2,1,1,1,1] => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[2,2,1,1,1,1,1] => [2,5] => ([(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[3,1,1,1,1,1,1] => [1,6] => ([(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[1,1,1,1,2,2,2] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,1,1,1,4,1,1] => [4,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,1,1,2,1,2,2] => [3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,1,1,2,3,1,1] => [3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,1,1,3,2,1,1] => [3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,1,1,4,1,1,1] => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,1,2,1,1,2,2] => [2,1,2,2] => ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6
[1,1,2,1,3,1,1] => [2,1,1,1,2] => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,1,2,2,2,1,1] => [2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6
[1,1,2,3,1,1,1] => [2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,1,3,1,2,1,1] => [2,1,1,1,2] => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,1,3,2,1,1,1] => [2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,1,4,1,1,1,1] => [2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,2,1,1,1,2,2] => [1,1,3,2] => ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
[1,2,1,1,3,1,1] => [1,1,2,1,2] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
[1,2,1,2,2,1,1] => [1,1,1,2,2] => ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
[1,2,1,3,1,1,1] => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[1,2,2,1,2,1,1] => [1,2,1,1,2] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
[1,2,2,2,1,1,1] => [1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
[1,2,3,1,1,1,1] => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[1,3,1,1,2,1,1] => [1,1,2,1,2] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
[1,3,1,2,1,1,1] => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[1,3,2,1,1,1,1] => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[1,4,1,1,1,1,1] => [1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[2,1,1,1,1,2,2] => [1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
[2,1,1,1,3,1,1] => [1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
[2,1,1,2,2,1,1] => [1,2,2,2] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 7
[2,1,1,3,1,1,1] => [1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
Description
The number of orbits of vertices of a graph under automorphisms.
Matching statistic: St001951
Mp00133: Integer compositions delta morphismInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
Mp00203: Graphs coneGraphs
St001951: Graphs ⟶ ℤResult quality: 54% values known / values provided: 54%distinct values known / distinct values provided: 86%
Values
[1] => [1] => ([],1)
=> ([(0,1)],2)
=> 1
[1,1] => [2] => ([],2)
=> ([(0,2),(1,2)],3)
=> 2
[2] => [1] => ([],1)
=> ([(0,1)],2)
=> 1
[1,1,1] => [3] => ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
[3] => [1] => ([],1)
=> ([(0,1)],2)
=> 1
[1,1,1,1] => [4] => ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[2,1,1] => [1,2] => ([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[2,2] => [2] => ([],2)
=> ([(0,2),(1,2)],3)
=> 2
[4] => [1] => ([],1)
=> ([(0,1)],2)
=> 1
[1,1,1,1,1] => [5] => ([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[1,2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,2,2] => [1,2] => ([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[2,1,1,1] => [1,3] => ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[3,1,1] => [1,2] => ([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[5] => [1] => ([],1)
=> ([(0,1)],2)
=> 1
[1,1,1,1,1,1] => [6] => ([],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2
[1,1,2,1,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,2,2] => [2,2] => ([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,2,1,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,3,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[2,1,1,1,1] => [1,4] => ([(3,4)],5)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[2,2,1,1] => [2,2] => ([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[2,2,2] => [3] => ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
[3,1,1,1] => [1,3] => ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[3,3] => [2] => ([],2)
=> ([(0,2),(1,2)],3)
=> 2
[4,1,1] => [1,2] => ([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[6] => [1] => ([],1)
=> ([(0,1)],2)
=> 1
[1,1,1,1,1,1,1] => [7] => ([],7)
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 2
[1,1,1,2,1,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4
[1,1,1,2,2] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,1,2,1,1,1] => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4
[1,1,3,1,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,2,1,1,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
[1,2,2,1,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[1,2,2,2] => [1,3] => ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,3,1,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,3,3] => [1,2] => ([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,4,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[2,1,1,1,1,1] => [1,5] => ([(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
[2,1,2,1,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[2,1,2,2] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[2,2,1,1,1] => [2,3] => ([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[2,3,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[3,1,1,1,1] => [1,4] => ([(3,4)],5)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[3,2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[3,2,2] => [1,2] => ([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[4,1,1,1] => [1,3] => ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[5,1,1] => [1,2] => ([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[7] => [1] => ([],1)
=> ([(0,1)],2)
=> 1
[1,1,1,1,2,1,1] => [4,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,1,1,1,2,2] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4
[1,1,1,2,1,1,1] => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,1,1,3,1,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4
[1,1,2,1,1,1,1] => [2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,2,1,1,1,1,1] => [1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[2,1,1,1,1,1,1] => [1,6] => ([(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[1,1,1,1,1,2,2] => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,1,1,1,3,1,1] => [4,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,1,1,2,2,1,1] => [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6
[1,1,1,3,1,1,1] => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,1,2,1,2,1,1] => [2,1,1,1,2] => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,1,2,2,1,1,1] => [2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6
[1,1,3,1,1,1,1] => [2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,2,1,1,2,1,1] => [1,1,2,1,2] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
[1,2,1,2,1,1,1] => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[1,2,2,1,1,1,1] => [1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
[1,3,1,1,1,1,1] => [1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[2,1,1,1,2,1,1] => [1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
[2,1,1,2,1,1,1] => [1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
[2,1,2,1,1,1,1] => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[2,2,1,1,1,1,1] => [2,5] => ([(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[3,1,1,1,1,1,1] => [1,6] => ([(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[1,1,1,1,2,2,2] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,1,1,1,4,1,1] => [4,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,1,1,2,1,2,2] => [3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,1,1,2,3,1,1] => [3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,1,1,3,2,1,1] => [3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,1,1,4,1,1,1] => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,1,2,1,1,2,2] => [2,1,2,2] => ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6
[1,1,2,1,3,1,1] => [2,1,1,1,2] => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,1,2,2,2,1,1] => [2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6
[1,1,2,3,1,1,1] => [2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,1,3,1,2,1,1] => [2,1,1,1,2] => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,1,3,2,1,1,1] => [2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,1,4,1,1,1,1] => [2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[1,2,1,1,1,2,2] => [1,1,3,2] => ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
[1,2,1,1,3,1,1] => [1,1,2,1,2] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
[1,2,1,2,2,1,1] => [1,1,1,2,2] => ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
[1,2,1,3,1,1,1] => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[1,2,2,1,2,1,1] => [1,2,1,1,2] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
[1,2,2,2,1,1,1] => [1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
[1,2,3,1,1,1,1] => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[1,3,1,1,2,1,1] => [1,1,2,1,2] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
[1,3,1,2,1,1,1] => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[1,3,2,1,1,1,1] => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[1,4,1,1,1,1,1] => [1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[2,1,1,1,1,2,2] => [1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
[2,1,1,1,3,1,1] => [1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
[2,1,1,2,2,1,1] => [1,2,2,2] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 7
[2,1,1,3,1,1,1] => [1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
Description
The number of factors in the disjoint direct product decomposition of the automorphism group of a graph. The disjoint direct product decomposition of a permutation group factors the group corresponding to the product $(G, X) \ast (H, Y) = (G\times H, Z)$, where $Z$ is the disjoint union of $X$ and $Y$. In particular, for an asymmetric graph, i.e., with trivial automorphism group, this statistic equals the number of vertices, because the trivial action factors completely.
Mp00133: Integer compositions delta morphismInteger compositions
Mp00039: Integer compositions complementInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000455: Graphs ⟶ ℤResult quality: 29% values known / values provided: 51%distinct values known / distinct values provided: 29%
Values
[1] => [1] => [1] => ([],1)
=> ? = 1 - 3
[1,1] => [2] => [1,1] => ([(0,1)],2)
=> -1 = 2 - 3
[2] => [1] => [1] => ([],1)
=> ? = 1 - 3
[1,1,1] => [3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> -1 = 2 - 3
[3] => [1] => [1] => ([],1)
=> ? = 1 - 3
[1,1,1,1] => [4] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> -1 = 2 - 3
[2,1,1] => [1,2] => [2,1] => ([(0,2),(1,2)],3)
=> 0 = 3 - 3
[2,2] => [2] => [1,1] => ([(0,1)],2)
=> -1 = 2 - 3
[4] => [1] => [1] => ([],1)
=> ? = 1 - 3
[1,1,1,1,1] => [5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> -1 = 2 - 3
[1,2,1,1] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 3 - 3
[1,2,2] => [1,2] => [2,1] => ([(0,2),(1,2)],3)
=> 0 = 3 - 3
[2,1,1,1] => [1,3] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 3 - 3
[3,1,1] => [1,2] => [2,1] => ([(0,2),(1,2)],3)
=> 0 = 3 - 3
[5] => [1] => [1] => ([],1)
=> ? = 1 - 3
[1,1,1,1,1,1] => [6] => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> -1 = 2 - 3
[1,1,2,1,1] => [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4 - 3
[1,1,2,2] => [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 4 - 3
[1,2,1,1,1] => [1,1,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 3 - 3
[1,3,1,1] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 3 - 3
[2,1,1,1,1] => [1,4] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 3 - 3
[2,2,1,1] => [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 4 - 3
[2,2,2] => [3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> -1 = 2 - 3
[3,1,1,1] => [1,3] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 3 - 3
[3,3] => [2] => [1,1] => ([(0,1)],2)
=> -1 = 2 - 3
[4,1,1] => [1,2] => [2,1] => ([(0,2),(1,2)],3)
=> 0 = 3 - 3
[6] => [1] => [1] => ([],1)
=> ? = 1 - 3
[1,1,1,1,1,1,1] => [7] => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> -1 = 2 - 3
[1,1,1,2,1,1] => [3,1,2] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 3
[1,1,1,2,2] => [3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4 - 3
[1,1,2,1,1,1] => [2,1,3] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 3
[1,1,3,1,1] => [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4 - 3
[1,2,1,1,1,1] => [1,1,4] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 3 - 3
[1,2,2,1,1] => [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 5 - 3
[1,2,2,2] => [1,3] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 3 - 3
[1,3,1,1,1] => [1,1,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 3 - 3
[1,3,3] => [1,2] => [2,1] => ([(0,2),(1,2)],3)
=> 0 = 3 - 3
[1,4,1,1] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 3 - 3
[2,1,1,1,1,1] => [1,5] => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 3 - 3
[2,1,2,1,1] => [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 3 - 3
[2,1,2,2] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 3 - 3
[2,2,1,1,1] => [2,3] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4 - 3
[2,3,1,1] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 3 - 3
[3,1,1,1,1] => [1,4] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 3 - 3
[3,2,1,1] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 3 - 3
[3,2,2] => [1,2] => [2,1] => ([(0,2),(1,2)],3)
=> 0 = 3 - 3
[4,1,1,1] => [1,3] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0 = 3 - 3
[5,1,1] => [1,2] => [2,1] => ([(0,2),(1,2)],3)
=> 0 = 3 - 3
[7] => [1] => [1] => ([],1)
=> ? = 1 - 3
[1,1,1,1,2,1,1] => [4,1,2] => [1,1,1,3,1] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 3
[1,1,1,1,2,2] => [4,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 3
[1,1,1,2,1,1,1] => [3,1,3] => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 3
[1,1,1,3,1,1] => [3,1,2] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 3
[1,1,2,1,1,1,1] => [2,1,4] => [1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 3
[1,1,2,2,1,1] => [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6 - 3
[1,1,2,2,2] => [2,3] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4 - 3
[1,1,3,1,1,1] => [2,1,3] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 3
[1,1,3,3] => [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 4 - 3
[1,1,4,1,1] => [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4 - 3
[1,2,1,1,1,1,1] => [1,1,5] => [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 3 - 3
[1,2,1,2,1,1] => [1,1,1,1,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 3 - 3
[1,2,1,2,2] => [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 3 - 3
[1,2,2,1,1,1] => [1,2,3] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 5 - 3
[1,2,3,1,1] => [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 3 - 3
[1,3,1,1,1,1] => [1,1,4] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 3 - 3
[1,3,2,1,1] => [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 3 - 3
[1,3,2,2] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 3 - 3
[1,4,1,1,1] => [1,1,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 3 - 3
[1,5,1,1] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 3 - 3
[2,1,1,1,1,1,1] => [1,6] => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0 = 3 - 3
[2,1,1,2,1,1] => [1,2,1,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 5 - 3
[2,1,1,2,2] => [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 5 - 3
[2,1,2,1,1,1] => [1,1,1,3] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 3 - 3
[2,1,3,1,1] => [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 3 - 3
[2,2,1,1,1,1] => [2,4] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 3
[2,2,2,1,1] => [3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4 - 3
[2,2,2,2] => [4] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> -1 = 2 - 3
[2,3,1,1,1] => [1,1,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 3 - 3
[2,3,3] => [1,2] => [2,1] => ([(0,2),(1,2)],3)
=> 0 = 3 - 3
[2,4,1,1] => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 3 - 3
[3,1,1,1,1,1] => [1,5] => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 3 - 3
[3,3,1,1] => [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 4 - 3
[8] => [1] => [1] => ([],1)
=> ? = 1 - 3
[1,1,1,1,1,2,2] => [5,2] => [1,1,1,1,2,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 3
[1,1,1,1,3,1,1] => [4,1,2] => [1,1,1,3,1] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 3
[1,1,1,2,2,1,1] => [3,2,2] => [1,1,2,2,1] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 3
[1,1,1,2,2,2] => [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 3
[1,1,1,3,1,1,1] => [3,1,3] => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 3
[1,1,1,3,3] => [3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4 - 3
[1,1,1,4,1,1] => [3,1,2] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 3
[1,1,2,1,2,1,1] => [2,1,1,1,2] => [1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 3
[1,1,2,1,2,2] => [2,1,1,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 3
[1,1,2,2,1,1,1] => [2,2,3] => [1,2,2,1,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 - 3
[1,1,2,3,1,1] => [2,1,1,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 3
[1,1,3,1,1,1,1] => [2,1,4] => [1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 3
[1,1,3,2,1,1] => [2,1,1,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 3
[1,1,3,2,2] => [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4 - 3
[1,1,4,1,1,1] => [2,1,3] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 3
[1,1,5,1,1] => [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4 - 3
[1,2,1,1,2,1,1] => [1,1,2,1,2] => [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 - 3
Description
The second largest eigenvalue of a graph if it is integral. This statistic is undefined if the second largest eigenvalue of the graph is not integral. Chapter 4 of [1] provides lots of context.
The following 6 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001352The number of internal nodes in the modular decomposition of a graph. St000483The number of times a permutation switches from increasing to decreasing or decreasing to increasing. St001488The number of corners of a skew partition. St000831The number of indices that are either descents or recoils. St000897The number of different multiplicities of parts of an integer partition. St000670The reversal length of a permutation.