Loading [MathJax]/jax/output/HTML-CSS/jax.js

Your data matches 78 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000786
Mp00227: Dyck paths —Delest-Viennot-inverse⟶ Dyck paths
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000786: Graphs ⟶ ℤResult quality: 100% ā—values known / values provided: 100%ā—distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1] => ([],1)
=> 1
[1,0,1,0]
=> [1,1,0,0]
=> [1,2] => ([],2)
=> 2
[1,1,0,0]
=> [1,0,1,0]
=> [2,1] => ([(0,1)],2)
=> 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,2,3] => ([],3)
=> 3
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 2
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> 2
[1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [2,1,3] => ([(1,2)],3)
=> 2
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> 4
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 3
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => ([(1,3),(2,3)],4)
=> 3
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => ([(1,3),(2,3)],4)
=> 3
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => ([(2,3)],4)
=> 3
[1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([],5)
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,3,5] => ([(1,4),(2,4),(3,4)],5)
=> 4
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,4,1,2,5] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 3
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> 4
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,2,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
Description
The maximal number of occurrences of a colour in a proper colouring of a graph. To any proper colouring with the minimal number of colours possible we associate the integer partition recording how often each colour is used. This statistic records the largest part occurring in any of these partitions. For example, the graph on six vertices consisting of a square together with two attached triangles - ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6) in the list of values - is three-colourable and admits two colouring schemes, $[2,2,2]$ and $[3,2,1]$. Therefore, the statistic on this graph is $3$.
Matching statistic: St000093
Mp00227: Dyck paths —Delest-Viennot-inverse⟶ Dyck paths
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000093: Graphs ⟶ ℤResult quality: 95% ā—values known / values provided: 95%ā—distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1] => ([],1)
=> 1
[1,0,1,0]
=> [1,1,0,0]
=> [1,2] => ([],2)
=> 2
[1,1,0,0]
=> [1,0,1,0]
=> [2,1] => ([(0,1)],2)
=> 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,2,3] => ([],3)
=> 3
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 2
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> 2
[1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [2,1,3] => ([(1,2)],3)
=> 2
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> 4
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 3
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => ([(1,3),(2,3)],4)
=> 3
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => ([(1,3),(2,3)],4)
=> 3
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => ([(2,3)],4)
=> 3
[1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([],5)
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,3,5] => ([(1,4),(2,4),(3,4)],5)
=> 4
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,4,1,2,5] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 3
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> 4
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,2,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [5,6,7,1,2,3,4] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 4
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,1,0,0]
=> [6,5,7,1,2,3,4] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7)
=> ? = 4
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [4,5,6,7,1,2,3] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 4
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [6,7,4,5,1,2,3] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 3
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> [6,4,5,7,1,2,3] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 3
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,1,1,0,0,0]
=> [5,6,4,7,1,2,3] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 3
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,1,0,0,0]
=> [5,4,6,7,1,2,3] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 3
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,1,0,0]
=> [6,5,4,7,1,2,3] => ([(0,1),(0,2),(0,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [6,7,3,4,5,1,2] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 3
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [5,6,7,3,4,1,2] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 3
[1,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [6,5,7,3,4,1,2] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 2
[1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,1,1,0,0,0]
=> [5,6,3,4,7,1,2] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 3
[1,0,1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,1,0,0,0]
=> [5,3,4,6,7,1,2] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 4
[1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,1,0,0]
=> [6,5,3,4,7,1,2] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 3
[1,0,1,1,0,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> [6,7,4,3,5,1,2] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 2
[1,0,1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,1,0,0,1,0,0]
=> [6,4,5,3,7,1,2] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 3
[1,0,1,1,0,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,1,1,0,0,0,0]
=> [4,5,3,6,7,1,2] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 4
[1,0,1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,1,0,1,0,0,0,0]
=> [4,3,5,6,7,1,2] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 4
[1,0,1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,1,0,0,1,0,0]
=> [6,4,3,5,7,1,2] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 3
[1,0,1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,1,1,0,0,0]
=> [5,6,4,3,7,1,2] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 3
[1,0,1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,0,1,1,0,1,0,0,0]
=> [5,4,6,3,7,1,2] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 3
[1,0,1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> [6,5,4,3,7,1,2] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 2
[1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0,1,1,0,0]
=> [6,7,3,4,1,2,5] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 3
[1,0,1,1,1,0,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,0,1,1,1,0,0,0]
=> [5,6,7,3,1,2,4] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 3
[1,0,1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,1,0,1,0,0]
=> [6,5,7,3,1,2,4] => ([(0,3),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7)
=> ? = 3
[1,0,1,1,1,0,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0,1,1,0,0]
=> [6,7,3,1,2,4,5] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 4
[1,0,1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0,1,1,0,0]
=> [6,7,4,3,1,2,5] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 3
[1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,0,1,1,1,0,0,0]
=> [5,6,7,2,3,1,4] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 3
[1,1,1,0,0,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,1,0,0]
=> [6,5,7,2,3,1,4] => ([(0,3),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7)
=> ? = 3
[1,1,1,0,0,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,0,1,1,1,1,0,0,0,0]
=> [4,5,6,7,2,1,3] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7)
=> ? = 4
[1,1,1,0,0,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0,1,1,0,0]
=> [6,7,4,5,2,1,3] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 2
[1,1,1,0,0,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,1,0,0]
=> [6,4,5,7,2,1,3] => ([(0,3),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7)
=> ? = 3
[1,1,1,0,0,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,1,0,0,0]
=> [5,6,4,7,2,1,3] => ([(0,3),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7)
=> ? = 3
[1,1,1,0,0,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,0,0,1,1,1,0,1,0,0,0]
=> [5,4,6,7,2,1,3] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7)
=> ? = 3
[1,1,1,0,0,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> [6,5,4,7,2,1,3] => ([(0,1),(0,5),(0,6),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[1,1,1,0,0,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0,1,1,0,0]
=> [6,7,4,2,3,1,5] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 3
[1,1,1,0,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0,1,1,0,0]
=> [6,7,2,3,1,4,5] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 4
[1,1,1,0,1,0,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0,1,1,1,0,0,0]
=> [5,6,7,2,1,3,4] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 3
[1,1,1,0,1,0,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,1,0,1,0,0]
=> [6,5,7,2,1,3,4] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7)
=> ? = 3
[1,1,1,0,1,0,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0,1,1,0,0]
=> [6,7,2,1,3,4,5] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 4
[1,1,1,0,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0,1,1,0,0]
=> [6,7,4,2,1,3,5] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 3
[1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0,1,1,0,0]
=> [6,7,3,4,2,1,5] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 3
[1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,1,0,0,0]
=> [5,6,7,3,2,1,4] => ([(0,1),(0,2),(0,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[1,1,1,1,0,0,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> [6,5,7,3,2,1,4] => ([(0,1),(0,5),(0,6),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0,1,1,0,0]
=> [6,7,3,2,4,1,5] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 3
[1,1,1,1,0,1,0,0,0,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> [6,7,4,3,2,1,5] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 2
Description
The cardinality of a maximal independent set of vertices of a graph. An independent set of a graph is a set of pairwise non-adjacent vertices. A maximum independent set is an independent set of maximum cardinality. This statistic is also called the independence number or stability number $\alpha(G)$ of $G$.
Mp00227: Dyck paths —Delest-Viennot-inverse⟶ Dyck paths
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00204: Permutations —LLPS⟶ Integer partitions
St000147: Integer partitions ⟶ ℤResult quality: 93% ā—values known / values provided: 93%ā—distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1] => [1]
=> 1
[1,0,1,0]
=> [1,1,0,0]
=> [2,1] => [2]
=> 2
[1,1,0,0]
=> [1,0,1,0]
=> [1,2] => [1,1]
=> 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => [3]
=> 3
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [2,1,3] => [2,1]
=> 2
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,3,2] => [2,1]
=> 2
[1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,2,3] => [1,1,1]
=> 1
[1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => [2,1]
=> 2
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [4]
=> 4
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [3,1]
=> 3
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,2]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,1]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [3,1]
=> 3
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [3,1]
=> 3
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [2,1,1]
=> 2
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [2,1,1]
=> 2
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,1,1,1]
=> 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [2,1,1]
=> 2
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [3,1]
=> 3
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [2,1,1]
=> 2
[1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => [3,1]
=> 3
[1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [2,1,1]
=> 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => [5]
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => [4,1]
=> 4
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => [3,2]
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [3,1,1]
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => [4,1]
=> 4
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [3,2]
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,2,1]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,2,1]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,1,1]
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,2,1]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => [3,2]
=> 3
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => [3,1,1]
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [5,3,2,4,1] => [4,1]
=> 4
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => [3,1,1]
=> 3
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [4,1]
=> 4
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [3,1,1]
=> 3
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [2,2,1]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [2,1,1,1]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [3,1,1]
=> 3
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [3,1,1]
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [2,1,1,1]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [2,1,1,1]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,1,1,1,1]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [2,1,1,1]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [3,1,1]
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [2,1,1,1]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => [3,1,1]
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [2,1,1,1]
=> 2
[1,0,1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,0,1,0]
=> [6,4,3,2,5,7,1,8] => ?
=> ? = 5
[1,0,1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0,1,0]
=> [7,4,3,2,5,6,1,8] => ?
=> ? = 5
[1,1,0,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [1,6,5,4,3,7,2,8] => ?
=> ? = 5
[1,1,0,0,1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,7,5,4,6,3,2,8] => ?
=> ? = 5
[1,1,0,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [1,6,4,3,5,7,2,8] => ?
=> ? = 4
[1,1,0,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,1,0,1,0,0]
=> [1,6,4,3,5,7,8,2] => ?
=> ? = 4
[1,1,0,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> [1,7,4,3,5,6,2,8] => ?
=> ? = 4
[1,1,0,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,1,0,1,0,0,1,0,0]
=> [1,7,4,3,5,6,8,2] => ?
=> ? = 4
[1,1,0,1,0,0,1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,2,7,5,4,6,3,8] => ?
=> ? = 4
[1,1,0,1,0,0,1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,2,8,6,5,7,4,3] => ?
=> ? = 5
[1,1,0,1,0,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,2,7,5,4,6,8,3] => ?
=> ? = 4
[1,1,0,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,2,4,5,3,6,7,8] => ?
=> ? = 2
[1,1,0,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,2,7,5,6,4,3,8] => ?
=> ? = 4
[1,1,0,1,0,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,1,0,0,1,0]
=> [1,2,6,4,5,7,3,8] => ?
=> ? = 3
[1,1,0,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,2,4,5,7,6,8,3] => ?
=> ? = 3
[1,1,0,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,2,4,8,6,7,5,3] => ?
=> ? = 4
[1,1,0,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,2,7,4,5,6,3,8] => ?
=> ? = 3
[1,1,0,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> [1,3,7,6,5,4,8,2] => ?
=> ? = 5
[1,1,0,1,1,0,0,0,1,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,1,1,0,0,0,1,0,0,0]
=> [1,3,8,6,5,4,7,2] => ?
=> ? = 5
[1,1,0,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> [1,3,6,5,4,7,8,2] => ?
=> ? = 4
[1,1,0,1,1,0,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,1,0,0,1,0,0,1,0,0]
=> [1,3,7,5,4,6,8,2] => ?
=> ? = 4
[1,1,0,1,1,0,1,0,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [1,7,3,6,5,4,2,8] => ?
=> ? = 5
[1,1,0,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,1,0,0]
=> [1,7,6,4,5,3,8,2] => ?
=> ? = 5
[1,1,0,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,1,0,1,0,0]
=> [1,6,4,5,3,7,8,2] => ?
=> ? = 4
[1,1,0,1,1,1,0,0,1,0,0,0,1,0,1,0]
=> [1,0,1,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> [1,3,8,4,7,6,5,2] => ?
=> ? = 5
[1,1,0,1,1,1,0,0,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,1,1,0,0,0,0,1,0]
=> [1,3,7,4,6,5,2,8] => ?
=> ? = 4
[1,1,0,1,1,1,0,0,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0,1,0,1,0]
=> [1,3,6,4,5,2,7,8] => ?
=> ? = 3
[1,1,0,1,1,1,0,0,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,1,0,1,1,0,0,0,1,0,0]
=> [1,3,7,4,6,5,8,2] => ?
=> ? = 4
[1,1,0,1,1,1,0,0,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,1,1,0,1,0,0,0,0,1,0]
=> [1,3,7,5,6,4,2,8] => ?
=> ? = 4
[1,1,0,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,1,1,0,1,0,0,1,0,0,0]
=> [1,3,8,5,6,4,7,2] => ?
=> ? = 4
[1,1,0,1,1,1,0,1,0,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,1,1,0,1,0,0,0,1,0]
=> [1,3,4,7,5,6,2,8] => ?
=> ? = 3
[1,1,0,1,1,1,0,1,1,0,0,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [1,3,8,4,6,7,5,2] => ?
=> ? = 4
[1,1,0,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [1,8,3,4,7,6,5,2] => ?
=> ? = 5
[1,1,0,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0,1,0,1,0]
=> [1,6,3,4,5,2,7,8] => ?
=> ? = 3
[1,1,0,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> [1,7,3,5,6,4,8,2] => ?
=> ? = 4
[1,1,0,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,1,0,0,1,0]
=> [1,6,3,4,5,7,2,8] => ?
=> ? = 3
[1,1,0,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> [1,8,4,5,7,6,3,2] => ?
=> ? = 5
[1,1,0,1,1,1,1,0,1,0,0,0,1,0,0,0]
=> [1,0,1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [1,8,4,7,5,6,3,2] => ?
=> ? = 5
[1,1,0,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,0,1,1,1,0,1,0,1,0,1,0,0,0,1,0]
=> [1,7,3,4,5,6,2,8] => ?
=> ? = 3
[1,1,1,0,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [2,6,5,4,3,1,7,8] => ?
=> ? = 5
[1,1,1,0,0,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [2,7,5,4,3,6,1,8] => ?
=> ? = 5
[1,1,1,0,0,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [2,6,4,3,5,7,1,8] => ?
=> ? = 4
[1,1,1,0,0,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> [2,4,3,5,6,7,1,8] => ?
=> ? = 3
[1,1,1,0,0,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> [2,7,4,3,5,6,1,8] => ?
=> ? = 4
[1,1,1,0,1,0,0,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,1,0,1,0,0,1,0]
=> [5,2,4,3,6,7,1,8] => ?
=> ? = 4
[1,1,1,0,1,0,1,0,0,0,1,1,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0,1,0]
=> [6,3,5,4,2,1,7,8] => ?
=> ? = 5
[1,1,1,0,1,0,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0,1,0,1,0]
=> [5,3,4,2,6,1,7,8] => ?
=> ? = 4
[1,1,1,0,1,0,1,1,0,1,0,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,1,0,0,1,0]
=> [5,3,4,2,6,7,1,8] => ?
=> ? = 4
[1,1,1,0,1,1,0,0,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,0,1,0]
=> [7,2,5,4,6,3,1,8] => ?
=> ? = 5
[1,1,1,0,1,1,0,0,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,1,0,0,1,0]
=> [6,2,4,3,5,7,1,8] => ?
=> ? = 4
Description
The largest part of an integer partition.
Mp00227: Dyck paths —Delest-Viennot-inverse⟶ Dyck paths
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00060: Permutations —Robinson-Schensted tableau shape⟶ Integer partitions
St000010: Integer partitions ⟶ ℤResult quality: 89% ā—values known / values provided: 89%ā—distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1] => [1]
=> 1
[1,0,1,0]
=> [1,1,0,0]
=> [2,1] => [1,1]
=> 2
[1,1,0,0]
=> [1,0,1,0]
=> [1,2] => [2]
=> 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => [1,1,1]
=> 3
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [2,1,3] => [2,1]
=> 2
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,3,2] => [2,1]
=> 2
[1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,2,3] => [3]
=> 1
[1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => [2,1]
=> 2
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [1,1,1,1]
=> 4
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [2,1,1]
=> 3
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,2]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [3,1]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [2,1,1]
=> 3
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [2,1,1]
=> 3
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [3,1]
=> 2
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [3,1]
=> 2
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [4]
=> 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [3,1]
=> 2
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [2,1,1]
=> 3
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,1]
=> 2
[1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => [2,1,1]
=> 3
[1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [3,1]
=> 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => [1,1,1,1,1]
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => [2,1,1,1]
=> 4
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => [2,2,1]
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [3,1,1]
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => [2,1,1,1]
=> 4
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [2,2,1]
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [3,2]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [3,2]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [4,1]
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [3,2]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => [2,2,1]
=> 3
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => [3,1,1]
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [5,3,2,4,1] => [2,1,1,1]
=> 4
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => [3,1,1]
=> 3
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [2,1,1,1]
=> 4
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [3,1,1]
=> 3
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [3,2]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [4,1]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [3,1,1]
=> 3
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [3,1,1]
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [4,1]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [4,1]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [5]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [4,1]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [3,1,1]
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [4,1]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => [3,1,1]
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [4,1]
=> 2
[1,0,1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,0,1,0]
=> [6,4,3,2,5,7,1,8] => ?
=> ? = 5
[1,0,1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0,1,0]
=> [7,4,3,2,5,6,1,8] => ?
=> ? = 5
[1,0,1,1,1,0,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0,1,0]
=> [5,3,2,4,6,1,7,8] => ?
=> ? = 4
[1,0,1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,1,0,0,1,0]
=> [6,3,2,4,5,7,1,8] => ?
=> ? = 4
[1,1,0,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [1,6,5,4,3,7,2,8] => ?
=> ? = 5
[1,1,0,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [1,6,5,4,3,7,8,2] => ?
=> ? = 5
[1,1,0,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,1,0,0,1,0,0]
=> [1,7,5,4,3,6,8,2] => ?
=> ? = 5
[1,1,0,0,1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,7,5,4,6,3,2,8] => ?
=> ? = 5
[1,1,0,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [1,6,4,3,5,7,2,8] => ?
=> ? = 4
[1,1,0,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,1,0,1,0,0]
=> [1,6,4,3,5,7,8,2] => ?
=> ? = 4
[1,1,0,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> [1,7,4,3,5,6,2,8] => ?
=> ? = 4
[1,1,0,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,1,0,1,0,0,1,0,0]
=> [1,7,4,3,5,6,8,2] => ?
=> ? = 4
[1,1,0,1,0,0,1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,2,7,5,4,6,3,8] => ?
=> ? = 4
[1,1,0,1,0,0,1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,2,8,6,5,7,4,3] => ?
=> ? = 5
[1,1,0,1,0,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,2,7,5,4,6,8,3] => ?
=> ? = 4
[1,1,0,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,2,4,5,3,6,7,8] => ?
=> ? = 2
[1,1,0,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0,1,0,1,0]
=> [1,2,6,4,5,3,7,8] => ?
=> ? = 3
[1,1,0,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,2,7,5,6,4,3,8] => ?
=> ? = 4
[1,1,0,1,0,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,1,0,0,1,0]
=> [1,2,6,4,5,7,3,8] => ?
=> ? = 3
[1,1,0,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,2,4,5,7,6,8,3] => ?
=> ? = 3
[1,1,0,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,2,4,8,6,7,5,3] => ?
=> ? = 4
[1,1,0,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,2,7,4,5,6,3,8] => ?
=> ? = 3
[1,1,0,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [1,3,7,6,5,4,2,8] => ?
=> ? = 5
[1,1,0,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> [1,3,7,6,5,4,8,2] => ?
=> ? = 5
[1,1,0,1,1,0,0,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0,1,0,1,0]
=> [1,3,5,4,2,6,7,8] => ?
=> ? = 3
[1,1,0,1,1,0,0,0,1,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,1,1,0,0,0,1,0,0,0]
=> [1,3,8,6,5,4,7,2] => ?
=> ? = 5
[1,1,0,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> [1,3,6,5,4,7,8,2] => ?
=> ? = 4
[1,1,0,1,1,0,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0,1,0,1,0]
=> [1,3,5,4,6,2,7,8] => ?
=> ? = 3
[1,1,0,1,1,0,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,1,0,0,1,0,0,1,0,0]
=> [1,3,7,5,4,6,8,2] => ?
=> ? = 4
[1,1,0,1,1,0,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,1,0,0,1,0]
=> [1,3,5,4,6,7,2,8] => ?
=> ? = 3
[1,1,0,1,1,0,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [1,3,5,4,6,7,8,2] => ?
=> ? = 3
[1,1,0,1,1,0,1,0,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [1,7,3,6,5,4,2,8] => ?
=> ? = 5
[1,1,0,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,1,0,0]
=> [1,7,6,4,5,3,8,2] => ?
=> ? = 5
[1,1,0,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,1,0,1,0,0]
=> [1,6,4,5,3,7,8,2] => ?
=> ? = 4
[1,1,0,1,1,0,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0,1,0,1,0]
=> [1,5,3,4,6,2,7,8] => ?
=> ? = 3
[1,1,0,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,1,1,0,0,1,0,1,0,0,0]
=> [1,8,3,5,4,6,7,2] => ?
=> ? = 4
[1,1,0,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [1,3,4,7,6,5,8,2] => ?
=> ? = 4
[1,1,0,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,1,0,0,1,0]
=> [1,3,4,6,5,7,2,8] => ?
=> ? = 3
[1,1,0,1,1,1,0,0,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> [1,3,4,8,6,5,7,2] => ?
=> ? = 4
[1,1,0,1,1,1,0,0,1,0,0,0,1,0,1,0]
=> [1,0,1,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> [1,3,8,4,7,6,5,2] => ?
=> ? = 5
[1,1,0,1,1,1,0,0,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,1,1,0,0,0,0,1,0]
=> [1,3,7,4,6,5,2,8] => ?
=> ? = 4
[1,1,0,1,1,1,0,0,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0,1,0,1,0]
=> [1,3,6,4,5,2,7,8] => ?
=> ? = 3
[1,1,0,1,1,1,0,0,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,1,0,1,1,0,0,0,1,0,0]
=> [1,3,7,4,6,5,8,2] => ?
=> ? = 4
[1,1,0,1,1,1,0,0,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,1,1,0,1,0,0,0,0,1,0]
=> [1,3,7,5,6,4,2,8] => ?
=> ? = 4
[1,1,0,1,1,1,0,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,1,0,0,1,0]
=> [1,3,6,4,5,7,2,8] => ?
=> ? = 3
[1,1,0,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,1,1,0,1,0,0,1,0,0,0]
=> [1,3,8,5,6,4,7,2] => ?
=> ? = 4
[1,1,0,1,1,1,0,1,0,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,1,1,0,1,0,0,0,1,0]
=> [1,3,4,7,5,6,2,8] => ?
=> ? = 3
[1,1,0,1,1,1,0,1,1,0,0,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [1,3,8,4,6,7,5,2] => ?
=> ? = 4
[1,1,0,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [1,8,3,4,7,6,5,2] => ?
=> ? = 5
[1,1,0,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0,1,0,1,0]
=> [1,6,3,4,5,2,7,8] => ?
=> ? = 3
Description
The length of the partition.
Mp00028: Dyck paths —reverse⟶ Dyck paths
Mp00227: Dyck paths —Delest-Viennot-inverse⟶ Dyck paths
Mp00121: Dyck paths —Cori-Le Borgne involution⟶ Dyck paths
St000013: Dyck paths ⟶ ℤResult quality: 87% ā—values known / values provided: 87%ā—distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1,0]
=> [1,0]
=> 1
[1,0,1,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> 2
[1,1,0,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> 1
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 3
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 2
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 2
[1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 1
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 2
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 4
[1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0]
=> 3
[1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 3
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 2
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 2
[1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 1
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2
[1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 3
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 2
[1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 4
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 4
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 4
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 3
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 2
[1,1,0,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,1,0,0,1,0,0,0]
=> ? = 4
[1,1,0,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,1,0,0,1,0,0,0]
=> ? = 4
[1,1,0,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,1,0,0,0]
=> ? = 4
[1,1,0,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,0,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> ? = 5
[1,1,0,1,0,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,1,0,1,0,0]
=> ? = 3
[1,1,0,1,0,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,1,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> ? = 5
[1,1,0,1,0,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0,1,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,1,0,1,0,0,0]
=> ? = 4
[1,1,0,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 2
[1,1,0,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> ? = 3
[1,1,0,1,0,1,0,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,0,1,0]
=> ? = 4
[1,1,0,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> ? = 3
[1,1,0,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 2
[1,1,0,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> ? = 3
[1,1,0,1,0,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,1,0,1,0,0,1,0,0]
=> ? = 4
[1,1,0,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 2
[1,1,0,1,0,1,1,0,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,1,0,0,1,0,0]
=> ? = 4
[1,1,0,1,0,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0,1,0,1,0]
=> [1,0,1,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> ? = 3
[1,1,0,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> ? = 3
[1,1,0,1,0,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,1,0,1,0,0]
=> ? = 4
[1,1,0,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 2
[1,1,0,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0,1,0,1,0]
=> ? = 3
[1,1,0,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,1,0,1,0,0,1,0,0]
=> ? = 4
[1,1,0,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,1,0,0,1,0,1,0,0,1,0]
=> ? = 3
[1,1,0,1,0,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> ? = 2
[1,1,0,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,0,1,0]
=> ? = 3
[1,1,0,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,1,0,0,1,0,1,0,0]
=> ? = 3
[1,1,0,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,0,0,1,0,1,0,0,0]
=> ? = 4
[1,1,0,1,1,0,0,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,1,0,0,1,0]
=> ? = 3
[1,1,0,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,1,0,0,1,0,0,1,0,0]
=> ? = 4
[1,1,0,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,1,0,0,1,0,0]
=> ? = 4
[1,1,0,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 2
[1,1,0,1,1,0,0,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,0,1,0,0,1,0]
=> ? = 3
[1,1,0,1,1,0,0,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,1,0,0,1,0,0]
=> ? = 4
[1,1,0,1,1,0,0,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,0,1,0]
=> ? = 3
[1,1,0,1,1,0,0,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,0,1,0]
=> ? = 3
[1,1,0,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,1,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,1,0,0,1,0,0]
=> ? = 4
[1,1,0,1,1,0,1,0,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,0,0,1,0,0,0,0,1,0]
=> ? = 5
[1,1,0,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,1,1,0,0,1,0,0,0,0]
=> ? = 5
[1,1,0,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,1,1,0,0,1,0,0,0]
=> ? = 4
[1,1,0,1,1,0,1,1,0,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> ? = 3
[1,1,0,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,1,0,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> ? = 3
[1,1,0,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,1,0,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> ? = 3
[1,1,0,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,1,0,0]
=> [1,1,1,0,1,0,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,1,0,0,0,1,0]
=> ? = 4
[1,1,0,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> ? = 5
[1,1,0,1,1,0,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,1,1,0,0,1,0,0,0]
=> ? = 4
[1,1,0,1,1,0,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> ? = 5
[1,1,0,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,1,0,0]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> ? = 4
[1,1,0,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,1,0,0,1,0,1,0,0]
=> ? = 4
[1,1,0,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 2
[1,1,0,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0,1,0,1,0]
=> ? = 3
Description
The height of a Dyck path. The height of a Dyck path $D$ of semilength $n$ is defined as the maximal height of a peak of $D$. The height of $D$ at position $i$ is the number of up-steps minus the number of down-steps before position $i$.
Mp00227: Dyck paths —Delest-Viennot-inverse⟶ Dyck paths
St000442: Dyck paths ⟶ ℤResult quality: 87% ā—values known / values provided: 87%ā—distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> ? = 1 - 1
[1,0,1,0]
=> [1,1,0,0]
=> 1 = 2 - 1
[1,1,0,0]
=> [1,0,1,0]
=> 0 = 1 - 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 2 = 3 - 1
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1 = 2 - 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 1 = 2 - 1
[1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 0 = 1 - 1
[1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 1 = 2 - 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 3 = 4 - 1
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 2 = 3 - 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 1 = 2 - 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2 = 3 - 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 2 = 3 - 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1 = 2 - 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 1 = 2 - 1
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> 1 = 2 - 1
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 2 = 3 - 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1 = 2 - 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2 = 3 - 1
[1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 1 = 2 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 4 = 5 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 3 = 4 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2 = 3 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 2 = 3 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 3 = 4 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2 = 3 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1 = 2 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 1 = 2 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1 = 2 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1 = 2 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2 = 3 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 2 = 3 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3 = 4 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 2 = 3 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 3 = 4 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 2 = 3 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1 = 2 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1 = 2 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 2 = 3 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2 = 3 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1 = 2 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1 = 2 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1 = 2 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 2 = 3 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 1 = 2 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 2 = 3 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 1 = 2 - 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 3 = 4 - 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 7 - 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 6 - 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 5 - 1
[1,0,1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0,1,0]
=> ? = 6 - 1
[1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 4 - 1
[1,0,1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0,1,0]
=> ? = 5 - 1
[1,0,1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0,1,0]
=> ? = 6 - 1
[1,0,1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0,1,0]
=> ? = 5 - 1
[1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 3 - 1
[1,0,1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0,1,0]
=> ? = 4 - 1
[1,0,1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0,1,0]
=> ? = 5 - 1
[1,0,1,0,1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0]
=> ? = 6 - 1
[1,0,1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,0,1,0]
=> ? = 5 - 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0,1,0,1,0]
=> ? = 4 - 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0,1,0]
=> ? = 4 - 1
[1,0,1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0,1,0]
=> ? = 5 - 1
[1,0,1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 3 - 1
[1,0,1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0,1,0,1,0]
=> ? = 4 - 1
[1,0,1,1,1,0,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0]
=> ? = 6 - 1
[1,0,1,1,1,0,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0,1,0]
=> ? = 4 - 1
[1,0,1,1,1,0,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,0,1,0]
=> ? = 5 - 1
[1,0,1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 3 - 1
[1,0,1,1,1,1,0,1,0,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 3 - 1
[1,0,1,1,1,1,0,1,0,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 3 - 1
[1,0,1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,1,0,0,1,0]
=> ? = 4 - 1
[1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 6 - 1
[1,1,1,0,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 5 - 1
[1,1,1,0,0,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 4 - 1
[1,1,1,0,0,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 3 - 1
[1,1,1,0,0,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> ? = 5 - 1
[1,1,1,0,0,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,0,1,0,0,1,0]
=> ? = 4 - 1
[1,1,1,0,0,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0,1,0,1,0]
=> ? = 3 - 1
[1,1,1,0,0,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> ? = 4 - 1
[1,1,1,0,0,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> ? = 3 - 1
[1,1,1,0,0,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> ? = 4 - 1
[1,1,1,0,1,0,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 6 - 1
[1,1,1,0,1,0,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 5 - 1
[1,1,1,0,1,0,0,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 4 - 1
[1,1,1,0,1,0,0,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,1,0,0,1,0]
=> ? = 5 - 1
[1,1,1,0,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 3 - 1
[1,1,1,0,1,0,0,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,1,0,0,0,1,0]
=> ? = 5 - 1
[1,1,1,0,1,0,0,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,1,0,1,0,0,1,0]
=> ? = 4 - 1
[1,1,1,0,1,0,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 6 - 1
[1,1,1,0,1,0,1,0,0,0,1,1,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 5 - 1
[1,1,1,0,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 4 - 1
[1,1,1,0,1,0,1,0,1,0,0,0,1,1,0,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> ? = 6 - 1
[1,1,1,0,1,0,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0,1,0]
=> ? = 5 - 1
[1,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> ? = 6 - 1
[1,1,1,0,1,0,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0,1,0,1,0]
=> ? = 4 - 1
Description
The maximal area to the right of an up step of a Dyck path.
Matching statistic: St000011
Mp00227: Dyck paths —Delest-Viennot-inverse⟶ Dyck paths
Mp00030: Dyck paths —zeta map⟶ Dyck paths
Mp00099: Dyck paths —bounce path⟶ Dyck paths
St000011: Dyck paths ⟶ ℤResult quality: 86% ā—values known / values provided: 86%ā—distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1,0]
=> [1,0]
=> 1
[1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> 2
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 3
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 2
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 2
[1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 1
[1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 2
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 3
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 3
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 3
[1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 4
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 4
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 3
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 4
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 3
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 4
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 3
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2
[1,0,1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 5
[1,0,1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> ? = 4
[1,0,1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> ? = 5
[1,0,1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> ? = 4
[1,0,1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> ? = 5
[1,0,1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 4
[1,0,1,1,1,0,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 4
[1,0,1,1,1,0,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 5
[1,0,1,1,1,1,0,1,0,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> ? = 3
[1,1,0,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 5
[1,1,0,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> ? = 5
[1,1,0,0,1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 5
[1,1,0,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 4
[1,1,0,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 4
[1,1,0,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> ? = 4
[1,1,0,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> ? = 5
[1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> ? = 4
[1,1,0,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 5
[1,1,0,1,0,0,1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> ? = 5
[1,1,0,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> ? = 4
[1,1,0,1,0,0,1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 4
[1,1,0,1,0,0,1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 5
[1,1,0,1,0,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 4
[1,1,0,1,0,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> ? = 3
[1,1,0,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> ? = 4
[1,1,0,1,0,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> ? = 4
[1,1,0,1,0,1,0,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 4
[1,1,0,1,0,1,0,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> ? = 4
[1,1,0,1,0,1,0,1,1,0,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 4
[1,1,0,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 4
[1,1,0,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 3
[1,1,0,1,0,1,1,0,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 5
[1,1,0,1,0,1,1,0,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> ? = 4
[1,1,0,1,0,1,1,0,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 4
[1,1,0,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 4
[1,1,0,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> ? = 3
[1,1,0,1,0,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> ? = 4
[1,1,0,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> ? = 3
[1,1,0,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 4
[1,1,0,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> ? = 3
[1,1,0,1,0,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> ? = 3
[1,1,0,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 3
[1,1,0,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 3
[1,1,0,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 3
[1,1,0,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 4
[1,1,0,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,1,1,0,0,0]
=> ? = 3
[1,1,0,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 5
[1,1,0,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> ? = 4
[1,1,0,1,1,0,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,1,0,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 4
[1,1,0,1,1,0,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,1,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> ? = 3
Description
The number of touch points (or returns) of a Dyck path. This is the number of points, excluding the origin, where the Dyck path has height 0.
Mp00227: Dyck paths —Delest-Viennot-inverse⟶ Dyck paths
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000097: Graphs ⟶ ℤResult quality: 85% ā—values known / values provided: 85%ā—distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1] => ([],1)
=> 1
[1,0,1,0]
=> [1,1,0,0]
=> [2,1] => ([(0,1)],2)
=> 2
[1,1,0,0]
=> [1,0,1,0]
=> [1,2] => ([],2)
=> 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [2,1,3] => ([(1,2)],3)
=> 2
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,3,2] => ([(1,2)],3)
=> 2
[1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,2,3] => ([],3)
=> 1
[1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> 2
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 3
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> 2
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => ([(2,3)],4)
=> 2
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 3
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => ([(2,3)],4)
=> 2
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => ([(2,3)],4)
=> 2
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => ([],4)
=> 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => ([(1,3),(2,3)],4)
=> 2
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => ([(1,3),(2,3)],4)
=> 2
[1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => ([(3,4)],5)
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 3
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> 3
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => ([(3,4)],5)
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => ([(3,4)],5)
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => ([(3,4)],5)
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => ([],5)
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => ([(2,4),(3,4)],5)
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> 2
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [5,4,3,2,1,7,6] => ([(0,1),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [4,3,2,1,7,6,5] => ([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,1,0,0]
=> [4,3,2,1,6,7,5] => ([(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [3,2,1,7,6,5,4] => ([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [3,2,1,5,4,7,6] => ([(0,3),(1,2),(4,5),(4,6),(5,6)],7)
=> ? = 3
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> [3,2,1,6,5,7,4] => ([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> ? = 3
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,1,1,0,0,0]
=> [3,2,1,5,7,6,4] => ([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> ? = 3
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,1,0,0,0]
=> [3,2,1,7,5,6,4] => ([(0,1),(0,2),(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,1,0,0]
=> [3,2,1,5,6,7,4] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> ? = 3
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0,1,1,0,0]
=> [4,3,2,5,1,7,6] => ([(0,1),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [2,1,7,6,5,4,3] => ([(0,1),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [2,1,5,4,3,7,6] => ([(0,3),(1,2),(4,5),(4,6),(5,6)],7)
=> ? = 3
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,1,0,0]
=> [2,1,6,5,4,7,3] => ([(0,1),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [2,1,4,3,7,6,5] => ([(0,3),(1,2),(4,5),(4,6),(5,6)],7)
=> ? = 3
[1,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,3,6,7,5] => ([(0,3),(1,2),(4,6),(5,6)],7)
=> ? = 2
[1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,1,1,0,0,0]
=> [2,1,5,4,7,6,3] => ([(0,1),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 3
[1,0,1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,1,0,0,0]
=> [2,1,7,5,4,6,3] => ([(0,1),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,1,0,0]
=> [2,1,5,4,6,7,3] => ([(0,1),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[1,0,1,1,0,1,1,0,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,1,1,0,0,0,0]
=> [2,1,4,7,6,5,3] => ([(0,1),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[1,0,1,1,0,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> [2,1,4,5,3,7,6] => ([(0,3),(1,2),(4,6),(5,6)],7)
=> ? = 2
[1,0,1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,1,0,0,1,0,0]
=> [2,1,4,6,5,7,3] => ([(0,1),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[1,0,1,1,0,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,1,1,0,0,0,0]
=> [2,1,7,4,6,5,3] => ([(0,1),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[1,0,1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,1,0,1,0,0,0,0]
=> [2,1,7,5,6,4,3] => ([(0,1),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[1,0,1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,1,0,0,1,0,0]
=> [2,1,6,4,5,7,3] => ([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[1,0,1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,1,1,0,0,0]
=> [2,1,4,5,7,6,3] => ([(0,1),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[1,0,1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,0,1,1,0,1,0,0,0]
=> [2,1,4,7,5,6,3] => ([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[1,0,1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> [2,1,4,5,6,7,3] => ([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 2
[1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0,1,1,0,0]
=> [3,2,5,4,1,7,6] => ([(0,1),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 3
[1,0,1,1,1,0,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,0,1,1,1,0,0,0]
=> [3,2,4,1,7,6,5] => ([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> ? = 3
[1,0,1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,1,0,1,0,0]
=> [3,2,4,1,6,7,5] => ([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> ? = 3
[1,0,1,1,1,0,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0,1,1,0,0]
=> [5,3,2,4,1,7,6] => ([(0,1),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[1,0,1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0,1,1,0,0]
=> [3,2,4,5,1,7,6] => ([(0,1),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0,1,1,0,0]
=> [2,5,4,3,1,7,6] => ([(0,1),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,0,1,1,1,0,0,0]
=> [2,4,3,1,7,6,5] => ([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> ? = 3
[1,1,1,0,0,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,1,0,0]
=> [2,4,3,1,6,7,5] => ([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> ? = 3
[1,1,1,0,0,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,0,1,1,1,1,0,0,0,0]
=> [2,3,1,7,6,5,4] => ([(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[1,1,1,0,0,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0,1,1,0,0]
=> [2,3,1,5,4,7,6] => ([(0,3),(1,2),(4,6),(5,6)],7)
=> ? = 2
[1,1,1,0,0,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,1,0,0]
=> [2,3,1,6,5,7,4] => ([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> ? = 3
[1,1,1,0,0,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,1,0,0,0]
=> [2,3,1,5,7,6,4] => ([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> ? = 3
[1,1,1,0,0,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,0,0,1,1,1,0,1,0,0,0]
=> [2,3,1,7,5,6,4] => ([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(5,6)],7)
=> ? = 3
[1,1,1,0,0,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> [2,3,1,5,6,7,4] => ([(0,6),(1,6),(2,6),(3,5),(4,5)],7)
=> ? = 2
[1,1,1,0,0,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0,1,1,0,0]
=> [2,4,3,5,1,7,6] => ([(0,1),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[1,1,1,0,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0,1,1,0,0]
=> [5,2,4,3,1,7,6] => ([(0,1),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[1,1,1,0,1,0,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0,1,1,1,0,0,0]
=> [4,2,3,1,7,6,5] => ([(0,1),(0,2),(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[1,1,1,0,1,0,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,1,0,1,0,0]
=> [4,2,3,1,6,7,5] => ([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(5,6)],7)
=> ? = 3
[1,1,1,0,1,0,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0,1,1,0,0]
=> [5,3,4,2,1,7,6] => ([(0,1),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[1,1,1,0,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0,1,1,0,0]
=> [4,2,3,5,1,7,6] => ([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0,1,1,0,0]
=> [2,3,5,4,1,7,6] => ([(0,1),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,1,0,0,0]
=> [2,3,4,1,7,6,5] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> ? = 3
[1,1,1,1,0,0,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> [2,3,4,1,6,7,5] => ([(0,6),(1,6),(2,6),(3,5),(4,5)],7)
=> ? = 2
Description
The order of the largest clique of the graph. A clique in a graph $G$ is a subset $U \subseteq V(G)$ such that any pair of vertices in $U$ are adjacent. I.e. the subgraph induced by $U$ is a complete graph.
St001039: Dyck paths ⟶ ℤResult quality: 75% ā—values known / values provided: 75%ā—distinct values known / distinct values provided: 100%
Values
[1,0]
=> ? = 1
[1,0,1,0]
=> 2
[1,1,0,0]
=> 1
[1,0,1,0,1,0]
=> 3
[1,0,1,1,0,0]
=> 2
[1,1,0,0,1,0]
=> 2
[1,1,0,1,0,0]
=> 1
[1,1,1,0,0,0]
=> 2
[1,0,1,0,1,0,1,0]
=> 4
[1,0,1,0,1,1,0,0]
=> 3
[1,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,0]
=> 2
[1,0,1,1,1,0,0,0]
=> 3
[1,1,0,0,1,0,1,0]
=> 3
[1,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,0,1,0]
=> 2
[1,1,0,1,0,1,0,0]
=> 1
[1,1,0,1,1,0,0,0]
=> 2
[1,1,1,0,0,0,1,0]
=> 3
[1,1,1,0,0,1,0,0]
=> 2
[1,1,1,0,1,0,0,0]
=> 3
[1,1,1,1,0,0,0,0]
=> 2
[1,0,1,0,1,0,1,0,1,0]
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> 4
[1,0,1,0,1,1,0,0,1,0]
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> 4
[1,0,1,1,0,0,1,0,1,0]
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> 3
[1,0,1,1,1,0,0,1,0,0]
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> 4
[1,0,1,1,1,1,0,0,0,0]
=> 3
[1,1,0,0,1,0,1,0,1,0]
=> 4
[1,1,0,0,1,0,1,1,0,0]
=> 3
[1,1,0,0,1,1,0,0,1,0]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> 3
[1,1,0,1,0,0,1,0,1,0]
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> 2
[1,1,1,0,0,0,1,0,1,0]
=> 4
[1,1,0,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 2
[1,1,0,1,0,0,1,1,1,0,1,0,0,1,0,0]
=> ? = 4
[1,1,0,1,0,0,1,1,1,0,1,0,1,0,0,0]
=> ? = 5
[1,1,0,1,0,0,1,1,1,0,1,1,0,0,0,0]
=> ? = 4
[1,1,0,1,0,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 3
[1,1,0,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 4
[1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 5
[1,1,0,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> ? = 4
[1,1,0,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> ? = 3
[1,1,0,1,0,1,0,0,1,0,1,1,1,0,0,0]
=> ? = 4
[1,1,0,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> ? = 2
[1,1,0,1,0,1,0,0,1,1,1,0,0,1,0,0]
=> ? = 3
[1,1,0,1,0,1,0,0,1,1,1,0,1,0,0,0]
=> ? = 4
[1,1,0,1,0,1,0,0,1,1,1,1,0,0,0,0]
=> ? = 3
[1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 4
[1,1,0,1,0,1,0,1,0,0,1,0,1,1,0,0]
=> ? = 3
[1,1,0,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> ? = 2
[1,1,0,1,0,1,0,1,0,0,1,1,1,0,0,0]
=> ? = 3
[1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 3
[1,1,0,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> ? = 2
[1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 2
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1
[1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> ? = 2
[1,1,0,1,0,1,0,1,0,1,1,0,0,0,1,0]
=> ? = 3
[1,1,0,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> ? = 2
[1,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 3
[1,1,0,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> ? = 2
[1,1,0,1,0,1,0,1,1,0,0,0,1,0,1,0]
=> ? = 4
[1,1,0,1,0,1,0,1,1,0,0,0,1,1,0,0]
=> ? = 3
[1,1,0,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> ? = 2
[1,1,0,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> ? = 3
[1,1,0,1,0,1,0,1,1,0,1,0,0,0,1,0]
=> ? = 4
[1,1,0,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 4
[1,1,0,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> ? = 3
[1,1,0,1,0,1,0,1,1,1,0,0,0,0,1,0]
=> ? = 3
[1,1,0,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> ? = 2
[1,1,0,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> ? = 3
[1,1,0,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 2
[1,1,0,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 3
[1,1,0,1,0,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 5
[1,1,0,1,0,1,1,0,0,0,1,1,0,1,0,0]
=> ? = 3
[1,1,0,1,0,1,1,0,0,0,1,1,1,0,0,0]
=> ? = 4
[1,1,0,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> ? = 2
[1,1,0,1,0,1,1,0,0,1,1,0,1,0,0,0]
=> ? = 4
[1,1,0,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> ? = 3
[1,1,0,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> ? = 4
[1,1,0,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> ? = 5
[1,1,0,1,0,1,1,0,1,1,0,0,0,1,0,0]
=> ? = 3
[1,1,0,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> ? = 3
Description
The maximal height of a column in the parallelogram polyomino associated with a Dyck path.
Mp00227: Dyck paths —Delest-Viennot-inverse⟶ Dyck paths
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
Mp00240: Permutations —weak exceedance partition⟶ Set partitions
St000730: Set partitions ⟶ ℤResult quality: 69% ā—values known / values provided: 69%ā—distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1] => {{1}}
=> ? = 1 - 1
[1,0,1,0]
=> [1,1,0,0]
=> [2,1] => {{1,2}}
=> 1 = 2 - 1
[1,1,0,0]
=> [1,0,1,0]
=> [1,2] => {{1},{2}}
=> 0 = 1 - 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => {{1,3},{2}}
=> 2 = 3 - 1
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [2,1,3] => {{1,2},{3}}
=> 1 = 2 - 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,3,2] => {{1},{2,3}}
=> 1 = 2 - 1
[1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,2,3] => {{1},{2},{3}}
=> 0 = 1 - 1
[1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => {{1,2,3}}
=> 1 = 2 - 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => {{1,4},{2,3}}
=> 3 = 4 - 1
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => {{1,3},{2},{4}}
=> 2 = 3 - 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => {{1,2},{3,4}}
=> 1 = 2 - 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => {{1,2},{3},{4}}
=> 1 = 2 - 1
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => {{1,3,4},{2}}
=> 2 = 3 - 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => {{1},{2,4},{3}}
=> 2 = 3 - 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => {{1},{2,3},{4}}
=> 1 = 2 - 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => {{1},{2},{3,4}}
=> 1 = 2 - 1
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => {{1},{2},{3},{4}}
=> 0 = 1 - 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => {{1},{2,3,4}}
=> 1 = 2 - 1
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => {{1,2,4},{3}}
=> 2 = 3 - 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => {{1,2,3},{4}}
=> 1 = 2 - 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [3,4,2,1] => {{1,3},{2,4}}
=> 2 = 3 - 1
[1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => {{1,2,3,4}}
=> 1 = 2 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => {{1,5},{2,4},{3}}
=> 4 = 5 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => {{1,4},{2,3},{5}}
=> 3 = 4 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => {{1,3},{2},{4,5}}
=> 2 = 3 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => {{1,3},{2},{4},{5}}
=> 2 = 3 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => {{1,4,5},{2,3}}
=> 3 = 4 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => {{1,2},{3,5},{4}}
=> 2 = 3 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => {{1,2},{3,4},{5}}
=> 1 = 2 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => {{1,2},{3},{4,5}}
=> 1 = 2 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => {{1,2},{3},{4},{5}}
=> 1 = 2 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => {{1,2},{3,4,5}}
=> 1 = 2 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => {{1,3,5},{2},{4}}
=> 2 = 3 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => {{1,3,4},{2},{5}}
=> 2 = 3 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [4,3,5,2,1] => {{1,4},{2,3,5}}
=> 3 = 4 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => {{1,3,4,5},{2}}
=> 2 = 3 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => {{1},{2,5},{3,4}}
=> 3 = 4 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => {{1},{2,4},{3},{5}}
=> 2 = 3 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => {{1},{2,3},{4,5}}
=> 1 = 2 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => {{1},{2,3},{4},{5}}
=> 1 = 2 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => {{1},{2,4,5},{3}}
=> 2 = 3 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => {{1},{2},{3,5},{4}}
=> 2 = 3 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => {{1},{2},{3,4},{5}}
=> 1 = 2 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => {{1},{2},{3},{4,5}}
=> 1 = 2 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => {{1},{2},{3},{4},{5}}
=> 0 = 1 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => {{1},{2},{3,4,5}}
=> 1 = 2 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => {{1},{2,3,5},{4}}
=> 2 = 3 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => {{1},{2,3,4},{5}}
=> 1 = 2 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => {{1},{2,4},{3,5}}
=> 2 = 3 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => {{1},{2,3,4,5}}
=> 1 = 2 - 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => {{1,2,5},{3,4}}
=> 3 = 4 - 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [7,6,5,4,3,2,1,8] => {{1,7},{2,6},{3,5},{4},{8}}
=> ? = 7 - 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> [6,5,4,3,2,1,7,8] => {{1,6},{2,5},{3,4},{7},{8}}
=> ? = 6 - 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> [5,4,3,2,1,6,7,8] => {{1,5},{2,4},{3},{6},{7},{8}}
=> ? = 5 - 1
[1,0,1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0,1,0]
=> [6,5,4,3,2,7,1,8] => ?
=> ? = 6 - 1
[1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1,5,6,7,8] => {{1,4},{2,3},{5},{6},{7},{8}}
=> ? = 4 - 1
[1,0,1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0,1,0]
=> [5,4,3,2,6,1,7,8] => {{1,5,6},{2,4},{3},{7},{8}}
=> ? = 5 - 1
[1,0,1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0,1,0]
=> [6,5,4,3,7,2,1,8] => ?
=> ? = 6 - 1
[1,0,1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0,1,0]
=> [5,4,3,2,6,7,1,8] => {{1,5,6,7},{2,4},{3},{8}}
=> ? = 5 - 1
[1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [3,2,1,4,5,6,7,8] => {{1,3},{2},{4},{5},{6},{7},{8}}
=> ? = 3 - 1
[1,0,1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0,1,0]
=> [4,3,2,5,1,6,7,8] => ?
=> ? = 4 - 1
[1,0,1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0,1,0]
=> [5,4,3,6,2,1,7,8] => ?
=> ? = 5 - 1
[1,0,1,0,1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0]
=> [6,5,4,7,3,2,1,8] => {{1,6},{2,5},{3,4,7},{8}}
=> ? = 6 - 1
[1,0,1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,0,1,0]
=> [5,4,3,6,2,7,1,8] => ?
=> ? = 5 - 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0,1,0,1,0]
=> [4,3,2,5,6,1,7,8] => ?
=> ? = 4 - 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0,1,0]
=> [4,3,2,5,6,7,1,8] => ?
=> ? = 4 - 1
[1,0,1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0,1,0]
=> [5,4,3,6,7,2,1,8] => ?
=> ? = 5 - 1
[1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6,7,8] => {{1,2},{3},{4},{5},{6},{7},{8}}
=> ? = 2 - 1
[1,0,1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,0,1,0]
=> [3,2,4,1,5,6,7,8] => {{1,3,4},{2},{5},{6},{7},{8}}
=> ? = 3 - 1
[1,0,1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0,1,0,1,0]
=> [4,3,5,2,1,6,7,8] => ?
=> ? = 4 - 1
[1,0,1,1,1,0,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0]
=> [6,5,7,4,3,2,1,8] => {{1,6},{2,5},{3,7},{4},{8}}
=> ? = 6 - 1
[1,0,1,1,1,0,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0,1,0]
=> [4,3,5,2,6,1,7,8] => ?
=> ? = 4 - 1
[1,0,1,1,1,0,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,0,1,0]
=> [5,4,6,3,7,2,1,8] => ?
=> ? = 5 - 1
[1,0,1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0,1,0,1,0]
=> [3,2,4,5,1,6,7,8] => ?
=> ? = 3 - 1
[1,0,1,1,1,1,0,1,0,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0,1,0,1,0]
=> [3,2,4,5,6,1,7,8] => ?
=> ? = 3 - 1
[1,0,1,1,1,1,0,1,0,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0,1,0]
=> [3,2,4,5,6,7,1,8] => {{1,3,4,5,6,7},{2},{8}}
=> ? = 3 - 1
[1,0,1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,1,0,0,1,0]
=> [4,3,5,6,2,7,1,8] => ?
=> ? = 4 - 1
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,8,7,6,5,4,3,2] => {{1},{2,8},{3,7},{4,6},{5}}
=> ? = 7 - 1
[1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,7,6,5,4,3,2,8] => ?
=> ? = 6 - 1
[1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,6,5,4,3,2,7,8] => ?
=> ? = 5 - 1
[1,1,0,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,7,6,5,4,3,8,2] => ?
=> ? = 6 - 1
[1,1,0,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,5,4,3,2,6,7,8] => ?
=> ? = 4 - 1
[1,1,0,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [1,6,5,4,3,7,2,8] => ?
=> ? = 5 - 1
[1,1,0,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [1,7,6,5,4,8,3,2] => ?
=> ? = 6 - 1
[1,1,0,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [1,6,5,4,3,7,8,2] => ?
=> ? = 5 - 1
[1,1,0,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,4,3,2,5,6,7,8] => ?
=> ? = 3 - 1
[1,1,0,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,7,6,5,8,4,3,2] => {{1},{2,7},{3,6},{4,5,8}}
=> ? = 6 - 1
[1,1,0,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,1,0,0,1,0,0]
=> [1,6,5,4,7,3,8,2] => ?
=> ? = 5 - 1
[1,1,0,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> [1,5,4,3,6,7,8,2] => {{1},{2,5,6,7,8},{3,4}}
=> ? = 4 - 1
[1,1,0,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [1,6,5,4,7,8,3,2] => ?
=> ? = 5 - 1
[1,1,0,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6,7,8] => {{1},{2,3},{4},{5},{6},{7},{8}}
=> ? = 2 - 1
[1,1,0,0,1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,6,5,7,4,3,2,8] => ?
=> ? = 5 - 1
[1,1,0,0,1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,7,6,8,5,4,3,2] => {{1},{2,7},{3,6},{4,8},{5}}
=> ? = 6 - 1
[1,1,0,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [1,5,4,6,3,7,2,8] => ?
=> ? = 4 - 1
[1,1,0,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,1,0,1,0,0]
=> [1,5,4,6,3,7,8,2] => ?
=> ? = 4 - 1
[1,1,0,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,1,0,0,1,0,1,0]
=> [1,4,3,5,6,2,7,8] => ?
=> ? = 3 - 1
[1,1,0,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> [1,5,4,6,7,3,2,8] => ?
=> ? = 4 - 1
[1,1,0,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,1,0,1,0,0,1,0,0]
=> [1,5,4,6,7,3,8,2] => ?
=> ? = 4 - 1
[1,1,0,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [1,6,5,7,8,4,3,2] => ?
=> ? = 5 - 1
[1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> [1,5,4,6,7,8,3,2] => ?
=> ? = 4 - 1
Description
The maximal arc length of a set partition. The arcs of a set partition are those $i < j$ that are consecutive elements in the blocks. If there are no arcs, the maximal arc length is $0$.
The following 68 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001203We associate to a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n-1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a Dyck path as follows: St001068Number of torsionless simple modules in the corresponding Nakayama algebra. St001494The Alon-Tarsi number of a graph. St000053The number of valleys of the Dyck path. St001028Number of simple modules with injective dimension equal to the dominant dimension in the Nakayama algebra corresponding to the Dyck path. St001197The global dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001506Half the projective dimension of the unique simple module with even projective dimension in a magnitude 1 Nakayama algebra. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001963The tree-depth of a graph. St001277The degeneracy of a graph. St001358The largest degree of a regular subgraph of a graph. St001270The bandwidth of a graph. St001962The proper pathwidth of a graph. St001029The size of the core of a graph. St001580The acyclic chromatic number of a graph. St000272The treewidth of a graph. St000536The pathwidth of a graph. St000172The Grundy number of a graph. St000306The bounce count of a Dyck path. St000098The chromatic number of a graph. St001337The upper domination number of a graph. St001338The upper irredundance number of a graph. St000528The height of a poset. St001343The dimension of the reduced incidence algebra of a poset. St000527The width of the poset. St001717The largest size of an interval in a poset. St001644The dimension of a graph. St000451The length of the longest pattern of the form k 1 2. St000662The staircase size of the code of a permutation. St000028The number of stack-sorts needed to sort a permutation. St000141The maximum drop size of a permutation. St000245The number of ascents of a permutation. St000381The largest part of an integer composition. St000470The number of runs in a permutation. St000308The height of the tree associated to a permutation. St000720The size of the largest partition in the oscillating tableau corresponding to the perfect matching. St001046The maximal number of arcs nesting a given arc of a perfect matching. St000542The number of left-to-right-minima of a permutation. St000062The length of the longest increasing subsequence of the permutation. St000166The depth minus 1 of an ordered tree. St000094The depth of an ordered tree. St000015The number of peaks of a Dyck path. St000314The number of left-to-right-maxima of a permutation. St000325The width of the tree associated to a permutation. St000822The Hadwiger number of the graph. St000877The depth of the binary word interpreted as a path. St001202Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{nāˆ’1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001390The number of bumps occurring when Schensted-inserting the letter 1 of a permutation. St001498The normalised height of a Nakayama algebra with magnitude 1. St000021The number of descents of a permutation. St000080The rank of the poset. St000541The number of indices greater than or equal to 2 of a permutation such that all smaller indices appear to its right. St001047The maximal number of arcs crossing a given arc of a perfect matching. St001169Number of simple modules with projective dimension at least two in the corresponding Nakayama algebra. St001205The number of non-simple indecomposable projective-injective modules of the algebra $eAe$ in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001225The vector space dimension of the first extension group between J and itself when J is the Jacobson radical of the corresponding Nakayama algebra. St001278The number of indecomposable modules that are fixed by $\tau \Omega^1$ composed with its inverse in the corresponding Nakayama algebra. St001290The first natural number n such that the tensor product of n copies of D(A) is zero for the corresponding Nakayama algebra A. St001330The hat guessing number of a graph. St000888The maximal sum of entries on a diagonal of an alternating sign matrix. St000892The maximal number of nonzero entries on a diagonal of an alternating sign matrix. St001589The nesting number of a perfect matching. St001590The crossing number of a perfect matching. St000317The cycle descent number of a permutation. St000455The second largest eigenvalue of a graph if it is integral. St000983The length of the longest alternating subword. St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path. St001624The breadth of a lattice.