Processing math: 77%

Your data matches 6 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000808: Integer compositions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => 1
[1,1] => 1
[2] => 2
[1,1,1] => 1
[1,2] => 2
[2,1] => 2
[3] => 3
[1,1,1,1] => 1
[1,1,2] => 2
[1,2,1] => 2
[1,3] => 3
[2,1,1] => 2
[2,2] => 2
[3,1] => 3
[4] => 4
[1,1,1,1,1] => 1
[1,1,1,2] => 2
[1,1,2,1] => 2
[1,1,3] => 3
[1,2,1,1] => 2
[1,2,2] => 2
[1,3,1] => 3
[1,4] => 4
[2,1,1,1] => 2
[2,1,2] => 3
[2,2,1] => 2
[2,3] => 3
[3,1,1] => 3
[3,2] => 3
[4,1] => 4
[5] => 5
[1,1,1,1,1,1] => 1
[1,1,1,1,2] => 2
[1,1,1,2,1] => 2
[1,1,1,3] => 3
[1,1,2,1,1] => 2
[1,1,2,2] => 2
[1,1,3,1] => 3
[1,1,4] => 4
[1,2,1,1,1] => 2
[1,2,1,2] => 3
[1,2,2,1] => 2
[1,2,3] => 3
[1,3,1,1] => 3
[1,3,2] => 3
[1,4,1] => 4
[1,5] => 5
[2,1,1,1,1] => 2
[2,1,1,2] => 3
[2,1,2,1] => 3
Description
The number of up steps of the associated bargraph. Interpret the composition as the sequence of heights of the bars of a bargraph. This statistic is the number of up steps.
Mp00041: Integer compositions conjugateInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
Mp00247: Graphs de-duplicateGraphs
St001330: Graphs ⟶ ℤResult quality: 13% values known / values provided: 13%distinct values known / distinct values provided: 89%
Values
[1] => [1] => ([],1)
=> ([],1)
=> 1
[1,1] => [2] => ([],2)
=> ([],1)
=> 1
[2] => [1,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[1,1,1] => [3] => ([],3)
=> ([],1)
=> 1
[1,2] => [1,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> 2
[2,1] => [2,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2
[3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,1,1,1] => [4] => ([],4)
=> ([],1)
=> 1
[1,1,2] => [1,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> 2
[1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> 2
[1,3] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 3
[2,1,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2
[3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[4] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,1,1,1,1] => [5] => ([],5)
=> ([],1)
=> 1
[1,1,1,2] => [1,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> 2
[1,1,2,1] => [2,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> 2
[1,1,3] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> 3
[1,2,1,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> 2
[1,2,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2
[1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> 3
[1,4] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 2
[2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 3
[2,2,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2
[2,3] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3
[3,1,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3
[4,1] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[1,1,1,1,1,1] => [6] => ([],6)
=> ([],1)
=> 1
[1,1,1,1,2] => [1,5] => ([(4,5)],6)
=> ([(1,2)],3)
=> 2
[1,1,1,2,1] => [2,4] => ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> 2
[1,1,1,3] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> 3
[1,1,2,1,1] => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> 2
[1,1,2,2] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2
[1,1,3,1] => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> 3
[1,1,4] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,2,1,1,1] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> 2
[1,2,1,2] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3
[1,2,2,1] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2
[1,2,3] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
[1,3,1,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> 3
[1,3,2] => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
[1,4,1] => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,5] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[2,1,1,1,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 2
[2,1,1,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 3
[2,1,2,1] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 3
[2,1,3] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4
[2,2,1,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2
[2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
[2,3,1] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3
[2,4] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4
[3,1,1,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[3,1,2] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4
[3,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3
[3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
[4,1,1] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4
[5,1] => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[6] => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
[1,1,1,1,1,1,1] => [7] => ([],7)
=> ([],1)
=> 1
[1,1,1,1,1,2] => [1,6] => ([(5,6)],7)
=> ([(1,2)],3)
=> 2
[1,1,1,1,2,1] => [2,5] => ([(4,6),(5,6)],7)
=> ([(1,2)],3)
=> 2
[1,1,1,1,3] => [1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(2,3)],4)
=> 3
[1,1,1,2,1,1] => [3,4] => ([(3,6),(4,6),(5,6)],7)
=> ([(1,2)],3)
=> 2
[1,1,1,2,2] => [1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2
[1,1,1,3,1] => [2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(2,3)],4)
=> 3
[1,1,1,4] => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,1,2,1,1,1] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> ([(1,2)],3)
=> 2
[1,1,2,1,2] => [1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3
[1,1,2,2,1] => [2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2
[1,1,2,3] => [1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
[1,1,3,1,1] => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(2,3)],4)
=> 3
[1,1,3,2] => [1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
[1,2,1,1,2] => [1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3
[1,2,1,2,1] => [2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3
[1,2,1,3] => [1,1,3,2] => ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4
[1,2,2,1,1] => [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2
[1,2,2,2] => [1,2,2,2] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[1,2,3,1] => [2,1,2,2] => ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
[1,2,4] => [1,1,1,2,2] => ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[1,3,1,2] => [1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4
[1,3,2,1] => [2,2,1,2] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
[1,3,3] => [1,1,2,1,2] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[1,4,2] => [1,2,1,1,2] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[2,1,1,1,2] => [1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 3
[2,1,1,2,1] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 3
[2,1,1,3] => [1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4
[2,1,2,1,1] => [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 3
[2,1,2,2] => [1,2,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
[2,1,3,1] => [2,1,3,1] => ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4
[2,1,4] => [1,1,1,3,1] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 5
[2,2,1,1,1] => [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2
[2,2,1,2] => [1,3,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
[2,2,2,1] => [2,2,2,1] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
[2,2,3] => [1,1,2,2,1] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[2,3,1,1] => [3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3
Description
The hat guessing number of a graph. Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of q possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number HG(G) of a graph G is the largest integer q such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of q possible colors. Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Mp00041: Integer compositions conjugateInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
Mp00247: Graphs de-duplicateGraphs
St000454: Graphs ⟶ ℤResult quality: 13% values known / values provided: 13%distinct values known / distinct values provided: 78%
Values
[1] => [1] => ([],1)
=> ([],1)
=> 0 = 1 - 1
[1,1] => [2] => ([],2)
=> ([],1)
=> 0 = 1 - 1
[2] => [1,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,1,1] => [3] => ([],3)
=> ([],1)
=> 0 = 1 - 1
[1,2] => [1,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> 1 = 2 - 1
[2,1] => [2,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1 = 2 - 1
[3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
[1,1,1,1] => [4] => ([],4)
=> ([],1)
=> 0 = 1 - 1
[1,1,2] => [1,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> 1 = 2 - 1
[1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> 1 = 2 - 1
[1,3] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[2,1,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1 = 2 - 1
[2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 - 1
[3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
[4] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[1,1,1,1,1] => [5] => ([],5)
=> ([],1)
=> 0 = 1 - 1
[1,1,1,2] => [1,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> 1 = 2 - 1
[1,1,2,1] => [2,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> 1 = 2 - 1
[1,1,3] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[1,2,1,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> 1 = 2 - 1
[1,2,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 1
[1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[1,4] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1 = 2 - 1
[2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 3 - 1
[2,2,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 - 1
[2,3] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 - 1
[3,1,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
[3,2] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 - 1
[4,1] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[1,1,1,1,1,1] => [6] => ([],6)
=> ([],1)
=> 0 = 1 - 1
[1,1,1,1,2] => [1,5] => ([(4,5)],6)
=> ([(1,2)],3)
=> 1 = 2 - 1
[1,1,1,2,1] => [2,4] => ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> 1 = 2 - 1
[1,1,1,3] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[1,1,2,1,1] => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> 1 = 2 - 1
[1,1,2,2] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 1
[1,1,3,1] => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[1,1,4] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,2,1,1,1] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> 1 = 2 - 1
[1,2,1,2] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 - 1
[1,2,2,1] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 1
[1,2,3] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
[1,3,1,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[1,3,2] => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
[1,4,1] => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,5] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 5 - 1
[2,1,1,1,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 1 = 2 - 1
[2,1,1,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 3 - 1
[2,1,2,1] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 3 - 1
[2,1,3] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4 - 1
[2,2,1,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 - 1
[2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 1
[2,3,1] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 - 1
[2,4] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
[3,1,1,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
[3,1,2] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4 - 1
[3,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 - 1
[3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
[4,1,1] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[4,2] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
[5,1] => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[6] => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 6 - 1
[1,1,1,1,1,1,1] => [7] => ([],7)
=> ([],1)
=> 0 = 1 - 1
[1,1,1,1,1,2] => [1,6] => ([(5,6)],7)
=> ([(1,2)],3)
=> 1 = 2 - 1
[1,1,1,1,2,1] => [2,5] => ([(4,6),(5,6)],7)
=> ([(1,2)],3)
=> 1 = 2 - 1
[1,1,1,1,3] => [1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[1,1,1,2,1,1] => [3,4] => ([(3,6),(4,6),(5,6)],7)
=> ([(1,2)],3)
=> 1 = 2 - 1
[1,1,1,2,2] => [1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 1
[1,1,1,3,1] => [2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[1,1,1,4] => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,1,2,1,1,1] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> ([(1,2)],3)
=> 1 = 2 - 1
[1,1,2,1,2] => [1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 - 1
[1,1,2,2,1] => [2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 1
[1,1,2,3] => [1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
[1,1,3,1,1] => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[1,1,3,2] => [1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
[1,2,1,1,2] => [1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 - 1
[1,2,1,2,1] => [2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 - 1
[1,2,1,3] => [1,1,3,2] => ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
[1,2,2,1,1] => [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 1
[1,2,2,2] => [1,2,2,2] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 - 1
[1,2,3,1] => [2,1,2,2] => ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
[1,2,4] => [1,1,1,2,2] => ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 1
[1,3,1,2] => [1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
[1,3,2,1] => [2,2,1,2] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
[1,3,3] => [1,1,2,1,2] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 1
[1,4,2] => [1,2,1,1,2] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 1
[2,1,1,1,2] => [1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 3 - 1
[2,1,1,2,1] => [2,4,1] => ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 3 - 1
[2,1,1,3] => [1,1,4,1] => ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4 - 1
[2,1,2,1,1] => [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 3 - 1
[2,1,2,2] => [1,2,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
[2,1,3,1] => [2,1,3,1] => ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4 - 1
[2,1,4] => [1,1,1,3,1] => ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 5 - 1
[2,2,1,1,1] => [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 - 1
[2,2,1,2] => [1,3,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
[2,2,2,1] => [2,2,2,1] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 1
[2,2,3] => [1,1,2,2,1] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3 - 1
[2,3,1,1] => [3,1,2,1] => ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 - 1
Description
The largest eigenvalue of a graph if it is integral. If a graph is d-regular, then its largest eigenvalue equals d. One can show that the largest eigenvalue always lies between the average degree and the maximal degree. This statistic is undefined if the largest eigenvalue of the graph is not integral.
Mp00231: Integer compositions bounce pathDyck paths
St000335: Dyck paths ⟶ ℤResult quality: 12% values known / values provided: 12%distinct values known / distinct values provided: 67%
Values
[1] => [1,0]
=> 1
[1,1] => [1,0,1,0]
=> 1
[2] => [1,1,0,0]
=> 2
[1,1,1] => [1,0,1,0,1,0]
=> 1
[1,2] => [1,0,1,1,0,0]
=> 2
[2,1] => [1,1,0,0,1,0]
=> 2
[3] => [1,1,1,0,0,0]
=> 3
[1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 1
[1,1,2] => [1,0,1,0,1,1,0,0]
=> 2
[1,2,1] => [1,0,1,1,0,0,1,0]
=> 2
[1,3] => [1,0,1,1,1,0,0,0]
=> 3
[2,1,1] => [1,1,0,0,1,0,1,0]
=> 2
[2,2] => [1,1,0,0,1,1,0,0]
=> 2
[3,1] => [1,1,1,0,0,0,1,0]
=> 3
[4] => [1,1,1,1,0,0,0,0]
=> 4
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 1
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 2
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 2
[1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 3
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 2
[1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 3
[1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 4
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 2
[2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 3
[2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
[2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 3
[3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 3
[3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3
[4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 4
[5] => [1,1,1,1,1,0,0,0,0,0]
=> 5
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> 1
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> 2
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> 2
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> 3
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> 2
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> 2
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> 3
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> 4
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0]
=> 2
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0]
=> 3
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0]
=> 2
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> 3
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> 3
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> 3
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> 4
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> 5
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> 2
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> 3
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> 3
[1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1
[1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 2
[1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 3
[1,1,1,2,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 2
[1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 2
[1,1,1,3,1] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 3
[1,1,1,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 4
[1,1,2,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 2
[1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 3
[1,1,2,2,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 2
[1,1,2,3] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 3
[1,1,3,1,1] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 3
[1,1,3,2] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 3
[1,1,4,1] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 4
[1,1,5] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 5
[1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 2
[1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ? = 3
[1,2,1,2,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> ? = 3
[1,2,1,3] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> ? = 4
[1,2,2,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> ? = 2
[1,2,2,2] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2
[1,2,3,1] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> ? = 3
[1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> ? = 4
[1,3,1,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 3
[1,3,1,2] => [1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> ? = 4
[1,3,2,1] => [1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> ? = 3
[1,3,3] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> ? = 3
[1,4,1,1] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 4
[1,4,2] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> ? = 4
[1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 5
[1,6] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 6
[2,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 2
[2,1,1,1,2] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 3
[2,1,1,2,1] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 3
[2,1,1,3] => [1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 4
[2,1,2,1,1] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 3
[2,1,2,2] => [1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 3
[2,1,3,1] => [1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 4
[2,1,4] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 5
[2,2,1,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 2
[2,2,1,2] => [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 3
[2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 2
[2,2,3] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 3
[2,3,1,1] => [1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 3
[2,3,2] => [1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 3
[2,4,1] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 4
[2,5] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 5
[3,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 3
[3,1,1,2] => [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> ? = 4
Description
The difference of lower and upper interactions. An ''upper interaction'' in a Dyck path is the occurrence of a factor 0k1k with k1 (see [[St000331]]), and a ''lower interaction'' is the occurrence of a factor 1k0k with k1. In both cases, 1 denotes an up-step 0 denotes a a down-step.
Mp00094: Integer compositions to binary wordBinary words
Mp00178: Binary words to compositionInteger compositions
St000091: Integer compositions ⟶ ℤResult quality: 12% values known / values provided: 12%distinct values known / distinct values provided: 67%
Values
[1] => 1 => [1,1] => 0 = 1 - 1
[1,1] => 11 => [1,1,1] => 0 = 1 - 1
[2] => 10 => [1,2] => 1 = 2 - 1
[1,1,1] => 111 => [1,1,1,1] => 0 = 1 - 1
[1,2] => 110 => [1,1,2] => 1 = 2 - 1
[2,1] => 101 => [1,2,1] => 1 = 2 - 1
[3] => 100 => [1,3] => 2 = 3 - 1
[1,1,1,1] => 1111 => [1,1,1,1,1] => 0 = 1 - 1
[1,1,2] => 1110 => [1,1,1,2] => 1 = 2 - 1
[1,2,1] => 1101 => [1,1,2,1] => 1 = 2 - 1
[1,3] => 1100 => [1,1,3] => 2 = 3 - 1
[2,1,1] => 1011 => [1,2,1,1] => 1 = 2 - 1
[2,2] => 1010 => [1,2,2] => 1 = 2 - 1
[3,1] => 1001 => [1,3,1] => 2 = 3 - 1
[4] => 1000 => [1,4] => 3 = 4 - 1
[1,1,1,1,1] => 11111 => [1,1,1,1,1,1] => 0 = 1 - 1
[1,1,1,2] => 11110 => [1,1,1,1,2] => 1 = 2 - 1
[1,1,2,1] => 11101 => [1,1,1,2,1] => 1 = 2 - 1
[1,1,3] => 11100 => [1,1,1,3] => 2 = 3 - 1
[1,2,1,1] => 11011 => [1,1,2,1,1] => 1 = 2 - 1
[1,2,2] => 11010 => [1,1,2,2] => 1 = 2 - 1
[1,3,1] => 11001 => [1,1,3,1] => 2 = 3 - 1
[1,4] => 11000 => [1,1,4] => 3 = 4 - 1
[2,1,1,1] => 10111 => [1,2,1,1,1] => 1 = 2 - 1
[2,1,2] => 10110 => [1,2,1,2] => 2 = 3 - 1
[2,2,1] => 10101 => [1,2,2,1] => 1 = 2 - 1
[2,3] => 10100 => [1,2,3] => 2 = 3 - 1
[3,1,1] => 10011 => [1,3,1,1] => 2 = 3 - 1
[3,2] => 10010 => [1,3,2] => 2 = 3 - 1
[4,1] => 10001 => [1,4,1] => 3 = 4 - 1
[5] => 10000 => [1,5] => 4 = 5 - 1
[1,1,1,1,1,1] => 111111 => [1,1,1,1,1,1,1] => 0 = 1 - 1
[1,1,1,1,2] => 111110 => [1,1,1,1,1,2] => 1 = 2 - 1
[1,1,1,2,1] => 111101 => [1,1,1,1,2,1] => 1 = 2 - 1
[1,1,1,3] => 111100 => [1,1,1,1,3] => 2 = 3 - 1
[1,1,2,1,1] => 111011 => [1,1,1,2,1,1] => 1 = 2 - 1
[1,1,2,2] => 111010 => [1,1,1,2,2] => 1 = 2 - 1
[1,1,3,1] => 111001 => [1,1,1,3,1] => 2 = 3 - 1
[1,1,4] => 111000 => [1,1,1,4] => 3 = 4 - 1
[1,2,1,1,1] => 110111 => [1,1,2,1,1,1] => 1 = 2 - 1
[1,2,1,2] => 110110 => [1,1,2,1,2] => 2 = 3 - 1
[1,2,2,1] => 110101 => [1,1,2,2,1] => 1 = 2 - 1
[1,2,3] => 110100 => [1,1,2,3] => 2 = 3 - 1
[1,3,1,1] => 110011 => [1,1,3,1,1] => 2 = 3 - 1
[1,3,2] => 110010 => [1,1,3,2] => 2 = 3 - 1
[1,4,1] => 110001 => [1,1,4,1] => 3 = 4 - 1
[1,5] => 110000 => [1,1,5] => 4 = 5 - 1
[2,1,1,1,1] => 101111 => [1,2,1,1,1,1] => 1 = 2 - 1
[2,1,1,2] => 101110 => [1,2,1,1,2] => 2 = 3 - 1
[2,1,2,1] => 101101 => [1,2,1,2,1] => 2 = 3 - 1
[1,1,1,1,1,1,1] => 1111111 => [1,1,1,1,1,1,1,1] => ? = 1 - 1
[1,1,1,1,1,2] => 1111110 => [1,1,1,1,1,1,2] => ? = 2 - 1
[1,1,1,1,2,1] => 1111101 => [1,1,1,1,1,2,1] => ? = 2 - 1
[1,1,1,1,3] => 1111100 => [1,1,1,1,1,3] => ? = 3 - 1
[1,1,1,2,1,1] => 1111011 => [1,1,1,1,2,1,1] => ? = 2 - 1
[1,1,1,2,2] => 1111010 => [1,1,1,1,2,2] => ? = 2 - 1
[1,1,1,3,1] => 1111001 => [1,1,1,1,3,1] => ? = 3 - 1
[1,1,1,4] => 1111000 => [1,1,1,1,4] => ? = 4 - 1
[1,1,2,1,1,1] => 1110111 => [1,1,1,2,1,1,1] => ? = 2 - 1
[1,1,2,1,2] => 1110110 => [1,1,1,2,1,2] => ? = 3 - 1
[1,1,2,2,1] => 1110101 => [1,1,1,2,2,1] => ? = 2 - 1
[1,1,2,3] => 1110100 => [1,1,1,2,3] => ? = 3 - 1
[1,1,3,1,1] => 1110011 => [1,1,1,3,1,1] => ? = 3 - 1
[1,1,3,2] => 1110010 => [1,1,1,3,2] => ? = 3 - 1
[1,1,4,1] => 1110001 => [1,1,1,4,1] => ? = 4 - 1
[1,1,5] => 1110000 => [1,1,1,5] => ? = 5 - 1
[1,2,1,1,1,1] => 1101111 => [1,1,2,1,1,1,1] => ? = 2 - 1
[1,2,1,1,2] => 1101110 => [1,1,2,1,1,2] => ? = 3 - 1
[1,2,1,2,1] => 1101101 => [1,1,2,1,2,1] => ? = 3 - 1
[1,2,1,3] => 1101100 => [1,1,2,1,3] => ? = 4 - 1
[1,2,2,1,1] => 1101011 => [1,1,2,2,1,1] => ? = 2 - 1
[1,2,2,2] => 1101010 => [1,1,2,2,2] => ? = 2 - 1
[1,2,3,1] => 1101001 => [1,1,2,3,1] => ? = 3 - 1
[1,2,4] => 1101000 => [1,1,2,4] => ? = 4 - 1
[1,3,1,1,1] => 1100111 => [1,1,3,1,1,1] => ? = 3 - 1
[1,3,1,2] => 1100110 => [1,1,3,1,2] => ? = 4 - 1
[1,3,2,1] => 1100101 => [1,1,3,2,1] => ? = 3 - 1
[1,3,3] => 1100100 => [1,1,3,3] => ? = 3 - 1
[1,4,1,1] => 1100011 => [1,1,4,1,1] => ? = 4 - 1
[1,4,2] => 1100010 => [1,1,4,2] => ? = 4 - 1
[1,5,1] => 1100001 => [1,1,5,1] => ? = 5 - 1
[1,6] => 1100000 => [1,1,6] => ? = 6 - 1
[2,1,1,1,1,1] => 1011111 => [1,2,1,1,1,1,1] => ? = 2 - 1
[2,1,1,1,2] => 1011110 => [1,2,1,1,1,2] => ? = 3 - 1
[2,1,1,2,1] => 1011101 => [1,2,1,1,2,1] => ? = 3 - 1
[2,1,1,3] => 1011100 => [1,2,1,1,3] => ? = 4 - 1
[2,1,2,1,1] => 1011011 => [1,2,1,2,1,1] => ? = 3 - 1
[2,1,2,2] => 1011010 => [1,2,1,2,2] => ? = 3 - 1
[2,1,3,1] => 1011001 => [1,2,1,3,1] => ? = 4 - 1
[2,1,4] => 1011000 => [1,2,1,4] => ? = 5 - 1
[2,2,1,1,1] => 1010111 => [1,2,2,1,1,1] => ? = 2 - 1
[2,2,1,2] => 1010110 => [1,2,2,1,2] => ? = 3 - 1
[2,2,2,1] => 1010101 => [1,2,2,2,1] => ? = 2 - 1
[2,2,3] => 1010100 => [1,2,2,3] => ? = 3 - 1
[2,3,1,1] => 1010011 => [1,2,3,1,1] => ? = 3 - 1
[2,3,2] => 1010010 => [1,2,3,2] => ? = 3 - 1
[2,4,1] => 1010001 => [1,2,4,1] => ? = 4 - 1
[2,5] => 1010000 => [1,2,5] => ? = 5 - 1
[3,1,1,1,1] => 1001111 => [1,3,1,1,1,1] => ? = 3 - 1
[3,1,1,2] => 1001110 => [1,3,1,1,2] => ? = 4 - 1
Description
The descent variation of a composition. Defined in [1].
Mp00039: Integer compositions complementInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
Mp00266: Graphs connected vertex partitionsLattices
St001651: Lattices ⟶ ℤResult quality: 5% values known / values provided: 5%distinct values known / distinct values provided: 22%
Values
[1] => [1] => ([],1)
=> ([],1)
=> ? = 1 - 2
[1,1] => [2] => ([],2)
=> ([],1)
=> ? = 1 - 2
[2] => [1,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 0 = 2 - 2
[1,1,1] => [3] => ([],3)
=> ([],1)
=> ? = 1 - 2
[1,2] => [2,1] => ([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
[2,1] => [1,2] => ([(1,2)],3)
=> ([(0,1)],2)
=> 0 = 2 - 2
[3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1 = 3 - 2
[1,1,1,1] => [4] => ([],4)
=> ([],1)
=> ? = 1 - 2
[1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0 = 2 - 2
[1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
[1,3] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 3 - 2
[2,1,1] => [1,3] => ([(2,3)],4)
=> ([(0,1)],2)
=> 0 = 2 - 2
[2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 2 - 2
[3,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1 = 3 - 2
[4] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,13),(2,9),(2,10),(2,12),(3,8),(3,10),(3,13),(4,8),(4,11),(4,12),(5,7),(5,12),(5,13),(6,7),(6,10),(6,11),(7,14),(8,14),(9,14),(10,14),(11,14),(12,14),(13,14)],15)
=> ? = 4 - 2
[1,1,1,1,1] => [5] => ([],5)
=> ([],1)
=> ? = 1 - 2
[1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 0 = 2 - 2
[1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0 = 2 - 2
[1,1,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,28),(1,29),(1,30),(2,9),(2,13),(2,18),(2,19),(2,30),(3,8),(3,12),(3,16),(3,17),(3,30),(4,11),(4,15),(4,17),(4,19),(4,29),(5,10),(5,14),(5,16),(5,18),(5,29),(6,12),(6,13),(6,14),(6,15),(6,28),(7,8),(7,9),(7,10),(7,11),(7,28),(8,20),(8,21),(8,32),(9,22),(9,23),(9,32),(10,20),(10,22),(10,33),(11,21),(11,23),(11,33),(12,24),(12,25),(12,32),(13,26),(13,27),(13,32),(14,24),(14,26),(14,33),(15,25),(15,27),(15,33),(16,20),(16,24),(16,31),(17,21),(17,25),(17,31),(18,22),(18,26),(18,31),(19,23),(19,27),(19,31),(20,34),(21,34),(22,34),(23,34),(24,34),(25,34),(26,34),(27,34),(28,32),(28,33),(29,31),(29,33),(30,31),(30,32),(31,34),(32,34),(33,34)],35)
=> ? = 3 - 2
[1,2,1,1] => [2,3] => ([(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
[1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(1,20),(1,21),(2,9),(2,14),(2,15),(2,21),(3,8),(3,12),(3,13),(3,21),(4,11),(4,13),(4,15),(4,20),(5,10),(5,12),(5,14),(5,20),(6,7),(6,8),(6,9),(6,10),(6,11),(7,22),(7,23),(8,16),(8,17),(8,22),(9,18),(9,19),(9,22),(10,16),(10,18),(10,23),(11,17),(11,19),(11,23),(12,16),(12,24),(13,17),(13,24),(14,18),(14,24),(15,19),(15,24),(16,25),(17,25),(18,25),(19,25),(20,23),(20,24),(21,22),(21,24),(22,25),(23,25),(24,25)],26)
=> ? = 2 - 2
[1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 3 - 2
[1,4] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,12),(1,15),(1,28),(1,31),(1,34),(2,11),(2,14),(2,28),(2,30),(2,33),(3,10),(3,13),(3,28),(3,29),(3,32),(4,10),(4,16),(4,19),(4,21),(4,30),(4,31),(5,11),(5,17),(5,20),(5,22),(5,29),(5,31),(6,12),(6,18),(6,23),(6,24),(6,29),(6,30),(7,13),(7,16),(7,20),(7,23),(7,33),(7,34),(8,14),(8,17),(8,19),(8,24),(8,32),(8,34),(9,15),(9,18),(9,21),(9,22),(9,32),(9,33),(10,25),(10,35),(10,45),(11,26),(11,36),(11,45),(12,27),(12,37),(12,45),(13,25),(13,38),(13,44),(14,26),(14,39),(14,44),(15,27),(15,40),(15,44),(16,25),(16,42),(16,43),(17,26),(17,41),(17,43),(18,27),(18,41),(18,42),(19,35),(19,39),(19,43),(20,36),(20,38),(20,43),(21,35),(21,40),(21,42),(22,36),(22,40),(22,41),(23,37),(23,38),(23,42),(24,37),(24,39),(24,41),(25,46),(26,46),(27,46),(28,44),(28,45),(29,38),(29,41),(29,45),(30,39),(30,42),(30,45),(31,40),(31,43),(31,45),(32,35),(32,41),(32,44),(33,36),(33,42),(33,44),(34,37),(34,43),(34,44),(35,46),(36,46),(37,46),(38,46),(39,46),(40,46),(41,46),(42,46),(43,46),(44,46),(45,46)],47)
=> ? = 4 - 2
[2,1,1,1] => [1,4] => ([(3,4)],5)
=> ([(0,1)],2)
=> 0 = 2 - 2
[2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 3 - 2
[2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 2 - 2
[2,3] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,9),(1,26),(1,27),(1,28),(2,9),(2,10),(2,11),(2,29),(2,30),(3,13),(3,17),(3,21),(3,28),(3,30),(4,12),(4,16),(4,21),(4,27),(4,29),(5,15),(5,18),(5,20),(5,27),(5,30),(6,14),(6,19),(6,20),(6,28),(6,29),(7,11),(7,16),(7,17),(7,18),(7,19),(7,26),(8,10),(8,12),(8,13),(8,14),(8,15),(8,26),(9,35),(9,38),(10,31),(10,32),(10,35),(11,33),(11,34),(11,35),(12,22),(12,31),(12,36),(13,22),(13,32),(13,37),(14,23),(14,31),(14,37),(15,23),(15,32),(15,36),(16,24),(16,33),(16,36),(17,24),(17,34),(17,37),(18,25),(18,34),(18,36),(19,25),(19,33),(19,37),(20,23),(20,25),(20,38),(21,22),(21,24),(21,38),(22,39),(23,39),(24,39),(25,39),(26,35),(26,36),(26,37),(27,36),(27,38),(28,37),(28,38),(29,31),(29,33),(29,38),(30,32),(30,34),(30,38),(31,39),(32,39),(33,39),(34,39),(35,39),(36,39),(37,39),(38,39)],40)
=> ? = 3 - 2
[3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1 = 3 - 2
[3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,9),(1,16),(1,21),(1,23),(2,8),(2,16),(2,20),(2,22),(3,10),(3,15),(3,20),(3,23),(4,11),(4,15),(4,21),(4,22),(5,13),(5,14),(5,22),(5,23),(6,12),(6,14),(6,20),(6,21),(7,8),(7,9),(7,10),(7,11),(7,12),(7,13),(8,17),(8,24),(8,26),(9,17),(9,25),(9,27),(10,18),(10,24),(10,27),(11,18),(11,25),(11,26),(12,19),(12,24),(12,25),(13,19),(13,26),(13,27),(14,19),(14,28),(15,18),(15,28),(16,17),(16,28),(17,29),(18,29),(19,29),(20,24),(20,28),(21,25),(21,28),(22,26),(22,28),(23,27),(23,28),(24,29),(25,29),(26,29),(27,29),(28,29)],30)
=> ? = 3 - 2
[4,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,13),(2,9),(2,10),(2,12),(3,8),(3,10),(3,13),(4,8),(4,11),(4,12),(5,7),(5,12),(5,13),(6,7),(6,10),(6,11),(7,14),(8,14),(9,14),(10,14),(11,14),(12,14),(13,14)],15)
=> ? = 4 - 2
[5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,13),(1,14),(1,20),(1,28),(1,29),(1,31),(2,11),(2,12),(2,19),(2,26),(2,27),(2,31),(3,16),(3,18),(3,22),(3,27),(3,29),(3,30),(4,15),(4,17),(4,21),(4,26),(4,28),(4,30),(5,11),(5,15),(5,24),(5,29),(5,32),(5,34),(6,12),(6,16),(6,25),(6,28),(6,32),(6,35),(7,13),(7,17),(7,25),(7,27),(7,33),(7,34),(8,14),(8,18),(8,24),(8,26),(8,33),(8,35),(9,21),(9,22),(9,23),(9,31),(9,34),(9,35),(10,19),(10,20),(10,23),(10,30),(10,32),(10,33),(11,36),(11,40),(11,50),(12,36),(12,41),(12,49),(13,37),(13,42),(13,50),(14,37),(14,43),(14,49),(15,38),(15,40),(15,48),(16,39),(16,41),(16,48),(17,38),(17,42),(17,47),(18,39),(18,43),(18,47),(19,36),(19,44),(19,47),(20,37),(20,44),(20,48),(21,38),(21,45),(21,49),(22,39),(22,45),(22,50),(23,44),(23,45),(23,46),(24,40),(24,43),(24,46),(25,41),(25,42),(25,46),(26,40),(26,47),(26,49),(27,41),(27,47),(27,50),(28,42),(28,48),(28,49),(29,43),(29,48),(29,50),(30,45),(30,47),(30,48),(31,44),(31,49),(31,50),(32,36),(32,46),(32,48),(33,37),(33,46),(33,47),(34,38),(34,46),(34,50),(35,39),(35,46),(35,49),(36,51),(37,51),(38,51),(39,51),(40,51),(41,51),(42,51),(43,51),(44,51),(45,51),(46,51),(47,51),(48,51),(49,51),(50,51)],52)
=> ? = 5 - 2
[1,1,1,1,1,1] => [6] => ([],6)
=> ([],1)
=> ? = 1 - 2
[1,1,1,1,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(1,13),(1,14),(1,15),(2,9),(2,10),(2,11),(2,15),(3,7),(3,8),(3,11),(3,14),(4,6),(4,8),(4,10),(4,13),(5,6),(5,7),(5,9),(5,12),(6,16),(6,19),(6,22),(7,16),(7,17),(7,20),(8,16),(8,18),(8,21),(9,17),(9,19),(9,23),(10,18),(10,19),(10,24),(11,17),(11,18),(11,25),(12,20),(12,22),(12,23),(13,21),(13,22),(13,24),(14,20),(14,21),(14,25),(15,23),(15,24),(15,25),(16,29),(16,30),(17,26),(17,30),(18,27),(18,30),(19,28),(19,30),(20,26),(20,29),(21,27),(21,29),(22,28),(22,29),(23,26),(23,28),(24,27),(24,28),(25,26),(25,27),(26,31),(27,31),(28,31),(29,31),(30,31)],32)
=> 0 = 2 - 2
[1,1,1,2,1] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 0 = 2 - 2
[1,1,1,3] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,11),(1,15),(1,20),(1,21),(1,23),(1,29),(1,69),(2,10),(2,14),(2,18),(2,19),(2,22),(2,28),(2,69),(3,13),(3,17),(3,19),(3,21),(3,25),(3,31),(3,68),(4,12),(4,16),(4,18),(4,20),(4,24),(4,30),(4,68),(5,14),(5,15),(5,16),(5,17),(5,27),(5,33),(5,67),(6,10),(6,11),(6,12),(6,13),(6,26),(6,32),(6,67),(7,28),(7,29),(7,30),(7,31),(7,32),(7,33),(7,66),(8,22),(8,23),(8,24),(8,25),(8,26),(8,27),(8,66),(9,66),(9,67),(9,68),(9,69),(10,34),(10,46),(10,58),(10,59),(10,87),(11,35),(11,47),(11,60),(11,61),(11,87),(12,36),(12,48),(12,58),(12,60),(12,88),(13,37),(13,49),(13,59),(13,61),(13,88),(14,38),(14,50),(14,62),(14,63),(14,87),(15,39),(15,51),(15,64),(15,65),(15,87),(16,40),(16,52),(16,62),(16,64),(16,88),(17,41),(17,53),(17,63),(17,65),(17,88),(18,42),(18,54),(18,58),(18,62),(18,86),(19,43),(19,55),(19,59),(19,63),(19,86),(20,44),(20,56),(20,60),(20,64),(20,86),(21,45),(21,57),(21,61),(21,65),(21,86),(22,34),(22,38),(22,42),(22,43),(22,89),(23,35),(23,39),(23,44),(23,45),(23,89),(24,36),(24,40),(24,42),(24,44),(24,90),(25,37),(25,41),(25,43),(25,45),(25,90),(26,34),(26,35),(26,36),(26,37),(26,91),(27,38),(27,39),(27,40),(27,41),(27,91),(28,46),(28,50),(28,54),(28,55),(28,89),(29,47),(29,51),(29,56),(29,57),(29,89),(30,48),(30,52),(30,54),(30,56),(30,90),(31,49),(31,53),(31,55),(31,57),(31,90),(32,46),(32,47),(32,48),(32,49),(32,91),(33,50),(33,51),(33,52),(33,53),(33,91),(34,70),(34,71),(34,93),(35,72),(35,73),(35,93),(36,70),(36,72),(36,94),(37,71),(37,73),(37,94),(38,74),(38,75),(38,93),(39,76),(39,77),(39,93),(40,74),(40,76),(40,94),(41,75),(41,77),(41,94),(42,70),(42,74),(42,95),(43,71),(43,75),(43,95),(44,72),(44,76),(44,95),(45,73),(45,77),(45,95),(46,78),(46,79),(46,93),(47,80),(47,81),(47,93),(48,78),(48,80),(48,94),(49,79),(49,81),(49,94),(50,82),(50,83),(50,93),(51,84),(51,85),(51,93),(52,82),(52,84),(52,94),(53,83),(53,85),(53,94),(54,78),(54,82),(54,95),(55,79),(55,83),(55,95),(56,80),(56,84),(56,95),(57,81),(57,85),(57,95),(58,70),(58,78),(58,92),(59,71),(59,79),(59,92),(60,72),(60,80),(60,92),(61,73),(61,81),(61,92),(62,74),(62,82),(62,92),(63,75),(63,83),(63,92),(64,76),(64,84),(64,92),(65,77),(65,85),(65,92),(66,89),(66,90),(66,91),(67,87),(67,88),(67,91),(68,86),(68,88),(68,90),(69,86),(69,87),(69,89),(70,96),(71,96),(72,96),(73,96),(74,96),(75,96),(76,96),(77,96),(78,96),(79,96),(80,96),(81,96),(82,96),(83,96),(84,96),(85,96),(86,92),(86,95),(87,92),(87,93),(88,92),(88,94),(89,93),(89,95),(90,94),(90,95),(91,93),(91,94),(92,96),(93,96),(94,96),(95,96)],97)
=> ? = 3 - 2
[1,1,2,1,1] => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0 = 2 - 2
[1,1,2,2] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,9),(1,22),(1,23),(1,24),(1,25),(1,26),(1,27),(2,11),(2,15),(2,20),(2,21),(2,23),(2,50),(3,10),(3,14),(3,18),(3,19),(3,22),(3,50),(4,13),(4,17),(4,19),(4,21),(4,25),(4,49),(5,12),(5,16),(5,18),(5,20),(5,24),(5,49),(6,14),(6,15),(6,16),(6,17),(6,27),(6,48),(7,10),(7,11),(7,12),(7,13),(7,26),(7,48),(8,9),(8,48),(8,49),(8,50),(9,59),(9,60),(9,61),(10,28),(10,40),(10,41),(10,63),(11,29),(11,42),(11,43),(11,63),(12,30),(12,40),(12,42),(12,64),(13,31),(13,41),(13,43),(13,64),(14,32),(14,44),(14,45),(14,63),(15,33),(15,46),(15,47),(15,63),(16,34),(16,44),(16,46),(16,64),(17,35),(17,45),(17,47),(17,64),(18,36),(18,40),(18,44),(18,62),(19,37),(19,41),(19,45),(19,62),(20,38),(20,42),(20,46),(20,62),(21,39),(21,43),(21,47),(21,62),(22,28),(22,32),(22,36),(22,37),(22,59),(23,29),(23,33),(23,38),(23,39),(23,59),(24,30),(24,34),(24,36),(24,38),(24,60),(25,31),(25,35),(25,37),(25,39),(25,60),(26,28),(26,29),(26,30),(26,31),(26,61),(27,32),(27,33),(27,34),(27,35),(27,61),(28,51),(28,52),(28,66),(29,53),(29,54),(29,66),(30,51),(30,53),(30,67),(31,52),(31,54),(31,67),(32,55),(32,56),(32,66),(33,57),(33,58),(33,66),(34,55),(34,57),(34,67),(35,56),(35,58),(35,67),(36,51),(36,55),(36,65),(37,52),(37,56),(37,65),(38,53),(38,57),(38,65),(39,54),(39,58),(39,65),(40,51),(40,68),(41,52),(41,68),(42,53),(42,68),(43,54),(43,68),(44,55),(44,68),(45,56),(45,68),(46,57),(46,68),(47,58),(47,68),(48,61),(48,63),(48,64),(49,60),(49,62),(49,64),(50,59),(50,62),(50,63),(51,69),(52,69),(53,69),(54,69),(55,69),(56,69),(57,69),(58,69),(59,65),(59,66),(60,65),(60,67),(61,66),(61,67),(62,65),(62,68),(63,66),(63,68),(64,67),(64,68),(65,69),(66,69),(67,69),(68,69)],70)
=> ? = 2 - 2
[1,1,3,1] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,28),(1,29),(1,30),(2,9),(2,13),(2,18),(2,19),(2,30),(3,8),(3,12),(3,16),(3,17),(3,30),(4,11),(4,15),(4,17),(4,19),(4,29),(5,10),(5,14),(5,16),(5,18),(5,29),(6,12),(6,13),(6,14),(6,15),(6,28),(7,8),(7,9),(7,10),(7,11),(7,28),(8,20),(8,21),(8,32),(9,22),(9,23),(9,32),(10,20),(10,22),(10,33),(11,21),(11,23),(11,33),(12,24),(12,25),(12,32),(13,26),(13,27),(13,32),(14,24),(14,26),(14,33),(15,25),(15,27),(15,33),(16,20),(16,24),(16,31),(17,21),(17,25),(17,31),(18,22),(18,26),(18,31),(19,23),(19,27),(19,31),(20,34),(21,34),(22,34),(23,34),(24,34),(25,34),(26,34),(27,34),(28,32),(28,33),(29,31),(29,33),(30,31),(30,32),(31,34),(32,34),(33,34)],35)
=> ? = 3 - 2
[1,1,4] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,15),(1,26),(1,27),(1,32),(1,33),(1,41),(1,42),(1,91),(1,94),(2,14),(2,23),(2,25),(2,29),(2,31),(2,40),(2,42),(2,90),(2,93),(3,13),(3,22),(3,24),(3,28),(3,30),(3,40),(3,41),(3,89),(3,92),(4,18),(4,24),(4,25),(4,34),(4,35),(4,43),(4,44),(4,86),(4,94),(5,17),(5,22),(5,26),(5,36),(5,38),(5,43),(5,45),(5,87),(5,93),(6,16),(6,23),(6,27),(6,37),(6,39),(6,44),(6,45),(6,88),(6,92),(7,21),(7,30),(7,31),(7,36),(7,37),(7,46),(7,47),(7,86),(7,91),(8,20),(8,28),(8,32),(8,34),(8,39),(8,46),(8,48),(8,87),(8,90),(9,19),(9,29),(9,33),(9,35),(9,38),(9,47),(9,48),(9,88),(9,89),(10,19),(10,20),(10,21),(10,49),(10,92),(10,93),(10,94),(11,16),(11,17),(11,18),(11,49),(11,89),(11,90),(11,91),(12,13),(12,14),(12,15),(12,49),(12,86),(12,87),(12,88),(13,53),(13,54),(13,98),(13,100),(13,134),(14,53),(14,55),(14,99),(14,101),(14,135),(15,54),(15,55),(15,102),(15,103),(15,136),(16,56),(16,58),(16,107),(16,108),(16,134),(17,57),(17,58),(17,106),(17,109),(17,135),(18,56),(18,57),(18,104),(18,105),(18,136),(19,59),(19,61),(19,113),(19,114),(19,134),(20,60),(20,61),(20,112),(20,115),(20,135),(21,59),(21,60),(21,110),(21,111),(21,136),(22,63),(22,65),(22,80),(22,98),(22,106),(22,131),(23,64),(23,66),(23,81),(23,99),(23,107),(23,131),(24,62),(24,65),(24,82),(24,100),(24,104),(24,132),(25,62),(25,66),(25,83),(25,101),(25,105),(25,133),(26,63),(26,67),(26,84),(26,102),(26,109),(26,133),(27,64),(27,67),(27,85),(27,103),(27,108),(27,132),(28,69),(28,74),(28,82),(28,98),(28,112),(28,128),(29,70),(29,75),(29,83),(29,99),(29,113),(29,128),(30,68),(30,74),(30,80),(30,100),(30,110),(30,129),(31,68),(31,75),(31,81),(31,101),(31,111),(31,130),(32,69),(32,76),(32,85),(32,102),(32,115),(32,130),(33,70),(33,76),(33,84),(33,103),(33,114),(33,129),(34,72),(34,79),(34,82),(34,105),(34,115),(34,126),(35,71),(35,79),(35,83),(35,104),(35,114),(35,125),(36,73),(36,77),(36,80),(36,109),(36,111),(36,126),(37,73),(37,78),(37,81),(37,108),(37,110),(37,125),(38,71),(38,77),(38,84),(38,106),(38,113),(38,127),(39,72),(39,78),(39,85),(39,107),(39,112),(39,127),(40,50),(40,53),(40,62),(40,68),(40,128),(40,131),(41,50),(41,54),(41,63),(41,69),(41,129),(41,132),(42,50),(42,55),(42,64),(42,70),(42,130),(42,133),(43,51),(43,57),(43,65),(43,71),(43,126),(43,133),(44,51),(44,56),(44,66),(44,72),(44,125),(44,132),(45,51),(45,58),(45,67),(45,73),(45,127),(45,131),(46,52),(46,60),(46,74),(46,78),(46,126),(46,130),(47,52),(47,59),(47,75),(47,77),(47,125),(47,129),(48,52),(48,61),(48,76),(48,79),(48,127),(48,128),(49,134),(49,135),(49,136),(50,95),(50,147),(50,148),(51,96),(51,146),(51,148),(52,97),(52,146),(52,147),(53,95),(53,118),(53,151),(54,95),(54,116),(54,149),(55,95),(55,117),(55,150),(56,96),(56,120),(56,149),(57,96),(57,119),(57,150),(58,96),(58,121),(58,151),(59,97),(59,123),(59,149),(60,97),(60,122),(60,150),(61,97),(61,124),(61,151),(62,118),(62,142),(62,148),(63,116),(63,140),(63,148),(64,117),(64,141),(64,148),(65,119),(65,137),(65,148),(66,120),(66,138),(66,148),(67,121),(67,139),(67,148),(68,118),(68,143),(68,147),(69,116),(69,144),(69,147),(70,117),(70,145),(70,147),(71,119),(71,145),(71,146),(72,120),(72,144),(72,146),(73,121),(73,143),(73,146),(74,122),(74,137),(74,147),(75,123),(75,138),(75,147),(76,124),(76,139),(76,147),(77,123),(77,140),(77,146),(78,122),(78,141),(78,146),(79,124),(79,142),(79,146),(80,137),(80,140),(80,143),(81,138),(81,141),(81,143),(82,137),(82,142),(82,144),(83,138),(83,142),(83,145),(84,139),(84,140),(84,145),(85,139),(85,141),(85,144),(86,100),(86,101),(86,125),(86,126),(86,136),(87,98),(87,102),(87,126),(87,127),(87,135),(88,99),(88,103),(88,125),(88,127),(88,134),(89,104),(89,106),(89,128),(89,129),(89,134),(90,105),(90,107),(90,128),(90,130),(90,135),(91,108),(91,109),(91,129),(91,130),(91,136),(92,110),(92,112),(92,131),(92,132),(92,134),(93,111),(93,113),(93,131),(93,133),(93,135),(94,114),(94,115),(94,132),(94,133),(94,136),(95,152),(96,152),(97,152),(98,116),(98,137),(98,151),(99,117),(99,138),(99,151),(100,118),(100,137),(100,149),(101,118),(101,138),(101,150),(102,116),(102,139),(102,150),(103,117),(103,139),(103,149),(104,119),(104,142),(104,149),(105,120),(105,142),(105,150),(106,119),(106,140),(106,151),(107,120),(107,141),(107,151),(108,121),(108,141),(108,149),(109,121),(109,140),(109,150),(110,122),(110,143),(110,149),(111,123),(111,143),(111,150),(112,122),(112,144),(112,151),(113,123),(113,145),(113,151),(114,124),(114,145),(114,149),(115,124),(115,144),(115,150),(116,152),(117,152),(118,152),(119,152),(120,152),(121,152),(122,152),(123,152),(124,152),(125,138),(125,146),(125,149),(126,137),(126,146),(126,150),(127,139),(127,146),(127,151),(128,142),(128,147),(128,151),(129,140),(129,147),(129,149),(130,141),(130,147),(130,150),(131,143),(131,148),(131,151),(132,144),(132,148),(132,149),(133,145),(133,148),(133,150),(134,149),(134,151),(135,150),(135,151),(136,149),(136,150),(137,152),(138,152),(139,152),(140,152),(141,152),(142,152),(143,152),(144,152),(145,152),(146,152),(147,152),(148,152),(149,152),(150,152),(151,152)],153)
=> ? = 4 - 2
[1,2,1,1,1] => [2,4] => ([(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
[1,2,1,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,8),(1,9),(1,36),(1,37),(2,12),(2,16),(2,21),(2,22),(2,37),(3,11),(3,15),(3,19),(3,20),(3,37),(4,14),(4,18),(4,20),(4,22),(4,36),(5,13),(5,17),(5,19),(5,21),(5,36),(6,9),(6,10),(6,15),(6,16),(6,17),(6,18),(7,8),(7,10),(7,11),(7,12),(7,13),(7,14),(8,35),(8,38),(8,39),(9,35),(9,40),(9,41),(10,31),(10,32),(10,33),(10,34),(10,35),(11,23),(11,24),(11,31),(11,38),(12,25),(12,26),(12,32),(12,38),(13,23),(13,25),(13,33),(13,39),(14,24),(14,26),(14,34),(14,39),(15,27),(15,28),(15,31),(15,40),(16,29),(16,30),(16,32),(16,40),(17,27),(17,29),(17,33),(17,41),(18,28),(18,30),(18,34),(18,41),(19,23),(19,27),(19,48),(20,24),(20,28),(20,48),(21,25),(21,29),(21,48),(22,26),(22,30),(22,48),(23,42),(23,49),(24,43),(24,49),(25,44),(25,49),(26,45),(26,49),(27,42),(27,50),(28,43),(28,50),(29,44),(29,50),(30,45),(30,50),(31,42),(31,43),(31,46),(32,44),(32,45),(32,46),(33,42),(33,44),(33,47),(34,43),(34,45),(34,47),(35,46),(35,47),(36,39),(36,41),(36,48),(37,38),(37,40),(37,48),(38,46),(38,49),(39,47),(39,49),(40,46),(40,50),(41,47),(41,50),(42,51),(43,51),(44,51),(45,51),(46,51),(47,51),(48,49),(48,50),(49,51),(50,51)],52)
=> ? = 3 - 2
[1,2,2,1] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,7),(1,20),(1,21),(2,9),(2,14),(2,15),(2,21),(3,8),(3,12),(3,13),(3,21),(4,11),(4,13),(4,15),(4,20),(5,10),(5,12),(5,14),(5,20),(6,7),(6,8),(6,9),(6,10),(6,11),(7,22),(7,23),(8,16),(8,17),(8,22),(9,18),(9,19),(9,22),(10,16),(10,18),(10,23),(11,17),(11,19),(11,23),(12,16),(12,24),(13,17),(13,24),(14,18),(14,24),(15,19),(15,24),(16,25),(17,25),(18,25),(19,25),(20,23),(20,24),(21,22),(21,24),(22,25),(23,25),(24,25)],26)
=> ? = 2 - 2
[1,2,3] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,16),(1,17),(1,30),(1,31),(1,39),(1,40),(1,41),(1,42),(1,49),(2,14),(2,15),(2,28),(2,29),(2,35),(2,36),(2,37),(2,38),(2,49),(3,19),(3,23),(3,27),(3,34),(3,36),(3,40),(3,74),(3,79),(4,18),(4,22),(4,26),(4,33),(4,35),(4,39),(4,74),(4,78),(5,21),(5,22),(5,24),(5,34),(5,37),(5,41),(5,75),(5,76),(6,20),(6,23),(6,25),(6,33),(6,38),(6,42),(6,75),(6,77),(7,13),(7,20),(7,21),(7,29),(7,31),(7,32),(7,78),(7,79),(8,12),(8,18),(8,19),(8,28),(8,30),(8,32),(8,76),(8,77),(9,14),(9,16),(9,25),(9,26),(9,48),(9,76),(9,79),(10,15),(10,17),(10,24),(10,27),(10,48),(10,77),(10,78),(11,12),(11,13),(11,48),(11,49),(11,74),(11,75),(12,43),(12,84),(12,98),(12,121),(13,43),(13,85),(13,99),(13,122),(14,55),(14,56),(14,86),(14,89),(14,109),(15,54),(15,57),(15,87),(15,88),(15,109),(16,59),(16,60),(16,90),(16,93),(16,109),(17,58),(17,61),(17,91),(17,92),(17,109),(18,62),(18,66),(18,84),(18,94),(18,113),(19,63),(19,67),(19,84),(19,95),(19,114),(20,64),(20,68),(20,85),(20,97),(20,113),(21,65),(21,69),(21,85),(21,96),(21,114),(22,50),(22,52),(22,94),(22,96),(22,110),(23,51),(23,53),(23,95),(23,97),(23,110),(24,54),(24,58),(24,71),(24,96),(24,121),(25,55),(25,59),(25,70),(25,97),(25,121),(26,56),(26,60),(26,70),(26,94),(26,122),(27,57),(27,61),(27,71),(27,95),(27,122),(28,62),(28,63),(28,72),(28,86),(28,87),(28,98),(29,64),(29,65),(29,72),(29,88),(29,89),(29,99),(30,66),(30,67),(30,73),(30,90),(30,91),(30,98),(31,68),(31,69),(31,73),(31,92),(31,93),(31,99),(32,43),(32,72),(32,73),(32,113),(32,114),(33,44),(33,46),(33,70),(33,110),(33,113),(34,45),(34,47),(34,71),(34,110),(34,114),(35,44),(35,50),(35,56),(35,62),(35,88),(35,111),(36,45),(36,51),(36,57),(36,63),(36,89),(36,111),(37,45),(37,50),(37,54),(37,65),(37,86),(37,112),(38,44),(38,51),(38,55),(38,64),(38,87),(38,112),(39,46),(39,52),(39,60),(39,66),(39,92),(39,111),(40,47),(40,53),(40,61),(40,67),(40,93),(40,111),(41,47),(41,52),(41,58),(41,69),(41,90),(41,112),(42,46),(42,53),(42,59),(42,68),(42,91),(42,112),(43,100),(43,126),(44,80),(44,117),(44,123),(45,81),(45,118),(45,123),(46,82),(46,119),(46,123),(47,83),(47,120),(47,123),(48,109),(48,121),(48,122),(49,98),(49,99),(49,109),(49,111),(49,112),(50,101),(50,103),(50,123),(51,102),(51,104),(51,123),(52,105),(52,107),(52,123),(53,106),(53,108),(53,123),(54,81),(54,103),(54,124),(55,80),(55,104),(55,124),(56,80),(56,101),(56,125),(57,81),(57,102),(57,125),(58,83),(58,107),(58,124),(59,82),(59,108),(59,124),(60,82),(60,105),(60,125),(61,83),(61,106),(61,125),(62,101),(62,115),(62,117),(63,102),(63,115),(63,118),(64,104),(64,116),(64,117),(65,103),(65,116),(65,118),(66,105),(66,115),(66,119),(67,106),(67,115),(67,120),(68,108),(68,116),(68,119),(69,107),(69,116),(69,120),(70,80),(70,82),(70,126),(71,81),(71,83),(71,126),(72,100),(72,117),(72,118),(73,100),(73,119),(73,120),(74,84),(74,110),(74,111),(74,122),(75,85),(75,110),(75,112),(75,121),(76,86),(76,90),(76,94),(76,114),(76,121),(77,87),(77,91),(77,95),(77,113),(77,121),(78,88),(78,92),(78,96),(78,113),(78,122),(79,89),(79,93),(79,97),(79,114),(79,122),(80,127),(81,127),(82,127),(83,127),(84,115),(84,126),(85,116),(85,126),(86,101),(86,118),(86,124),(87,102),(87,117),(87,124),(88,103),(88,117),(88,125),(89,104),(89,118),(89,125),(90,105),(90,120),(90,124),(91,106),(91,119),(91,124),(92,107),(92,119),(92,125),(93,108),(93,120),(93,125),(94,101),(94,105),(94,126),(95,102),(95,106),(95,126),(96,103),(96,107),(96,126),(97,104),(97,108),(97,126),(98,100),(98,115),(98,124),(99,100),(99,116),(99,125),(100,127),(101,127),(102,127),(103,127),(104,127),(105,127),(106,127),(107,127),(108,127),(109,124),(109,125),(110,123),(110,126),(111,115),(111,123),(111,125),(112,116),(112,123),(112,124),(113,117),(113,119),(113,126),(114,118),(114,120),(114,126),(115,127),(116,127),(117,127),(118,127),(119,127),(120,127),(121,124),(121,126),(122,125),(122,126),(123,127),(124,127),(125,127),(126,127)],128)
=> ? = 3 - 2
[1,3,1,1] => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,8),(2,9),(2,11),(3,6),(3,7),(3,11),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12)],13)
=> ? = 3 - 2
[1,3,2] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,17),(1,18),(1,19),(1,29),(1,30),(1,31),(1,32),(1,33),(1,34),(2,15),(2,16),(2,22),(2,28),(2,31),(2,55),(2,56),(3,12),(3,14),(3,21),(3,27),(3,30),(3,54),(3,56),(4,11),(4,13),(4,20),(4,26),(4,29),(4,54),(4,55),(5,13),(5,14),(5,25),(5,28),(5,32),(5,57),(5,58),(6,11),(6,15),(6,23),(6,27),(6,33),(6,57),(6,59),(7,12),(7,16),(7,24),(7,26),(7,34),(7,58),(7,59),(8,17),(8,20),(8,24),(8,41),(8,56),(8,57),(9,18),(9,21),(9,23),(9,41),(9,55),(9,58),(10,19),(10,22),(10,25),(10,41),(10,54),(10,59),(11,35),(11,70),(11,74),(11,82),(12,36),(12,71),(12,75),(12,82),(13,37),(13,70),(13,73),(13,83),(14,38),(14,71),(14,73),(14,84),(15,39),(15,72),(15,74),(15,84),(16,40),(16,72),(16,75),(16,83),(17,45),(17,49),(17,63),(17,66),(17,67),(18,46),(18,48),(18,63),(18,65),(18,68),(19,47),(19,50),(19,63),(19,64),(19,69),(20,45),(20,51),(20,70),(20,89),(21,46),(21,52),(21,71),(21,89),(22,47),(22,53),(22,72),(22,89),(23,48),(23,52),(23,74),(23,88),(24,49),(24,51),(24,75),(24,88),(25,50),(25,53),(25,73),(25,88),(26,42),(26,51),(26,82),(26,83),(27,43),(27,52),(27,82),(27,84),(28,44),(28,53),(28,83),(28,84),(29,35),(29,37),(29,42),(29,45),(29,64),(29,65),(30,36),(30,38),(30,43),(30,46),(30,64),(30,66),(31,39),(31,40),(31,44),(31,47),(31,65),(31,66),(32,37),(32,38),(32,44),(32,50),(32,67),(32,68),(33,35),(33,39),(33,43),(33,48),(33,67),(33,69),(34,36),(34,40),(34,42),(34,49),(34,68),(34,69),(35,76),(35,80),(35,85),(36,77),(36,81),(36,85),(37,76),(37,79),(37,86),(38,77),(38,79),(38,87),(39,78),(39,80),(39,87),(40,78),(40,81),(40,86),(41,63),(41,88),(41,89),(42,60),(42,85),(42,86),(43,61),(43,85),(43,87),(44,62),(44,86),(44,87),(45,60),(45,76),(45,90),(46,61),(46,77),(46,90),(47,62),(47,78),(47,90),(48,61),(48,80),(48,91),(49,60),(49,81),(49,91),(50,62),(50,79),(50,91),(51,60),(51,92),(52,61),(52,92),(53,62),(53,92),(54,64),(54,73),(54,82),(54,89),(55,65),(55,74),(55,83),(55,89),(56,66),(56,75),(56,84),(56,89),(57,67),(57,70),(57,84),(57,88),(58,68),(58,71),(58,83),(58,88),(59,69),(59,72),(59,82),(59,88),(60,93),(61,93),(62,93),(63,90),(63,91),(64,79),(64,85),(64,90),(65,80),(65,86),(65,90),(66,81),(66,87),(66,90),(67,76),(67,87),(67,91),(68,77),(68,86),(68,91),(69,78),(69,85),(69,91),(70,76),(70,92),(71,77),(71,92),(72,78),(72,92),(73,79),(73,92),(74,80),(74,92),(75,81),(75,92),(76,93),(77,93),(78,93),(79,93),(80,93),(81,93),(82,85),(82,92),(83,86),(83,92),(84,87),(84,92),(85,93),(86,93),(87,93),(88,91),(88,92),(89,90),(89,92),(90,93),(91,93),(92,93)],94)
=> ? = 3 - 2
[1,4,1] => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,12),(1,15),(1,28),(1,31),(1,34),(2,11),(2,14),(2,28),(2,30),(2,33),(3,10),(3,13),(3,28),(3,29),(3,32),(4,10),(4,16),(4,19),(4,21),(4,30),(4,31),(5,11),(5,17),(5,20),(5,22),(5,29),(5,31),(6,12),(6,18),(6,23),(6,24),(6,29),(6,30),(7,13),(7,16),(7,20),(7,23),(7,33),(7,34),(8,14),(8,17),(8,19),(8,24),(8,32),(8,34),(9,15),(9,18),(9,21),(9,22),(9,32),(9,33),(10,25),(10,35),(10,45),(11,26),(11,36),(11,45),(12,27),(12,37),(12,45),(13,25),(13,38),(13,44),(14,26),(14,39),(14,44),(15,27),(15,40),(15,44),(16,25),(16,42),(16,43),(17,26),(17,41),(17,43),(18,27),(18,41),(18,42),(19,35),(19,39),(19,43),(20,36),(20,38),(20,43),(21,35),(21,40),(21,42),(22,36),(22,40),(22,41),(23,37),(23,38),(23,42),(24,37),(24,39),(24,41),(25,46),(26,46),(27,46),(28,44),(28,45),(29,38),(29,41),(29,45),(30,39),(30,42),(30,45),(31,40),(31,43),(31,45),(32,35),(32,41),(32,44),(33,36),(33,42),(33,44),(34,37),(34,43),(34,44),(35,46),(36,46),(37,46),(38,46),(39,46),(40,46),(41,46),(42,46),(43,46),(44,46),(45,46)],47)
=> ? = 4 - 2
[1,5] => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(0,13),(0,14),(1,16),(1,21),(1,22),(1,28),(1,47),(1,52),(1,53),(1,88),(1,89),(1,91),(2,15),(2,19),(2,20),(2,27),(2,46),(2,50),(2,51),(2,86),(2,87),(2,91),(3,18),(3,24),(3,26),(3,30),(3,49),(3,55),(3,57),(3,87),(3,89),(3,90),(4,17),(4,23),(4,25),(4,29),(4,48),(4,54),(4,56),(4,86),(4,88),(4,90),(5,15),(5,31),(5,32),(5,39),(5,47),(5,54),(5,55),(5,92),(5,93),(5,97),(6,16),(6,33),(6,34),(6,40),(6,46),(6,56),(6,57),(6,94),(6,95),(6,97),(7,17),(7,35),(7,37),(7,41),(7,49),(7,50),(7,52),(7,92),(7,94),(7,96),(8,18),(8,36),(8,38),(8,42),(8,48),(8,51),(8,53),(8,93),(8,95),(8,96),(9,19),(9,23),(9,31),(9,35),(9,44),(9,82),(9,84),(9,89),(9,95),(10,20),(10,24),(10,32),(10,36),(10,45),(10,82),(10,85),(10,88),(10,94),(11,21),(11,25),(11,33),(11,37),(11,45),(11,83),(11,84),(11,87),(11,93),(12,22),(12,26),(12,34),(12,38),(12,44),(12,83),(12,85),(12,86),(12,92),(13,29),(13,30),(13,41),(13,42),(13,43),(13,84),(13,85),(13,91),(13,97),(14,27),(14,28),(14,39),(14,40),(14,43),(14,82),(14,83),(14,90),(14,96),(15,70),(15,71),(15,78),(15,152),(15,153),(15,157),(16,72),(16,73),(16,79),(16,154),(16,155),(16,157),(17,74),(17,76),(17,80),(17,152),(17,154),(17,156),(18,75),(18,77),(18,81),(18,153),(18,155),(18,156),(19,58),(19,70),(19,99),(19,122),(19,134),(19,168),(20,59),(20,71),(20,98),(20,123),(20,134),(20,167),(21,60),(21,72),(21,101),(21,124),(21,135),(21,168),(22,61),(22,73),(22,100),(22,125),(22,135),(22,167),(23,62),(23,74),(23,104),(23,122),(23,136),(23,166),(24,63),(24,75),(24,105),(24,123),(24,137),(24,166),(25,64),(25,76),(25,102),(25,124),(25,136),(25,165),(26,65),(26,77),(26,103),(26,125),(26,137),(26,165),(27,66),(27,78),(27,106),(27,126),(27,134),(27,165),(28,67),(28,79),(28,107),(28,126),(28,135),(28,166),(29,68),(29,80),(29,108),(29,127),(29,136),(29,167),(30,69),(30,81),(30,109),(30,127),(30,137),(30,168),(31,62),(31,70),(31,113),(31,128),(31,138),(31,172),(32,63),(32,71),(32,112),(32,129),(32,138),(32,171),(33,64),(33,72),(33,111),(33,130),(33,139),(33,172),(34,65),(34,73),(34,110),(34,131),(34,139),(34,171),(35,58),(35,74),(35,117),(35,128),(35,140),(35,170),(36,59),(36,75),(36,116),(36,129),(36,141),(36,170),(37,60),(37,76),(37,115),(37,130),(37,140),(37,169),(38,61),(38,77),(38,114),(38,131),(38,141),(38,169),(39,67),(39,78),(39,118),(39,132),(39,138),(39,169),(40,66),(40,79),(40,119),(40,132),(40,139),(40,170),(41,69),(41,80),(41,120),(41,133),(41,140),(41,171),(42,68),(42,81),(42,121),(42,133),(42,141),(42,172),(43,126),(43,127),(43,132),(43,133),(43,158),(44,122),(44,125),(44,128),(44,131),(44,158),(45,123),(45,124),(45,129),(45,130),(45,158),(46,66),(46,98),(46,99),(46,110),(46,111),(46,157),(47,67),(47,100),(47,101),(47,112),(47,113),(47,157),(48,68),(48,102),(48,104),(48,114),(48,116),(48,156),(49,69),(49,103),(49,105),(49,115),(49,117),(49,156),(50,58),(50,98),(50,106),(50,115),(50,120),(50,152),(51,59),(51,99),(51,106),(51,114),(51,121),(51,153),(52,60),(52,100),(52,107),(52,117),(52,120),(52,154),(53,61),(53,101),(53,107),(53,116),(53,121),(53,155),(54,62),(54,102),(54,108),(54,112),(54,118),(54,152),(55,63),(55,103),(55,109),(55,113),(55,118),(55,153),(56,64),(56,104),(56,108),(56,110),(56,119),(56,154),(57,65),(57,105),(57,109),(57,111),(57,119),(57,155),(58,159),(58,173),(58,180),(59,160),(59,173),(59,179),(60,161),(60,174),(60,180),(61,162),(61,174),(61,179),(62,159),(62,175),(62,178),(63,160),(63,176),(63,178),(64,161),(64,175),(64,177),(65,162),(65,176),(65,177),(66,163),(66,173),(66,177),(67,163),(67,174),(67,178),(68,164),(68,175),(68,179),(69,164),(69,176),(69,180),(70,142),(70,159),(70,184),(71,142),(71,160),(71,183),(72,143),(72,161),(72,184),(73,143),(73,162),(73,183),(74,144),(74,159),(74,182),(75,145),(75,160),(75,182),(76,144),(76,161),(76,181),(77,145),(77,162),(77,181),(78,142),(78,163),(78,181),(79,143),(79,163),(79,182),(80,144),(80,164),(80,183),(81,145),(81,164),(81,184),(82,134),(82,138),(82,158),(82,166),(82,170),(83,135),(83,139),(83,158),(83,165),(83,169),(84,136),(84,140),(84,158),(84,168),(84,172),(85,137),(85,141),(85,158),(85,167),(85,171),(86,110),(86,114),(86,122),(86,152),(86,165),(86,167),(87,111),(87,115),(87,123),(87,153),(87,165),(87,168),(88,112),(88,116),(88,124),(88,154),(88,166),(88,167),(89,113),(89,117),(89,125),(89,155),(89,166),(89,168),(90,118),(90,119),(90,127),(90,156),(90,165),(90,166),(91,120),(91,121),(91,126),(91,157),(91,167),(91,168),(92,100),(92,103),(92,128),(92,152),(92,169),(92,171),(93,101),(93,102),(93,129),(93,153),(93,169),(93,172),(94,98),(94,105),(94,130),(94,154),(94,170),(94,171),(95,99),(95,104),(95,131),(95,155),(95,170),(95,172),(96,106),(96,107),(96,133),(96,156),(96,169),(96,170),(97,108),(97,109),(97,132),(97,157),(97,171),(97,172),(98,147),(98,173),(98,183),(99,146),(99,173),(99,184),(100,149),(100,174),(100,183),(101,148),(101,174),(101,184),(102,148),(102,175),(102,181),(103,149),(103,176),(103,181),(104,146),(104,175),(104,182),(105,147),(105,176),(105,182),(106,150),(106,173),(106,181),(107,150),(107,174),(107,182),(108,151),(108,175),(108,183),(109,151),(109,176),(109,184),(110,146),(110,177),(110,183),(111,147),(111,177),(111,184),(112,148),(112,178),(112,183),(113,149),(113,178),(113,184),(114,146),(114,179),(114,181),(115,147),(115,180),(115,181),(116,148),(116,179),(116,182),(117,149),(117,180),(117,182),(118,151),(118,178),(118,181),(119,151),(119,177),(119,182),(120,150),(120,180),(120,183),(121,150),(121,179),(121,184),(122,146),(122,159),(122,186),(123,147),(123,160),(123,186),(124,148),(124,161),(124,186),(125,149),(125,162),(125,186),(126,150),(126,163),(126,186),(127,151),(127,164),(127,186),(128,149),(128,159),(128,185),(129,148),(129,160),(129,185),(130,147),(130,161),(130,185),(131,146),(131,162),(131,185),(132,151),(132,163),(132,185),(133,150),(133,164),(133,185),(134,142),(134,173),(134,186),(135,143),(135,174),(135,186),(136,144),(136,175),(136,186),(137,145),(137,176),(137,186),(138,142),(138,178),(138,185),(139,143),(139,177),(139,185),(140,144),(140,180),(140,185),(141,145),(141,179),(141,185),(142,187),(143,187),(144,187),(145,187),(146,187),(147,187),(148,187),(149,187),(150,187),(151,187),(152,159),(152,181),(152,183),(153,160),(153,181),(153,184),(154,161),(154,182),(154,183),(155,162),(155,182),(155,184),(156,164),(156,181),(156,182),(157,163),(157,183),(157,184),(158,185),(158,186),(159,187),(160,187),(161,187),(162,187),(163,187),(164,187),(165,177),(165,181),(165,186),(166,178),(166,182),(166,186),(167,179),(167,183),(167,186),(168,180),(168,184),(168,186),(169,174),(169,181),(169,185),(170,173),(170,182),(170,185),(171,176),(171,183),(171,185),(172,175),(172,184),(172,185),(173,187),(174,187),(175,187),(176,187),(177,187),(178,187),(179,187),(180,187),(181,187),(182,187),(183,187),(184,187),(185,187),(186,187)],188)
=> ? = 5 - 2
[2,1,1,1,1] => [1,5] => ([(4,5)],6)
=> ([(0,1)],2)
=> 0 = 2 - 2
[2,1,1,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,16),(1,17),(1,18),(1,29),(2,13),(2,14),(2,15),(2,29),(3,10),(3,11),(3,12),(3,29),(4,8),(4,9),(4,12),(4,15),(4,18),(5,7),(5,9),(5,11),(5,14),(5,17),(6,7),(6,8),(6,10),(6,13),(6,16),(7,19),(7,22),(7,25),(7,28),(8,19),(8,20),(8,23),(8,26),(9,19),(9,21),(9,24),(9,27),(10,20),(10,22),(10,30),(11,21),(11,22),(11,31),(12,20),(12,21),(12,32),(13,23),(13,25),(13,30),(14,24),(14,25),(14,31),(15,23),(15,24),(15,32),(16,26),(16,28),(16,30),(17,27),(17,28),(17,31),(18,26),(18,27),(18,32),(19,33),(19,34),(19,35),(20,33),(20,36),(21,33),(21,37),(22,33),(22,38),(23,34),(23,36),(24,34),(24,37),(25,34),(25,38),(26,35),(26,36),(27,35),(27,37),(28,35),(28,38),(29,30),(29,31),(29,32),(30,36),(30,38),(31,37),(31,38),(32,36),(32,37),(33,39),(34,39),(35,39),(36,39),(37,39),(38,39)],40)
=> ? = 3 - 2
[2,1,2,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,12),(1,16),(2,8),(2,11),(2,16),(3,7),(3,10),(3,16),(4,6),(4,10),(4,11),(4,12),(5,6),(5,7),(5,8),(5,9),(6,13),(6,14),(6,15),(7,13),(7,17),(8,14),(8,17),(9,15),(9,17),(10,13),(10,18),(11,14),(11,18),(12,15),(12,18),(13,19),(14,19),(15,19),(16,17),(16,18),(17,19),(18,19)],20)
=> ? = 3 - 2
[2,1,3] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,13),(1,17),(1,21),(1,25),(1,29),(1,36),(1,37),(1,43),(2,12),(2,16),(2,20),(2,24),(2,28),(2,34),(2,35),(2,43),(3,15),(3,19),(3,23),(3,27),(3,31),(3,35),(3,37),(3,42),(4,14),(4,18),(4,22),(4,26),(4,30),(4,34),(4,36),(4,42),(5,11),(5,12),(5,13),(5,14),(5,15),(5,70),(5,71),(6,20),(6,21),(6,22),(6,23),(6,33),(6,69),(6,71),(7,16),(7,17),(7,18),(7,19),(7,33),(7,68),(7,70),(8,28),(8,29),(8,30),(8,31),(8,32),(8,68),(8,71),(9,24),(9,25),(9,26),(9,27),(9,32),(9,69),(9,70),(10,11),(10,42),(10,43),(10,68),(10,69),(11,80),(11,81),(11,103),(12,38),(12,39),(12,80),(12,82),(12,86),(13,40),(13,41),(13,80),(13,83),(13,87),(14,38),(14,40),(14,81),(14,84),(14,88),(15,39),(15,41),(15,81),(15,85),(15,89),(16,44),(16,45),(16,60),(16,82),(16,99),(17,46),(17,47),(17,61),(17,83),(17,99),(18,44),(18,46),(18,62),(18,84),(18,100),(19,45),(19,47),(19,63),(19,85),(19,100),(20,48),(20,49),(20,60),(20,86),(20,101),(21,50),(21,51),(21,61),(21,87),(21,101),(22,48),(22,50),(22,62),(22,88),(22,102),(23,49),(23,51),(23,63),(23,89),(23,102),(24,52),(24,53),(24,64),(24,82),(24,101),(25,54),(25,55),(25,65),(25,83),(25,101),(26,52),(26,54),(26,66),(26,84),(26,102),(27,53),(27,55),(27,67),(27,85),(27,102),(28,56),(28,57),(28,64),(28,86),(28,99),(29,58),(29,59),(29,65),(29,87),(29,99),(30,56),(30,58),(30,66),(30,88),(30,100),(31,57),(31,59),(31,67),(31,89),(31,100),(32,64),(32,65),(32,66),(32,67),(32,103),(33,60),(33,61),(33,62),(33,63),(33,103),(34,38),(34,44),(34,48),(34,52),(34,56),(34,98),(35,39),(35,45),(35,49),(35,53),(35,57),(35,98),(36,40),(36,46),(36,50),(36,54),(36,58),(36,98),(37,41),(37,47),(37,51),(37,55),(37,59),(37,98),(38,90),(38,94),(38,104),(39,91),(39,95),(39,104),(40,92),(40,96),(40,104),(41,93),(41,97),(41,104),(42,81),(42,98),(42,100),(42,102),(43,80),(43,98),(43,99),(43,101),(44,72),(44,90),(44,105),(45,73),(45,91),(45,105),(46,74),(46,92),(46,105),(47,75),(47,93),(47,105),(48,72),(48,94),(48,106),(49,73),(49,95),(49,106),(50,74),(50,96),(50,106),(51,75),(51,97),(51,106),(52,76),(52,90),(52,106),(53,77),(53,91),(53,106),(54,78),(54,92),(54,106),(55,79),(55,93),(55,106),(56,76),(56,94),(56,105),(57,77),(57,95),(57,105),(58,78),(58,96),(58,105),(59,79),(59,97),(59,105),(60,72),(60,73),(60,107),(61,74),(61,75),(61,107),(62,72),(62,74),(62,108),(63,73),(63,75),(63,108),(64,76),(64,77),(64,107),(65,78),(65,79),(65,107),(66,76),(66,78),(66,108),(67,77),(67,79),(67,108),(68,99),(68,100),(68,103),(69,101),(69,102),(69,103),(70,82),(70,83),(70,84),(70,85),(70,103),(71,86),(71,87),(71,88),(71,89),(71,103),(72,109),(73,109),(74,109),(75,109),(76,109),(77,109),(78,109),(79,109),(80,104),(80,107),(81,104),(81,108),(82,90),(82,91),(82,107),(83,92),(83,93),(83,107),(84,90),(84,92),(84,108),(85,91),(85,93),(85,108),(86,94),(86,95),(86,107),(87,96),(87,97),(87,107),(88,94),(88,96),(88,108),(89,95),(89,97),(89,108),(90,109),(91,109),(92,109),(93,109),(94,109),(95,109),(96,109),(97,109),(98,104),(98,105),(98,106),(99,105),(99,107),(100,105),(100,108),(101,106),(101,107),(102,106),(102,108),(103,107),(103,108),(104,109),(105,109),(106,109),(107,109),(108,109)],110)
=> ? = 4 - 2
[2,2,1,1] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(1,8),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(4,7),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 2 - 2
[2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,10),(1,22),(1,23),(1,24),(1,25),(1,26),(1,29),(1,30),(2,13),(2,18),(2,19),(2,20),(2,21),(2,30),(2,36),(3,12),(3,14),(3,15),(3,16),(3,17),(3,29),(3,36),(4,11),(4,12),(4,13),(4,26),(4,51),(4,52),(5,15),(5,19),(5,23),(5,28),(5,50),(5,52),(6,14),(6,18),(6,22),(6,28),(6,49),(6,51),(7,17),(7,20),(7,24),(7,27),(7,49),(7,52),(8,16),(8,21),(8,25),(8,27),(8,50),(8,51),(9,10),(9,11),(9,36),(9,49),(9,50),(10,31),(10,58),(10,59),(10,60),(11,31),(11,57),(11,74),(12,32),(12,57),(12,63),(12,64),(13,33),(13,57),(13,65),(13,66),(14,37),(14,45),(14,63),(14,72),(15,38),(15,45),(15,64),(15,73),(16,39),(16,46),(16,63),(16,73),(17,40),(17,46),(17,64),(17,72),(18,41),(18,47),(18,65),(18,72),(19,42),(19,47),(19,66),(19,73),(20,43),(20,48),(20,66),(20,72),(21,44),(21,48),(21,65),(21,73),(22,34),(22,37),(22,41),(22,58),(22,61),(23,34),(23,38),(23,42),(23,59),(23,62),(24,35),(24,40),(24,43),(24,58),(24,62),(25,35),(25,39),(25,44),(25,59),(25,61),(26,31),(26,32),(26,33),(26,61),(26,62),(27,35),(27,46),(27,48),(27,74),(28,34),(28,45),(28,47),(28,74),(29,32),(29,37),(29,38),(29,39),(29,40),(29,60),(30,33),(30,41),(30,42),(30,43),(30,44),(30,60),(31,71),(31,77),(32,67),(32,68),(32,71),(33,69),(33,70),(33,71),(34,53),(34,55),(34,77),(35,54),(35,56),(35,77),(36,57),(36,60),(36,72),(36,73),(37,53),(37,67),(37,75),(38,53),(38,68),(38,76),(39,54),(39,67),(39,76),(40,54),(40,68),(40,75),(41,55),(41,69),(41,75),(42,55),(42,70),(42,76),(43,56),(43,70),(43,75),(44,56),(44,69),(44,76),(45,53),(45,78),(46,54),(46,78),(47,55),(47,78),(48,56),(48,78),(49,58),(49,72),(49,74),(50,59),(50,73),(50,74),(51,61),(51,63),(51,65),(51,74),(52,62),(52,64),(52,66),(52,74),(53,79),(54,79),(55,79),(56,79),(57,71),(57,78),(58,75),(58,77),(59,76),(59,77),(60,71),(60,75),(60,76),(61,67),(61,69),(61,77),(62,68),(62,70),(62,77),(63,67),(63,78),(64,68),(64,78),(65,69),(65,78),(66,70),(66,78),(67,79),(68,79),(69,79),(70,79),(71,79),(72,75),(72,78),(73,76),(73,78),(74,77),(74,78),(75,79),(76,79),(77,79),(78,79)],80)
=> ? = 2 - 2
[2,3,1] => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,9),(1,26),(1,27),(1,28),(2,9),(2,10),(2,11),(2,29),(2,30),(3,13),(3,17),(3,21),(3,28),(3,30),(4,12),(4,16),(4,21),(4,27),(4,29),(5,15),(5,18),(5,20),(5,27),(5,30),(6,14),(6,19),(6,20),(6,28),(6,29),(7,11),(7,16),(7,17),(7,18),(7,19),(7,26),(8,10),(8,12),(8,13),(8,14),(8,15),(8,26),(9,35),(9,38),(10,31),(10,32),(10,35),(11,33),(11,34),(11,35),(12,22),(12,31),(12,36),(13,22),(13,32),(13,37),(14,23),(14,31),(14,37),(15,23),(15,32),(15,36),(16,24),(16,33),(16,36),(17,24),(17,34),(17,37),(18,25),(18,34),(18,36),(19,25),(19,33),(19,37),(20,23),(20,25),(20,38),(21,22),(21,24),(21,38),(22,39),(23,39),(24,39),(25,39),(26,35),(26,36),(26,37),(27,36),(27,38),(28,37),(28,38),(29,31),(29,33),(29,38),(30,32),(30,34),(30,38),(31,39),(32,39),(33,39),(34,39),(35,39),(36,39),(37,39),(38,39)],40)
=> ? = 3 - 2
[2,4] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(0,13),(1,25),(1,30),(1,31),(1,36),(1,37),(1,40),(1,43),(1,46),(1,64),(1,65),(2,24),(2,27),(2,29),(2,33),(2,35),(2,39),(2,42),(2,45),(2,63),(2,65),(3,23),(3,26),(3,28),(3,32),(3,34),(3,38),(3,41),(3,44),(3,63),(3,64),(4,20),(4,21),(4,22),(4,23),(4,24),(4,25),(4,90),(4,91),(4,92),(5,16),(5,28),(5,29),(5,43),(5,47),(5,48),(5,84),(5,85),(5,90),(6,14),(6,26),(6,30),(6,42),(6,49),(6,51),(6,84),(6,86),(6,91),(7,15),(7,27),(7,31),(7,41),(7,50),(7,52),(7,85),(7,86),(7,92),(8,19),(8,34),(8,35),(8,46),(8,49),(8,50),(8,87),(8,88),(8,90),(9,17),(9,32),(9,36),(9,45),(9,47),(9,52),(9,87),(9,89),(9,91),(10,18),(10,33),(10,37),(10,44),(10,48),(10,51),(10,88),(10,89),(10,92),(11,15),(11,18),(11,20),(11,38),(11,62),(11,65),(11,84),(11,87),(12,14),(12,17),(12,21),(12,39),(12,62),(12,64),(12,85),(12,88),(13,16),(13,19),(13,22),(13,40),(13,62),(13,63),(13,86),(13,89),(14,67),(14,94),(14,97),(14,112),(14,146),(15,66),(15,93),(15,98),(15,113),(15,146),(16,68),(16,95),(16,96),(16,114),(16,146),(17,70),(17,94),(17,100),(17,116),(17,145),(18,69),(18,93),(18,101),(18,115),(18,145),(19,71),(19,95),(19,99),(19,117),(19,145),(20,59),(20,93),(20,102),(20,111),(20,148),(21,60),(21,94),(21,102),(21,110),(21,149),(22,61),(22,95),(22,102),(22,109),(22,150),(23,59),(23,103),(23,105),(23,109),(23,110),(23,124),(24,60),(24,104),(24,106),(24,109),(24,111),(24,125),(25,61),(25,107),(25,108),(25,110),(25,111),(25,126),(26,53),(26,80),(26,97),(26,103),(26,118),(26,139),(27,54),(27,81),(27,98),(27,104),(27,119),(27,139),(28,55),(28,78),(28,96),(28,105),(28,118),(28,140),(29,56),(29,79),(29,96),(29,106),(29,119),(29,141),(30,57),(30,83),(30,97),(30,107),(30,120),(30,141),(31,58),(31,82),(31,98),(31,108),(31,120),(31,140),(32,55),(32,74),(32,100),(32,103),(32,121),(32,142),(33,56),(33,75),(33,101),(33,104),(33,122),(33,142),(34,53),(34,72),(34,99),(34,105),(34,121),(34,143),(35,54),(35,73),(35,99),(35,106),(35,122),(35,144),(36,58),(36,77),(36,100),(36,107),(36,123),(36,144),(37,57),(37,76),(37,101),(37,108),(37,123),(37,143),(38,59),(38,66),(38,69),(38,118),(38,121),(38,147),(39,60),(39,67),(39,70),(39,119),(39,122),(39,147),(40,61),(40,68),(40,71),(40,120),(40,123),(40,147),(41,66),(41,72),(41,74),(41,124),(41,139),(41,140),(42,67),(42,73),(42,75),(42,125),(42,139),(42,141),(43,68),(43,76),(43,77),(43,126),(43,140),(43,141),(44,69),(44,78),(44,80),(44,124),(44,142),(44,143),(45,70),(45,79),(45,81),(45,125),(45,142),(45,144),(46,71),(46,82),(46,83),(46,126),(46,143),(46,144),(47,55),(47,77),(47,79),(47,114),(47,116),(47,148),(48,56),(48,76),(48,78),(48,114),(48,115),(48,149),(49,53),(49,73),(49,83),(49,112),(49,117),(49,148),(50,54),(50,72),(50,82),(50,113),(50,117),(50,149),(51,57),(51,75),(51,80),(51,112),(51,115),(51,150),(52,58),(52,74),(52,81),(52,113),(52,116),(52,150),(53,152),(53,154),(53,158),(54,153),(54,154),(54,159),(55,151),(55,155),(55,158),(56,151),(56,156),(56,159),(57,152),(57,156),(57,160),(58,153),(58,155),(58,160),(59,127),(59,157),(59,158),(60,128),(60,157),(60,159),(61,129),(61,157),(61,160),(62,102),(62,145),(62,146),(62,147),(63,96),(63,99),(63,109),(63,139),(63,142),(63,147),(64,97),(64,100),(64,110),(64,140),(64,143),(64,147),(65,98),(65,101),(65,111),(65,141),(65,144),(65,147),(66,127),(66,130),(66,164),(67,128),(67,131),(67,164),(68,129),(68,132),(68,164),(69,127),(69,133),(69,165),(70,128),(70,134),(70,165),(71,129),(71,135),(71,165),(72,130),(72,154),(72,162),(73,131),(73,154),(73,163),(74,130),(74,155),(74,161),(75,131),(75,156),(75,161),(76,132),(76,156),(76,162),(77,132),(77,155),(77,163),(78,133),(78,151),(78,162),(79,134),(79,151),(79,163),(80,133),(80,152),(80,161),(81,134),(81,153),(81,161),(82,135),(82,153),(82,162),(83,135),(83,152),(83,163),(84,115),(84,118),(84,141),(84,146),(84,148),(85,116),(85,119),(85,140),(85,146),(85,149),(86,117),(86,120),(86,139),(86,146),(86,150),(87,113),(87,121),(87,144),(87,145),(87,148),(88,112),(88,122),(88,143),(88,145),(88,149),(89,114),(89,123),(89,142),(89,145),(89,150),(90,95),(90,105),(90,106),(90,126),(90,148),(90,149),(91,94),(91,103),(91,107),(91,125),(91,148),(91,150),(92,93),(92,104),(92,108),(92,124),(92,149),(92,150),(93,127),(93,138),(93,166),(94,128),(94,137),(94,166),(95,129),(95,136),(95,166),(96,136),(96,151),(96,164),(97,137),(97,152),(97,164),(98,138),(98,153),(98,164),(99,136),(99,154),(99,165),(100,137),(100,155),(100,165),(101,138),(101,156),(101,165),(102,157),(102,166),(103,137),(103,158),(103,161),(104,138),(104,159),(104,161),(105,136),(105,158),(105,162),(106,136),(106,159),(106,163),(107,137),(107,160),(107,163),(108,138),(108,160),(108,162),(109,136),(109,157),(109,161),(110,137),(110,157),(110,162),(111,138),(111,157),(111,163),(112,131),(112,152),(112,166),(113,130),(113,153),(113,166),(114,132),(114,151),(114,166),(115,133),(115,156),(115,166),(116,134),(116,155),(116,166),(117,135),(117,154),(117,166),(118,133),(118,158),(118,164),(119,134),(119,159),(119,164),(120,135),(120,160),(120,164),(121,130),(121,158),(121,165),(122,131),(122,159),(122,165),(123,132),(123,160),(123,165),(124,127),(124,161),(124,162),(125,128),(125,161),(125,163),(126,129),(126,162),(126,163),(127,167),(128,167),(129,167),(130,167),(131,167),(132,167),(133,167),(134,167),(135,167),(136,167),(137,167),(138,167),(139,154),(139,161),(139,164),(140,155),(140,162),(140,164),(141,156),(141,163),(141,164),(142,151),(142,161),(142,165),(143,152),(143,162),(143,165),(144,153),(144,163),(144,165),(145,165),(145,166),(146,164),(146,166),(147,157),(147,164),(147,165),(148,158),(148,163),(148,166),(149,159),(149,162),(149,166),(150,160),(150,161),(150,166),(151,167),(152,167),(153,167),(154,167),(155,167),(156,167),(157,167),(158,167),(159,167),(160,167),(161,167),(162,167),(163,167),(164,167),(165,167),(166,167)],168)
=> ? = 4 - 2
[3,1,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1 = 3 - 2
[3,1,2] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,11),(1,17),(1,24),(1,38),(1,40),(2,10),(2,16),(2,24),(2,37),(2,39),(3,12),(3,18),(3,23),(3,37),(3,40),(4,13),(4,19),(4,23),(4,38),(4,39),(5,15),(5,21),(5,22),(5,39),(5,40),(6,14),(6,20),(6,22),(6,37),(6,38),(7,9),(7,16),(7,17),(7,18),(7,19),(7,20),(7,21),(8,9),(8,10),(8,11),(8,12),(8,13),(8,14),(8,15),(9,31),(9,32),(9,33),(9,34),(9,35),(9,36),(10,25),(10,31),(10,41),(10,43),(11,25),(11,32),(11,42),(11,44),(12,26),(12,33),(12,41),(12,44),(13,26),(13,34),(13,42),(13,43),(14,27),(14,35),(14,41),(14,42),(15,27),(15,36),(15,43),(15,44),(16,28),(16,31),(16,45),(16,47),(17,28),(17,32),(17,46),(17,48),(18,29),(18,33),(18,45),(18,48),(19,29),(19,34),(19,46),(19,47),(20,30),(20,35),(20,45),(20,46),(21,30),(21,36),(21,47),(21,48),(22,27),(22,30),(22,56),(23,26),(23,29),(23,56),(24,25),(24,28),(24,56),(25,49),(25,57),(26,50),(26,57),(27,51),(27,57),(28,49),(28,58),(29,50),(29,58),(30,51),(30,58),(31,49),(31,52),(31,54),(32,49),(32,53),(32,55),(33,50),(33,52),(33,55),(34,50),(34,53),(34,54),(35,51),(35,52),(35,53),(36,51),(36,54),(36,55),(37,41),(37,45),(37,56),(38,42),(38,46),(38,56),(39,43),(39,47),(39,56),(40,44),(40,48),(40,56),(41,52),(41,57),(42,53),(42,57),(43,54),(43,57),(44,55),(44,57),(45,52),(45,58),(46,53),(46,58),(47,54),(47,58),(48,55),(48,58),(49,59),(50,59),(51,59),(52,59),(53,59),(54,59),(55,59),(56,57),(56,58),(57,59),(58,59)],60)
=> ? = 4 - 2
[3,2,1] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,9),(1,16),(1,21),(1,23),(2,8),(2,16),(2,20),(2,22),(3,10),(3,15),(3,20),(3,23),(4,11),(4,15),(4,21),(4,22),(5,13),(5,14),(5,22),(5,23),(6,12),(6,14),(6,20),(6,21),(7,8),(7,9),(7,10),(7,11),(7,12),(7,13),(8,17),(8,24),(8,26),(9,17),(9,25),(9,27),(10,18),(10,24),(10,27),(11,18),(11,25),(11,26),(12,19),(12,24),(12,25),(13,19),(13,26),(13,27),(14,19),(14,28),(15,18),(15,28),(16,17),(16,28),(17,29),(18,29),(19,29),(20,24),(20,28),(21,25),(21,28),(22,26),(22,28),(23,27),(23,28),(24,29),(25,29),(26,29),(27,29),(28,29)],30)
=> ? = 3 - 2
[3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(1,19),(1,20),(1,21),(1,40),(1,41),(1,42),(1,43),(1,44),(1,45),(1,46),(2,16),(2,17),(2,18),(2,34),(2,35),(2,36),(2,37),(2,38),(2,39),(2,46),(3,15),(3,18),(3,21),(3,30),(3,33),(3,76),(3,79),(3,80),(4,14),(4,17),(4,20),(4,29),(4,32),(4,75),(4,78),(4,80),(5,13),(5,16),(5,19),(5,28),(5,31),(5,74),(5,77),(5,80),(6,23),(6,26),(6,28),(6,34),(6,40),(6,71),(6,75),(6,76),(7,22),(7,27),(7,29),(7,35),(7,41),(7,72),(7,74),(7,76),(8,24),(8,25),(8,30),(8,36),(8,42),(8,73),(8,74),(8,75),(9,25),(9,27),(9,31),(9,37),(9,43),(9,71),(9,78),(9,79),(10,24),(10,26),(10,32),(10,38),(10,44),(10,72),(10,77),(10,79),(11,22),(11,23),(11,33),(11,39),(11,45),(11,73),(11,77),(11,78),(12,13),(12,14),(12,15),(12,46),(12,71),(12,72),(12,73),(13,81),(13,84),(13,99),(13,127),(14,81),(14,85),(14,100),(14,128),(15,81),(15,86),(15,101),(15,129),(16,47),(16,50),(16,82),(16,84),(16,87),(16,90),(17,48),(17,51),(17,82),(17,85),(17,88),(17,91),(18,49),(18,52),(18,82),(18,86),(18,89),(18,92),(19,53),(19,56),(19,83),(19,84),(19,93),(19,96),(20,54),(20,57),(20,83),(20,85),(20,94),(20,97),(21,55),(21,58),(21,83),(21,86),(21,95),(21,98),(22,59),(22,65),(22,103),(22,107),(22,127),(23,60),(23,66),(23,102),(23,107),(23,128),(24,61),(24,67),(24,104),(24,106),(24,127),(25,62),(25,68),(25,104),(25,105),(25,128),(26,63),(26,69),(26,102),(26,106),(26,129),(27,64),(27,70),(27,103),(27,105),(27,129),(28,47),(28,53),(28,99),(28,102),(28,131),(29,48),(29,54),(29,100),(29,103),(29,131),(30,49),(30,55),(30,101),(30,104),(30,131),(31,50),(31,56),(31,99),(31,105),(31,130),(32,51),(32,57),(32,100),(32,106),(32,130),(33,52),(33,58),(33,101),(33,107),(33,130),(34,47),(34,60),(34,63),(34,88),(34,89),(34,120),(35,48),(35,59),(35,64),(35,87),(35,89),(35,121),(36,49),(36,61),(36,62),(36,87),(36,88),(36,122),(37,50),(37,62),(37,64),(37,91),(37,92),(37,120),(38,51),(38,61),(38,63),(38,90),(38,92),(38,121),(39,52),(39,59),(39,60),(39,90),(39,91),(39,122),(40,53),(40,66),(40,69),(40,94),(40,95),(40,120),(41,54),(41,65),(41,70),(41,93),(41,95),(41,121),(42,55),(42,67),(42,68),(42,93),(42,94),(42,122),(43,56),(43,68),(43,70),(43,97),(43,98),(43,120),(44,57),(44,67),(44,69),(44,96),(44,98),(44,121),(45,58),(45,65),(45,66),(45,96),(45,97),(45,122),(46,84),(46,85),(46,86),(46,120),(46,121),(46,122),(47,108),(47,124),(47,132),(48,109),(48,125),(48,132),(49,110),(49,126),(49,132),(50,111),(50,124),(50,133),(51,112),(51,125),(51,133),(52,113),(52,126),(52,133),(53,114),(53,124),(53,134),(54,115),(54,125),(54,134),(55,116),(55,126),(55,134),(56,117),(56,124),(56,135),(57,118),(57,125),(57,135),(58,119),(58,126),(58,135),(59,109),(59,113),(59,136),(60,108),(60,113),(60,137),(61,110),(61,112),(61,136),(62,110),(62,111),(62,137),(63,108),(63,112),(63,138),(64,109),(64,111),(64,138),(65,115),(65,119),(65,136),(66,114),(66,119),(66,137),(67,116),(67,118),(67,136),(68,116),(68,117),(68,137),(69,114),(69,118),(69,138),(70,115),(70,117),(70,138),(71,99),(71,120),(71,128),(71,129),(72,100),(72,121),(72,127),(72,129),(73,101),(73,122),(73,127),(73,128),(74,87),(74,93),(74,105),(74,127),(74,131),(75,88),(75,94),(75,106),(75,128),(75,131),(76,89),(76,95),(76,107),(76,129),(76,131),(77,90),(77,96),(77,102),(77,127),(77,130),(78,91),(78,97),(78,103),(78,128),(78,130),(79,92),(79,98),(79,104),(79,129),(79,130),(80,81),(80,82),(80,83),(80,130),(80,131),(81,123),(81,139),(82,123),(82,132),(82,133),(83,123),(83,134),(83,135),(84,123),(84,124),(84,136),(85,123),(85,125),(85,137),(86,123),(86,126),(86,138),(87,111),(87,132),(87,136),(88,112),(88,132),(88,137),(89,113),(89,132),(89,138),(90,108),(90,133),(90,136),(91,109),(91,133),(91,137),(92,110),(92,133),(92,138),(93,117),(93,134),(93,136),(94,118),(94,134),(94,137),(95,119),(95,134),(95,138),(96,114),(96,135),(96,136),(97,115),(97,135),(97,137),(98,116),(98,135),(98,138),(99,124),(99,139),(100,125),(100,139),(101,126),(101,139),(102,108),(102,114),(102,139),(103,109),(103,115),(103,139),(104,110),(104,116),(104,139),(105,111),(105,117),(105,139),(106,112),(106,118),(106,139),(107,113),(107,119),(107,139),(108,140),(109,140),(110,140),(111,140),(112,140),(113,140),(114,140),(115,140),(116,140),(117,140),(118,140),(119,140),(120,124),(120,137),(120,138),(121,125),(121,136),(121,138),(122,126),(122,136),(122,137),(123,140),(124,140),(125,140),(126,140),(127,136),(127,139),(128,137),(128,139),(129,138),(129,139),(130,133),(130,135),(130,139),(131,132),(131,134),(131,139),(132,140),(133,140),(134,140),(135,140),(136,140),(137,140),(138,140),(139,140)],141)
=> ? = 3 - 2
[4,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,9),(1,11),(1,13),(2,9),(2,10),(2,12),(3,8),(3,10),(3,13),(4,8),(4,11),(4,12),(5,7),(5,12),(5,13),(6,7),(6,10),(6,11),(7,14),(8,14),(9,14),(10,14),(11,14),(12,14),(13,14)],15)
=> ? = 4 - 2
[4,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,13),(1,24),(1,25),(1,31),(1,54),(1,55),(1,57),(2,12),(2,22),(2,23),(2,30),(2,52),(2,53),(2,57),(3,15),(3,27),(3,29),(3,33),(3,53),(3,55),(3,56),(4,14),(4,26),(4,28),(4,32),(4,52),(4,54),(4,56),(5,16),(5,22),(5,26),(5,35),(5,55),(5,58),(5,60),(6,17),(6,23),(6,27),(6,36),(6,54),(6,58),(6,61),(7,18),(7,24),(7,28),(7,36),(7,53),(7,59),(7,60),(8,19),(8,25),(8,29),(8,35),(8,52),(8,59),(8,61),(9,21),(9,32),(9,33),(9,34),(9,57),(9,60),(9,61),(10,20),(10,30),(10,31),(10,34),(10,56),(10,58),(10,59),(11,12),(11,13),(11,14),(11,15),(11,16),(11,17),(11,18),(11,19),(11,20),(11,21),(12,37),(12,38),(12,45),(12,72),(12,73),(12,77),(13,39),(13,40),(13,46),(13,74),(13,75),(13,77),(14,41),(14,43),(14,47),(14,72),(14,74),(14,76),(15,42),(15,44),(15,48),(15,73),(15,75),(15,76),(16,37),(16,41),(16,49),(16,75),(16,78),(16,80),(17,38),(17,42),(17,50),(17,74),(17,78),(17,81),(18,39),(18,43),(18,50),(18,73),(18,79),(18,80),(19,40),(19,44),(19,49),(19,72),(19,79),(19,81),(20,45),(20,46),(20,51),(20,76),(20,78),(20,79),(21,47),(21,48),(21,51),(21,77),(21,80),(21,81),(22,37),(22,62),(22,66),(22,96),(23,38),(23,62),(23,67),(23,95),(24,39),(24,63),(24,68),(24,96),(25,40),(25,63),(25,69),(25,95),(26,41),(26,64),(26,66),(26,94),(27,42),(27,65),(27,67),(27,94),(28,43),(28,64),(28,68),(28,93),(29,44),(29,65),(29,69),(29,93),(30,45),(30,62),(30,70),(30,93),(31,46),(31,63),(31,70),(31,94),(32,47),(32,64),(32,71),(32,95),(33,48),(33,65),(33,71),(33,96),(34,51),(34,70),(34,71),(34,92),(35,49),(35,66),(35,69),(35,92),(36,50),(36,67),(36,68),(36,92),(37,82),(37,86),(37,100),(38,82),(38,87),(38,99),(39,83),(39,88),(39,100),(40,83),(40,89),(40,99),(41,84),(41,86),(41,98),(42,85),(42,87),(42,98),(43,84),(43,88),(43,97),(44,85),(44,89),(44,97),(45,82),(45,90),(45,97),(46,83),(46,90),(46,98),(47,84),(47,91),(47,99),(48,85),(48,91),(48,100),(49,86),(49,89),(49,101),(50,87),(50,88),(50,101),(51,90),(51,91),(51,101),(52,66),(52,72),(52,93),(52,95),(53,67),(53,73),(53,93),(53,96),(54,68),(54,74),(54,94),(54,95),(55,69),(55,75),(55,94),(55,96),(56,71),(56,76),(56,93),(56,94),(57,70),(57,77),(57,95),(57,96),(58,62),(58,78),(58,92),(58,94),(59,63),(59,79),(59,92),(59,93),(60,64),(60,80),(60,92),(60,96),(61,65),(61,81),(61,92),(61,95),(62,82),(62,102),(63,83),(63,102),(64,84),(64,102),(65,85),(65,102),(66,86),(66,102),(67,87),(67,102),(68,88),(68,102),(69,89),(69,102),(70,90),(70,102),(71,91),(71,102),(72,86),(72,97),(72,99),(73,87),(73,97),(73,100),(74,88),(74,98),(74,99),(75,89),(75,98),(75,100),(76,91),(76,97),(76,98),(77,90),(77,99),(77,100),(78,82),(78,98),(78,101),(79,83),(79,97),(79,101),(80,84),(80,100),(80,101),(81,85),(81,99),(81,101),(82,103),(83,103),(84,103),(85,103),(86,103),(87,103),(88,103),(89,103),(90,103),(91,103),(92,101),(92,102),(93,97),(93,102),(94,98),(94,102),(95,99),(95,102),(96,100),(96,102),(97,103),(98,103),(99,103),(100,103),(101,103),(102,103)],104)
=> ? = 4 - 2
[5,1] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,13),(1,14),(1,20),(1,28),(1,29),(1,31),(2,11),(2,12),(2,19),(2,26),(2,27),(2,31),(3,16),(3,18),(3,22),(3,27),(3,29),(3,30),(4,15),(4,17),(4,21),(4,26),(4,28),(4,30),(5,11),(5,15),(5,24),(5,29),(5,32),(5,34),(6,12),(6,16),(6,25),(6,28),(6,32),(6,35),(7,13),(7,17),(7,25),(7,27),(7,33),(7,34),(8,14),(8,18),(8,24),(8,26),(8,33),(8,35),(9,21),(9,22),(9,23),(9,31),(9,34),(9,35),(10,19),(10,20),(10,23),(10,30),(10,32),(10,33),(11,36),(11,40),(11,50),(12,36),(12,41),(12,49),(13,37),(13,42),(13,50),(14,37),(14,43),(14,49),(15,38),(15,40),(15,48),(16,39),(16,41),(16,48),(17,38),(17,42),(17,47),(18,39),(18,43),(18,47),(19,36),(19,44),(19,47),(20,37),(20,44),(20,48),(21,38),(21,45),(21,49),(22,39),(22,45),(22,50),(23,44),(23,45),(23,46),(24,40),(24,43),(24,46),(25,41),(25,42),(25,46),(26,40),(26,47),(26,49),(27,41),(27,47),(27,50),(28,42),(28,48),(28,49),(29,43),(29,48),(29,50),(30,45),(30,47),(30,48),(31,44),(31,49),(31,50),(32,36),(32,46),(32,48),(33,37),(33,46),(33,47),(34,38),(34,46),(34,50),(35,39),(35,46),(35,49),(36,51),(37,51),(38,51),(39,51),(40,51),(41,51),(42,51),(43,51),(44,51),(45,51),(46,51),(47,51),(48,51),(49,51),(50,51)],52)
=> ? = 5 - 2
[6] => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(0,13),(0,14),(0,15),(1,40),(1,41),(1,42),(1,43),(1,44),(1,45),(1,82),(1,83),(1,84),(1,85),(2,18),(2,19),(2,25),(2,30),(2,31),(2,37),(2,78),(2,79),(2,81),(2,83),(3,16),(3,17),(3,24),(3,28),(3,29),(3,36),(3,76),(3,77),(3,81),(3,82),(4,21),(4,23),(4,27),(4,33),(4,35),(4,39),(4,77),(4,79),(4,80),(4,85),(5,20),(5,22),(5,26),(5,32),(5,34),(5,38),(5,76),(5,78),(5,80),(5,84),(6,22),(6,23),(6,24),(6,46),(6,47),(6,54),(6,83),(6,86),(6,87),(6,91),(7,20),(7,21),(7,25),(7,48),(7,49),(7,55),(7,82),(7,88),(7,89),(7,91),(8,17),(8,19),(8,26),(8,50),(8,52),(8,56),(8,85),(8,86),(8,88),(8,90),(9,16),(9,18),(9,27),(9,51),(9,53),(9,57),(9,84),(9,87),(9,89),(9,90),(10,28),(10,32),(10,43),(10,48),(10,51),(10,59),(10,79),(10,86),(10,92),(10,94),(11,29),(11,33),(11,42),(11,49),(11,50),(11,60),(11,78),(11,87),(11,92),(11,95),(12,30),(12,34),(12,41),(12,46),(12,53),(12,60),(12,77),(12,88),(12,93),(12,94),(13,31),(13,35),(13,40),(13,47),(13,52),(13,59),(13,76),(13,89),(13,93),(13,95),(14,38),(14,39),(14,45),(14,56),(14,57),(14,58),(14,81),(14,91),(14,94),(14,95),(15,36),(15,37),(15,44),(15,54),(15,55),(15,58),(15,80),(15,90),(15,92),(15,93),(16,61),(16,107),(16,112),(16,126),(16,134),(16,170),(17,62),(17,106),(17,113),(17,127),(17,134),(17,171),(18,63),(18,109),(18,112),(18,129),(18,135),(18,172),(19,64),(19,108),(19,113),(19,128),(19,135),(19,173),(20,65),(20,104),(20,110),(20,132),(20,136),(20,170),(21,66),(21,105),(21,110),(21,133),(21,137),(21,171),(22,67),(22,102),(22,111),(22,130),(22,136),(22,172),(23,68),(23,103),(23,111),(23,131),(23,137),(23,173),(24,69),(24,102),(24,103),(24,126),(24,127),(24,175),(25,70),(25,104),(25,105),(25,128),(25,129),(25,175),(26,71),(26,106),(26,108),(26,130),(26,132),(26,174),(27,72),(27,107),(27,109),(27,131),(27,133),(27,174),(28,61),(28,96),(28,114),(28,127),(28,138),(28,169),(29,62),(29,97),(29,115),(29,126),(29,138),(29,168),(30,63),(30,98),(30,117),(30,128),(30,139),(30,169),(31,64),(31,99),(31,116),(31,129),(31,139),(31,168),(32,65),(32,96),(32,118),(32,130),(32,140),(32,167),(33,66),(33,97),(33,119),(33,131),(33,141),(33,167),(34,67),(34,98),(34,120),(34,132),(34,140),(34,166),(35,68),(35,99),(35,121),(35,133),(35,141),(35,166),(36,69),(36,100),(36,122),(36,134),(36,138),(36,166),(37,70),(37,100),(37,123),(37,135),(37,139),(37,167),(38,71),(38,101),(38,124),(38,136),(38,140),(38,168),(39,72),(39,101),(39,125),(39,137),(39,141),(39,169),(40,73),(40,116),(40,121),(40,142),(40,144),(40,170),(41,74),(41,117),(41,120),(41,142),(41,145),(41,171),(42,74),(42,115),(42,119),(42,143),(42,144),(42,172),(43,73),(43,114),(43,118),(43,143),(43,145),(43,173),(44,75),(44,122),(44,123),(44,142),(44,143),(44,174),(45,75),(45,124),(45,125),(45,144),(45,145),(45,175),(46,67),(46,103),(46,117),(46,148),(46,152),(46,178),(47,68),(47,102),(47,116),(47,149),(47,152),(47,179),(48,65),(48,105),(48,114),(48,146),(48,153),(48,178),(49,66),(49,104),(49,115),(49,147),(49,153),(49,179),(50,62),(50,108),(50,119),(50,147),(50,154),(50,176),(51,61),(51,109),(51,118),(51,146),(51,155),(51,176),(52,64),(52,106),(52,121),(52,149),(52,154),(52,177),(53,63),(53,107),(53,120),(53,148),(53,155),(53,177),(54,69),(54,111),(54,123),(54,150),(54,152),(54,176),(55,70),(55,110),(55,122),(55,150),(55,153),(55,177),(56,71),(56,113),(56,125),(56,151),(56,154),(56,178),(57,72),(57,112),(57,124),(57,151),(57,155),(57,179),(58,75),(58,100),(58,101),(58,150),(58,151),(58,180),(59,73),(59,96),(59,99),(59,146),(59,149),(59,180),(60,74),(60,97),(60,98),(60,147),(60,148),(60,180),(61,181),(61,189),(61,190),(62,181),(62,188),(62,191),(63,182),(63,189),(63,192),(64,182),(64,188),(64,193),(65,183),(65,187),(65,190),(66,184),(66,187),(66,191),(67,183),(67,186),(67,192),(68,184),(68,186),(68,193),(69,181),(69,186),(69,194),(70,182),(70,187),(70,194),(71,183),(71,188),(71,195),(72,184),(72,189),(72,195),(73,185),(73,190),(73,193),(74,185),(74,191),(74,192),(75,185),(75,194),(75,195),(76,96),(76,102),(76,106),(76,166),(76,168),(76,170),(77,97),(77,103),(77,107),(77,166),(77,169),(77,171),(78,98),(78,104),(78,108),(78,167),(78,168),(78,172),(79,99),(79,105),(79,109),(79,167),(79,169),(79,173),(80,101),(80,110),(80,111),(80,166),(80,167),(80,174),(81,100),(81,112),(81,113),(81,168),(81,169),(81,175),(82,114),(82,115),(82,122),(82,170),(82,171),(82,175),(83,116),(83,117),(83,123),(83,172),(83,173),(83,175),(84,118),(84,120),(84,124),(84,170),(84,172),(84,174),(85,119),(85,121),(85,125),(85,171),(85,173),(85,174),(86,127),(86,130),(86,149),(86,173),(86,176),(86,178),(87,126),(87,131),(87,148),(87,172),(87,176),(87,179),(88,128),(88,132),(88,147),(88,171),(88,177),(88,178),(89,129),(89,133),(89,146),(89,170),(89,177),(89,179),(90,134),(90,135),(90,151),(90,174),(90,176),(90,177),(91,136),(91,137),(91,150),(91,175),(91,178),(91,179),(92,138),(92,143),(92,153),(92,167),(92,176),(92,180),(93,139),(93,142),(93,152),(93,166),(93,177),(93,180),(94,140),(94,145),(94,155),(94,169),(94,178),(94,180),(95,141),(95,144),(95,154),(95,168),(95,179),(95,180),(96,156),(96,190),(96,197),(97,157),(97,191),(97,197),(98,158),(98,192),(98,197),(99,159),(99,193),(99,197),(100,160),(100,194),(100,197),(101,161),(101,195),(101,197),(102,156),(102,186),(102,200),(103,157),(103,186),(103,201),(104,158),(104,187),(104,200),(105,159),(105,187),(105,201),(106,156),(106,188),(106,198),(107,157),(107,189),(107,198),(108,158),(108,188),(108,199),(109,159),(109,189),(109,199),(110,161),(110,187),(110,198),(111,161),(111,186),(111,199),(112,160),(112,189),(112,200),(113,160),(113,188),(113,201),(114,162),(114,190),(114,201),(115,162),(115,191),(115,200),(116,163),(116,193),(116,200),(117,163),(117,192),(117,201),(118,164),(118,190),(118,199),(119,165),(119,191),(119,199),(120,164),(120,192),(120,198),(121,165),(121,193),(121,198),(122,162),(122,194),(122,198),(123,163),(123,194),(123,199),(124,164),(124,195),(124,200),(125,165),(125,195),(125,201),(126,157),(126,181),(126,200),(127,156),(127,181),(127,201),(128,158),(128,182),(128,201),(129,159),(129,182),(129,200),(130,156),(130,183),(130,199),(131,157),(131,184),(131,199),(132,158),(132,183),(132,198),(133,159),(133,184),(133,198),(134,160),(134,181),(134,198),(135,160),(135,182),(135,199),(136,161),(136,183),(136,200),(137,161),(137,184),(137,201),(138,162),(138,181),(138,197),(139,163),(139,182),(139,197),(140,164),(140,183),(140,197),(141,165),(141,184),(141,197),(142,163),(142,185),(142,198),(143,162),(143,185),(143,199),(144,165),(144,185),(144,200),(145,164),(145,185),(145,201),(146,159),(146,190),(146,196),(147,158),(147,191),(147,196),(148,157),(148,192),(148,196),(149,156),(149,193),(149,196),(150,161),(150,194),(150,196),(151,160),(151,195),(151,196),(152,163),(152,186),(152,196),(153,162),(153,187),(153,196),(154,165),(154,188),(154,196),(155,164),(155,189),(155,196),(156,202),(157,202),(158,202),(159,202),(160,202),(161,202),(162,202),(163,202),(164,202),(165,202),(166,186),(166,197),(166,198),(167,187),(167,197),(167,199),(168,188),(168,197),(168,200),(169,189),(169,197),(169,201),(170,190),(170,198),(170,200),(171,191),(171,198),(171,201),(172,192),(172,199),(172,200),(173,193),(173,199),(173,201),(174,195),(174,198),(174,199),(175,194),(175,200),(175,201),(176,181),(176,196),(176,199),(177,182),(177,196),(177,198),(178,183),(178,196),(178,201),(179,184),(179,196),(179,200),(180,185),(180,196),(180,197),(181,202),(182,202),(183,202),(184,202),(185,202),(186,202),(187,202),(188,202),(189,202),(190,202),(191,202),(192,202),(193,202),(194,202),(195,202),(196,202),(197,202),(198,202),(199,202),(200,202),(201,202)],203)
=> ? = 6 - 2
[1,1,1,1,1,1,1] => [7] => ([],7)
=> ([],1)
=> ? = 1 - 2
[1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,17),(1,18),(1,19),(1,20),(1,21),(2,13),(2,14),(2,15),(2,16),(2,21),(3,10),(3,11),(3,12),(3,16),(3,20),(4,8),(4,9),(4,12),(4,15),(4,19),(5,7),(5,9),(5,11),(5,14),(5,18),(6,7),(6,8),(6,10),(6,13),(6,17),(7,22),(7,25),(7,28),(7,34),(8,22),(8,23),(8,26),(8,32),(9,22),(9,24),(9,27),(9,33),(10,23),(10,25),(10,29),(10,35),(11,24),(11,25),(11,30),(11,36),(12,23),(12,24),(12,31),(12,37),(13,26),(13,28),(13,29),(13,38),(14,27),(14,28),(14,30),(14,39),(15,26),(15,27),(15,31),(15,40),(16,29),(16,30),(16,31),(16,41),(17,32),(17,34),(17,35),(17,38),(18,33),(18,34),(18,36),(18,39),(19,32),(19,33),(19,37),(19,40),(20,35),(20,36),(20,37),(20,41),(21,38),(21,39),(21,40),(21,41),(22,45),(22,46),(22,56),(23,42),(23,46),(23,53),(24,43),(24,46),(24,54),(25,44),(25,46),(25,55),(26,42),(26,45),(26,47),(27,43),(27,45),(27,48),(28,44),(28,45),(28,49),(29,42),(29,44),(29,50),(30,43),(30,44),(30,51),(31,42),(31,43),(31,52),(32,47),(32,53),(32,56),(33,48),(33,54),(33,56),(34,49),(34,55),(34,56),(35,50),(35,53),(35,55),(36,51),(36,54),(36,55),(37,52),(37,53),(37,54),(38,47),(38,49),(38,50),(39,48),(39,49),(39,51),(40,47),(40,48),(40,52),(41,50),(41,51),(41,52),(42,57),(42,62),(43,58),(43,62),(44,59),(44,62),(45,60),(45,62),(46,61),(46,62),(47,57),(47,60),(48,58),(48,60),(49,59),(49,60),(50,57),(50,59),(51,58),(51,59),(52,57),(52,58),(53,57),(53,61),(54,58),(54,61),(55,59),(55,61),(56,60),(56,61),(57,63),(58,63),(59,63),(60,63),(61,63),(62,63)],64)
=> 0 = 2 - 2
[1,1,1,1,2,1] => [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(1,13),(1,14),(1,15),(2,9),(2,10),(2,11),(2,15),(3,7),(3,8),(3,11),(3,14),(4,6),(4,8),(4,10),(4,13),(5,6),(5,7),(5,9),(5,12),(6,16),(6,19),(6,22),(7,16),(7,17),(7,20),(8,16),(8,18),(8,21),(9,17),(9,19),(9,23),(10,18),(10,19),(10,24),(11,17),(11,18),(11,25),(12,20),(12,22),(12,23),(13,21),(13,22),(13,24),(14,20),(14,21),(14,25),(15,23),(15,24),(15,25),(16,29),(16,30),(17,26),(17,30),(18,27),(18,30),(19,28),(19,30),(20,26),(20,29),(21,27),(21,29),(22,28),(22,29),(23,26),(23,28),(24,27),(24,28),(25,26),(25,27),(26,31),(27,31),(28,31),(29,31),(30,31)],32)
=> 0 = 2 - 2
[1,1,1,1,3] => [5,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(1,13),(1,17),(1,22),(1,23),(1,25),(1,31),(1,37),(1,45),(1,136),(2,12),(2,16),(2,20),(2,21),(2,24),(2,30),(2,36),(2,44),(2,136),(3,15),(3,19),(3,21),(3,23),(3,27),(3,33),(3,39),(3,47),(3,135),(4,14),(4,18),(4,20),(4,22),(4,26),(4,32),(4,38),(4,46),(4,135),(5,16),(5,17),(5,18),(5,19),(5,29),(5,35),(5,41),(5,49),(5,134),(6,12),(6,13),(6,14),(6,15),(6,28),(6,34),(6,40),(6,48),(6,134),(7,30),(7,31),(7,32),(7,33),(7,34),(7,35),(7,43),(7,51),(7,133),(8,24),(8,25),(8,26),(8,27),(8,28),(8,29),(8,42),(8,50),(8,133),(9,44),(9,45),(9,46),(9,47),(9,48),(9,49),(9,50),(9,51),(9,132),(10,36),(10,37),(10,38),(10,39),(10,40),(10,41),(10,42),(10,43),(10,132),(11,132),(11,133),(11,134),(11,135),(11,136),(12,52),(12,76),(12,100),(12,112),(12,124),(12,125),(12,250),(13,53),(13,77),(13,101),(13,113),(13,126),(13,127),(13,250),(14,54),(14,78),(14,102),(14,114),(14,124),(14,126),(14,251),(15,55),(15,79),(15,103),(15,115),(15,125),(15,127),(15,251),(16,56),(16,80),(16,104),(16,116),(16,128),(16,129),(16,250),(17,57),(17,81),(17,105),(17,117),(17,130),(17,131),(17,250),(18,58),(18,82),(18,106),(18,118),(18,128),(18,130),(18,251),(19,59),(19,83),(19,107),(19,119),(19,129),(19,131),(19,251),(20,60),(20,84),(20,108),(20,120),(20,124),(20,128),(20,249),(21,61),(21,85),(21,109),(21,121),(21,125),(21,129),(21,249),(22,62),(22,86),(22,110),(22,122),(22,126),(22,130),(22,249),(23,63),(23,87),(23,111),(23,123),(23,127),(23,131),(23,249),(24,64),(24,88),(24,100),(24,104),(24,108),(24,109),(24,252),(25,65),(25,89),(25,101),(25,105),(25,110),(25,111),(25,252),(26,66),(26,90),(26,102),(26,106),(26,108),(26,110),(26,253),(27,67),(27,91),(27,103),(27,107),(27,109),(27,111),(27,253),(28,68),(28,92),(28,100),(28,101),(28,102),(28,103),(28,254),(29,69),(29,93),(29,104),(29,105),(29,106),(29,107),(29,254),(30,70),(30,94),(30,112),(30,116),(30,120),(30,121),(30,252),(31,71),(31,95),(31,113),(31,117),(31,122),(31,123),(31,252),(32,72),(32,96),(32,114),(32,118),(32,120),(32,122),(32,253),(33,73),(33,97),(33,115),(33,119),(33,121),(33,123),(33,253),(34,74),(34,98),(34,112),(34,113),(34,114),(34,115),(34,254),(35,75),(35,99),(35,116),(35,117),(35,118),(35,119),(35,254),(36,52),(36,56),(36,60),(36,61),(36,64),(36,70),(36,255),(37,53),(37,57),(37,62),(37,63),(37,65),(37,71),(37,255),(38,54),(38,58),(38,60),(38,62),(38,66),(38,72),(38,256),(39,55),(39,59),(39,61),(39,63),(39,67),(39,73),(39,256),(40,52),(40,53),(40,54),(40,55),(40,68),(40,74),(40,257),(41,56),(41,57),(41,58),(41,59),(41,69),(41,75),(41,257),(42,64),(42,65),(42,66),(42,67),(42,68),(42,69),(42,258),(43,70),(43,71),(43,72),(43,73),(43,74),(43,75),(43,258),(44,76),(44,80),(44,84),(44,85),(44,88),(44,94),(44,255),(45,77),(45,81),(45,86),(45,87),(45,89),(45,95),(45,255),(46,78),(46,82),(46,84),(46,86),(46,90),(46,96),(46,256),(47,79),(47,83),(47,85),(47,87),(47,91),(47,97),(47,256),(48,76),(48,77),(48,78),(48,79),(48,92),(48,98),(48,257),(49,80),(49,81),(49,82),(49,83),(49,93),(49,99),(49,257),(50,88),(50,89),(50,90),(50,91),(50,92),(50,93),(50,258),(51,94),(51,95),(51,96),(51,97),(51,98),(51,99),(51,258),(52,137),(52,149),(52,161),(52,162),(52,263),(53,138),(53,150),(53,163),(53,164),(53,263),(54,139),(54,151),(54,161),(54,163),(54,264),(55,140),(55,152),(55,162),(55,164),(55,264),(56,141),(56,153),(56,165),(56,166),(56,263),(57,142),(57,154),(57,167),(57,168),(57,263),(58,143),(58,155),(58,165),(58,167),(58,264),(59,144),(59,156),(59,166),(59,168),(59,264),(60,145),(60,157),(60,161),(60,165),(60,265),(61,146),(61,158),(61,162),(61,166),(61,265),(62,147),(62,159),(62,163),(62,167),(62,265),(63,148),(63,160),(63,164),(63,168),(63,265),(64,137),(64,141),(64,145),(64,146),(64,266),(65,138),(65,142),(65,147),(65,148),(65,266),(66,139),(66,143),(66,145),(66,147),(66,267),(67,140),(67,144),(67,146),(67,148),(67,267),(68,137),(68,138),(68,139),(68,140),(68,268),(69,141),(69,142),(69,143),(69,144),(69,268),(70,149),(70,153),(70,157),(70,158),(70,266),(71,150),(71,154),(71,159),(71,160),(71,266),(72,151),(72,155),(72,157),(72,159),(72,267),(73,152),(73,156),(73,158),(73,160),(73,267),(74,149),(74,150),(74,151),(74,152),(74,268),(75,153),(75,154),(75,155),(75,156),(75,268),(76,169),(76,181),(76,193),(76,194),(76,263),(77,170),(77,182),(77,195),(77,196),(77,263),(78,171),(78,183),(78,193),(78,195),(78,264),(79,172),(79,184),(79,194),(79,196),(79,264),(80,173),(80,185),(80,197),(80,198),(80,263),(81,174),(81,186),(81,199),(81,200),(81,263),(82,175),(82,187),(82,197),(82,199),(82,264),(83,176),(83,188),(83,198),(83,200),(83,264),(84,177),(84,189),(84,193),(84,197),(84,265),(85,178),(85,190),(85,194),(85,198),(85,265),(86,179),(86,191),(86,195),(86,199),(86,265),(87,180),(87,192),(87,196),(87,200),(87,265),(88,169),(88,173),(88,177),(88,178),(88,266),(89,170),(89,174),(89,179),(89,180),(89,266),(90,171),(90,175),(90,177),(90,179),(90,267),(91,172),(91,176),(91,178),(91,180),(91,267),(92,169),(92,170),(92,171),(92,172),(92,268),(93,173),(93,174),(93,175),(93,176),(93,268),(94,181),(94,185),(94,189),(94,190),(94,266),(95,182),(95,186),(95,191),(95,192),(95,266),(96,183),(96,187),(96,189),(96,191),(96,267),(97,184),(97,188),(97,190),(97,192),(97,267),(98,181),(98,182),(98,183),(98,184),(98,268),(99,185),(99,186),(99,187),(99,188),(99,268),(100,137),(100,169),(100,201),(100,202),(100,260),(101,138),(101,170),(101,203),(101,204),(101,260),(102,139),(102,171),(102,201),(102,203),(102,261),(103,140),(103,172),(103,202),(103,204),(103,261),(104,141),(104,173),(104,205),(104,206),(104,260),(105,142),(105,174),(105,207),(105,208),(105,260),(106,143),(106,175),(106,205),(106,207),(106,261),(107,144),(107,176),(107,206),(107,208),(107,261),(108,145),(108,177),(108,201),(108,205),(108,262),(109,146),(109,178),(109,202),(109,206),(109,262),(110,147),(110,179),(110,203),(110,207),(110,262),(111,148),(111,180),(111,204),(111,208),(111,262),(112,149),(112,181),(112,209),(112,210),(112,260),(113,150),(113,182),(113,211),(113,212),(113,260),(114,151),(114,183),(114,209),(114,211),(114,261),(115,152),(115,184),(115,210),(115,212),(115,261),(116,153),(116,185),(116,213),(116,214),(116,260),(117,154),(117,186),(117,215),(117,216),(117,260),(118,155),(118,187),(118,213),(118,215),(118,261),(119,156),(119,188),(119,214),(119,216),(119,261),(120,157),(120,189),(120,209),(120,213),(120,262),(121,158),(121,190),(121,210),(121,214),(121,262),(122,159),(122,191),(122,211),(122,215),(122,262),(123,160),(123,192),(123,212),(123,216),(123,262),(124,161),(124,193),(124,201),(124,209),(124,259),(125,162),(125,194),(125,202),(125,210),(125,259),(126,163),(126,195),(126,203),(126,211),(126,259),(127,164),(127,196),(127,204),(127,212),(127,259),(128,165),(128,197),(128,205),(128,213),(128,259),(129,166),(129,198),(129,206),(129,214),(129,259),(130,167),(130,199),(130,207),(130,215),(130,259),(131,168),(131,200),(131,208),(131,216),(131,259),(132,255),(132,256),(132,257),(132,258),(133,252),(133,253),(133,254),(133,258),(134,250),(134,251),(134,254),(134,257),(135,249),(135,251),(135,253),(135,256),(136,249),(136,250),(136,252),(136,255),(137,217),(137,218),(137,269),(138,219),(138,220),(138,269),(139,217),(139,219),(139,270),(140,218),(140,220),(140,270),(141,221),(141,222),(141,269),(142,223),(142,224),(142,269),(143,221),(143,223),(143,270),(144,222),(144,224),(144,270),(145,217),(145,221),(145,271),(146,218),(146,222),(146,271),(147,219),(147,223),(147,271),(148,220),(148,224),(148,271),(149,225),(149,226),(149,269),(150,227),(150,228),(150,269),(151,225),(151,227),(151,270),(152,226),(152,228),(152,270),(153,229),(153,230),(153,269),(154,231),(154,232),(154,269),(155,229),(155,231),(155,270),(156,230),(156,232),(156,270),(157,225),(157,229),(157,271),(158,226),(158,230),(158,271),(159,227),(159,231),(159,271),(160,228),(160,232),(160,271),(161,217),(161,225),(161,272),(162,218),(162,226),(162,272),(163,219),(163,227),(163,272),(164,220),(164,228),(164,272),(165,221),(165,229),(165,272),(166,222),(166,230),(166,272),(167,223),(167,231),(167,272),(168,224),(168,232),(168,272),(169,233),(169,234),(169,269),(170,235),(170,236),(170,269),(171,233),(171,235),(171,270),(172,234),(172,236),(172,270),(173,237),(173,238),(173,269),(174,239),(174,240),(174,269),(175,237),(175,239),(175,270),(176,238),(176,240),(176,270),(177,233),(177,237),(177,271),(178,234),(178,238),(178,271),(179,235),(179,239),(179,271),(180,236),(180,240),(180,271),(181,241),(181,242),(181,269),(182,243),(182,244),(182,269),(183,241),(183,243),(183,270),(184,242),(184,244),(184,270),(185,245),(185,246),(185,269),(186,247),(186,248),(186,269),(187,245),(187,247),(187,270),(188,246),(188,248),(188,270),(189,241),(189,245),(189,271),(190,242),(190,246),(190,271),(191,243),(191,247),(191,271),(192,244),(192,248),(192,271),(193,233),(193,241),(193,272),(194,234),(194,242),(194,272),(195,235),(195,243),(195,272),(196,236),(196,244),(196,272),(197,237),(197,245),(197,272),(198,238),(198,246),(198,272),(199,239),(199,247),(199,272),(200,240),(200,248),(200,272),(201,217),(201,233),(201,273),(202,218),(202,234),(202,273),(203,219),(203,235),(203,273),(204,220),(204,236),(204,273),(205,221),(205,237),(205,273),(206,222),(206,238),(206,273),(207,223),(207,239),(207,273),(208,224),(208,240),(208,273),(209,225),(209,241),(209,273),(210,226),(210,242),(210,273),(211,227),(211,243),(211,273),(212,228),(212,244),(212,273),(213,229),(213,245),(213,273),(214,230),(214,246),(214,273),(215,231),(215,247),(215,273),(216,232),(216,248),(216,273),(217,274),(218,274),(219,274),(220,274),(221,274),(222,274),(223,274),(224,274),(225,274),(226,274),(227,274),(228,274),(229,274),(230,274),(231,274),(232,274),(233,274),(234,274),(235,274),(236,274),(237,274),(238,274),(239,274),(240,274),(241,274),(242,274),(243,274),(244,274),(245,274),(246,274),(247,274),(248,274),(249,259),(249,262),(249,265),(250,259),(250,260),(250,263),(251,259),(251,261),(251,264),(252,260),(252,262),(252,266),(253,261),(253,262),(253,267),(254,260),(254,261),(254,268),(255,263),(255,265),(255,266),(256,264),(256,265),(256,267),(257,263),(257,264),(257,268),(258,266),(258,267),(258,268),(259,272),(259,273),(260,269),(260,273),(261,270),(261,273),(262,271),(262,273),(263,269),(263,272),(264,270),(264,272),(265,271),(265,272),(266,269),(266,271),(267,270),(267,271),(268,269),(268,270),(269,274),(270,274),(271,274),(272,274),(273,274)],275)
=> ? = 3 - 2
[1,1,1,2,1,1] => [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> 0 = 2 - 2
[1,1,1,2,2] => [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(1,11),(1,36),(1,37),(1,38),(1,39),(1,40),(1,41),(1,42),(1,43),(2,13),(2,17),(2,22),(2,23),(2,25),(2,31),(2,37),(2,103),(3,12),(3,16),(3,20),(3,21),(3,24),(3,30),(3,36),(3,103),(4,15),(4,19),(4,21),(4,23),(4,27),(4,33),(4,39),(4,102),(5,14),(5,18),(5,20),(5,22),(5,26),(5,32),(5,38),(5,102),(6,16),(6,17),(6,18),(6,19),(6,29),(6,35),(6,41),(6,101),(7,12),(7,13),(7,14),(7,15),(7,28),(7,34),(7,40),(7,101),(8,30),(8,31),(8,32),(8,33),(8,34),(8,35),(8,43),(8,100),(9,24),(9,25),(9,26),(9,27),(9,28),(9,29),(9,42),(9,100),(10,11),(10,100),(10,101),(10,102),(10,103),(11,104),(11,105),(11,106),(11,107),(12,44),(12,68),(12,80),(12,92),(12,93),(12,173),(13,45),(13,69),(13,81),(13,94),(13,95),(13,173),(14,46),(14,70),(14,82),(14,92),(14,94),(14,174),(15,47),(15,71),(15,83),(15,93),(15,95),(15,174),(16,48),(16,72),(16,84),(16,96),(16,97),(16,173),(17,49),(17,73),(17,85),(17,98),(17,99),(17,173),(18,50),(18,74),(18,86),(18,96),(18,98),(18,174),(19,51),(19,75),(19,87),(19,97),(19,99),(19,174),(20,52),(20,76),(20,88),(20,92),(20,96),(20,172),(21,53),(21,77),(21,89),(21,93),(21,97),(21,172),(22,54),(22,78),(22,90),(22,94),(22,98),(22,172),(23,55),(23,79),(23,91),(23,95),(23,99),(23,172),(24,56),(24,68),(24,72),(24,76),(24,77),(24,175),(25,57),(25,69),(25,73),(25,78),(25,79),(25,175),(26,58),(26,70),(26,74),(26,76),(26,78),(26,176),(27,59),(27,71),(27,75),(27,77),(27,79),(27,176),(28,60),(28,68),(28,69),(28,70),(28,71),(28,177),(29,61),(29,72),(29,73),(29,74),(29,75),(29,177),(30,62),(30,80),(30,84),(30,88),(30,89),(30,175),(31,63),(31,81),(31,85),(31,90),(31,91),(31,175),(32,64),(32,82),(32,86),(32,88),(32,90),(32,176),(33,65),(33,83),(33,87),(33,89),(33,91),(33,176),(34,66),(34,80),(34,81),(34,82),(34,83),(34,177),(35,67),(35,84),(35,85),(35,86),(35,87),(35,177),(36,44),(36,48),(36,52),(36,53),(36,56),(36,62),(36,104),(37,45),(37,49),(37,54),(37,55),(37,57),(37,63),(37,104),(38,46),(38,50),(38,52),(38,54),(38,58),(38,64),(38,105),(39,47),(39,51),(39,53),(39,55),(39,59),(39,65),(39,105),(40,44),(40,45),(40,46),(40,47),(40,60),(40,66),(40,106),(41,48),(41,49),(41,50),(41,51),(41,61),(41,67),(41,106),(42,56),(42,57),(42,58),(42,59),(42,60),(42,61),(42,107),(43,62),(43,63),(43,64),(43,65),(43,66),(43,67),(43,107),(44,124),(44,136),(44,148),(44,149),(44,179),(45,125),(45,137),(45,150),(45,151),(45,179),(46,126),(46,138),(46,148),(46,150),(46,180),(47,127),(47,139),(47,149),(47,151),(47,180),(48,128),(48,140),(48,152),(48,153),(48,179),(49,129),(49,141),(49,154),(49,155),(49,179),(50,130),(50,142),(50,152),(50,154),(50,180),(51,131),(51,143),(51,153),(51,155),(51,180),(52,132),(52,144),(52,148),(52,152),(52,178),(53,133),(53,145),(53,149),(53,153),(53,178),(54,134),(54,146),(54,150),(54,154),(54,178),(55,135),(55,147),(55,151),(55,155),(55,178),(56,124),(56,128),(56,132),(56,133),(56,181),(57,125),(57,129),(57,134),(57,135),(57,181),(58,126),(58,130),(58,132),(58,134),(58,182),(59,127),(59,131),(59,133),(59,135),(59,182),(60,124),(60,125),(60,126),(60,127),(60,183),(61,128),(61,129),(61,130),(61,131),(61,183),(62,136),(62,140),(62,144),(62,145),(62,181),(63,137),(63,141),(63,146),(63,147),(63,181),(64,138),(64,142),(64,144),(64,146),(64,182),(65,139),(65,143),(65,145),(65,147),(65,182),(66,136),(66,137),(66,138),(66,139),(66,183),(67,140),(67,141),(67,142),(67,143),(67,183),(68,108),(68,109),(68,124),(68,185),(69,110),(69,111),(69,125),(69,185),(70,108),(70,110),(70,126),(70,186),(71,109),(71,111),(71,127),(71,186),(72,112),(72,113),(72,128),(72,185),(73,114),(73,115),(73,129),(73,185),(74,112),(74,114),(74,130),(74,186),(75,113),(75,115),(75,131),(75,186),(76,108),(76,112),(76,132),(76,187),(77,109),(77,113),(77,133),(77,187),(78,110),(78,114),(78,134),(78,187),(79,111),(79,115),(79,135),(79,187),(80,116),(80,117),(80,136),(80,185),(81,118),(81,119),(81,137),(81,185),(82,116),(82,118),(82,138),(82,186),(83,117),(83,119),(83,139),(83,186),(84,120),(84,121),(84,140),(84,185),(85,122),(85,123),(85,141),(85,185),(86,120),(86,122),(86,142),(86,186),(87,121),(87,123),(87,143),(87,186),(88,116),(88,120),(88,144),(88,187),(89,117),(89,121),(89,145),(89,187),(90,118),(90,122),(90,146),(90,187),(91,119),(91,123),(91,147),(91,187),(92,108),(92,116),(92,148),(92,184),(93,109),(93,117),(93,149),(93,184),(94,110),(94,118),(94,150),(94,184),(95,111),(95,119),(95,151),(95,184),(96,112),(96,120),(96,152),(96,184),(97,113),(97,121),(97,153),(97,184),(98,114),(98,122),(98,154),(98,184),(99,115),(99,123),(99,155),(99,184),(100,107),(100,175),(100,176),(100,177),(101,106),(101,173),(101,174),(101,177),(102,105),(102,172),(102,174),(102,176),(103,104),(103,172),(103,173),(103,175),(104,178),(104,179),(104,181),(105,178),(105,180),(105,182),(106,179),(106,180),(106,183),(107,181),(107,182),(107,183),(108,156),(108,192),(109,157),(109,192),(110,158),(110,192),(111,159),(111,192),(112,160),(112,192),(113,161),(113,192),(114,162),(114,192),(115,163),(115,192),(116,164),(116,192),(117,165),(117,192),(118,166),(118,192),(119,167),(119,192),(120,168),(120,192),(121,169),(121,192),(122,170),(122,192),(123,171),(123,192),(124,156),(124,157),(124,189),(125,158),(125,159),(125,189),(126,156),(126,158),(126,190),(127,157),(127,159),(127,190),(128,160),(128,161),(128,189),(129,162),(129,163),(129,189),(130,160),(130,162),(130,190),(131,161),(131,163),(131,190),(132,156),(132,160),(132,191),(133,157),(133,161),(133,191),(134,158),(134,162),(134,191),(135,159),(135,163),(135,191),(136,164),(136,165),(136,189),(137,166),(137,167),(137,189),(138,164),(138,166),(138,190),(139,165),(139,167),(139,190),(140,168),(140,169),(140,189),(141,170),(141,171),(141,189),(142,168),(142,170),(142,190),(143,169),(143,171),(143,190),(144,164),(144,168),(144,191),(145,165),(145,169),(145,191),(146,166),(146,170),(146,191),(147,167),(147,171),(147,191),(148,156),(148,164),(148,188),(149,157),(149,165),(149,188),(150,158),(150,166),(150,188),(151,159),(151,167),(151,188),(152,160),(152,168),(152,188),(153,161),(153,169),(153,188),(154,162),(154,170),(154,188),(155,163),(155,171),(155,188),(156,193),(157,193),(158,193),(159,193),(160,193),(161,193),(162,193),(163,193),(164,193),(165,193),(166,193),(167,193),(168,193),(169,193),(170,193),(171,193),(172,178),(172,184),(172,187),(173,179),(173,184),(173,185),(174,180),(174,184),(174,186),(175,181),(175,185),(175,187),(176,182),(176,186),(176,187),(177,183),(177,185),(177,186),(178,188),(178,191),(179,188),(179,189),(180,188),(180,190),(181,189),(181,191),(182,190),(182,191),(183,189),(183,190),(184,188),(184,192),(185,189),(185,192),(186,190),(186,192),(187,191),(187,192),(188,193),(189,193),(190,193),(191,193),(192,193)],194)
=> ? = 2 - 2
[1,1,1,3,1] => [4,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,11),(1,15),(1,20),(1,21),(1,23),(1,29),(1,69),(2,10),(2,14),(2,18),(2,19),(2,22),(2,28),(2,69),(3,13),(3,17),(3,19),(3,21),(3,25),(3,31),(3,68),(4,12),(4,16),(4,18),(4,20),(4,24),(4,30),(4,68),(5,14),(5,15),(5,16),(5,17),(5,27),(5,33),(5,67),(6,10),(6,11),(6,12),(6,13),(6,26),(6,32),(6,67),(7,28),(7,29),(7,30),(7,31),(7,32),(7,33),(7,66),(8,22),(8,23),(8,24),(8,25),(8,26),(8,27),(8,66),(9,66),(9,67),(9,68),(9,69),(10,34),(10,46),(10,58),(10,59),(10,87),(11,35),(11,47),(11,60),(11,61),(11,87),(12,36),(12,48),(12,58),(12,60),(12,88),(13,37),(13,49),(13,59),(13,61),(13,88),(14,38),(14,50),(14,62),(14,63),(14,87),(15,39),(15,51),(15,64),(15,65),(15,87),(16,40),(16,52),(16,62),(16,64),(16,88),(17,41),(17,53),(17,63),(17,65),(17,88),(18,42),(18,54),(18,58),(18,62),(18,86),(19,43),(19,55),(19,59),(19,63),(19,86),(20,44),(20,56),(20,60),(20,64),(20,86),(21,45),(21,57),(21,61),(21,65),(21,86),(22,34),(22,38),(22,42),(22,43),(22,89),(23,35),(23,39),(23,44),(23,45),(23,89),(24,36),(24,40),(24,42),(24,44),(24,90),(25,37),(25,41),(25,43),(25,45),(25,90),(26,34),(26,35),(26,36),(26,37),(26,91),(27,38),(27,39),(27,40),(27,41),(27,91),(28,46),(28,50),(28,54),(28,55),(28,89),(29,47),(29,51),(29,56),(29,57),(29,89),(30,48),(30,52),(30,54),(30,56),(30,90),(31,49),(31,53),(31,55),(31,57),(31,90),(32,46),(32,47),(32,48),(32,49),(32,91),(33,50),(33,51),(33,52),(33,53),(33,91),(34,70),(34,71),(34,93),(35,72),(35,73),(35,93),(36,70),(36,72),(36,94),(37,71),(37,73),(37,94),(38,74),(38,75),(38,93),(39,76),(39,77),(39,93),(40,74),(40,76),(40,94),(41,75),(41,77),(41,94),(42,70),(42,74),(42,95),(43,71),(43,75),(43,95),(44,72),(44,76),(44,95),(45,73),(45,77),(45,95),(46,78),(46,79),(46,93),(47,80),(47,81),(47,93),(48,78),(48,80),(48,94),(49,79),(49,81),(49,94),(50,82),(50,83),(50,93),(51,84),(51,85),(51,93),(52,82),(52,84),(52,94),(53,83),(53,85),(53,94),(54,78),(54,82),(54,95),(55,79),(55,83),(55,95),(56,80),(56,84),(56,95),(57,81),(57,85),(57,95),(58,70),(58,78),(58,92),(59,71),(59,79),(59,92),(60,72),(60,80),(60,92),(61,73),(61,81),(61,92),(62,74),(62,82),(62,92),(63,75),(63,83),(63,92),(64,76),(64,84),(64,92),(65,77),(65,85),(65,92),(66,89),(66,90),(66,91),(67,87),(67,88),(67,91),(68,86),(68,88),(68,90),(69,86),(69,87),(69,89),(70,96),(71,96),(72,96),(73,96),(74,96),(75,96),(76,96),(77,96),(78,96),(79,96),(80,96),(81,96),(82,96),(83,96),(84,96),(85,96),(86,92),(86,95),(87,92),(87,93),(88,92),(88,94),(89,93),(89,95),(90,94),(90,95),(91,93),(91,94),(92,96),(93,96),(94,96),(95,96)],97)
=> ? = 3 - 2
[1,1,1,4] => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(0,10),(0,11),(0,12),(0,13),(0,14),(0,15),(1,19),(1,37),(1,38),(1,39),(1,49),(1,50),(1,51),(1,67),(1,68),(1,69),(1,216),(1,220),(2,18),(2,30),(2,35),(2,36),(2,42),(2,47),(2,48),(2,65),(2,66),(2,69),(2,215),(2,219),(3,17),(3,29),(3,32),(3,34),(3,41),(3,44),(3,46),(3,64),(3,66),(3,68),(3,214),(3,218),(4,16),(4,28),(4,31),(4,33),(4,40),(4,43),(4,45),(4,64),(4,65),(4,67),(4,213),(4,217),(5,23),(5,28),(5,29),(5,30),(5,52),(5,53),(5,54),(5,70),(5,71),(5,72),(5,209),(5,220),(6,22),(6,33),(6,34),(6,39),(6,55),(6,58),(6,59),(6,70),(6,73),(6,74),(6,210),(6,219),(7,21),(7,31),(7,35),(7,38),(7,56),(7,60),(7,62),(7,71),(7,73),(7,75),(7,211),(7,218),(8,20),(8,32),(8,36),(8,37),(8,57),(8,61),(8,63),(8,72),(8,74),(8,75),(8,212),(8,217),(9,27),(9,40),(9,41),(9,42),(9,55),(9,56),(9,57),(9,76),(9,77),(9,78),(9,209),(9,216),(10,26),(10,45),(10,46),(10,51),(10,52),(10,60),(10,61),(10,76),(10,79),(10,80),(10,210),(10,215),(11,25),(11,43),(11,47),(11,50),(11,53),(11,58),(11,63),(11,77),(11,79),(11,81),(11,211),(11,214),(12,24),(12,44),(12,48),(12,49),(12,54),(12,59),(12,62),(12,78),(12,80),(12,81),(12,212),(12,213),(13,24),(13,25),(13,26),(13,27),(13,82),(13,217),(13,218),(13,219),(13,220),(14,20),(14,21),(14,22),(14,23),(14,82),(14,213),(14,214),(14,215),(14,216),(15,16),(15,17),(15,18),(15,19),(15,82),(15,209),(15,210),(15,211),(15,212),(16,83),(16,84),(16,86),(16,314),(16,317),(16,319),(16,419),(17,83),(17,85),(17,87),(17,315),(17,318),(17,320),(17,420),(18,84),(18,85),(18,88),(18,316),(18,321),(18,322),(18,421),(19,86),(19,87),(19,88),(19,323),(19,324),(19,325),(19,422),(20,89),(20,91),(20,92),(20,329),(20,330),(20,335),(20,419),(21,90),(21,91),(21,93),(21,328),(21,331),(21,336),(21,420),(22,89),(22,90),(22,94),(22,326),(22,327),(22,337),(22,421),(23,92),(23,93),(23,94),(23,332),(23,333),(23,334),(23,422),(24,95),(24,97),(24,98),(24,341),(24,342),(24,347),(24,419),(25,96),(25,97),(25,99),(25,340),(25,343),(25,348),(25,420),(26,95),(26,96),(26,100),(26,338),(26,339),(26,349),(26,421),(27,98),(27,99),(27,100),(27,344),(27,345),(27,346),(27,422),(28,116),(28,117),(28,125),(28,127),(28,185),(28,187),(28,314),(28,332),(28,416),(29,116),(29,118),(29,126),(29,128),(29,186),(29,188),(29,315),(29,333),(29,417),(30,117),(30,118),(30,129),(30,130),(30,189),(30,190),(30,316),(30,334),(30,418),(31,114),(31,121),(31,125),(31,131),(31,191),(31,197),(31,317),(31,328),(31,413),(32,115),(32,122),(32,126),(32,132),(32,192),(32,198),(32,318),(32,329),(32,413),(33,113),(33,119),(33,127),(33,131),(33,193),(33,199),(33,319),(33,326),(33,414),(34,113),(34,120),(34,128),(34,132),(34,194),(34,200),(34,320),(34,327),(34,415),(35,114),(35,124),(35,129),(35,133),(35,195),(35,201),(35,321),(35,331),(35,415),(36,115),(36,123),(36,130),(36,133),(36,196),(36,202),(36,322),(36,330),(36,414),(37,122),(37,123),(37,134),(37,136),(37,203),(37,205),(37,325),(37,335),(37,416),(38,121),(38,124),(38,135),(38,136),(38,204),(38,206),(38,324),(38,336),(38,417),(39,119),(39,120),(39,134),(39,135),(39,207),(39,208),(39,323),(39,337),(39,418),(40,140),(40,141),(40,161),(40,163),(40,191),(40,193),(40,314),(40,344),(40,410),(41,140),(41,142),(41,162),(41,164),(41,192),(41,194),(41,315),(41,345),(41,411),(42,141),(42,142),(42,165),(42,166),(42,195),(42,196),(42,316),(42,346),(42,412),(43,138),(43,145),(43,161),(43,167),(43,185),(43,199),(43,317),(43,340),(43,407),(44,139),(44,146),(44,162),(44,168),(44,186),(44,200),(44,318),(44,341),(44,407),(45,137),(45,143),(45,163),(45,167),(45,187),(45,197),(45,319),(45,338),(45,408),(46,137),(46,144),(46,164),(46,168),(46,188),(46,198),(46,320),(46,339),(46,409),(47,138),(47,148),(47,165),(47,169),(47,189),(47,202),(47,321),(47,343),(47,409),(48,139),(48,147),(48,166),(48,169),(48,190),(48,201),(48,322),(48,342),(48,408),(49,146),(49,147),(49,170),(49,172),(49,206),(49,208),(49,325),(49,347),(49,410),(50,145),(50,148),(50,171),(50,172),(50,205),(50,207),(50,324),(50,348),(50,411),(51,143),(51,144),(51,170),(51,171),(51,203),(51,204),(51,323),(51,349),(51,412),(52,151),(52,152),(52,173),(52,174),(52,187),(52,188),(52,334),(52,349),(52,406),(53,149),(53,154),(53,174),(53,175),(53,185),(53,189),(53,333),(53,348),(53,405),(54,150),(54,153),(54,173),(54,175),(54,186),(54,190),(54,332),(54,347),(54,404),(55,155),(55,156),(55,179),(55,180),(55,193),(55,194),(55,337),(55,346),(55,406),(56,155),(56,157),(56,181),(56,183),(56,191),(56,195),(56,336),(56,345),(56,405),(57,156),(57,157),(57,182),(57,184),(57,192),(57,196),(57,335),(57,344),(57,404),(58,149),(58,159),(58,178),(58,180),(58,199),(58,207),(58,327),(58,343),(58,402),(59,150),(59,158),(59,178),(59,179),(59,200),(59,208),(59,326),(59,342),(59,401),(60,151),(60,160),(60,176),(60,183),(60,197),(60,204),(60,331),(60,339),(60,402),(61,152),(61,160),(61,177),(61,184),(61,198),(61,203),(61,330),(61,338),(61,401),(62,153),(62,158),(62,176),(62,181),(62,201),(62,206),(62,328),(62,341),(62,403),(63,154),(63,159),(63,177),(63,182),(63,202),(63,205),(63,329),(63,340),(63,403),(64,83),(64,101),(64,104),(64,113),(64,116),(64,137),(64,140),(64,407),(64,413),(65,84),(65,101),(65,102),(65,114),(65,117),(65,138),(65,141),(65,408),(65,414),(66,85),(66,101),(66,103),(66,115),(66,118),(66,139),(66,142),(66,409),(66,415),(67,86),(67,102),(67,104),(67,119),(67,121),(67,143),(67,145),(67,410),(67,416),(68,87),(68,103),(68,104),(68,120),(68,122),(68,144),(68,146),(68,411),(68,417),(69,88),(69,102),(69,103),(69,123),(69,124),(69,147),(69,148),(69,412),(69,418),(70,94),(70,105),(70,106),(70,127),(70,128),(70,149),(70,150),(70,406),(70,418),(71,93),(71,106),(71,107),(71,125),(71,129),(71,151),(71,153),(71,405),(71,417),(72,92),(72,105),(72,107),(72,126),(72,130),(72,152),(72,154),(72,404),(72,416),(73,90),(73,106),(73,108),(73,131),(73,135),(73,155),(73,158),(73,402),(73,415),(74,89),(74,105),(74,108),(74,132),(74,134),(74,156),(74,159),(74,401),(74,414),(75,91),(75,107),(75,108),(75,133),(75,136),(75,157),(75,160),(75,403),(75,413),(76,100),(76,109),(76,110),(76,163),(76,164),(76,183),(76,184),(76,406),(76,412),(77,99),(77,110),(77,111),(77,161),(77,165),(77,180),(77,182),(77,405),(77,411),(78,98),(78,109),(78,111),(78,162),(78,166),(78,179),(78,181),(78,404),(78,410),(79,96),(79,110),(79,112),(79,167),(79,171),(79,174),(79,177),(79,402),(79,409),(80,95),(80,109),(80,112),(80,168),(80,170),(80,173),(80,176),(80,401),(80,408),(81,97),(81,111),(81,112),(81,169),(81,172),(81,175),(81,178),(81,403),(81,407),(82,419),(82,420),(82,421),(82,422),(83,221),(83,224),(83,352),(83,355),(83,503),(84,221),(84,222),(84,350),(84,353),(84,501),(85,221),(85,223),(85,351),(85,354),(85,502),(86,222),(86,224),(86,356),(86,358),(86,504),(87,223),(87,224),(87,357),(87,359),(87,505),(88,222),(88,223),(88,360),(88,361),(88,506),(89,225),(89,228),(89,369),(89,371),(89,501),(90,226),(90,228),(90,368),(90,372),(90,502),(91,227),(91,228),(91,370),(91,373),(91,503),(92,225),(92,227),(92,365),(92,366),(92,504),(93,226),(93,227),(93,364),(93,367),(93,505),(94,225),(94,226),(94,362),(94,363),(94,506),(95,229),(95,232),(95,381),(95,383),(95,501),(96,230),(96,232),(96,380),(96,384),(96,502),(97,231),(97,232),(97,382),(97,385),(97,503),(98,229),(98,231),(98,377),(98,378),(98,504),(99,230),(99,231),(99,376),(99,379),(99,505),(100,229),(100,230),(100,374),(100,375),(100,506),(101,221),(101,233),(101,236),(101,244),(101,481),(101,485),(102,222),(102,233),(102,237),(102,245),(102,482),(102,486),(103,223),(103,233),(103,238),(103,246),(103,483),(103,487),(104,224),(104,233),(104,239),(104,247),(104,484),(104,488),(105,225),(105,234),(105,241),(105,248),(105,477),(105,486),(106,226),(106,234),(106,240),(106,249),(106,478),(106,487),(107,227),(107,234),(107,242),(107,250),(107,479),(107,488),(108,228),(108,234),(108,243),(108,251),(108,480),(108,485),(109,229),(109,235),(109,253),(109,256),(109,477),(109,482),(110,230),(110,235),(110,252),(110,257),(110,478),(110,483),(111,231),(111,235),(111,254),(111,258),(111,479),(111,484),(112,232),(112,235),(112,255),(112,259),(112,480),(112,481),(113,239),(113,262),(113,298),(113,352),(113,440),(113,485),(114,237),(114,260),(114,296),(114,350),(114,438),(114,485),(115,238),(115,261),(115,297),(115,351),(115,439),(115,485),(116,236),(116,265),(116,298),(116,355),(116,437),(116,488),(117,236),(117,263),(117,296),(117,353),(117,435),(117,486),(118,236),(118,264),(118,297),(118,354),(118,436),(118,487),(119,239),(119,266),(119,299),(119,358),(119,441),(119,486),(120,239),(120,267),(120,300),(120,359),(120,442),(120,487),(121,237),(121,268),(121,299),(121,356),(121,443),(121,488),(122,238),(122,269),(122,300),(122,357),(122,444),(122,488),(123,238),(123,270),(123,301),(123,361),(123,445),(123,486),(124,237),(124,271),(124,301),(124,360),(124,446),(124,487),(125,240),(125,274),(125,296),(125,364),(125,425),(125,488),(126,241),(126,275),(126,297),(126,365),(126,426),(126,488),(127,240),(127,272),(127,298),(127,362),(127,423),(127,486),(128,241),(128,273),(128,298),(128,363),(128,424),(128,487),(129,242),(129,277),(129,296),(129,367),(129,428),(129,487),(130,242),(130,276),(130,297),(130,366),(130,427),(130,486),(131,240),(131,278),(131,299),(131,368),(131,429),(131,485),(132,241),(132,279),(132,300),(132,369),(132,430),(132,485),(133,242),(133,280),(133,301),(133,370),(133,431),(133,485),(134,243),(134,281),(134,300),(134,371),(134,432),(134,486),(135,243),(135,282),(135,299),(135,372),(135,433),(135,487),(136,243),(136,283),(136,301),(136,373),(136,434),(136,488),(137,247),(137,265),(137,304),(137,352),(137,450),(137,481),(138,245),(138,263),(138,302),(138,350),(138,451),(138,481),(139,246),(139,264),(139,303),(139,351),(139,452),(139,481),(140,244),(140,262),(140,304),(140,355),(140,447),(140,484),(141,244),(141,260),(141,302),(141,353),(141,448),(141,482),(142,244),(142,261),(142,303),(142,354),(142,449),(142,483),(143,247),(143,268),(143,305),(143,358),(143,453),(143,482),(144,247),(144,269),(144,306),(144,359),(144,454),(144,483),(145,245),(145,266),(145,305),(145,356),(145,455),(145,484),(146,246),(146,267),(146,306),(146,357),(146,456),(146,484),(147,246),(147,271),(147,307),(147,361),(147,457),(147,482),(148,245),(148,270),(148,307),(148,360),(148,458),(148,483),(149,248),(149,272),(149,310),(149,363),(149,458),(149,478),(150,249),(150,273),(150,310),(150,362),(150,457),(150,477),(151,250),(151,274),(151,308),(151,367),(151,454),(151,478),(152,250),(152,275),(152,309),(152,366),(152,453),(152,477),(153,249),(153,277),(153,308),(153,364),(153,456),(153,479),(154,248),(154,276),(154,309),(154,365),(154,455),(154,479),(155,251),(155,278),(155,311),(155,372),(155,449),(155,478),(156,251),(156,279),(156,312),(156,371),(156,448),(156,477),(157,251),(157,280),(157,313),(157,373),(157,447),(157,479),(158,249),(158,282),(158,311),(158,368),(158,452),(158,480),(159,248),(159,281),(159,312),(159,369),(159,451),(159,480),(160,250),(160,283),(160,313),(160,370),(160,450),(160,480),(161,252),(161,286),(161,302),(161,376),(161,425),(161,484),(162,253),(162,287),(162,303),(162,377),(162,426),(162,484),(163,252),(163,284),(163,304),(163,374),(163,423),(163,482),(164,253),(164,285),(164,304),(164,375),(164,424),(164,483),(165,254),(165,289),(165,302),(165,379),(165,428),(165,483),(166,254),(166,288),(166,303),(166,378),(166,427),(166,482),(167,252),(167,290),(167,305),(167,380),(167,429),(167,481),(168,253),(168,291),(168,306),(168,381),(168,430),(168,481),(169,254),(169,292),(169,307),(169,382),(169,431),(169,481),(170,255),(170,294),(170,306),(170,383),(170,432),(170,482),(171,255),(171,293),(171,305),(171,384),(171,433),(171,483),(172,255),(172,295),(172,307),(172,385),(172,434),(172,484),(173,259),(173,291),(173,308),(173,383),(173,435),(173,477),(174,259),(174,290),(174,309),(174,384),(174,436),(174,478),(175,259),(175,292),(175,310),(175,385),(175,437),(175,479),(176,256),(176,294),(176,308),(176,381),(176,438),(176,480),(177,257),(177,293),(177,309),(177,380),(177,439),(177,480),(178,258),(178,295),(178,310),(178,382),(178,440),(178,480),(179,258),(179,287),(179,311),(179,378),(179,441),(179,477),(180,258),(180,286),(180,312),(180,379),(180,442),(180,478),(181,256),(181,288),(181,311),(181,377),(181,443),(181,479),(182,257),(182,289),(182,312),(182,376),(182,444),(182,479),(183,256),(183,284),(183,313),(183,375),(183,446),(183,478),(184,257),(184,285),(184,313),(184,374),(184,445),(184,477),(185,263),(185,272),(185,290),(185,425),(185,437),(185,455),(186,264),(186,273),(186,291),(186,426),(186,437),(186,456),(187,265),(187,274),(187,290),(187,423),(187,435),(187,453),(188,265),(188,275),(188,291),(188,424),(188,436),(188,454),(189,263),(189,276),(189,292),(189,428),(189,436),(189,458),(190,264),(190,277),(190,292),(190,427),(190,435),(190,457),(191,260),(191,278),(191,284),(191,425),(191,443),(191,447),(192,261),(192,279),(192,285),(192,426),(192,444),(192,447),(193,262),(193,278),(193,286),(193,423),(193,441),(193,448),(194,262),(194,279),(194,287),(194,424),(194,442),(194,449),(195,260),(195,280),(195,288),(195,428),(195,446),(195,449),(196,261),(196,280),(196,289),(196,427),(196,445),(196,448),(197,268),(197,274),(197,284),(197,429),(197,438),(197,450),(198,269),(198,275),(198,285),(198,430),(198,439),(198,450),(199,266),(199,272),(199,286),(199,429),(199,440),(199,451),(200,267),(200,273),(200,287),(200,430),(200,440),(200,452),(201,271),(201,277),(201,288),(201,431),(201,438),(201,452),(202,270),(202,276),(202,289),(202,431),(202,439),(202,451),(203,269),(203,283),(203,293),(203,432),(203,445),(203,453),(204,268),(204,283),(204,294),(204,433),(204,446),(204,454),(205,270),(205,281),(205,293),(205,434),(205,444),(205,455),(206,271),(206,282),(206,294),(206,434),(206,443),(206,456),(207,266),(207,281),(207,295),(207,433),(207,442),(207,458),(208,267),(208,282),(208,295),(208,432),(208,441),(208,457),(209,314),(209,315),(209,316),(209,404),(209,405),(209,406),(209,422),(210,319),(210,320),(210,323),(210,401),(210,402),(210,406),(210,421),(211,317),(211,321),(211,324),(211,402),(211,403),(211,405),(211,420),(212,318),(212,322),(212,325),(212,401),(212,403),(212,404),(212,419),(213,326),(213,328),(213,332),(213,407),(213,408),(213,410),(213,419),(214,327),(214,329),(214,333),(214,407),(214,409),(214,411),(214,420),(215,330),(215,331),(215,334),(215,408),(215,409),(215,412),(215,421),(216,335),(216,336),(216,337),(216,410),(216,411),(216,412),(216,422),(217,338),(217,340),(217,344),(217,413),(217,414),(217,416),(217,419),(218,339),(218,341),(218,345),(218,413),(218,415),(218,417),(218,420),(219,342),(219,343),(219,346),(219,414),(219,415),(219,418),(219,421),(220,347),(220,348),(220,349),(220,416),(220,417),(220,418),(220,422),(221,386),(221,392),(221,513),(222,386),(222,389),(222,510),(223,386),(223,390),(223,511),(224,386),(224,391),(224,512),(225,387),(225,394),(225,510),(226,387),(226,393),(226,511),(227,387),(227,395),(227,512),(228,387),(228,396),(228,513),(229,388),(229,398),(229,510),(230,388),(230,397),(230,511),(231,388),(231,399),(231,512),(232,388),(232,400),(232,513),(233,386),(233,508),(233,509),(234,387),(234,507),(234,509),(235,388),(235,507),(235,508),(236,392),(236,496),(236,509),(237,389),(237,493),(237,509),(238,390),(238,494),(238,509),(239,391),(239,495),(239,509),(240,393),(240,489),(240,509),(241,394),(241,490),(241,509),(242,395),(242,491),(242,509),(243,396),(243,492),(243,509),(244,392),(244,497),(244,508),(245,389),(245,498),(245,508),(246,390),(246,499),(246,508),(247,391),(247,500),(247,508),(248,394),(248,498),(248,507),(249,393),(249,499),(249,507),(250,395),(250,500),(250,507),(251,396),(251,497),(251,507),(252,397),(252,489),(252,508),(253,398),(253,490),(253,508),(254,399),(254,491),(254,508),(255,400),(255,492),(255,508),(256,398),(256,493),(256,507),(257,397),(257,494),(257,507),(258,399),(258,495),(258,507),(259,400),(259,496),(259,507),(260,459),(260,493),(260,497),(261,460),(261,494),(261,497),(262,461),(262,495),(262,497),(263,459),(263,496),(263,498),(264,460),(264,496),(264,499),(265,461),(265,496),(265,500),(266,462),(266,495),(266,498),(267,463),(267,495),(267,499),(268,462),(268,493),(268,500),(269,463),(269,494),(269,500),(270,464),(270,494),(270,498),(271,464),(271,493),(271,499),(272,467),(272,489),(272,498),(273,467),(273,490),(273,499),(274,465),(274,489),(274,500),(275,466),(275,490),(275,500),(276,466),(276,491),(276,498),(277,465),(277,491),(277,499),(278,468),(278,489),(278,497),(279,469),(279,490),(279,497),(280,470),(280,491),(280,497),(281,469),(281,492),(281,498),(282,468),(282,492),(282,499),(283,470),(283,492),(283,500),(284,471),(284,489),(284,493),(285,471),(285,490),(285,494),(286,472),(286,489),(286,495),(287,473),(287,490),(287,495),(288,473),(288,491),(288,493),(289,472),(289,491),(289,494),(290,474),(290,489),(290,496),(291,475),(291,490),(291,496),(292,476),(292,491),(292,496),(293,474),(293,492),(293,494),(294,475),(294,492),(294,493),(295,476),(295,492),(295,495),(296,459),(296,465),(296,509),(297,460),(297,466),(297,509),(298,461),(298,467),(298,509),(299,462),(299,468),(299,509),(300,463),(300,469),(300,509),(301,464),(301,470),(301,509),(302,459),(302,472),(302,508),(303,460),(303,473),(303,508),(304,461),(304,471),(304,508),(305,462),(305,474),(305,508),(306,463),(306,475),(306,508),(307,464),(307,476),(307,508),(308,465),(308,475),(308,507),(309,466),(309,474),(309,507),(310,467),(310,476),(310,507),(311,468),(311,473),(311,507),(312,469),(312,472),(312,507),(313,470),(313,471),(313,507),(314,353),(314,355),(314,423),(314,425),(314,504),(315,354),(315,355),(315,424),(315,426),(315,505),(316,353),(316,354),(316,427),(316,428),(316,506),(317,350),(317,356),(317,425),(317,429),(317,503),(318,351),(318,357),(318,426),(318,430),(318,503),(319,352),(319,358),(319,423),(319,429),(319,501),(320,352),(320,359),(320,424),(320,430),(320,502),(321,350),(321,360),(321,428),(321,431),(321,502),(322,351),(322,361),(322,427),(322,431),(322,501),(323,358),(323,359),(323,432),(323,433),(323,506),(324,356),(324,360),(324,433),(324,434),(324,505),(325,357),(325,361),(325,432),(325,434),(325,504),(326,362),(326,368),(326,440),(326,441),(326,501),(327,363),(327,369),(327,440),(327,442),(327,502),(328,364),(328,368),(328,438),(328,443),(328,503),(329,365),(329,369),(329,439),(329,444),(329,503),(330,366),(330,370),(330,439),(330,445),(330,501),(331,367),(331,370),(331,438),(331,446),(331,502),(332,362),(332,364),(332,435),(332,437),(332,504),(333,363),(333,365),(333,436),(333,437),(333,505),(334,366),(334,367),(334,435),(334,436),(334,506),(335,371),(335,373),(335,444),(335,445),(335,504),(336,372),(336,373),(336,443),(336,446),(336,505),(337,371),(337,372),(337,441),(337,442),(337,506),(338,374),(338,380),(338,450),(338,453),(338,501),(339,375),(339,381),(339,450),(339,454),(339,502),(340,376),(340,380),(340,451),(340,455),(340,503),(341,377),(341,381),(341,452),(341,456),(341,503),(342,378),(342,382),(342,452),(342,457),(342,501),(343,379),(343,382),(343,451),(343,458),(343,502),(344,374),(344,376),(344,447),(344,448),(344,504),(345,375),(345,377),(345,447),(345,449),(345,505),(346,378),(346,379),(346,448),(346,449),(346,506),(347,383),(347,385),(347,456),(347,457),(347,504),(348,384),(348,385),(348,455),(348,458),(348,505),(349,383),(349,384),(349,453),(349,454),(349,506),(350,389),(350,459),(350,513),(351,390),(351,460),(351,513),(352,391),(352,461),(352,513),(353,392),(353,459),(353,510),(354,392),(354,460),(354,511),(355,392),(355,461),(355,512),(356,389),(356,462),(356,512),(357,390),(357,463),(357,512),(358,391),(358,462),(358,510),(359,391),(359,463),(359,511),(360,389),(360,464),(360,511),(361,390),(361,464),(361,510),(362,393),(362,467),(362,510),(363,394),(363,467),(363,511),(364,393),(364,465),(364,512),(365,394),(365,466),(365,512),(366,395),(366,466),(366,510),(367,395),(367,465),(367,511),(368,393),(368,468),(368,513),(369,394),(369,469),(369,513),(370,395),(370,470),(370,513),(371,396),(371,469),(371,510),(372,396),(372,468),(372,511),(373,396),(373,470),(373,512),(374,397),(374,471),(374,510),(375,398),(375,471),(375,511),(376,397),(376,472),(376,512),(377,398),(377,473),(377,512),(378,399),(378,473),(378,510),(379,399),(379,472),(379,511),(380,397),(380,474),(380,513),(381,398),(381,475),(381,513),(382,399),(382,476),(382,513),(383,400),(383,475),(383,510),(384,400),(384,474),(384,511),(385,400),(385,476),(385,512),(386,514),(387,514),(388,514),(389,514),(390,514),(391,514),(392,514),(393,514),(394,514),(395,514),(396,514),(397,514),(398,514),(399,514),(400,514),(401,430),(401,432),(401,477),(401,480),(401,501),(402,429),(402,433),(402,478),(402,480),(402,502),(403,431),(403,434),(403,479),(403,480),(403,503),(404,426),(404,427),(404,477),(404,479),(404,504),(405,425),(405,428),(405,478),(405,479),(405,505),(406,423),(406,424),(406,477),(406,478),(406,506),(407,437),(407,440),(407,481),(407,484),(407,503),(408,435),(408,438),(408,481),(408,482),(408,501),(409,436),(409,439),(409,481),(409,483),(409,502),(410,441),(410,443),(410,482),(410,484),(410,504),(411,442),(411,444),(411,483),(411,484),(411,505),(412,445),(412,446),(412,482),(412,483),(412,506),(413,447),(413,450),(413,485),(413,488),(413,503),(414,448),(414,451),(414,485),(414,486),(414,501),(415,449),(415,452),(415,485),(415,487),(415,502),(416,453),(416,455),(416,486),(416,488),(416,504),(417,454),(417,456),(417,487),(417,488),(417,505),(418,457),(418,458),(418,486),(418,487),(418,506),(419,501),(419,503),(419,504),(420,502),(420,503),(420,505),(421,501),(421,502),(421,506),(422,504),(422,505),(422,506),(423,461),(423,489),(423,510),(424,461),(424,490),(424,511),(425,459),(425,489),(425,512),(426,460),(426,490),(426,512),(427,460),(427,491),(427,510),(428,459),(428,491),(428,511),(429,462),(429,489),(429,513),(430,463),(430,490),(430,513),(431,464),(431,491),(431,513),(432,463),(432,492),(432,510),(433,462),(433,492),(433,511),(434,464),(434,492),(434,512),(435,465),(435,496),(435,510),(436,466),(436,496),(436,511),(437,467),(437,496),(437,512),(438,465),(438,493),(438,513),(439,466),(439,494),(439,513),(440,467),(440,495),(440,513),(441,468),(441,495),(441,510),(442,469),(442,495),(442,511),(443,468),(443,493),(443,512),(444,469),(444,494),(444,512),(445,470),(445,494),(445,510),(446,470),(446,493),(446,511),(447,471),(447,497),(447,512),(448,472),(448,497),(448,510),(449,473),(449,497),(449,511),(450,471),(450,500),(450,513),(451,472),(451,498),(451,513),(452,473),(452,499),(452,513),(453,474),(453,500),(453,510),(454,475),(454,500),(454,511),(455,474),(455,498),(455,512),(456,475),(456,499),(456,512),(457,476),(457,499),(457,510),(458,476),(458,498),(458,511),(459,514),(460,514),(461,514),(462,514),(463,514),(464,514),(465,514),(466,514),(467,514),(468,514),(469,514),(470,514),(471,514),(472,514),(473,514),(474,514),(475,514),(476,514),(477,490),(477,507),(477,510),(478,489),(478,507),(478,511),(479,491),(479,507),(479,512),(480,492),(480,507),(480,513),(481,496),(481,508),(481,513),(482,493),(482,508),(482,510),(483,494),(483,508),(483,511),(484,495),(484,508),(484,512),(485,497),(485,509),(485,513),(486,498),(486,509),(486,510),(487,499),(487,509),(487,511),(488,500),(488,509),(488,512),(489,514),(490,514),(491,514),(492,514),(493,514),(494,514),(495,514),(496,514),(497,514),(498,514),(499,514),(500,514),(501,510),(501,513),(502,511),(502,513),(503,512),(503,513),(504,510),(504,512),(505,511),(505,512),(506,510),(506,511),(507,514),(508,514),(509,514),(510,514),(511,514),(512,514),(513,514)],515)
=> ? = 4 - 2
[1,1,2,1,1,1] => [3,4] => ([(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0 = 2 - 2
[1,1,2,1,2] => [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,11),(1,30),(1,31),(1,32),(1,33),(1,34),(1,35),(1,36),(2,10),(2,24),(2,25),(2,26),(2,27),(2,28),(2,29),(2,36),(3,13),(3,17),(3,22),(3,23),(3,25),(3,31),(3,78),(4,12),(4,16),(4,20),(4,21),(4,24),(4,30),(4,78),(5,15),(5,19),(5,21),(5,23),(5,27),(5,33),(5,77),(6,14),(6,18),(6,20),(6,22),(6,26),(6,32),(6,77),(7,16),(7,17),(7,18),(7,19),(7,29),(7,35),(7,76),(8,12),(8,13),(8,14),(8,15),(8,28),(8,34),(8,76),(9,10),(9,11),(9,76),(9,77),(9,78),(10,37),(10,79),(10,80),(10,81),(11,37),(11,82),(11,83),(11,84),(12,44),(12,56),(12,68),(12,69),(12,125),(13,45),(13,57),(13,70),(13,71),(13,125),(14,46),(14,58),(14,68),(14,70),(14,126),(15,47),(15,59),(15,69),(15,71),(15,126),(16,48),(16,60),(16,72),(16,73),(16,125),(17,49),(17,61),(17,74),(17,75),(17,125),(18,50),(18,62),(18,72),(18,74),(18,126),(19,51),(19,63),(19,73),(19,75),(19,126),(20,52),(20,64),(20,68),(20,72),(20,124),(21,53),(21,65),(21,69),(21,73),(21,124),(22,54),(22,66),(22,70),(22,74),(22,124),(23,55),(23,67),(23,71),(23,75),(23,124),(24,38),(24,44),(24,48),(24,52),(24,53),(24,79),(25,39),(25,45),(25,49),(25,54),(25,55),(25,79),(26,40),(26,46),(26,50),(26,52),(26,54),(26,80),(27,41),(27,47),(27,51),(27,53),(27,55),(27,80),(28,42),(28,44),(28,45),(28,46),(28,47),(28,81),(29,43),(29,48),(29,49),(29,50),(29,51),(29,81),(30,38),(30,56),(30,60),(30,64),(30,65),(30,82),(31,39),(31,57),(31,61),(31,66),(31,67),(31,82),(32,40),(32,58),(32,62),(32,64),(32,66),(32,83),(33,41),(33,59),(33,63),(33,65),(33,67),(33,83),(34,42),(34,56),(34,57),(34,58),(34,59),(34,84),(35,43),(35,60),(35,61),(35,62),(35,63),(35,84),(36,37),(36,38),(36,39),(36,40),(36,41),(36,42),(36,43),(37,113),(37,114),(37,115),(38,101),(38,105),(38,109),(38,110),(38,113),(39,102),(39,106),(39,111),(39,112),(39,113),(40,103),(40,107),(40,109),(40,111),(40,114),(41,104),(41,108),(41,110),(41,112),(41,114),(42,101),(42,102),(42,103),(42,104),(42,115),(43,105),(43,106),(43,107),(43,108),(43,115),(44,85),(44,86),(44,101),(44,128),(45,87),(45,88),(45,102),(45,128),(46,85),(46,87),(46,103),(46,129),(47,86),(47,88),(47,104),(47,129),(48,89),(48,90),(48,105),(48,128),(49,91),(49,92),(49,106),(49,128),(50,89),(50,91),(50,107),(50,129),(51,90),(51,92),(51,108),(51,129),(52,85),(52,89),(52,109),(52,127),(53,86),(53,90),(53,110),(53,127),(54,87),(54,91),(54,111),(54,127),(55,88),(55,92),(55,112),(55,127),(56,93),(56,94),(56,101),(56,131),(57,95),(57,96),(57,102),(57,131),(58,93),(58,95),(58,103),(58,132),(59,94),(59,96),(59,104),(59,132),(60,97),(60,98),(60,105),(60,131),(61,99),(61,100),(61,106),(61,131),(62,97),(62,99),(62,107),(62,132),(63,98),(63,100),(63,108),(63,132),(64,93),(64,97),(64,109),(64,130),(65,94),(65,98),(65,110),(65,130),(66,95),(66,99),(66,111),(66,130),(67,96),(67,100),(67,112),(67,130),(68,85),(68,93),(68,136),(69,86),(69,94),(69,136),(70,87),(70,95),(70,136),(71,88),(71,96),(71,136),(72,89),(72,97),(72,136),(73,90),(73,98),(73,136),(74,91),(74,99),(74,136),(75,92),(75,100),(75,136),(76,81),(76,84),(76,125),(76,126),(77,80),(77,83),(77,124),(77,126),(78,79),(78,82),(78,124),(78,125),(79,113),(79,127),(79,128),(80,114),(80,127),(80,129),(81,115),(81,128),(81,129),(82,113),(82,130),(82,131),(83,114),(83,130),(83,132),(84,115),(84,131),(84,132),(85,116),(85,137),(86,117),(86,137),(87,118),(87,137),(88,119),(88,137),(89,120),(89,137),(90,121),(90,137),(91,122),(91,137),(92,123),(92,137),(93,116),(93,138),(94,117),(94,138),(95,118),(95,138),(96,119),(96,138),(97,120),(97,138),(98,121),(98,138),(99,122),(99,138),(100,123),(100,138),(101,116),(101,117),(101,134),(102,118),(102,119),(102,134),(103,116),(103,118),(103,135),(104,117),(104,119),(104,135),(105,120),(105,121),(105,134),(106,122),(106,123),(106,134),(107,120),(107,122),(107,135),(108,121),(108,123),(108,135),(109,116),(109,120),(109,133),(110,117),(110,121),(110,133),(111,118),(111,122),(111,133),(112,119),(112,123),(112,133),(113,133),(113,134),(114,133),(114,135),(115,134),(115,135),(116,139),(117,139),(118,139),(119,139),(120,139),(121,139),(122,139),(123,139),(124,127),(124,130),(124,136),(125,128),(125,131),(125,136),(126,129),(126,132),(126,136),(127,133),(127,137),(128,134),(128,137),(129,135),(129,137),(130,133),(130,138),(131,134),(131,138),(132,135),(132,138),(133,139),(134,139),(135,139),(136,137),(136,138),(137,139),(138,139)],140)
=> ? = 3 - 2
[1,2,1,1,1,1] => [2,5] => ([(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
[2,1,1,1,1,1] => [1,6] => ([(5,6)],7)
=> ([(0,1)],2)
=> 0 = 2 - 2
[3,1,1,1,1] => [1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 1 = 3 - 2
Description
The Frankl number of a lattice. For a lattice L on at least two elements, this is max where we maximize over all join irreducible elements and [x, 1] denotes the interval from x to the top element. Frankl's conjecture asserts that this number is non-negative, and zero if and only if L is a Boolean lattice.